JPH0929273A - Cooling method for ozone generating apparatus in sewage treatment facility using ozone - Google Patents

Cooling method for ozone generating apparatus in sewage treatment facility using ozone

Info

Publication number
JPH0929273A
JPH0929273A JP18048995A JP18048995A JPH0929273A JP H0929273 A JPH0929273 A JP H0929273A JP 18048995 A JP18048995 A JP 18048995A JP 18048995 A JP18048995 A JP 18048995A JP H0929273 A JPH0929273 A JP H0929273A
Authority
JP
Japan
Prior art keywords
ozone
water
cooling
concentration
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18048995A
Other languages
Japanese (ja)
Inventor
Nobuyuki Wada
信行 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP18048995A priority Critical patent/JPH0929273A/en
Publication of JPH0929273A publication Critical patent/JPH0929273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent slime formation in a cooling water pipeline and maintain stable ozone generation. SOLUTION: Water filtered by sand in a sand filter apparatus 11 and an ozonized gas from an ozone generating apparatus 13 are brought into contact and reacted each other, the resultant water treated by ozone is self-decomposed and stored in a treatment water tank 14 to evaporate discharged ozone gas, and a cooling water system is composed by installing pipelines in a section from the treated water tank 14 to the sand filter apparatus 11 through a heat- exchange apparatus 15. Water with an extremely low concentration of dissolved ozone in the treated water tank 14 is usually led as a primary cooling water to the cooling water system and, if necessary, ozone concentration control of the ozone generating apparatus 13 is carried out by a controller 16, and treated water containing residual dissolved ozone is intermittently led, and wastewater after cooling is turned back to the sand filter apparatus 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オゾンを用いた下
水処理水の高度処理施設において、オゾン処理水をオゾ
ン発生装置の冷却水に用いる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using ozone-treated water as cooling water for an ozone generator in an advanced treatment facility for treated sewage using ozone.

【0002】[0002]

【従来の技術】下水処理水は都市域の安定した新しい水
資源として、積極的に利用されるようになってきた。水
洗用水、雑用水としての処理場内利用はもとより、最近
では、「都市域で失われようとしている、せせらぎの復
活」、「都市に潤いを与える良好な水辺空間の形成」
等、種々な形態でのアメニティ利用が求められている。
このように、下水処理水が人間の目に触れ、肌への接触
機会が増えるに連れて、処理水の色や臭気が利用者に不
快感を与えないように、衛生学的に安全であるようにレ
ベルの高い処理が必要となっている。
2. Description of the Related Art Treated sewage has been actively used as a stable new water resource in urban areas. Not only is it used as water for flushing and miscellaneous water in the treatment plant, but recently, "Resurrection of babbling babies, which is about to be lost in urban areas," and "Formation of a good waterside space that moisturizes cities."
It is required to use amenities in various forms.
In this way, the treated water is hygienically safe so that the color and odor of the treated water will not make the user uncomfortable as the treated water comes into contact with the human eyes and the chance of contact with the skin increases. Therefore, high-level processing is required.

【0003】このような要求に対して、オゾン処理は強
力な酸化力により殺菌をはじめ脱色、下水臭除去、生物
難分解性CODの除去、藻類の発生防止などに効果があ
ることから、下水処理水の修景・親水用水としての再利
用や塩素代替消毒、放流水水質の向上には欠かせないプ
ロセスとなっている。
In response to such requirements, ozone treatment is effective in sterilization, decolorization, removal of sewage odor, removal of biodegradable COD, prevention of algae generation, etc. due to its strong oxidizing power. It is an essential process for reusing water as water for remediation, reusing it as water for hydrophilicity, disinfecting with chlorine, and improving the quality of discharged water.

【0004】工業的に多量のオゾンを発生させる方式と
しては、無声放電法が広く採用されている。無声放電
は、平行に配した電極間にガラスあるいはセラミックス
等の誘電体を介在させ、酸素を含む気体を電極間に流し
ながら交流高電圧を印加すると、集中したアークとはな
らず、均一な紫色のコロナとなって放電し、酸素の一部
がオゾンになる。
The silent discharge method is widely adopted as a method for industrially producing a large amount of ozone. Silent discharge is a uniform purple when a high voltage AC is applied while a gas containing oxygen is flown between the electrodes with a dielectric such as glass or ceramics interposed between the parallel electrodes. It becomes a corona and is discharged, and a part of oxygen becomes ozone.

【0005】容量の大きいオゾン発生装置の電極構造は
高効率化や省スペースの観点から一般的に円筒多管式が
採用されている。この円筒多管式は図2に示すように、
誘電体であるガラス管1の内周には薄膜の内部電極2
を、外周には空隙部(放電ギャップ)を介してステンレ
ス製の接地電極3を配設し、その接地電極3の外周に冷
却水及び空気を供給することにより、空隙部に通流させ
た原料空気、例えば酸素並びに電極の発熱量を間接的に
冷却する構造となっている。尚図2において4は内部電
極2と接地電極3間に高電圧を印加する電源である。
A cylindrical multitubular type is generally adopted as the electrode structure of an ozone generator having a large capacity from the viewpoint of high efficiency and space saving. As shown in FIG. 2, this cylindrical multitubular type
A thin film internal electrode 2 is provided on the inner circumference of the glass tube 1 which is a dielectric
A stainless steel ground electrode 3 is disposed on the outer periphery of the ground electrode 3 via a void (discharge gap), and cooling water and air are supplied to the outer periphery of the ground electrode 3 to cause the raw material to flow through the void. It has a structure that indirectly cools air, for example, oxygen and the amount of heat generated by the electrodes. In FIG. 2, reference numeral 4 is a power source for applying a high voltage between the internal electrode 2 and the ground electrode 3.

【0006】[0006]

【発明が解決しようとする課題】前述した無声放電方式
によるオゾン発生では、エネルギー効率が10%程度
(空気原料で7%、酸素原料で18%)であり、その多
くが熱エネルギーとなるため、熱エネルギーの放出がオ
ゾンの発生効率に影響を与える。またブロワや空気冷却
装置にも冷却水が必要となる。
In the ozone generation by the silent discharge method described above, the energy efficiency is about 10% (7% for the air raw material, 18% for the oxygen raw material), and most of it becomes thermal energy. The release of heat energy affects the ozone generation efficiency. Also, cooling water is required for the blower and the air cooling device.

【0007】冷却方式には、空気もしくは水を用いた強
制冷却が採用される。このうち空冷方式は季節により、
また運転時間により冷却能力が変動するために、安定し
たオゾン発生が行いにくい欠点をもっているが、オゾン
発生器の缶体腐食が少ないなどの理由から小形機種を対
象に採用されている。
Forced cooling using air or water is adopted as the cooling system. Of these, the air-cooled method depends on the season.
In addition, it has the drawback that stable ozone generation is difficult because the cooling capacity varies depending on the operating time, but it is used for small models because of the low corrosion of the can of the ozone generator.

【0008】また、水冷方式は、従来、水質によっては
腐食問題が生じていたが、熱交換器による冷却水循環式
や冷却塔による循環式の採用により、その問題は解決さ
れている。下水処理施設においては冷却用水の確保が容
易なため熱交換方式による水冷式冷却装置が多く採用さ
れている。熱交換方式には、熱交換器方式、空冷チラー
方式および両者にクーリングタワーを組み合わせた方式
がある。
In the water cooling system, a corrosion problem has conventionally occurred depending on the water quality, but the problem has been solved by adopting a cooling water circulation system by a heat exchanger or a circulation system by a cooling tower. Since it is easy to secure cooling water in sewage treatment facilities, water-cooling type cooling devices using a heat exchange system are often used. The heat exchange method includes a heat exchanger method, an air-cooled chiller method, and a method in which a cooling tower is combined with both.

【0009】熱交換器方式は設備的には最もシンプルで
設備費も最も安価でありチラーなどの運転コストが低減
できる。下水処理水は年間を通して10〜20℃程度と
温度変化が小さく、一次冷却水には砂ろ過処理工程以上
の水を使用できるが、オゾン処理水槽の貯留水では殺菌
力の持続がなく(溶存オゾンの自己分解が速いため)、
一次冷却水の管内壁にスライムが発生し、冷却水量を低
下させたり、熱交換を阻害したりする。その結果、冷却
効率を低下させ、冷却水温上昇によるオゾン発生装置の
異常停止の原因となることがある。
The heat exchanger system is the simplest in terms of equipment, has the lowest equipment cost, and can reduce the operating cost of a chiller or the like. The sewage treatment water has a small temperature change of about 10 to 20 ° C. throughout the year, and the primary cooling water can use water from the sand filtration treatment step or higher, but the stored water in the ozone treatment water tank does not have a sterilizing power (dissolved ozone). Self-decomposition is fast),
Slime is generated on the inner wall of the primary cooling water pipe, which reduces the amount of cooling water and hinders heat exchange. As a result, the cooling efficiency may be reduced, which may cause an abnormal stop of the ozone generator due to an increase in the cooling water temperature.

【0010】本発明は上記の点に鑑みてなされたもので
その目的は、冷却水配管中にスライムが発生することを
防止でき、オゾンの安定的発生を維持できるオゾンを用
いた下水処理設備におけるオゾン発生装置の冷却方法を
提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a sewage treatment facility using ozone capable of preventing slime from being generated in a cooling water pipe and maintaining stable ozone generation. It is to provide a cooling method for an ozone generator.

【0011】[0011]

【課題を解決するための手段】本発明は、オゾンを用い
た下水処理設備におけるオゾン発生装置の冷却方法にお
いて、(1)下水処理設備における砂ろ過装置の砂ろ過
水に、オゾン発生装置からオゾンを注入して接触、反応
せしめ、該オゾン処理水を、自己分解し且つ排オゾンガ
スとして揮散させるための処理水槽に貯留し、該処理水
槽から、前記オゾン発生装置を冷却するための熱交換器
を介して前記砂ろ過装置に至るまでの区間で冷却水系を
構成し、常時は溶存オゾン濃度の微量な前記処理水槽の
水を前記冷却水系に一次冷却水として通水し、必要に応
じて前記オゾン処理水の濃度を制御して許容オゾン濃度
の残留オゾン水を前記冷却水系に通水し、前記熱交換器
の冷却排水は前記砂ろ過装置に戻すことを特徴とし、
(2)前記オゾン処理水の濃度制御は、前記処理水槽に
貯留される前のオゾン処理水の溶存オゾン濃度と、前記
熱交換器の冷却排水の溶存オゾン濃度との差に基づいて
オゾン発生装置の発生オゾン量を制御するものであるこ
とを特徴とし、(3)前記許容オゾン濃度は、冷却水系
の配管中のスライムを殺菌、剥離することができ、且つ
冷却水系に設けられた設備がオゾンにより酸化および腐
食劣化することのないオゾン濃度であることを特徴とし
ている。
The present invention relates to a method for cooling an ozone generator in a sewage treatment facility using ozone, comprising: (1) sand filtered water of a sand filter device in a sewage treatment facility from the ozone generator to ozone. Is injected and brought into contact with and reacted with each other, and the ozone-treated water is stored in a treated water tank for self-decomposing and volatilizing as exhaust ozone gas, and from the treated water tank, a heat exchanger for cooling the ozone generator is provided. A cooling water system is configured in a section up to the sand filtration device through, and water in the treated water tank having a small amount of dissolved ozone concentration is always passed through the cooling water system as primary cooling water, and the ozone is supplied as necessary. The residual ozone water having an allowable ozone concentration by controlling the concentration of the treated water is passed through the cooling water system, and the cooling waste water of the heat exchanger is returned to the sand filtration device,
(2) The concentration control of the ozone-treated water is based on the difference between the dissolved ozone concentration of the ozone-treated water before being stored in the treated water tank and the dissolved ozone concentration of the cooling wastewater of the heat exchanger. (3) The permissible ozone concentration can sterilize and remove slime in the piping of the cooling water system, and the equipment provided in the cooling water system is ozone. It is characterized by an ozone concentration that does not cause oxidation and corrosion deterioration due to.

【0012】前記処理水槽に貯留されたオゾン処理水を
冷却水系に通水することにより、冷却水系の配管中のス
ライムは除去される。冷却水系に通水されるオゾン処理
水のオゾン濃度は、常時は微量であり、また濃度制御時
も許容オゾン濃度であるため、冷却水系に設けられた設
備がオゾンにより酸化および腐食劣化することはない。
By passing the ozone-treated water stored in the treated water tank through the cooling water system, slime in the piping of the cooling water system is removed. The ozone concentration of the ozone-treated water that is passed through the cooling water system is always a small amount and is the allowable ozone concentration even when the concentration is controlled, so the equipment installed in the cooling water system will not be oxidized and corroded by ozone. Absent.

【0013】冷却排水を砂ろ過装置に戻しているので、
剥離されたスライム片を再利用水や放流水に流出させる
ことなく、砂ろ過装置内に藻類やスライムが発生するこ
とを抑制できる。
Since the cooling waste water is returned to the sand filter,
It is possible to suppress the generation of algae and slime in the sand filtration device without causing the separated slime pieces to flow out to the reused water or the discharged water.

【0014】[0014]

【発明の実施の形態】図1に本発明を適用した下水処理
システムの概略を示す。図1において、11は最終沈澱
池からの水を砂ろ過処理する砂ろ過装置、12はオゾン
発生装置13からのオゾン化ガスと砂ろ過水を接触反応
させるオゾン接触槽、14はオゾン処理水を貯留する処
理水槽、15はオゾン発生装置13を冷却するための熱
交換器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a sewage treatment system to which the present invention is applied. In FIG. 1, 11 is a sand filter for sand-filtering the water from the final settling tank, 12 is an ozone contact tank for contacting the ozonized gas from the ozone generator 13 with sand-filtered water, and 14 is ozone-treated water. A treated water tank for storing 15 is a heat exchanger for cooling the ozone generator 13.

【0015】前記オゾン接触槽12の出口および処理水
槽14の出口と熱交換器15の間の区間と、熱交換器1
5と砂ろ過装置11の間の区間には冷却水系を構成する
配管、弁、一次冷却水循環ポンプ、一次冷却水流量計が
設けられている。aはオゾン接触槽12の出口側配管中
の水の溶存オゾン濃度を測定する溶存オゾン濃度計、b
は熱交換器15と砂ろ過装置11の間の配管中の水の溶
存オゾン濃度を測定する溶存オゾン濃度計である。16
は、一次冷却水流量計および溶存オゾン濃度計a,bの
各測定値に基づいて弁の開閉制御を行ったりオゾン発生
装置13のオゾン発生量を制御(溶存オゾン濃度制御)
するコントローラである。
The section between the heat exchanger 15 and the outlet of the ozone contact tank 12 and the outlet of the treated water tank 14 and the heat exchanger 1.
A pipe, a valve, a primary cooling water circulation pump, and a primary cooling water flow meter, which form a cooling water system, are provided in a section between 5 and the sand filter 11. a is a dissolved ozone concentration meter for measuring the dissolved ozone concentration of water in the outlet side pipe of the ozone contact tank 12, b
Is a dissolved ozone concentration meter for measuring the dissolved ozone concentration of water in the pipe between the heat exchanger 15 and the sand filter 11. 16
Controls the opening and closing of the valve based on the measured values of the primary cooling water flow meter and the dissolved ozone concentration meters a and b, and controls the ozone generation amount of the ozone generator 13 (dissolved ozone concentration control).
Controller.

【0016】上記のように構成されたシステムにおい
て、前記処理水槽14に貯留されたオゾン処理水は再利
用水あるいは放流水として用いられるが、この水を冷却
水系の配管に一次冷却水として通水する。これにより、
オゾン発生装置13が冷却されるとともに、冷却水系の
配管中のスライムは除去される。
In the system configured as described above, the ozone-treated water stored in the treated water tank 14 is used as recycled water or discharged water, and this water is passed through the piping of the cooling water as primary cooling water. To do. This allows
While the ozone generator 13 is cooled, slime in the cooling water pipe is removed.

【0017】この場合、常時は溶存オゾン濃度の微量な
処理水槽14の水を通水し、設定時間毎あるいは冷却水
流量が設定値を下回る時には必要な溶存オゾン濃度にな
るようオゾン発生装置13を制御する。このときの許容
オゾン濃度は、冷却水系の配管中のスライムを殺菌、剥
離することができ、且つ冷却水系に設けられた設備がオ
ゾンにより酸化および腐食劣化することのないオゾン濃
度である
In this case, the ozone generator 13 is set so that the water in the treated water tank 14 having a small amount of dissolved ozone concentration is always passed therethrough, and the required dissolved ozone concentration is obtained every set time or when the cooling water flow rate falls below the set value. Control. The permissible ozone concentration at this time is an ozone concentration capable of sterilizing and peeling slime in the piping of the cooling water system and preventing equipment provided in the cooling water system from being oxidized and corroded by ozone.

【0018】[0018]

【実施例】冷却水系配管などのスライムの殺菌、剥離に
は、配管系の長さ、太さ、曲がり、温度などによって必
要なオゾン量、オゾン処理時間が異なるため、プラント
個々の状況に併せて決定する必要がある。例えば0.2
mg/l以上の溶存オゾン濃度の水で30℃、流速1m
/sec、30分間接触させれば菌の約90%が除去さ
れる(「新版オゾン利用の新技術」のP657〜P66
1)。
[Example] For sterilizing and peeling slime from cooling water pipes, the required ozone amount and ozone treatment time differ depending on the length, thickness, bend, and temperature of the pipe system. Need to decide. For example 0.2
Water with a dissolved ozone concentration of mg / l or more at 30 ° C and a flow rate of 1 m
About 90% of the bacteria are removed by contacting for 30 minutes / sec. ("New edition of ozone utilization technology," P657-P66)
1).

【0019】オゾン反応槽は、オゾン化ガスと砂ろ過水
を接触反応させるオゾン接触槽と反応を余裕を持って完
了させるための滞留槽から成るため、処理水中の溶存オ
ゾン濃度はオゾンの自己分解により、通常、低濃度(≦
0.01mg/l)となる(「工業用水、Vol 8
No.431」のP53〜55)。
Since the ozone reaction tank is composed of an ozone contact tank for contacting the ozonized gas with the sand filtered water and a retention tank for completing the reaction with a margin, the dissolved ozone concentration in the treated water is self-decomposed of ozone. Due to the low concentration (≤
0.01 mg / l) ("Industrial water, Vol 8
No. 431 "P53-55).

【0020】冷却水系に付着したスライムはオゾンによ
り、殺菌、剥離されるが、オゾンの消費も大きいため、
配管内流速を速くし、管内部、熱交換部までオゾンを到
達させる必要があり、高濃度の溶存オゾン濃度水の連続
的通水が有効となる。しかしながら、オゾンの利用で注
意すべきことは、冷却水配管や熱交換器、ポンプなど冷
却水系材質のオゾンによる酸化、腐食劣化である。その
ため、高濃度の溶存オゾンを含む冷却水の連続通水は、
冷却系の腐食を助長することになる。
The slime adhering to the cooling water system is sterilized and stripped by ozone, but the ozone consumption is large, so
It is necessary to increase the flow velocity in the pipe to allow ozone to reach the inside of the pipe and the heat exchange section, and continuous water flow of high concentration dissolved ozone concentration water is effective. However, what should be noted when using ozone is oxidation and corrosion deterioration of cooling water system materials such as cooling water pipes, heat exchangers, and pumps by ozone. Therefore, continuous flow of cooling water containing high concentration of dissolved ozone
It will promote corrosion of the cooling system.

【0021】そこで、通常は溶存オゾン濃度が微量であ
る再利用水あるいは放流水を一次冷却水として用い、設
定時間毎あるいは冷却水流量が設定値を下回る時には、
必要とする溶存オゾン濃度(例えば0.2mg/l)に
なるよう溶存オゾン濃度制御を行い、溶存オゾン濃度計
aとbの差を検出し、この差が許容されるまで残留オゾ
ン水を通水する。
Therefore, normally, reused water or effluent having a small amount of dissolved ozone concentration is used as the primary cooling water, and at each set time or when the cooling water flow rate falls below the set value
The dissolved ozone concentration is controlled so that the required dissolved ozone concentration (for example, 0.2 mg / l) is detected, the difference between the dissolved ozone concentration meters a and b is detected, and residual ozone water is passed through until the difference is allowed. To do.

【0022】ただし、溶存オゾン濃度の高い処理水を直
接再利用または放流すると、再利用先あるいは放流先で
有害なオゾンガスが揮散する恐れがあるため、一旦、処
理水槽14に貯留し、自己分解あるいは排オゾンガスと
して揮散させる。
However, if the treated water having a high dissolved ozone concentration is directly reused or discharged, harmful ozone gas may volatilize at the reuse destination or the discharge destination. Therefore, the ozone water is once stored in the treated water tank 14 and self-decomposed or Evaporate as exhaust ozone gas.

【0023】また、冷却排水を砂ろ過装置11に戻すこ
とにより、剥離されたスライム片を再利用水や放流水に
流出させることなく、砂ろ過装置11内に藻類やスライ
ムが発生することを抑制できる。
Further, by returning the cooling waste water to the sand filter device 11, it is possible to suppress the generation of algae and slime in the sand filter device 11 without causing the separated slime pieces to flow out to the reused water or the discharged water. it can.

【0024】[0024]

【発明の効果】以上のように本発明によれば、オゾン発
生装置の熱交換器一次冷却水として、溶存オゾンが残留
する処理水を間欠的に通水し、冷却排水を砂ろ過装置に
戻すように構成したので、次のような優れた効果が得ら
れる。
As described above, according to the present invention, the treated water in which dissolved ozone remains is intermittently passed as the heat exchanger primary cooling water of the ozone generator, and the cooling waste water is returned to the sand filter. With this configuration, the following excellent effects can be obtained.

【0025】(1)冷却水配管中にスライムが発生する
ことを防止でき、オゾンの安定的発生を維持できる。
(1) It is possible to prevent slime from being generated in the cooling water pipe and maintain stable ozone generation.

【0026】(2)温度変化が少なく豊富なオゾン処理
水を有効利用することでオゾン処理のコストを低減する
ことができる。
(2) The cost of ozone treatment can be reduced by effectively utilizing abundant ozone-treated water with little temperature change.

【0027】(3)砂ろ過装置における藻類やスライム
の発生の抑制に効果がある。
(3) Effective in suppressing the generation of algae and slime in the sand filter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した下水処理施設におけるオゾン
処理システムのブロック図。
FIG. 1 is a block diagram of an ozone treatment system in a sewage treatment facility to which the present invention is applied.

【図2】円筒多管式によるオゾン発生装置の電極構造を
示す構成図。
FIG. 2 is a configuration diagram showing an electrode structure of a cylindrical multitubular ozone generator.

【符号の説明】[Explanation of symbols]

1…ガラス管 2…内部電極 3…接地電極 4…電源 11…砂ろ過装置 12…オゾン接触槽 13…オゾン発生装置 14…処理水槽 15…熱交換器 16…コントローラ DESCRIPTION OF SYMBOLS 1 ... Glass tube 2 ... Internal electrode 3 ... Ground electrode 4 ... Power supply 11 ... Sand filter 12 ... Ozone contact tank 13 ... Ozone generator 14 ... Treated water tank 15 ... Heat exchanger 16 ... Controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを用いた下水処理設備におけるオ
ゾン発生装置の冷却方法において、 下水処理設備における砂ろ過装置の砂ろ過水に、オゾン
発生装置からオゾンを注入して接触、反応せしめ、該オ
ゾン処理水を、自己分解し且つ排オゾンガスとして揮散
させるための処理水槽に貯留し、該処理水槽から、前記
オゾン発生装置を冷却するための熱交換器を介して前記
砂ろ過装置に至るまでの区間で冷却水系を構成し、 常時は溶存オゾン濃度の微量な前記処理水槽の水を前記
冷却水系に一次冷却水として通水し、必要に応じて前記
オゾン処理水の濃度を制御して許容オゾン濃度の残留オ
ゾン水を前記冷却水系に通水し、前記熱交換器の冷却排
水は前記砂ろ過装置に戻すことを特徴とするオゾンを用
いた下水処理設備におけるオゾン発生装置の冷却方法。
1. A method for cooling an ozone generator in a sewage treatment facility using ozone, which comprises injecting ozone from the ozone generator into the sand filtered water of a sand filter in the sewage treatment facility to cause contact and reaction with the ozone. A section from the treated water to the treated water tank for self-decomposing and volatilizing as exhaust ozone gas, and from the treated water tank to the sand filter through a heat exchanger for cooling the ozone generator. The cooling water system is configured with, and the water in the treated water tank with a small amount of dissolved ozone concentration is always passed through the cooling water system as primary cooling water, and the concentration of the ozone treated water is controlled as necessary to allow the allowable ozone concentration. Of the residual ozone water of claim 1 is passed through the cooling water system, and the cooling waste water of the heat exchanger is returned to the sand filter device. Cooling method.
【請求項2】 前記オゾン処理水の濃度制御は、前記処
理水槽に貯留される前のオゾン処理水の溶存オゾン濃度
と、前記熱交換器の冷却排水の溶存オゾン濃度との差に
基づいてオゾン発生装置の発生オゾン量を制御するもの
であることを特徴とする請求項1に記載のオゾンを用い
た下水処理設備におけるオゾン発生装置の冷却方法。
2. The ozone-treated water concentration control is based on the difference between the dissolved ozone concentration of the ozone-treated water before being stored in the treated water tank and the dissolved ozone concentration of the cooling wastewater of the heat exchanger. The method for cooling an ozone generator in a sewage treatment facility using ozone according to claim 1, wherein the method controls the amount of ozone generated by the generator.
【請求項3】 前記許容オゾン濃度は、冷却水系の配管
中のスライムを殺菌、剥離することができ、且つ冷却水
系に設けられた設備がオゾンにより酸化および腐食劣化
することのないオゾン濃度であることを特徴とする請求
項1又は2に記載のオゾンを用いた下水処理設備におけ
るオゾン発生装置の冷却方法。
3. The permissible ozone concentration is an ozone concentration capable of sterilizing and peeling slime in a pipe of a cooling water system and preventing equipment installed in the cooling water system from being oxidized and corroded by ozone. The method for cooling an ozone generator in a sewage treatment facility using ozone according to claim 1 or 2.
JP18048995A 1995-07-18 1995-07-18 Cooling method for ozone generating apparatus in sewage treatment facility using ozone Pending JPH0929273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18048995A JPH0929273A (en) 1995-07-18 1995-07-18 Cooling method for ozone generating apparatus in sewage treatment facility using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18048995A JPH0929273A (en) 1995-07-18 1995-07-18 Cooling method for ozone generating apparatus in sewage treatment facility using ozone

Publications (1)

Publication Number Publication Date
JPH0929273A true JPH0929273A (en) 1997-02-04

Family

ID=16084135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18048995A Pending JPH0929273A (en) 1995-07-18 1995-07-18 Cooling method for ozone generating apparatus in sewage treatment facility using ozone

Country Status (1)

Country Link
JP (1) JPH0929273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866029B2 (en) 2007-03-16 2014-10-21 Shozo Kawanishi Link apparatus, weighing apparatus using a link apparatus, packaging apparatus using a link apparatus and weighing and packaging system using a link apparatus
JP2015160172A (en) * 2014-02-27 2015-09-07 オルガノ株式会社 Water treatment equipment and water treatment method
CN105130117A (en) * 2015-08-30 2015-12-09 魏巍 Integrated sewage treatment trench suitable for various types of sewage treatment of factory and so on
CN105585104A (en) * 2016-03-01 2016-05-18 大连理工大学 Circulating cooling water ozone bypass-flow treatment system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866029B2 (en) 2007-03-16 2014-10-21 Shozo Kawanishi Link apparatus, weighing apparatus using a link apparatus, packaging apparatus using a link apparatus and weighing and packaging system using a link apparatus
JP2015160172A (en) * 2014-02-27 2015-09-07 オルガノ株式会社 Water treatment equipment and water treatment method
CN105130117A (en) * 2015-08-30 2015-12-09 魏巍 Integrated sewage treatment trench suitable for various types of sewage treatment of factory and so on
CN105585104A (en) * 2016-03-01 2016-05-18 大连理工大学 Circulating cooling water ozone bypass-flow treatment system and method

Similar Documents

Publication Publication Date Title
WO2004110937A1 (en) Photocatalyst water treating apparatus
JP2006314911A (en) Sludge treatment method and waste water treatment system for biological treatment tank
JPH0929273A (en) Cooling method for ozone generating apparatus in sewage treatment facility using ozone
Rice et al. Ozone Disinfection of Municipal Wastewater--Current State-of-the-art
JPH09314156A (en) Ozone treatment apparatus in which biological filter device is incorporated
JPS608759B2 (en) Method for removing organic compounds from radioactive waste liquid
JP7241608B2 (en) Wastewater treatment system and wastewater treatment method
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JP3537995B2 (en) Wastewater treatment method
KR100430071B1 (en) Facility supplying extinguish water and living water by recycling waste water
JP2003166798A (en) Cooling water circulation system comprising cooling water treating function, and cooling water treating method
JPH08108032A (en) Wet ozone deodorizing device
JP3547573B2 (en) Water treatment method
JPH07236883A (en) Water treatment apparatus
JP2000167567A (en) Ultrapure water making apparatus
JPH01215395A (en) Water treating device
JPH11347576A (en) Method and apparatus for treating water
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2003251362A (en) Sterilization method for ultrapure water feed pipe
JP2000084581A (en) Waste liquid treatment and its apparatus
JPH01262987A (en) Cooling water purifying apparatus
JP4588314B2 (en) Total energy system in buildings
JPH10180269A (en) Water treatment and device therefor
JPH01157328A (en) Culture of water circulating type and cultivating device
JP3310192B2 (en) Organic wastewater treatment method and apparatus