JPH0929127A - Pulverizer - Google Patents

Pulverizer

Info

Publication number
JPH0929127A
JPH0929127A JP18886295A JP18886295A JPH0929127A JP H0929127 A JPH0929127 A JP H0929127A JP 18886295 A JP18886295 A JP 18886295A JP 18886295 A JP18886295 A JP 18886295A JP H0929127 A JPH0929127 A JP H0929127A
Authority
JP
Japan
Prior art keywords
crushing
crushed
crushing device
collision
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18886295A
Other languages
Japanese (ja)
Other versions
JP3283728B2 (en
Inventor
Satoru Okano
覚 岡野
Nobuyasu Makino
信康 牧野
Hirosato Amano
浩里 天野
Kenichi Uehara
賢一 上原
Keiko Watanabe
啓子 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18886295A priority Critical patent/JP3283728B2/en
Publication of JPH0929127A publication Critical patent/JPH0929127A/en
Application granted granted Critical
Publication of JP3283728B2 publication Critical patent/JP3283728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve pulverizing capacity while the vertical component of a material to be pulverized in an accelerating pipe is eliminated to the utmost, and the direction of the velocity of the material to be pulverized in the accelerating pipe is not notably made eccentric to the central axis and a pulverizer is miniaturized. SOLUTION: A jetting nozzle 3 for jetting a jet stream 15 in a pulverizing chamber 7, a feeding port 15 for feeding a material to be pulverized 6 into the jet stream 15, and an impingement member 4 which installed opposite to the jetting nozzle 3 and on which the material to be pulverized 6 hits directly together with the jet stream 15 to pulverize it are provided. The jetting nozzle 3 has a jetting nozzle outlet 8 vertically upward, and is provided with the impingement member 4 with an impingement surface 8 thereof being directed vertically downward in a position above the jet nozzle outlet 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉砕装置、より詳
細には、複写機等において画像形成に使用するトナーの
粉砕装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crushing device, and more particularly to a crushing device for toner used for image formation in a copying machine or the like.

【0002】[0002]

【従来の技術】ジェット噴流を用いた衝突式気流粉砕装
置では、ジェット噴流中に被粉砕物を供給し、その被粉
砕物を衝突部材に衝突させ、その衝撃力によって被粉砕
物を粉砕する。図18は、従来の粉砕装置の一例を説明
するための構成図で、図中、1は被粉砕物供給口、2は
圧縮空気供給ノズル、3圧縮空気加速管、4は圧縮空気
衝突部材、5は粉砕物排出口で、該粉砕装置は、図示の
ように、圧縮空気供給ノズル2を接続した加速管3の加
速管出口8に対向して衝突部材4を有し、前記加速管3
によるジェット噴流である高速気流15の流動により、
加速管3の途中の被粉砕物供給口1から加速管3に被粉
砕物6を吸引させ、これを高速気流15とともに噴射、
及び、粉砕室7へ入射させ、衝突部材4の衝突面9に衝
突させ、その衝撃によって被粉砕物6を粉砕するもので
ある。通常、被粉砕物6を所望の粒径に粉砕するために
は、排出口5と被粉砕物供給口1との間に分級機13を
配置して閉回路を設ける。このとき、分級機13による
分級の結果、粗粉の場合は、粗粉11となった被粉砕物
6を、被粉砕物供給口1へ送り、前記した粉砕を再度行
い、その粉砕物10を排出口5から分級機13に戻して
再度分級するようにしており、その結果、微粉12につ
いて所望の粒径の粉砕物を得ることができる。
2. Description of the Related Art In a collision type air flow crushing apparatus using a jet jet, an object to be crushed is supplied into a jet jet, the object to be crushed is collided with a collision member, and the object is crushed by the impact force. FIG. 18 is a configuration diagram for explaining an example of a conventional crushing apparatus, in which 1 is a crushed object supply port, 2 is a compressed air supply nozzle, 3 is a compressed air accelerating pipe, 4 is a compressed air collision member, Reference numeral 5 denotes a crushed material discharge port, which has a collision member 4 facing the acceleration tube outlet 8 of the acceleration tube 3 to which the compressed air supply nozzle 2 is connected, as shown in the figure.
By the flow of the high-speed air current 15 which is a jet jet by
The crushed object 6 is sucked from the crushed object supply port 1 in the middle of the accelerating tube 3 to the accelerating tube 3, and is injected together with the high-speed air stream 15,
Also, it is made incident on the crushing chamber 7, collides against the collision surface 9 of the collision member 4, and the crushed object 6 is crushed by the impact. Usually, in order to pulverize the pulverized material 6 to a desired particle size, a classifier 13 is arranged between the discharge port 5 and the pulverized material supply port 1 to provide a closed circuit. At this time, in the case of coarse powder as a result of the classification by the classifier 13, the pulverized material 6 that has become the coarse powder 11 is sent to the pulverized material supply port 1 and the pulverization described above is performed again to obtain the pulverized material 10. The particles are returned to the classifier 13 from the discharge port 5 and classified again, and as a result, a pulverized product having a desired particle size can be obtained for the fine powder 12.

【0003】しかしながら、上記従来技術では、被粉砕
物供給口1が加速管3の中心軸14に対し、非対称に配
置されている。このため、中心軸14に対し、鉛直下方
に落下する被粉砕物6は、落下速度成分のため、加速管
3の中の軌跡は中心軸14から著しく偏心する。このた
め、被粉砕物6は、粉砕室7へ入射後、衝突面9上に斜
めに入射し、衝撃力が低下、もしくは、衝突面9に衝突
しない場合があり、粉砕効率上昇が期待できない。
However, in the above-mentioned conventional technique, the pulverized material supply port 1 is arranged asymmetrically with respect to the central axis 14 of the acceleration tube 3. For this reason, the crushed object 6 falling vertically downward with respect to the central axis 14 has a falling velocity component, and therefore the locus in the accelerating tube 3 is significantly decentered from the central axis 14. Therefore, the crushed object 6 may be obliquely incident on the collision surface 9 after entering the crushing chamber 7, and the impact force may be reduced or may not collide with the collision surface 9, and the crushing efficiency cannot be expected to increase.

【0004】前記問題に対し、粉砕装置を鉛直方向に縦
型にし、かつ、噴出ノズルを鉛直方向下方に向け、か
つ、噴出ノズルより下方に衝突部材を有した構成をとる
ことにより、被粉砕物の落下方向の軸と加速管による加
速方向である中心軸がほぼ一致し、加速管の中の被粉砕
物が中心軸から著しく偏心することを防ぐようにした粉
砕装置がある。しかしながら、この粉砕装置は、噴出ノ
ズルと粉砕室及び粉砕後の搬送経路が同一方向かつ同一
中心軸上にあるため、大型化してしまう。
In order to solve the above problems, the crushing device is made vertical in the vertical direction, the jet nozzle is directed downward in the vertical direction, and the collision member is provided below the jet nozzle to obtain the object to be crushed. There is a crushing device in which the axis of the falling direction of ∘ and the central axis which is the accelerating direction by the accelerating tube are substantially aligned with each other to prevent the crushed object in the accelerating tube from being significantly decentered from the central axis. However, this crushing device is upsized because the ejection nozzle, the crushing chamber, and the conveying path after crushing are in the same direction and on the same central axis.

【0005】例えば、縦型の気流式粉砕装置において、
装置自体を縦型にし、噴出ノズルを下方へ向け、かつ衝
突板を噴出ノズルの下方に位置させて粉砕させるように
した特開平7−8829号公報、また、装置構成を縦型
・下向きとする気流式粉砕装置において、衝突面上に円
錐部材を有し、粉砕効率上昇を狙った特開平6−315
649号公報、装置構成を縦型・下向きとする気流式粉
砕装置において、多段微粉分級工程を備えた粉砕装置の
応用として粉砕効率上昇を狙った特開平6−31399
0号公報、更には、装置構成を縦型・下向きとする気流
式粉砕装置において、粉砕ノズル中心にトナーを集中さ
せて粉砕させる粉砕装置の応用として粉砕効率上昇を狙
った特開平5−15801号公報等に記載のものがある
が、これら縦型粉砕装置は、いずれも、前述のごとき問
題、すなわち、大型化してしまうという問題があった。
For example, in a vertical airflow type crusher,
Japanese Patent Laid-Open No. 7-8829, in which the device itself is vertical, the ejection nozzle is directed downward, and the collision plate is positioned below the ejection nozzle for crushing, and the device configuration is vertical and downward. In the air flow type crushing device, a conical member is provided on the collision surface to aim at increasing the crushing efficiency.
Japanese Patent Laid-Open No. 6-31399, which aims to increase the pulverization efficiency as an application of a pulverizer having a multistage fine powder classification step in an air flow type pulverizer having a vertical type and downward device configuration.
No. 0, further, in an air flow type crushing device having a vertical and downward device configuration, an application of a crushing device for crushing toner by concentrating toner in the center of a crushing nozzle is aimed at increasing crushing efficiency. Although there are those described in the official gazettes and the like, all of these vertical crushing devices have the above-mentioned problem, that is, the problem of increasing the size.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述のごと
き実情に鑑みてなされたもので、加速管の中の被粉砕物
が中心軸に対し、垂直成分を極力無くし、被粉砕物の加
速管の中の速度の方向を中心軸から著しく偏心させず
に、かつ、粉砕装置の小型化を図りながら粉砕処理能力
を向上させることを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the object to be ground in the accelerating tube is as vertical as possible with respect to the central axis so that the object to be ground is accelerated. The purpose of the present invention is to improve the crushing capacity without significantly decentering the direction of the velocity in the tube from the central axis and while reducing the size of the crusher.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、粉砕
室内にジェット噴流を噴出する噴出ノズルと、前記ジェ
ット噴流中に被粉砕物を供給する供給口と、前記噴出ノ
ズルと対向して設置され、前記被粉砕物が前記ジェット
噴流と共に直接衝突されて微粉砕される衝突面を持つ衝
突部材を有する粉砕装置において、前記噴射ノズルは噴
出ノズル出口を鉛直上向きに有し、かつ、該噴出ノズル
出口より上方の位置に衝突面を鉛直下方に向けて前記衝
突部材を有することを特徴としたもので、これにより、
衝撃力が最大となる粉砕がなされ、高効率化が図れる。
また、粉体供給方向と高速気流加速方向が対向するた
め、装置構成を小型化することができる。
According to a first aspect of the present invention, there is provided a jet nozzle for jetting a jet jet into a crushing chamber, a supply port for supplying an object to be crushed into the jet jet, and a jet nozzle facing the jet nozzle. In a crushing device having a collision member that is installed and has a collision surface where the object to be crushed is directly collided with the jet jet and finely crushed, the injection nozzle has a jet nozzle outlet vertically upward, and the jet nozzle It is characterized in that it has the collision member with the collision surface facing vertically downward at a position above the nozzle outlet, whereby,
It is crushed to maximize the impact force, and high efficiency can be achieved.
Further, since the powder supply direction and the high-speed air flow acceleration direction are opposed to each other, the device configuration can be downsized.

【0008】請求項2の発明は、請求項1の発明におい
て、前記噴出ノズルの内壁面は、衝突面方向に延長した
面が噴出ノズルの中心軸に垂直で、かつ、衝突面位置に
できる面と交わる面が、衝突面上に収まることを特徴と
したもので、これにより、加速管で加速される被粉砕物
全てを衝突板に照射かつ粉砕ができ、高効率な粉砕が可
能となる。
According to a second aspect of the present invention, in the first aspect of the present invention, the inner wall surface of the ejection nozzle is a surface extending in the collision surface direction perpendicular to the central axis of the ejection nozzle and at the collision surface position. It is characterized in that the surface that intersects with the collision surface fits on the collision surface, which makes it possible to irradiate and crush all the objects to be crushed by the accelerating tube onto the collision plate, enabling highly efficient crushing.

【0009】請求項3の発明は、請求項1又は2の発明
において、噴出ノズル内に被粉砕物を供給する供給口を
複数有することを特徴としたもので、これにより、複数
の供給口により加速管へ均一に被粉砕物を供給し、かつ
高速気流を被粉砕物に一様にあて、加速が達成でき、高
効率な粉砕が可能となる。
According to a third aspect of the present invention, in the first or second aspect of the invention, the jet nozzle has a plurality of supply ports for supplying the material to be crushed. The object to be crushed is uniformly supplied to the accelerating pipe, and the high-speed air stream is uniformly applied to the object to be crushed, so that acceleration can be achieved and highly efficient crushing is possible.

【0010】請求項4の発明は、請求項1乃至3のいず
れかの発明において、衝突面の材質が炭化珪素であるこ
とを特徴としたもので、これにより、硬質な衝突板とそ
の粉砕、及び、被粉砕物の衝突面での付着防止がなさ
れ、粉砕性が向上するため、高効率な粉砕が可能とな
る。
A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects of the present invention, the material of the collision surface is silicon carbide. Further, since the crushed object is prevented from adhering to the collision surface and the crushability is improved, crushing can be performed with high efficiency.

【0011】請求項5の発明は、請求項1乃至4のいず
れかの発明において、前記衝突部材が鉛直軸回りに回転
可能で、かつ、回転装置を有することを特徴としたもの
で、これにより、衝突面が回転し、可動することによ
り、衝突面との融着が低減し、高効率な粉砕が可能とな
る。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the collision member is rotatable about a vertical axis and has a rotating device. By rotating and moving the collision surface, fusion with the collision surface is reduced, and highly efficient pulverization becomes possible.

【0012】請求項6の発明は、請求項1乃至5のいず
れかの発明において、前記噴出ノズルの中心軸を鉛直軸
より偏心させたことを特徴としたもので、これにより、
高速気流の一部を効率的に粉砕後の粉砕物を分級工程へ
搬送するのに利用することができ、高効率な粉砕が可能
となる。
A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the central axis of the jet nozzle is eccentric from the vertical axis.
A part of the high-speed air stream can be used to efficiently convey the pulverized product after pulverization to the classification step, and high-efficiency pulverization becomes possible.

【0013】請求項7の発明は、請求項1乃至6のいず
れかの発明において、前記噴出ノズルの内壁面は、衝突
面方向に延長した面が噴出ノズルの中心軸に垂直で、か
つ、衝突面位置にできる面と交わる面に収まる底面を持
ち、かつ、衝突面上に頂点を鉛直下方に向けた円錐体を
有することを特徴としたもので、これにより、高速気流
は衝突面上の円錐体に沿って、圧力損失を発生させずに
方向が変わり、粉砕物の分級工程への搬送力に転化する
ことができ、気流の低エネルギー化、及び、高効率な粉
砕が可能となる。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects of the present invention, the inner wall surface of the ejection nozzle has a surface extending in the collision surface direction perpendicular to the central axis of the ejection nozzle and the collision. It is characterized by having a bottom surface that fits in the surface that intersects with the surface that can be located, and by having a cone on the collision surface with its apex directed vertically downward, so that the high-speed airflow is a cone on the collision surface. The direction changes along the body without generating pressure loss, and it can be converted into a conveying force for the classification process of the pulverized material, so that the energy of the airflow can be reduced and highly efficient pulverization can be performed.

【0014】請求項8の発明は、請求項1乃至7のいず
れかの発明において、前記衝突面端部が鉛直軸に対して
テーパーを有することを特徴としたもので、これによ
り、衝突面上の円錐体の直ぐ脇も傾斜を付け、高速気流
をより粉砕物を分級工程へ搬送させるため、高速気流を
より圧力損失を減らしながら方向転換させることがで
き、高効率な粉砕が可能となる。
The invention of claim 8 is characterized in that, in any one of the inventions of claims 1 to 7, the end portion of the collision surface has a taper with respect to the vertical axis. The side of the cone is also inclined and the high-speed air stream is further conveyed to the classifying process, so that the high-speed air stream can be redirected while further reducing the pressure loss, and highly efficient pulverization becomes possible.

【0015】請求項9の発明は、請求項1乃至8のいず
れかの発明において、前記粉砕室の内壁面から局所的な
突起を無くしたことを特徴としたもので、これにより、
粉砕室内部の形状から局所的な突起を無くすことによ
り、気流のよどみ領域が発生しなく、圧力損失が減り、
より効率的に搬送するための流れへ方向転換させること
ができ、高効率な粉砕が可能となる。
The invention of claim 9 is characterized in that, in any one of claims 1 to 8, local projections are eliminated from the inner wall surface of the crushing chamber.
By eliminating local projections from the shape inside the crushing chamber, stagnation areas of the air flow do not occur, pressure loss is reduced,
The direction can be changed to a flow for more efficient transportation, and highly efficient pulverization becomes possible.

【0016】請求項10の発明は、請求項1乃至9のい
ずれかの発明において、前記粉砕室の内壁面の材質が炭
化珪素であることを特徴としたもので、これにより、1
次粉砕後の粉砕物に対し、粉砕室の硬質な内壁面と2次
的な衝突,粉砕が可能となり、高効率な粉砕が可能とな
る。
According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the material of the inner wall surface of the crushing chamber is silicon carbide.
The crushed material after the subsequent crushing can be collided and crushed secondarily with the hard inner wall surface of the crushing chamber, and crushing can be performed with high efficiency.

【0017】請求項11の発明は、請求項1乃至10の
いずれかの発明において、前記噴出ノズルの出口表面か
ら局所的な突起を無くしたことを特徴としたもので、こ
れにより、加速管出口付近の形状から局所的な突起を無
くすことにより、加速管付近の気流の圧力損失が軽減で
き、粉砕後の粉砕物が分級工程へ搬送される際効率的で
あり、高効率な粉砕が可能となる。
An eleventh aspect of the present invention is characterized in that, in any one of the first to tenth aspects of the present invention, a local projection is eliminated from the outlet surface of the jet nozzle, whereby the acceleration tube outlet is provided. By eliminating local projections from the shape in the vicinity, the pressure loss of the air flow near the acceleration tube can be reduced, and it is efficient when the crushed material after crushing is conveyed to the classification process, enabling highly efficient crushing. Become.

【0018】請求項12の発明は、請求項1乃至11の
いずれかの発明において、前記粉砕室の内壁面と噴出ノ
ズルの間に仕切りを有し、かつ、粉砕室の内壁面と前記
仕切りの間が前記被粉砕物供給口に通じ、かつ、前記仕
切りと噴出ノズルの間が分級工程へ通ずることを特徴と
したもので、これにより、仕切り部材の効果から粉砕装
置内部で、予め粗粉の割合が大きい粉砕物と微粉の割合
が大きい粉砕物を分けることが可能で、次工程の分級工
程の負担の軽減及び高精度化、また粉砕工程の負担の軽
減が達成でき、高効率な粉砕が可能となる。
According to a twelfth aspect of the present invention, in any one of the first to eleventh aspects of the present invention, a partition is provided between the inner wall surface of the crushing chamber and the ejection nozzle, and the inner wall surface of the crushing chamber and the partition wall are separated from each other. Is connected to the crushed material supply port, and the partition and the ejection nozzle are connected to the classification step. It is possible to separate the crushed material with a large proportion and the crushed material with a large proportion of fine powder, and it is possible to reduce the burden of the classification process of the next process and improve the accuracy, and also reduce the burden of the crushing process, and achieve highly efficient crushing. It will be possible.

【0019】請求項13の発明は、請求項1乃至12の
いずれかの発明において、前記仕切りの粉砕室の内壁面
側の表面材質が炭化珪素であることを特徴としたもの
で、これにより、粉砕室内壁面と仕切り部材との2次3
次的な粉砕回数が増加し、目的である微粉に容易に近づ
くことが可能となり、次工程の分級工程の負担の軽減及
び高精度化、また粉砕工程の負担の軽減が達成でき、高
効率な粉砕が可能となる。
A thirteenth aspect of the present invention is characterized in that, in any one of the first to twelfth aspects of the invention, the surface material on the inner wall surface side of the crushing chamber of the partition is silicon carbide. Secondary 3 of crushing chamber wall and partition member
The number of subsequent pulverization increases, and it becomes possible to easily approach the target fine powder, reducing the burden of the classification process of the next process and improving the accuracy, and reducing the burden of the crushing process, resulting in high efficiency. It becomes possible to crush.

【0020】請求項14の発明は、請求項1乃至13の
いずれかの発明において、前記仕切りと噴出ノズルの間
を、仕切りと粉砕室の内壁面の間よりも低圧にする吸引
装置及び制御装置を有することを特徴としたもので、こ
れにより、仕切り部材と加速管の間の領域を低圧にする
ことから、粉砕装置内部で、予め粗粉の割合が大きい粉
砕物と微粉の割合が大きい粉砕物を精度良く分けること
が可能で、次工程の分級工程の負担の軽減及び高精度
化、また粉砕工程の負担の軽減が達成でき、高効率な粉
砕が可能となる。
According to a fourteenth aspect of the present invention, in any one of the first to thirteenth aspects of the present invention, a suction device and a control device that make the pressure between the partition and the jet nozzle lower than that between the partition and the inner wall surface of the crushing chamber. This has a low pressure in the region between the partition member and the accelerating pipe, so that inside the pulverizer, a pulverized product with a large proportion of coarse powder and a large proportion of fine powder is pulverized. It is possible to separate the objects with high accuracy, reduce the burden of the classification process of the next process and improve the accuracy, and also reduce the burden of the crushing process, and it is possible to perform highly efficient crushing.

【0021】請求項15の発明は、請求項14における
粉砕装置を鉛直方向上部に位置する1段目粉砕手段と
し、かつ、請求項11における粉砕装置を鉛直方向下部
に位置する2段目粉砕手段として有し、かつ、上部1段
目粉砕装置の粉砕室の内壁面と仕切りの間が下部2段目
粉砕装置の被粉砕物供給口へ通じ、かつ、上部1段目粉
砕装置の仕切りと噴出ノズルの間が、下部2段目粉砕装
置の粉砕室の内壁面と噴出ノズルの間と共に分級工程へ
通ずることを特徴としたもので、これにより、粉砕装置
を2段に組むことから、粉砕処理時間の短縮化、及び耐
久性の向上が図られ、高効率な粉砕が可能となる。
According to a fifteenth aspect of the present invention, the crushing device according to the fourteenth aspect is a first-stage crushing device located vertically upward, and the crushing device according to the eleventh aspect is a second-stage crushing device positioned vertically downward. And the space between the inner wall of the crushing chamber of the upper first-stage crushing device and the partition leads to the crushed material supply port of the lower second-stage crushing device, and the partition and ejection of the upper first-stage crushing device It is characterized in that the space between the nozzles communicates with the inner wall surface of the crushing chamber of the lower second-stage crushing device and the ejection nozzles to the classification process, which allows the crushing device to be assembled in two stages. The time can be shortened and the durability can be improved, enabling highly efficient pulverization.

【0022】請求項16の発明は、請求項14における
粉砕装置を鉛直方向上部に1段目粉砕手段とし、かつ、
請求項14における粉砕装置を鉛直方向下部に2段目粉
砕手段として有する2段式粉砕装置において、上部1段
目粉砕装置の粉砕室の内壁面と仕切りの間が、下部2段
目粉砕装置の粉砕室の内壁面と仕切りの間と共に2段目
粉砕装置の被粉砕物供給口へ通じ、かつ、上部1段目粉
砕装置の仕切りと噴出ノズルの間が、下部2段目粉砕装
置の仕切りと噴出ノズルの間と共に分級工程へ通ずるこ
とを特徴としたもので、粉砕装置を2段に組み、かつ2
段目粉砕装置内部でも、予め粗粉の割合が大きい粉砕物
と微粉の割合が大きい粉砕物を分けるために、請求項1
5以上に粉砕処理時間の短縮化、及び、耐久性の向上、
及び、高精度化が図られ、高効率な粉砕が可能となる。
According to a sixteenth aspect of the present invention, the crushing device according to the fourteenth aspect is a first-stage crushing means in the upper part in the vertical direction, and
A two-stage type pulverizer having the pulverizer according to claim 14 as a second stage pulverizer in a vertically lower part, wherein a space between the inner wall surface of the pulverization chamber of the upper first stage pulverizer and the partition is lower than that of the second stage pulverizer. The space between the inner wall of the crushing chamber and the partition is connected to the crushed object supply port of the second crusher, and the partition between the upper first crusher and the jet nozzle is the partition of the lower second crusher. It is characterized in that it is connected to the classification process together with the ejection nozzles.
In order to separate a pulverized product having a large proportion of coarse powder and a pulverized product having a large proportion of fine powder in advance even inside the stage pulverizer,
5 or more shortening of crushing processing time and improvement of durability,
In addition, high precision is achieved, and highly efficient pulverization is possible.

【0023】[0023]

【発明の実施の形態】図1は、請求項1に記載した粉砕
装置の一実施例を説明するための要部構成図で、図中、
図18に示した従来技術と同様の作用をする部分には、
図18の場合と同一の参照番号が付してある。而して、
図1に示した粉砕装置においては、加速管3の出口8を
鉛直上向きの方向16に向けて配置させ、かつ方向16
の逆方向に向けた衝突面9を持つ衝突部材4を加速管3
から方向16に向かって配置するようにしたものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a main part configuration diagram for explaining an embodiment of a crushing apparatus described in claim 1, in which FIG.
A portion having the same operation as that of the prior art shown in FIG.
The same reference numerals as in FIG. 18 are attached. Thus,
In the crushing device shown in FIG. 1, the outlet 8 of the accelerating tube 3 is arranged in a vertically upward direction 16 and
The collision member 4 having the collision surface 9 oriented in the opposite direction of the
It is arranged in the direction 16 from.

【0024】図1に示した構成では、被粉砕物6が自重
によって落下する方向51の軸と、加速管3による加速
方向である中心軸14がほぼ同一方向とみなされ、被粉
砕物6は加速管3の中では中心軸14に沿った方向にほ
とんどの速度成分を持ち、中心軸14に垂直方向の速度
成分は持たない。方向16へ加速された被粉砕物6は中
心軸14に対し、垂直面である衝突面9に垂直に衝突す
ることで、衝撃力が最も高くなる。この結果、粉砕後の
粉砕物10は、方向17に沿って自重と気流の搬送力に
よって分級機13至り、微粉12を増加させ、収率が上
昇する。
In the structure shown in FIG. 1, the axis 51 in the direction 51 in which the crushed object 6 falls by its own weight and the central axis 14 which is the acceleration direction of the accelerating tube 3 are regarded as substantially the same direction, and the crushed object 6 is In the accelerating tube 3, most of the velocity component is in the direction along the central axis 14, and there is no velocity component in the direction perpendicular to the central axis 14. The crushed object 6 accelerated in the direction 16 collides with the central axis 14 perpendicularly to the collision surface 9, which is a vertical surface, so that the impact force becomes the highest. As a result, the crushed product 10 after crushing reaches the classifier 13 due to its own weight and the conveying force of the air flow along the direction 17, increasing the fine powder 12 and increasing the yield.

【0025】[0025]

【表1】 [Table 1]

【0026】〔実験例〕表1は、図1に示した粉砕装置
の実験に使用した原料を示し、この表1に示した原料を
ミキサーにて混合し、混合物を得、次に、この混合物を
エクストルダーにて約200℃で溶融混練した後、冷却
して固化し、それをハンマーミルで200〜2000[μ
m]の粒子に粗粉砕した。この粗粉砕物を被粉砕物6と
し、図1に示される粉砕装置、および、図18に示した
フローチャートに従って、すなわち、分級機13による
分級の結果、粗粉11となった粉砕物を再度被粉砕物と
して戻して粉砕を行った。粉砕された粉砕物10を微粉
と粗粉とに分級する手段としては、固定式風力分級機を
使用した。
[Experimental Example] Table 1 shows the raw materials used in the experiment of the crushing apparatus shown in FIG. 1. The raw materials shown in Table 1 were mixed with a mixer to obtain a mixture, and then this mixture was used. Melt and knead in an extruder at about 200 ° C, then cool and solidify, then use a hammer mill to 200-2000 [μ
m]. This coarsely pulverized product is used as the pulverized product 6, and the pulverized product which has become the coarse powder 11 as a result of the classification by the classifier 13 is re-processed according to the pulverizing apparatus shown in FIG. 1 and the flowchart shown in FIG. It was returned as a pulverized product and pulverized. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0027】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物として被粉砕
物6とともに加速管3に投入した。この結果、微粉とし
ては、体積平均粒径7.5[μm](コールターカウン
タにて測定)の粉砕物27.40[kg/hr](収率85.
6%)を回収した。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a crushed product, and in the case of the coarse powder 11, the crushed product was again fed into the acceleration tube 3 from the crushed product supply port 1 as a crushed product. As a result, as fine powder, 27.40 [kg / hr] of pulverized product having a volume average particle size of 7.5 [μm] (measured by a Coulter counter) (yield 85.
6%) was recovered.

【0028】図2は、請求項2に記載した発明の実施例
を説明するための要部拡構成図で、この実施例は、図1
に示した実施例に加えて、加速管3の内壁面の方向16
に沿った延長面22が中心軸14に垂直で、かつ衝突面
9の位置21にできる面と交わる面の領域20が衝突面
9の領域19に収まるようにしたものである。この粉砕
装置では、加速管3を出た被粉砕物6は、全て衝突面9
に照射され、照射された被粉砕物6の全てが衝撃を受
け、粉砕されるため、粉砕処理能力が増加し、収率が上
昇する。
FIG. 2 is an enlarged view of the essential parts for explaining the embodiment of the invention described in claim 2. This embodiment is shown in FIG.
In addition to the embodiment shown in FIG.
The extension surface 22 along is perpendicular to the central axis 14, and the area 20 of the surface intersecting with the surface formed at the position 21 of the collision surface 9 is contained in the area 19 of the collision surface 9. In this crushing device, all the objects to be crushed 6 exiting the acceleration tube 3 are collided with the collision surface
Since all the crushed objects 6 that have been irradiated with are subjected to impact and are crushed, the crushing capacity is increased and the yield is increased.

【0029】〔実験例〕図2に示した粉砕装置におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図2の改良を加え
た粉砕装置、および、図18に示したフローチャートに
従って粉砕を行った。粉砕された粉砕物10を微粉と粗
粉とに分級する手段としては、固定式風力分級機を使用
した。
[Experimental Example] In the pulverizer shown in FIG. 2, the same raw materials as in Table 1 were mixed by a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out in accordance with the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 2 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0030】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物27.80[kg/hr](収率86.9%)を回収し
た。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 27.80 [kg / hr] (yield 86.9%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0031】図3は、請求項3に記載した発明の実施例
を説明するための要部構成図で、この実施例は、図2に
示した実施例に加えて、被粉砕物供給口1が加速管3に
入射する供給数を加速管3の中心軸14を挟んで2ヵ所
設けた被粉砕物供給口23,23としたものである。こ
の実施例によると、被粉砕物6は加速管3へ供給される
供給場所が2ヵ所となり、被粉砕物供給口1に供給され
る被粉砕物6は、2つの被粉砕物供給口23,23に分
離される。このとき、1つの供給口に振り分けられる被
粉砕物6の量は(1/2)となり、供給口の中で閉塞現
象が抑えられ、かつ、加速管3への入射時には、被粉砕
物6は、1つの供給口付近に偏らず、加速管3の中で平
均的に分散される。これにより、高速気流15は加速管
3の中で分散された被粉砕物6の全体に平均的にあたっ
て該被粉砕物を加速させ、衝突面9において安定でかつ
向上した粉砕性が得られる。
FIG. 3 is a main part configuration diagram for explaining an embodiment of the invention described in claim 3. In this embodiment, in addition to the embodiment shown in FIG. The number of supplies to be injected into the accelerating tube 3 is set as the crushed object supply ports 23, 23 provided at two places with the central axis 14 of the accelerating tube 3 interposed therebetween. According to this embodiment, the object to be crushed 6 is supplied to the acceleration tube 3 at two places, and the object to be crushed 6 supplied to the object to be crushed supply port 1 has two object to be crushed 23, It is separated into 23. At this time, the amount of the pulverized material 6 distributed to one supply port is (1/2), the clogging phenomenon in the supply port is suppressed, and the pulverized material 6 is incident on the accelerating pipe 3. It is distributed in the accelerating tube 3 evenly, without being concentrated in the vicinity of one supply port. As a result, the high-speed air stream 15 uniformly accelerates the object to be crushed dispersedly in the accelerating tube 3, and the object to be crushed is accelerated, so that stable and improved crushability can be obtained on the collision surface 9.

【0032】〔実験例〕図3に示した粉砕装置におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図3の改良を加え
た粉砕装置、および、図18に示したフローチャートで
粉砕を行った。粉砕された粉砕物を微粉と粗粉とに分級
する手段としては、固定式風力分級機を使用した。
[Experimental Example] In the crushing apparatus shown in FIG. 3, the same raw materials as in Table 1 were mixed by a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 3 and the flow chart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product into fine powder and coarse powder.

【0033】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物27.90[kg/hr](収率87.2%)を回収し
た。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 27.90 [kg / hr] (yield 87.2%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0034】なお、図3には、被粉砕物供給口を2箇所
に設けた例を示したが、他の実施例として、例えば、図
4に24にて示すように、被粉砕物供給口を4箇所に設
けてもよい。すなわち、図4は、粉砕装置を上面から見
た図で、図示のように、被粉砕物6が加速管3へ供給さ
れる供給場所を加速管3を中心に十字方向に計4箇所と
する被粉砕物供給口24としたものを設けたものであ
る。
Although FIG. 3 shows an example in which the pulverized material supply ports are provided at two locations, as another embodiment, for example, as shown by 24 in FIG. May be provided at four locations. That is, FIG. 4 is a view of the crushing device viewed from the upper side, and as shown in the figure, the supply places where the object to be crushed 6 is supplied to the accelerating pipe 3 are four places in the cross direction with the accelerating pipe 3 as the center. The crushed material supply port 24 is provided.

【0035】図5は、請求項4に示した発明の実施例を
説明するための要部構成図で、この実施例は、請求項2
の発明に加えて、衝突部材4に炭化珪素の部材25を接
合して衝突面9としたもので、この構成により、加速管
3で加速された被粉砕物6は、硬質な部材25に衝突す
ることで、粉砕性が増し、さらに、粉砕後付着せずに、
方向16の方向に反射される効果も高い。反射された
後、被粉砕物6は、自重及び高速気流15が衝突面9あ
るいは粉砕室7の内壁面18にあたり、旋回して方向1
6に対して逆方向の気流が生じることによる搬送力によ
って、分級機13へ速やかに搬送され、全体の粉砕処理
能力が向上する。
FIG. 5 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 4, and this embodiment corresponds to claim 2
In addition to the above invention, the collision member 4 is joined with the silicon carbide member 25 to form the collision surface 9. With this structure, the crushed object 6 accelerated by the acceleration tube 3 collides with the hard member 25. By doing so, the pulverizability is increased, and further, after the pulverization, it does not adhere,
The effect of being reflected in the direction 16 is also high. After being reflected, the crushed object 6 swivels in the direction 1 with its own weight and the high-speed air current 15 hitting the collision surface 9 or the inner wall surface 18 of the crushing chamber 7.
Due to the conveying force generated by the air flow in the direction opposite to 6, the sheet is rapidly conveyed to the classifier 13, and the entire pulverization processing capacity is improved.

【0036】〔実験例〕図5に示した実施例において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図1に図5の改良を加えた
粉砕装置、および、図18に示したフローチャートで粉
砕を行った。粉砕された粉砕物10を微粉と粗粉とに分
級する手段としては、固定式風力分級機を使用した。
[Experimental Example] In the embodiment shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 5 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0037】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物27.95[kg/hr](収率87.3%)を回収し
た。また、衝突面での粉砕物の融着も見られなかった。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 27.95 [kg / hr] (yield 87.3%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder. Further, no fusion of the pulverized material was observed on the collision surface.

【0038】図6は、請求項5に示した発明の実施例を
説明するための要部構成図で、この実施例は、衝突部材
4を中心軸14の回りに回転可能にするとともに、この
回転を制御する制御装置26を設けたもので、制御装置
26による回転数制御としては、例えば、一定回転数式
のものや、一定時間間隔をおいてパルス的に回転を与え
る可変回転数式のものがある。この構成により、加速管
3で加速された被粉砕物6に対して、衝突部材4が中心
軸14の回りに回転することによるせん断方向の粉砕性
が生まれ、全体の粉砕性が増加し、さらに粉砕後、粉砕
物10は回転する衝突部材4の衝突面9に付着しずらく
なり、その結果、方向16に対して逆方向の自重及び高
速気流15が衝突面9あるいは粉砕室7の内壁面18に
あたり、旋回して方向16とは逆方向の気流が生じ、こ
の搬送力によって、分級機13へ速やかに搬送され、全
体の粉砕処理能力が向上する。
FIG. 6 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 5. In this embodiment, the collision member 4 is rotatable around the central axis 14, and A control device 26 for controlling the rotation is provided, and as the rotation speed control by the control device 26, for example, a constant rotation formula or a variable rotation formula that gives rotation in a pulse at fixed time intervals is used. is there. With this configuration, the crushing object 6 accelerated by the accelerating tube 3 has a crushing property in the shearing direction due to the collision member 4 rotating around the central axis 14, increasing the crushing property as a whole, and After the crushing, the crushed material 10 becomes hard to adhere to the collision surface 9 of the rotating collision member 4, and as a result, the self-weight and the high-speed air current 15 in the direction opposite to the direction 16 cause the collision surface 9 or the inner wall surface of the crushing chamber 7. At 18, the air current is swirled to generate a gas flow in the direction opposite to the direction 16, and the transport force quickly transports the air current to the classifier 13 to improve the entire pulverization processing capacity.

【0039】〔実験例〕図6に示した実施例において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図1に図6の改良を加えた
粉砕装置、および、図18に示したフローチャートに従
って粉砕を行った。粉砕された粉砕物10を微粉と粗粉
とに分級する手段としては、固定式風力分級機を使用し
た。
[Experimental Example] In the embodiment shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out according to the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 6 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0040】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物27.97[kg/hr](収率87.4%)を回収し
た。また、衝突面での粉砕物の融着も見られなかった。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 27.97 [kg / hr] (yield 87.4%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder. Further, no fusion of the pulverized material was observed on the collision surface.

【0041】図7は、請求項6に示した発明の実施例を
説明するための要部構成図で、この実施例は、加速管3
の中心軸14を垂直方向16の軸に対して偏心させたも
ので、偏心度合いの許容範囲は、請求項2で記述したよ
うに、加速管3の内壁面の方向16に沿った延長面22
が中心軸14に垂直で、かつ衝突面9の位置にできる面
と交わる面の領域20が衝突面9の領域19に収まる間
である。この構成により、偏心した高速気流27が衝突
面9あるいは粉砕室7の内壁面18に衝突する際、偏心
している分だけ旋回し易く、その結果、方向16に対し
て逆方向の気流が生じ易い。この気流による搬送力によ
って、粉砕物10は分級機13へ速やかに搬送され、全
体の粉砕処理能力が向上する。
FIG. 7 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 6. In this embodiment, an accelerating tube 3 is used.
The central axis 14 is eccentric with respect to the axis in the vertical direction 16, and the allowable range of the eccentricity is, as described in claim 2, the extension surface 22 along the direction 16 of the inner wall surface of the acceleration tube 3.
Is a region perpendicular to the central axis 14 and intersecting the surface formed at the position of the collision surface 9 within the area 19 of the collision surface 9. With this configuration, when the eccentric high-speed airflow 27 collides with the collision surface 9 or the inner wall surface 18 of the crushing chamber 7, the eccentric high-speed airflow 27 is likely to swirl as much as the eccentricity, and as a result, an airflow in the direction opposite to the direction 16 is likely to occur. . The pulverized material 10 is rapidly conveyed to the classifier 13 by the conveying force of this air flow, and the pulverization processing capacity of the whole is improved.

【0042】〔実験例〕図7に示した実施例において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図1に図7の改良を加えた
粉砕装置、および、図18に示したフローチャートで粉
砕を行った。粉砕された粉砕物10を微粉と粗粉とに分
級する手段としては、固定式風力分級機を使用した。
Experimental Example In the example shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely crushed product was used as the crushed product 6, and crushing was carried out by the crushing device shown in FIG. 1 with the improvement shown in FIG. 7 and the flow chart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0043】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉であ
る場合、12では粉砕物を回収し、粗粉である場合、1
1では粉砕物を再度被粉砕物供給口1より被粉砕物6と
ともに加速管3に投入した。この結果、微粉としては、
体積平均粒径7.5[μm](コールターカウンタにて
測定)の粉砕物27.99[kg/hr](収率87.5%)
を回収した。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The crushed pulverized product 10 is conveyed to the classifier 13, and when it is a fine powder, the pulverized product is recovered in 12 and when it is a coarse powder, 1
In No. 1, the pulverized material was again charged into the acceleration tube 3 together with the pulverized material 6 from the pulverized material supply port 1. As a result, as fine powder,
Pulverized product with a volume average particle size of 7.5 [μm] (measured with a Coulter counter) 27.99 [kg / hr] (yield 87.5%)
Was recovered.

【0044】図8は、請求項7に示した発明の実施例を
説明するための要部構成図で、この実施例は、衝突部材
4の衝突面9上に円錐体28を設けたものである。ただ
し、加速管3の内壁面の方向16に沿った延長面22が
中心軸14に垂直で、かつ衝突面9の位置にできる面と
交わる面の領域20が、円錐体28の底面29より大き
い面積を有する。このとき、衝突面9及び円錐体28の
表面の両者で1つの衝突面を構成する。円錐体28の表
面材質としては、衝突面9の材質である炭化珪素が望ま
しい。
FIG. 8 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 7. In this embodiment, a conical body 28 is provided on the collision surface 9 of the collision member 4. is there. However, an area 20 of a surface where an extension surface 22 along the direction 16 of the inner wall surface of the accelerating tube 3 is perpendicular to the central axis 14 and intersects with the surface formed at the position of the collision surface 9 is larger than the bottom surface 29 of the cone 28. Have an area. At this time, both the collision surface 9 and the surface of the conical body 28 constitute one collision surface. The surface material of the cone 28 is preferably silicon carbide, which is the material of the collision surface 9.

【0045】図8に示した構成により、衝突面9から円
錐体28の底面29を差し引いた領域30は、中心軸1
4に対して垂直であることから請求項5の粉砕処理能力
を持ち、さらに円錐体28の頂点角から底面29に向か
って、表面が中心軸14に対し、テーパを有することか
ら、高速気流15は中心軸方向の速度を急激に下げず、
その方向だけを徐々に方向16に対して逆方向に向けて
いく。このため、粉砕後の粉砕物10を分級機13へ搬
送させる搬送速度は、比較的大きく保持できるため、全
体の粉砕処理能力が向上する。
With the structure shown in FIG. 8, the area 30 obtained by subtracting the bottom surface 29 of the cone 28 from the collision surface 9 is the central axis 1
4 has the crushing processing ability of claim 5 because it is perpendicular to 4, and the surface has a taper with respect to the central axis 14 from the vertex angle of the conical body 28 toward the bottom surface 29. Does not drastically reduce the speed in the direction of the central axis,
Only that direction is gradually turned in the direction opposite to the direction 16. Therefore, the conveying speed for conveying the pulverized material 10 to the classifier 13 can be kept relatively high, and the overall pulverization processing capacity is improved.

【0046】図8に示した実施例において、表1と同様
の原料をミキサーにて混合し、混合物を得た。次に、こ
の混合物をエクストルダーにて約200℃で溶融混練し
た後、冷却して固化し、それをハンマーミルで200〜
2000[μm]の粒子に粗粉砕した。この粗粉砕物を被
粉砕物6とし、図1に図8の改良を加えた粉砕装置、お
よび、図18に示したフローチャートで粉砕を行った。
粉砕された粉砕物10を微粉と粗粉とに分級する手段と
しては、固定式風力分級機を使用した。
In the example shown in FIG. 8, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, after melt-kneading this mixture at about 200 ° C. in an extruder, it is cooled and solidified, and it is then heated with a hammer mill to 200-
The particles were coarsely pulverized to 2000 [μm] particles. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 8 and the flow chart shown in FIG.
A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0047】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.2[kg/hr](収率88.1%)を回収し
た。また、衝突面での粉砕物の融着も見られなかった。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.2 [kg / hr] (yield 88.1%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured by a Coulter counter) was recovered as fine powder. Further, no fusion of the pulverized material was observed on the collision surface.

【0048】図9は、請求項8に示した発明の実施例を
説明するための要部構成図で、この実施例は、請求項7
の発明に加えて、衝突部材4上の衝突面9の端部を中心
軸14に対しテーパを設けた傾斜31を付加したもので
ある。衝突面9上で傾斜31が生じる範囲32の許容範
囲としては、例えば、粉砕面9から領域20を差し引い
た時できる領域33に収める様にする。この構成によ
り、領域20から円錐体28の底面29の範囲を減じた
範囲で生じる粉砕による処理能力に加え、高速気流15
は中心軸方向の速度を急激に下げず、その方向だけを徐
々に方向16の逆方向に向けられる。このため、粉砕後
の粉砕物10を分級機13へ搬送させる搬送速度が大き
く、これにより、全体の粉砕処理能力が向上する。
FIG. 9 is a block diagram of the essential parts for explaining an embodiment of the invention shown in claim 8.
In addition to the above invention, an end portion of the collision surface 9 on the collision member 4 is provided with a slope 31 which is tapered with respect to the central axis 14. As an allowable range of the range 32 in which the inclination 31 is generated on the collision surface 9, for example, it is set in the area 33 which can be formed when the area 20 is subtracted from the crushing surface 9. With this configuration, in addition to the processing capacity by pulverization that occurs in the range obtained by subtracting the range of the bottom surface 29 of the cone 28 from the area 20, the high-speed air flow 15
Does not drastically reduce the velocity in the direction of the central axis, but only that direction is gradually directed in the direction opposite to the direction 16. Therefore, the crushed material 10 after crushing is conveyed at a high speed to the classifier 13, which improves the overall crushing capacity.

【0049】〔実験例〕図7に示した実施例において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図1に図9の改良を加えた
粉砕装置、および、図18に示したフローチャートで粉
砕を行った。粉砕された粉砕物10を微粉と粗粉とに分
級する手段としては、固定式風力分級機を使用した。
Experimental Example In the example shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 9 and the flow chart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0050】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉であ
る場合、12では粉砕物を回収し、粗粉である場合、1
1では粉砕物を再度被粉砕物供給口1より被粉砕物6と
ともに加速管3に投入した。この結果、微粉としては、
体積平均粒径7.5[μm](コールターカウンタにて
測定)の粉砕物28.4[kg/hr](収率88.8%)を
回収した。また、衝突面での粉砕物の融着も見られなか
った。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The crushed pulverized product 10 is conveyed to the classifier 13, and when it is a fine powder, the pulverized product is recovered in 12 and when it is a coarse powder, 1
In No. 1, the pulverized material was again charged into the acceleration tube 3 together with the pulverized material 6 from the pulverized material supply port 1. As a result, as fine powder,
A pulverized product of 28.4 [kg / hr] (yield 88.8%) having a volume average particle diameter of 7.5 [μm] (measured by a Coulter counter) was recovered. Further, no fusion of the pulverized material was observed on the collision surface.

【0051】図10は、請求項9に示した発明の実施例
を説明するための要部構成図で、この実施例は、粉砕室
7の内壁面18から突起を無くしたもので、例えば、粉
砕室7の内壁面18の角を曲面34としたものある。こ
の構成により、高速気流15は衝突面9との衝突後、曲
面34の曲率に沿って、その方向だけを徐々に方向16
に対して逆方向に向けていく。このとき、粉砕室7内部
によどみ領域が発生しないために気流の圧力損失がな
い。このため、粉砕後の粉砕物10を分級機13へ搬送
させる搬送速度が大きく、これにより全体の粉砕処理能
力が向上する。
FIG. 10 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 9. In this embodiment, a protrusion is removed from the inner wall surface 18 of the crushing chamber 7. There is a curved surface 34 at the corner of the inner wall surface 18 of the crushing chamber 7. With this configuration, after the high-speed airflow 15 has collided with the collision surface 9, the high-speed airflow 15 gradually changes in direction 16 along the curvature of the curved surface 34.
To the opposite direction. At this time, since no stagnation region is generated inside the crushing chamber 7, there is no pressure loss of the air flow. Therefore, the crushed material 10 after crushing is conveyed at a high speed to the classifier 13, thereby improving the overall crushing capacity.

【0052】〔実験例〕図10に示した実施例におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図10の改良を加
えた粉砕装置、および、図18に示したフローチャート
で粉砕を行った。粉砕された粉砕物10を微粉と粗粉と
に分級する手段としては、固定式風力分級機を使用し
た。
Experimental Example In the example shown in FIG. 10, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 10 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0053】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.6[kg/hr](収率89.4%)を回収し
た。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.6 [kg / hr] (yield 89.4%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured by a Coulter counter) was recovered as fine powder.

【0054】図11は、請求項10に示した発明の実施
例を説明するための要部構成図で、この実施例は、請求
項9の発明に加えて、粉砕室7の内壁面の材質を炭化珪
素とする表面35としたものである。この構成により、
被粉砕物6が衝突面9と衝突し、粉砕した後、粉砕物1
0となるとき、粉砕物10は広い粒径分布を持ち、粉砕
物10の内の粗粉は再び粉砕の必要があるが、粗粉は密
度が気流よりも大きく、大きい慣性のため反射後は粉砕
室7の内壁面18に向かい2回目の衝突を行う。このと
き、内壁面18が炭化珪素の表面35であることで、硬
質な衝突面との粉砕がなされる。このため、衝突面9と
の1次的粉砕に加えて、2次的粉砕が生じ、全体として
粉砕処理能力が向上する。
FIG. 11 is a schematic view of the essential parts for explaining the embodiment of the invention shown in claim 10. In this embodiment, in addition to the invention of claim 9, the material of the inner wall surface of the crushing chamber 7 Is a surface 35 of silicon carbide. With this configuration,
The crushed object 6 collides with the collision surface 9 and crushes the crushed object 1.
When it becomes 0, the pulverized material 10 has a wide particle size distribution, and the coarse powder in the pulverized material 10 needs to be pulverized again. The second collision is performed toward the inner wall surface 18 of the crushing chamber 7. At this time, since the inner wall surface 18 is the surface 35 of silicon carbide, it is crushed with a hard collision surface. For this reason, in addition to the primary crushing with the collision surface 9, secondary crushing occurs, and the crushing capacity is improved as a whole.

【0055】〔実験例〕図11に示した実施例におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図11の改良を加
えた粉砕装置、および、図18に示されるフローチャー
トで粉砕を行った。粉砕された粉砕物10を微粉と粗粉
とに分級する手段としては、固定式風力分級機を使用し
た。
Experimental Example In the example shown in FIG. 11, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement of FIG. 11 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0056】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.7[kg/hr](収率89.7%)を回収し
た。また、粉砕室7の内壁面での粉砕物の融着も見られ
なかった。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow pulverizer, and the compressed air was supplied from the object to be pulverized supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, as a fine powder, 28.7 [kg / hr] (yield 89.7%) of a pulverized product having a volume average particle diameter of 7.5 [μm] (measured by a Coulter counter) was recovered. Further, no fusion of the pulverized material was observed on the inner wall surface of the pulverization chamber 7.

【0057】図12は、請求項11に示した発明の実施
例を説明するための要部構成図で、この実施例は、加速
管3の出口8の形状において、表面に緩やかな曲面36
を付加したもので、高速気流15は衝突面9に衝突後、
方向16の逆方向の流れに変わるが、このとき、この構
成により、高速気流15は、加速管3の出口形状の曲面
36に沿って、徐々に、かつ滑らかに方向16から方向
16の逆方向に向けられる。また、このとき、加速管3
付近によどみ領域が発生しないために、気流の圧力損失
がない。このため、粉砕後の粉砕物10を分級機13へ
搬送させる搬送速度が大きく、これにより、全体の粉砕
処理能力が向上する。
FIG. 12 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 11. In this embodiment, the shape of the outlet 8 of the accelerating tube 3 has a gently curved surface 36.
Is added, the high-speed air flow 15 collides with the collision surface 9 and
Although the flow changes to the direction opposite to the direction 16, at this time, the high-speed air current 15 is gradually and smoothly moved from the direction 16 to the direction opposite to the direction 16 along the curved surface 36 of the outlet shape of the accelerating tube 3 by this configuration. Directed to. At this time, the acceleration tube 3
Since there is no stagnation area in the vicinity, there is no pressure loss of the air flow. Therefore, the crushed material 10 after crushing is conveyed at a high speed to the classifier 13, which improves the overall crushing capacity.

【0058】〔実験例〕図12に示した実施例におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図12の改良を加
えた粉砕装置、および、図18に示したフローチャート
で粉砕を行った。粉砕された粉砕物10を微粉と粗粉と
に分級する手段としては、固定式風力分級機を使用し
た。
Experimental Example In the example shown in FIG. 12, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely crushed product was used as the crushed product 6, and crushing was carried out by the crushing device shown in FIG. 1 with the improvement shown in FIG. 12 and the flow chart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0059】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.75[kg/hr](収率89.8%)を回収し
た。また、粉砕室7の内壁面での粉砕物の融着も見られ
なかった。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.75 [kg / hr] (yield 89.8%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder. Further, no fusion of the pulverized material was observed on the inner wall surface of the pulverization chamber 7.

【0060】図13は、請求項12に示した発明の実施
例を説明するための要部構成図で、この実施例は、請求
項11の発明に加えて、粉砕室7と加速管3の間に仕切
り部材37を付加し、さらに、粉砕室7の内部におい
て、仕切り部材37と粉砕室7の内壁面18の間の領域
38が、被粉砕物供給口1へ通じ、かつ仕切り部材37
と加速管3の外壁面の間の領域39が、分級機13へ通
じるようにしたものである。例えば、粉砕室7が中心軸
14に対し軸対称な円筒形を有するならば、仕切り部材
37も中心軸14に対し円筒形状となる。また、仕切り
部材37の表面は凹凸を無くした滑らかな曲面を成すこ
とが望ましい。あるいは、流線型としても良い。粉砕室
7の内部で、粉砕物10は、粗粉ほど慣性が大きいた
め、粉砕室7の内壁面18側に沿って進み、また微粉ほ
ど慣性が小さいため、粉砕室7の内壁面18から離れた
加速管3の外壁面側に沿って進む。
FIG. 13 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 12, and this embodiment is the same as the invention of claim 11 except that the crushing chamber 7 and the accelerating pipe 3 are provided. A partition member 37 is added between the partition member 37 and the partition member 37, and a region 38 between the partition member 37 and the inner wall surface 18 of the crush chamber 7 communicates with the crushed object supply port 1 and the partition member 37.
A region 39 between the outer wall surface of the accelerating tube 3 and the accelerating tube 3 is connected to the classifier 13. For example, if the crushing chamber 7 has a cylindrical shape that is axially symmetric with respect to the central axis 14, the partition member 37 also has a cylindrical shape with respect to the central axis 14. In addition, it is desirable that the surface of the partition member 37 has a smooth curved surface without unevenness. Alternatively, it may be a streamline type. Inside the crushing chamber 7, the crushed material 10 has a larger inertia as the coarse powder, and therefore travels along the inner wall surface 18 side of the crushing chamber 7, and as the finer powder has a smaller inertia, the crushed material 10 is separated from the inner wall surface 18 of the crushing chamber 7. It advances along the outer wall surface side of the acceleration tube 3.

【0061】上記の構成により、粉砕物10の内の粗粉
の大部分は仕切り部材37を境に粉砕室7の内壁面18
側の領域38へ入射し、また、大部分の粗分を取り除
き、微粉の割合が高い粉砕物10は、仕切り部材37を
境に加速管3の外壁面側の領域39に入射する。領域3
8に入射した粗粉の割合が高い粉砕物10は、再度粉砕
するために、再び被粉砕物供給口1に送られる。また、
領域39に入射した微粉の割合が高い粉砕物10はその
まま分級機13へ進む。粉砕物10から予め大部分の粗
粉を分離するため、粗粉の割合が高い粉砕物10のみを
再度直接粉砕処理し、また微粉の割合が高い粉砕物10
は分級機13へ送られ、少ない負担かつ高精度で分級さ
れる。この結果、全体の粉砕処理能力が向上する。
With the above structure, most of the coarse powder in the crushed material 10 is separated from the partition member 37 by the inner wall surface 18 of the crushing chamber 7.
The crushed material 10 that enters the area 38 on the side and removes most of the coarse particles and has a high proportion of fine powder enters the area 39 on the outer wall surface side of the acceleration tube 3 with the partition member 37 as a boundary. Area 3
The crushed material 10 having a high proportion of coarse powder incident on 8 is sent again to the crushed material supply port 1 for crushing again. Also,
The pulverized product 10 having a high proportion of fine powder incident on the region 39 proceeds to the classifier 13 as it is. Since most of the coarse powder is separated from the pulverized product 10 in advance, only the pulverized product 10 having a high ratio of coarse powder is directly pulverized again, and the pulverized product 10 having a high ratio of fine powder is used.
Is sent to the classifier 13 and is classified with a small load and high accuracy. As a result, the overall crushing capacity is improved.

【0062】〔実験例〕図13に示した実施例におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図13の改良を加
えた粉砕装置、および、図18に示したフローチャート
で粉砕を行った。粉砕された粉砕物10を微粉と粗粉と
に分級する手段としては、固定式風力分級機を使用し
た。
Experimental Example In the example shown in FIG. 13, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 13 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0063】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.77[kg/hr](収率89.9%)を回収し
た。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.77 [kg / hr] (yield 89.9%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0064】図14は、請求項13に示した発明の実施
例を説明するための要部構成図で、この実施例は、請求
項12の発明に加えて、仕切り部材37において、粉砕
室7の内壁面18側の表面材料を炭化珪素とする表面4
0を設けたもので、この構成により、粉砕室7の内壁1
8面に沿って進む粉砕物10の内の粗粉の大部分は、粉
砕室7の内壁面18及び仕切り部材37の表面40と衝
突を繰り返しながら領域38へ進む。硬質な表面35を
持つ粉砕室7の内壁面18と仕切り部材37の表面40
との衝突により、衝突面9との粉砕後であっても2次
的,3次的な粉砕がここで成され、粉砕回数が増加し、
より微粉の粒径に近づく。この後、微粉の粒径に近づい
た粗粉の割合が高い粉砕物10は、再び被粉砕物供給口
1へ送られ、少ない負担で衝突面9で粉砕され、また、
微粉の割合が高い粉砕物10は分級機13に送られ、少
ない負担と高精度で分級される。この結果、連続的な粉
砕分級の全工程では、短時間,低エネルギー,かつ高精
度で粉砕され、全体の粉砕処理能力が向上する。
FIG. 14 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 13. In this embodiment, in addition to the invention of claim 12, in the partition member 37, the crushing chamber 7 is provided. 4 whose surface material on the inner wall surface 18 side is a silicon carbide
0 is provided, and with this configuration, the inner wall 1 of the crushing chamber 7
Most of the coarse powder in the pulverized material 10 that travels along the eight faces advances to the region 38 while repeatedly colliding with the inner wall surface 18 of the pulverization chamber 7 and the surface 40 of the partition member 37. Inner wall surface 18 of crushing chamber 7 having hard surface 35 and surface 40 of partition member 37
Due to the collision with, even after crushing with the collision surface 9, secondary and tertiary crushing is performed here, and the number of crushing increases,
It is closer to the particle size of fine powder. After that, the crushed material 10 having a high proportion of coarse powder that is close to the particle diameter of the fine powder is sent again to the crushed material supply port 1 and crushed by the collision surface 9 with a small load.
The pulverized product 10 having a high proportion of fine powder is sent to the classifier 13 and classified with a small burden and high accuracy. As a result, in the entire process of continuous crushing and classification, crushing is performed in a short time, with low energy and with high precision, and the crushing processing capability as a whole is improved.

【0065】〔実験例〕図14に示した実施例におい
て、表1と同様の原料をミキサーにて混合し、混合物を
得た。次に、この混合物をエクストルダーにて約200
℃で溶融混練した後、冷却して固化し、それをハンマー
ミルで200〜2000[μm]の粒子に粗粉砕した。こ
の粗粉砕物を被粉砕物6とし、図1に図14の改良を加
えた粉砕装置、および、図18に示されるフローチャー
トで粉砕を行った。粉砕された粉砕物10を微粉と粗粉
とに分級する手段としては、固定式風力分級機を使用し
た。
Experimental Example In the example shown in FIG. 14, the same raw materials as in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated to about 200 in an extruder.
After melt-kneading at 0 ° C., the mixture was cooled and solidified, and coarsely pulverized into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out by the pulverizing apparatus shown in FIG. 1 with the improvement of FIG. 14 and the flowchart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0066】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.79[kg/hr](収率90.0%)を回収し
た。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.79 [kg / hr] (yield 90.0%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0067】図15は、請求項14に示した発明の実施
例を説明するための要部構成図で、この発明は、請求項
13の発明に加えて、微粉の割合が高い粉砕物10の進
む領域39に、粗粉の割合が高い粉砕物10の進む領域
38よりも低圧にする吸引装置41及び制御装置42を
持たせたものである。微粉は粗粉より気流に追随し易
く、領域39の吸引により、領域39が領域38より低
圧になると、粉砕室7から領域39に流入する気流速度
が増加する。気流に追随しやすい微粉は、領域38には
進まず、領域39にほとんどが入射し、領域38に進む
粗粉の割合が高い粉砕物10は、より粗粉の割合が増加
し、領域39に進む微粉の割合が高い粉砕物10は、よ
り微粉の割合が増加し、この結果、粗粉と微粉の分級精
度が向上する。この後、粗粉の割合が高い粉砕物10
は、再び被粉砕物供給口1へ送られ、少ない負担で衝突
面9で粉砕され、また、微粉の割合が高い粉砕物10
は、分級機13に送られ、少ない負担で高精度で分級さ
れる。この結果、連続的な粉砕分級の全工程では、短時
間,低エネルギー,かつ高精度で粉砕され、全体の粉砕
処理能力が向上する。
FIG. 15 is a schematic view of a main part for explaining an embodiment of the invention shown in claim 14. This invention is the same as the invention of claim 13, and in addition to the invention of claim 13 The advancing region 39 is provided with a suction device 41 and a control device 42 that make the pressure lower than in the advancing region 38 of the pulverized material 10 having a high proportion of coarse powder. The fine powder more easily follows the air flow than the coarse powder, and when the pressure in the region 39 becomes lower than that in the region 38 due to the suction of the region 39, the air flow velocity flowing from the crushing chamber 7 into the region 39 increases. The fine powder that easily follows the airflow does not proceed to the region 38, most of the fine powder is incident on the region 39, and the pulverized material 10 having a high ratio of the coarse powder that advances to the region 38 has a higher ratio of the coarse powder, and thus the fine powder 10 reaches the region 39. The pulverized material 10 having a high proportion of fine powder to be advanced has a higher proportion of fine powder, and as a result, the classification accuracy of coarse powder and fine powder is improved. After this, crushed material 10 with a high proportion of coarse powder
Are sent to the crushed object supply port 1 again, crushed on the collision surface 9 with a small load, and the crushed object 10 having a high proportion of fine powder is crushed.
Are sent to the classifier 13 and classified with high accuracy and with a small burden. As a result, in the entire process of continuous crushing and classification, crushing is performed in a short time, with low energy and with high precision, and the crushing processing capability as a whole is improved.

【0068】〔実験例〕図15に示した発明において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図1に図15の改良を加え
た粉砕装置、および、図18に示したフローチャートで
粉砕を行った。粉砕された粉砕物10を微粉と粗粉とに
分級する手段としては、固定式風力分級機を使用した。
[Experimental Example] In the invention shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely pulverized product was used as the pulverized product 6, and pulverization was carried out using the pulverizing apparatus shown in FIG. 1 with the improvement shown in FIG. 15 and the flow chart shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0069】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.82[kg/hr](収率90.1%)を回収し
た。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, 28.82 [kg / hr] (yield 90.1%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0070】図16は、請求項15に示した発明の実施
例を説明するための要部構成図で、この発明は、請求項
14の発明における粉砕装置を、方向16の上部に位置
する1段目粉砕装置46とし、請求項11の発明におけ
る粉砕装置を、方向16の下部に位置する2段目粉砕装
置47として構成し、さらに1段目粉砕装置46の粗粉
の割合が高い粉砕物10が進む粗粉側43は、2段目粉
砕装置47の被粉砕物供給口に入射し、1段目粉砕装置
46の微粉の割合が高い粉砕物10が進む微粉側44
は、2段目粉砕装置47の粉砕物10とともに分級機1
3に至るようにしたものである。
FIG. 16 is a schematic view of the essential parts for explaining an embodiment of the invention shown in claim 15. In this invention, the crushing device in the invention of claim 14 is located at the upper part in the direction 16. A crushed product having a high proportion of coarse powder in the first crushing device 46, wherein the crushing device according to the invention of claim 11 is configured as a second crushing device 47 located in the lower part of the direction 16. The coarse powder side 43 on which 10 advances is incident on the object to be pulverized supply port of the second stage crushing device 47, and the fine powder side 44 on which the pulverized product 10 in the first stage pulverizing device 46 with a high ratio of fine powder advances.
Is the classifier 1 together with the pulverized material 10 of the second stage pulverizer 47.
It was set to reach 3.

【0071】請求項15の発明の構成では、工程が分級
機13に進む前に、予め粗粉11の割合が高い粉砕物
と、微粉12の割合が高い粉砕物に分級され、微粉側4
4を進む微粉12の割合が高い粉砕物と2段目粉砕装置
47の粉砕物45が合わさり、分級機13へ送られるた
め、分級機13での分級の負担が軽減され、かつ分級機
の精度も向上する。さらに、粗粉側43が直接2段目粉
砕装置47の被粉砕物供給口に入射するため、2段目粉
砕装置47の粉砕の負担が軽減され、かつ速やかな粉砕
がなされる。この結果、連続的な粉砕分級の全工程で
は、短時間,低エネルギー,かつ高精度な粉砕がなさ
れ、全体の粉砕処理能力が向上する。
In the structure of the fifteenth aspect of the present invention, before the process proceeds to the classifier 13, the pulverized product having a high ratio of the coarse powder 11 and the pulverized product having a high ratio of the fine powder 12 are classified in advance, and the fine powder side 4
The crushed material having a high ratio of the fine powder 12 advancing 4 and the crushed material 45 of the second stage crushing device 47 are combined and sent to the classifier 13, so that the classification load on the classifier 13 is reduced and the accuracy of the classifier is reduced. Also improves. Further, since the coarse powder side 43 is directly incident on the object to be crushed supply port of the second-stage crushing device 47, the burden of crushing of the second-stage crushing device 47 is reduced, and the crushing is performed quickly. As a result, in all the steps of continuous crushing and classification, crushing is performed in a short time, with low energy and with high accuracy, and the crushing processing capability as a whole is improved.

【0072】〔実験例〕図16に示した発明において、
表1と同様の原料をミキサーにて混合し、混合物を得
た。次に、この混合物をエクストルダーにて約200℃
で溶融混練した後、冷却して固化し、それをハンマーミ
ルで200〜2000[μm]の粒子に粗粉砕した。この
粗粉砕物を被粉砕物6とし、図16に示したシステム図
に従って粉砕を行った。粉砕された粉砕物10を微粉と
粗粉とに分級する手段としては、固定式風力分級機を使
用した。
Experimental Example In the invention shown in FIG.
Raw materials similar to those in Table 1 were mixed with a mixer to obtain a mixture. Next, this mixture is heated in an extruder at about 200 ° C.
After melt-kneading with, the mixture was cooled and solidified, and coarsely pulverized with a hammer mill into particles of 200 to 2000 [μm]. This coarsely pulverized product was used as the pulverized product 6 and pulverized according to the system diagram shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0073】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物10は、分級機13に運ばれ、微粉12
である場合は、粉砕物として回収し、粗粉11である場
合は、再度被粉砕物供給口1より被粉砕物6とともに加
速管3に投入した。この結果、微粉としては、体積平均
粒径7.5[μm](コールターカウンタにて測定)の
粉砕物28.9[kg/hr](収率90.3%)を回収し
た。
Compressed air with a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The pulverized pulverized product 10 is conveyed to the classifier 13 and finely powdered 12
In the case of No. 3, the powder was recovered as a pulverized product, and in the case of coarse powder 11, it was again charged into the accelerating pipe 3 from the pulverized product supply port 1 together with the pulverized product 6. As a result, as a fine powder, 28.9 [kg / hr] (yield 90.3%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered.

【0074】図17は、請求項16に示した発明の実施
例を説明するための要部構成図で、この発明は、請求項
14の発明における粉砕装置を、方向16の上部に位置
する1段目粉砕装置46とし、請求項14の発明におけ
る粉砕装置を、方向16の下部に位置する2段目粉砕装
置48として構成し、さらに1段目粉砕装置46の粗粉
11の割合が高い粉砕物が進む粗粉側43、及び、2段
目粉砕装置48の粗粉11の割合が高い粉砕物が進む粗
粉側49は、共に2段目粉砕装置48の被粉砕物供給口
52に入射するようにし、また、1段目粉砕装置46の
微粉12の割合が高い粉砕物が進む微粉側44、及び、
2段目粉砕装置48の微粉12の割合が高い粉砕物が進
む微粉側50とともに分級機13に至るようにしたもの
である。
FIG. 17 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 16. In this invention, the crushing device according to the invention of claim 14 is located at the upper part in the direction 16. The first-stage crushing device 46 is configured as the second-stage crushing device 48 located in the lower part of the direction 16, and the crushing device according to the invention of claim 14 is crushed with a high proportion of coarse powder 11 in the first-stage crushing device 46. Both the coarse powder side 43 where the object advances and the coarse powder side 49 where the crushed object in the second stage crushing device 48 in which the ratio of the coarse powder 11 is high are incident on the crushed object supply port 52 of the second stage crushing device 48. And the fine powder side 44 in which the pulverized material in the first stage pulverizing device 46 in which the proportion of the fine powder 12 is high advances, and
The second stage crushing device 48 reaches the classifier 13 together with the fine powder side 50 on which the pulverized material having a high proportion of the fine powder 12 advances.

【0075】この請求項16の発明の構成では、分級機
13に工程が進む前に、予め1段目粉砕装置46におい
て粗粉11の割合が高い粉砕物と微粉12の割合が高い
粉砕物に分級され、かつ2段目粉砕装置48において粗
粉11の割合が高い粉砕物と微粉12の割合が高い粉砕
物に分級された後に、1段目粉砕装置46の微粉12の
割合が高い粉砕物、及び、2段目粉砕装置48の微粉1
2の割合が高い粉砕物のみが分級機13へ送られるた
め、分級機13での分級の負担が軽減され、かつ分級機
の精度も向上する。さらに、1段目粉砕装置46の粗粉
11の割合が高い粉砕物が進む粗粉側43、及び、2段
目粉砕装置48の粗粉11の割合が高い粉砕物が進む粗
粉側49がともに、2段目粉砕装置48の被粉砕物供給
口52に入射するため、2段目粉砕装置48では、ほと
んど粗粉のみが効率的に粉砕される。この結果、連続的
な粉砕分級の全工程では、短時間,低エネルギー,かつ
高精度な粉砕がなされ、全体の粉砕処理能力が向上す
る。
In the structure of the sixteenth aspect of the present invention, before the process proceeds to the classifier 13, a pulverized product having a high ratio of coarse powder 11 and a pulverized product having a high ratio of fine powder 12 is previously prepared in the first stage pulverizer 46. After being classified and pulverized in the second stage pulverizer 48 into a pulverized product having a high proportion of coarse powder 11 and a high pulverized substance 12, a pulverized product having a high proportion of fine powder 12 in the first pulverizer 46 , And the fine powder 1 of the second stage crushing device 48
Since only the pulverized product having a high ratio of 2 is sent to the classifier 13, the classification load on the classifier 13 is reduced and the accuracy of the classifier is also improved. Further, the coarse powder side 43 of the first-stage crushing device 46 where the pulverized material having a high proportion of coarse powder 11 advances, and the coarse powder side 49 of the second-stage pulverizing device 48 where the pulverized material having a high proportion of coarse powder 11 advances. Both of them enter the object to be crushed supply port 52 of the second-stage crushing device 48, so almost only coarse powder is efficiently crushed in the second-stage crushing device 48. As a result, in all the steps of continuous crushing and classification, crushing is performed in a short time, with low energy and with high accuracy, and the crushing processing capability as a whole is improved.

【0076】〔実験例〕この請求項16に示した発明に
おいて、表1と同様の原料をミキサーにて混合し、混合
物を得た。次に、この混合物をエクストルダーにて約2
00℃で溶融混練した後、冷却して固化し、それをハン
マーミルで200〜2000[μm]の粒子に粗粉砕し
た。この粗粉砕物を被粉砕物6とし、図17に示すシス
テム図に従って粉砕を行った。粉砕された粉砕物10を
微粉と粗粉とに分級する手段としては、固定式風力分級
機を使用した。
[Experimental Example] In the invention described in claim 16, the same raw materials as in Table 1 were mixed by a mixer to obtain a mixture. Next, this mixture is mixed with an extruder to about 2
After melt-kneading at 00 ° C., it was cooled and solidified, and coarsely crushed into particles of 200 to 2000 [μm] with a hammer mill. This coarsely pulverized product was used as the pulverized product 6 and pulverized according to the system diagram shown in FIG. A fixed wind power classifier was used as a means for classifying the crushed pulverized product 10 into fine powder and coarse powder.

【0077】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量7[Nm3/min]の圧縮空気を導入し、被粉砕物
供給口1から32[kg/hr]の割り合いで供給した。粉
砕された粉砕物は、分級機13に運ばれ、微粉12であ
る場合は粉砕物を回収し、粗粉11である場合は粉砕物
を再度被粉砕物供給口1より被粉砕物6とともに加速管
3に投入した。この結果、微粉としては、体積平均粒径
7.5[μm](コールターカウンタにて測定)の粉砕
物28.95[kg/hr](収率90.4%)を回収した。
Compressed air having a flow rate of 7 [Nm 3 / min] was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the compressed air was supplied from the object to be crushed supply port 1 at a rate of 32 [kg / hr]. The crushed crushed product is conveyed to the classifier 13, and when it is the fine powder 12, the crushed product is recovered, and when it is the coarse powder 11, the crushed product is accelerated again together with the crushed product 6 from the crushed product supply port 1. Charged into tube 3. As a result, 28.95 [kg / hr] (yield 90.4%) of a pulverized product having a volume average particle size of 7.5 [μm] (measured with a Coulter counter) was recovered as fine powder.

【0078】[0078]

【発明の効果】請求項1の発明によると、ジェット噴流
を用いてジェット噴流中に被粉砕物を供給し、その被粉
砕物を衝突面に衝突させ、その衝撃力によって粉砕する
衝突式粉砕機において、粉砕室内にジェット噴流を噴出
する噴出ノズルと、前記ジェット噴流中に被粉砕物を供
給する供給口と、前記噴出ノズルと対向して設置され、
前記被粉砕物が前記ジェット噴流と共に直接衝突されて
微粉砕される衝突面を持つ衝突部材を有する粉砕装置に
おいて、前記噴射ノズルは噴出ノズル出口を鉛直上向き
に有し、かつ、該噴出ノズル出口より上方の位置に衝突
面を鉛直下方に向けて前記衝突部材を有するようにした
ので、粉体の供給方向の軸と高速気流の加速方向の軸が
ほぼ等しくなるため、その軸に垂直な衝突面にほぼ垂直
に入射し、これにより、衝撃力が最大となる粉砕がなさ
れ、高効率化が図れる。また、粉体供給方向と高速気流
加速方向が対向するため、装置構成を小型化することが
できる。
According to the first aspect of the present invention, a collision type crusher for supplying an object to be crushed into a jet jet by using a jet jet, colliding the object with a collision surface, and crushing by an impact force thereof. In, a jet nozzle for jetting a jet jet into the crushing chamber, a supply port for supplying an object to be crushed into the jet jet, and the jet nozzle are installed to face the jet nozzle,
In a crushing apparatus having a collision member having a collision surface in which the object to be crushed is directly collided with the jet jet and finely crushed, the injection nozzle has an ejection nozzle outlet vertically upward, and the ejection nozzle outlet Since the collision member is provided in the upper position with the collision surface facing vertically downward, the axis of the powder supply direction and the axis of the acceleration direction of the high-speed air flow are substantially equal to each other, and therefore the collision surface perpendicular to the axis. The light is incident almost perpendicularly to the crushed surface, and the crushing that maximizes the impact force is performed, so that the efficiency can be improved. Further, since the powder supply direction and the high-speed air flow acceleration direction are opposed to each other, the device configuration can be downsized.

【0079】請求項2の発明によると、請求項1の発明
において、前記噴出ノズルの内壁面が、衝突面方向に延
長した面が噴出ノズルの中心軸に垂直で、かつ、衝突面
位置にできる面と交わる面が、衝突面上に収まるように
したので、加速管で加速される被粉砕物全てを衝突板に
照射かつ粉砕ができ、高効率な粉砕が可能となる。
According to the invention of claim 2, in the invention of claim 1, the inner wall surface of the jet nozzle is such that the surface extending in the direction of the collision surface is perpendicular to the central axis of the ejection nozzle and at the collision surface position. Since the surface that intersects with the surface is set to fit on the collision surface, it is possible to irradiate and crush all the objects to be crushed by the accelerating tube to the collision plate, and it is possible to perform highly efficient crushing.

【0080】請求項3の発明によると、請求項1又は2
の発明において、噴出ノズル内に被粉砕物を供給する供
給口を複数有するようにしたので、複数の供給口により
加速管へ均一に被粉砕物を供給し、かつ高速気流を被粉
砕物に一様にあて、加速が達成でき、請求項2よりも高
効率な粉砕が可能となる。
According to the invention of claim 3, claim 1 or 2
In the invention, since the ejection nozzle has a plurality of supply ports for supplying the object to be crushed, the object to be crushed is uniformly supplied to the accelerating pipe by the plurality of supply ports, and a high-speed airflow is applied to the object to be crushed. In this way, acceleration can be achieved, and pulverization with higher efficiency than in claim 2 is possible.

【0081】請求項4の発明によると、請求項1乃至3
の発明において、衝突面の材質が炭化珪素であるように
したので、硬質な衝突板とその粉砕、及び、被粉砕物の
衝突面での付着防止がなされ、粉砕性が向上するため、
請求項2よりも高効率な粉砕が可能となる。
According to the invention of claim 4, claims 1 to 3
In the invention, since the material of the collision surface is made of silicon carbide, a hard collision plate and its crushing, and the adhesion of the crushed object on the collision surface is prevented, so that the crushability is improved,
More efficient crushing than that of claim 2 is possible.

【0082】請求項5の発明によると、請求項1乃至4
の発明において、前記衝突部材が鉛直軸回りに回転可能
で、かつ、回転装置を有するようにしたので、衝突面が
回転し、可動することにより、衝突面との融着が低減
し、高効率な粉砕が可能となる。
According to the invention of claim 5, claims 1 to 4
In the invention, since the collision member is rotatable about the vertical axis and has the rotating device, the collision surface is rotated and movable, so that fusion with the collision surface is reduced and high efficiency is achieved. Crushing is possible.

【0083】請求項6の発明によると、請求項1乃至5
の発明において、前記噴出ノズルの中心軸を鉛直軸より
偏心させるようにしたので、高速気流の一部を効率的に
粉砕後の粉砕物を分級工程へ搬送するのに利用すること
ができ、高効率な粉砕が可能となる。
According to the invention of claim 6, claims 1 to 5
In the invention, since the central axis of the jet nozzle is made eccentric from the vertical axis, a part of the high-speed air stream can be used to efficiently convey the pulverized material after pulverization to a classification step, and Efficient grinding is possible.

【0084】請求項7の発明によると、請求項1乃至6
の発明において、前記噴出ノズルの内壁面は、衝突面方
向に延長した面が噴出ノズルの中心軸に垂直で、かつ、
衝突面位置にできる面と交わる面に収まる底面を持ち、
かつ、衝突面上に頂点を鉛直下方に向けた円錐体を有す
るようにしたので、高速気流は衝突面上の円錐体に沿っ
て、圧力損失を発生させずに方向が変わり、粉砕物の分
級工程への搬送力に転化することができ、気流の低エネ
ルギー化、及び、高効率な粉砕が可能となる。
According to the invention of claim 7, claims 1 to 6 are provided.
The inner wall surface of the ejection nozzle, the surface extending in the collision surface direction is perpendicular to the central axis of the ejection nozzle, and
It has a bottom that fits the surface that intersects the surface that can be made the collision surface position,
Moreover, since the cone with the apex directed vertically downward is provided on the collision surface, the direction of the high-speed air flow changes along the cone on the collision surface without causing pressure loss, and the crushed material is classified. It can be converted into a carrying force for the process, and the energy of the airflow can be reduced and highly efficient pulverization can be performed.

【0085】請求項8の発明によると、請求項1乃至7
の発明において、前記衝突面端部が鉛直軸に対してテー
パーを有するようにしたので、衝突面上の円錐体の直ぐ
脇も傾斜を付け、高速気流をより粉砕物を分級工程へ搬
送させるために、高速気流をより圧力損失を減らしなが
ら方向転換させることができ、高効率な粉砕が可能とな
る。
According to the invention of claim 8, claims 1 to 7
In the invention, since the end of the collision surface has a taper with respect to the vertical axis, the side immediately adjacent to the cone on the collision surface is also inclined so that the high-speed airflow can further convey the pulverized material to the classification step. In addition, it is possible to change the direction of the high-speed airflow while further reducing the pressure loss, and it is possible to perform highly efficient pulverization.

【0086】請求項9の発明によると、請求項1乃至8
の発明において、前記粉砕室の内壁面から局所的な突起
を無くすようにしたので、粉砕室内部の形状から局所的
な突起を無くすことにより、気流のよどみ領域が発生し
なく、圧力損失が減り、より効率的に搬送するための流
れへ方向転換させることができ、高効率な粉砕が可能と
なる。
According to the invention of claim 9, claims 1 to 8
In the invention, since the local protrusions are eliminated from the inner wall surface of the crushing chamber, eliminating the local protrusions from the shape of the inside of the crushing chamber does not cause a stagnation region of the air flow and reduces the pressure loss. Further, it is possible to change the direction to a flow for more efficient transportation, and it becomes possible to perform highly efficient pulverization.

【0087】請求項10の発明によると、請求項1乃至
9の発明において、前記粉砕室の内壁面の材質が炭化珪
素であるようにしたので、1次粉砕後の粉砕物に対し、
粉砕室の硬質な内壁面と2次的な衝突,粉砕が可能とな
り、高効率な粉砕が可能となる。
According to the invention of claim 10, in the invention of claims 1 to 9, since the material of the inner wall surface of the crushing chamber is made of silicon carbide, the crushed product after the primary crushing is
Secondary collision and crushing with the hard inner wall surface of the crushing chamber are possible, and highly efficient crushing is possible.

【0088】請求項11の発明によると、請求項1乃至
10の発明において、前記噴出ノズルの出口表面から局
所的な突起を無くすようにしたので、加速管出口付近の
形状から局所的な突起を無くすことにより、加速管付近
の気流の圧力損失が軽減でき、粉砕後の粉砕物が分級工
程へ搬送される際効率的であり、高効率な粉砕が可能と
なる。
According to the eleventh aspect of the present invention, in the first to tenth aspects of the present invention, since the local projection is eliminated from the outlet surface of the jet nozzle, the local projection is removed from the shape near the exit of the acceleration tube. By eliminating it, the pressure loss of the air flow near the accelerating pipe can be reduced, the pulverized product after pulverization is efficient when conveyed to the classification step, and highly efficient pulverization becomes possible.

【0089】請求項12の発明によると、請求項1乃至
11の発明において、前記粉砕室の内壁面と噴出ノズル
の間に仕切りを有し、かつ、粉砕室の内壁面と前記仕切
りの間が前記被粉砕物供給口に通じ、かつ、前記仕切り
と噴出ノズルの間が分級工程へ通ずるようにしたので、
仕切り部材の効果から粉砕装置内部で、予め粗粉の割合
が大きい粉砕物と微粉の割合が大きい粉砕物を分けるこ
とが可能で、次工程の分級工程の負担の軽減及び高精度
化、また粉砕工程の負担の軽減が達成でき、高効率な粉
砕が可能となる。
According to the invention of claim 12, in the invention of claims 1 to 11, there is a partition between the inner wall surface of the crushing chamber and the jet nozzle, and the space between the inner wall surface of the crushing chamber and the partition is Since it is connected to the crushed material supply port and the partition and the ejection nozzle are connected to the classification step,
Due to the effect of the partition member, it is possible to separate the crushed material with a large proportion of coarse powder and the crushed material with a large proportion of fine powder in advance inside the crushing device, reducing the burden of the classification process of the next process and improving accuracy, and crushing The burden on the process can be reduced, and highly efficient pulverization is possible.

【0090】請求項13の発明によると、請求項1乃至
12の発明において、前記仕切りの粉砕室の内壁面側の
表面材質が炭化珪素であるようにしたので、粉砕室内壁
面と仕切り部材との2次3次的な粉砕回数が増加し、目
的である微粉に容易に近づくことが可能となり、次工程
の分級工程の負担の軽減及び高精度化、また粉砕工程の
負担の軽減が達成でき、高効率な粉砕が可能となる。
According to the thirteenth aspect of the present invention, in the first to twelfth aspects of the present invention, since the surface material of the partition on the inner wall surface side of the crushing chamber is silicon carbide, the wall surface of the crushing chamber and the partition member are separated from each other. The number of secondary and tertiary crushing increases, and it becomes possible to easily approach the target fine powder, and it is possible to reduce the burden of the classification process of the next process, improve the accuracy, and reduce the burden of the crushing process. Highly efficient grinding is possible.

【0091】請求項14の発明によると、請求項1乃至
13の発明において、前記仕切りと噴出ノズルの間を、
仕切りと粉砕室の内壁面の間よりも低圧にする吸引装置
及び制御装置を有するようにしたので、仕切り部材と加
速管の間の領域を低圧にすることから、粉砕装置内部
で、予め粗粉の割合が大きい粉砕物と微粉の割合が大き
い粉砕物を精度良く分けることが可能で、次工程の分級
工程の負担の軽減及び高精度化、また粉砕工程の負担の
軽減が達成でき、高効率な粉砕が可能となる。
According to a fourteenth aspect of the present invention, in the first to thirteenth aspects, the space between the partition and the ejection nozzle is
Since there is a suction device and a control device that make the pressure lower than between the partition and the inner wall surface of the crushing chamber, the area between the partition member and the acceleration pipe is made to have a low pressure. It is possible to accurately separate crushed products with a large ratio of crushed powder and crushed products with a large ratio of fine powder, and it is possible to reduce the burden and accuracy of the classification process in the next process, and also reduce the burden of the crushing process, resulting in high efficiency. Crushing is possible.

【0092】請求項15の発明によると、ジェット噴流
を用いてジェット噴流中に被粉砕物を供給し、その被粉
砕物を衝突面に衝突させ、その衝撃力によって粉砕する
衝突式粉砕機において、請求項14における粉砕装置を
鉛直方向上部に位置する1段目粉砕手段とし、かつ、請
求項11における粉砕装置を鉛直方向下部に位置する2
段目粉砕手段として有し、かつ、上部1段目粉砕装置の
粉砕室の内壁面と仕切りの間が下部2段目粉砕装置の被
粉砕物供給口へ通じ、かつ、上部1段目粉砕装置の仕切
りと噴出ノズルの間が、下部2段目粉砕装置の粉砕室の
内壁面と噴出ノズルの間と共に分級工程へ通ずるように
したので、粉砕装置を2段に組むことから、粉砕処理時
間の短縮化、及び耐久性の向上が図られ、高効率な粉砕
が可能となる。
According to a fifteenth aspect of the present invention, in a collision type crusher for supplying an object to be crushed into a jet jet by using a jet jet, causing the object to collide with a collision surface, and crushing by the impact force, The crushing device according to claim 14 is used as a first-stage crushing means located at the upper part in the vertical direction, and the crushing device according to claim 11 is located at the lower part in the vertical direction.
It has as a second stage crushing means, and the space between the inner wall surface and the partition of the crushing chamber of the upper first stage crushing device leads to the crushed object supply port of the lower second crushing device, and the upper first stage crushing device. Since the partition and the jet nozzle are connected to the classification process together with the inner wall surface of the pulverizing chamber of the lower second stage pulverizer and the jet nozzle, the pulverizing device is assembled in two stages, so Shortening and improvement of durability are achieved, and highly efficient pulverization becomes possible.

【0093】請求項16の発明によると、ジェット噴流
を用いてジェット噴流中に被粉砕物を供給し、その被粉
砕物を衝突面に衝突させ、その衝撃力によって粉砕する
衝突式粉砕機において、請求項14における粉砕装置を
鉛直方向上部に1段目粉砕手段とし、かつ、請求項14
における粉砕装置を鉛直方向下部に2段目粉砕手段とし
て有する2段式粉砕装置において、上部1段目粉砕装置
の粉砕室の内壁面と仕切りの間が、下部2段目粉砕装置
の粉砕室の内壁面と仕切りの間と共に2段目粉砕装置の
被粉砕物供給口へ通じ、かつ、上部1段目粉砕装置の仕
切りと噴出ノズルの間が、下部2段目粉砕装置の仕切り
と噴出ノズルの間と共に分級工程へ通ずるようにしたの
で、粉砕装置を2段に組み、かつ2段目粉砕装置内部で
も、予め粗粉の割合が大きい粉砕物と微粉の割合が大き
い粉砕物を分けるために、請求項15以上に粉砕処理時
間の短縮化、及び、耐久性の向上、及び、高精度化が図
られ、高効率な粉砕が可能となる。
According to the sixteenth aspect of the present invention, there is provided a collision type crusher for supplying an object to be crushed into a jet jet by using a jet jet, colliding the object to be crushed with a collision surface, and crushing by the impact force. 15. The crushing device according to claim 14 is used as a first-step crushing means at an upper part in the vertical direction, and
In the two-stage type pulverizer having the pulverizer in the lower part in the vertical direction as the second stage pulverizer, between the inner wall surface of the pulverizer chamber of the upper first stage pulverizer and the partition is the pulverizer chamber of the lower second stage pulverizer. The space between the inner wall surface and the partition is communicated with the pulverized material supply port of the second-stage crushing device, and the space between the partition of the upper first-stage crushing device and the jet nozzle is between the partition of the lower-second crushing device and the jet nozzle. Since it was made to communicate to the classification process with time, in order to separate the pulverized product with a large proportion of coarse powder and the pulverized product with a large proportion of fine powder in advance, even in the second stage pulverization device, the pulverization device was assembled in two stages. According to the fifteenth aspect, the crushing processing time can be shortened, the durability can be improved, and the accuracy can be improved, so that highly efficient crushing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1に記載した粉砕装置の一実施例を説
明するための要部構成図である。
FIG. 1 is a configuration diagram of a main part for explaining an embodiment of a crushing device described in claim 1.

【図2】 請求項2に記載した発明の実施例を説明する
ための要部拡構成図である。
FIG. 2 is a main part enlarged configuration diagram for explaining an embodiment of the invention described in claim 2;

【図3】 請求項3に記載した発明の実施例を説明する
ための要部構成図である。
FIG. 3 is a configuration diagram of a main part for explaining an embodiment of the invention described in claim 3;

【図4】 請求項3に記載した発明の他の実施例を説明
するための要部構成図である。
FIG. 4 is a configuration diagram of a main part for explaining another embodiment of the invention described in claim 3;

【図5】 請求項4に示した発明の実施例を説明するた
めの要部構成図である。
FIG. 5 is a main part configuration diagram for explaining an embodiment of the invention described in claim 4;

【図6】 請求項5に示した発明の実施例を説明するた
めの要部構成図である。
FIG. 6 is a main part configuration diagram for explaining an embodiment of the invention described in claim 5;

【図7】 請求項6に示した発明の実施例を説明するた
めの要部構成図である。
FIG. 7 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 6;

【図8】 請求項7に示した発明の実施例を説明するた
めの要部構成図である。
FIG. 8 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 7;

【図9】 請求項8に示した発明の実施例を説明するた
めの要部構成図である。
FIG. 9 is a main part configuration diagram for explaining an embodiment of the invention described in claim 8;

【図10】 請求項9に示した発明の実施例を説明する
ための要部構成図である。
FIG. 10 is a main part configuration diagram for explaining an embodiment of the invention described in claim 9;

【図11】 請求項10に示した発明の実施例を説明す
るための要部構成図である。
FIG. 11 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 10;

【図12】 請求項11に示した発明の実施例を説明す
るための要部構成図である。
FIG. 12 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 11;

【図13】 請求項12に示した発明の実施例を説明す
るための要部構成図である。
FIG. 13 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 12;

【図14】 請求項13に示した発明の実施例を説明す
るための要部構成図である。
FIG. 14 is a configuration diagram of a main part for explaining an embodiment of the invention shown in claim 13;

【図15】 請求項14に示した発明の実施例を説明す
るための要部構成図である。
FIG. 15 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 14;

【図16】 請求項15に示した発明の実施例を説明す
るための要部構成図である。
FIG. 16 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 15;

【図17】 請求項16に示した発明の実施例を説明す
るための要部構成図である。
FIG. 17 is a main part configuration diagram for explaining an embodiment of the invention shown in claim 16;

【図18】 従来の粉砕装置の一例を説明するための構
成図である。
FIG. 18 is a configuration diagram for explaining an example of a conventional crushing device.

【符号の説明】[Explanation of symbols]

1…被粉砕物供給口、2…圧縮空気供給ノズル、3圧縮
空気加速管、4…圧縮空気衝突部材、5…粉砕物排出
口、6…被粉砕物、7…粉砕室、8…加速管出口、9…
衝突面、10…粉砕物、11…粗粉、12…微粉、13
…分級機、14…中心軸、15…高速気流、23,24
…被粉砕物供給口、25…炭化珪素部材、26…回転制
御装置、28…円錐体、34…曲面、35…炭化珪素部
材、37…仕切り部材、40…炭化珪素部材、46…第
1段目粉砕装置、47,48…第2段目粉砕装置。
DESCRIPTION OF SYMBOLS 1 ... Ground material supply port, 2 ... Compressed air supply nozzle, 3 compressed air acceleration tube, 4 ... Compressed air collision member, 5 ... Ground material discharge port, 6 ... Ground material, 7 ... Grinding chamber, 8 ... Acceleration tube Exit 9 ...
Collision surface, 10 ... Crushed product, 11 ... Coarse powder, 12 ... Fine powder, 13
… Classifier, 14… Central axis, 15… High-speed air flow, 23, 24
... crushed material supply port, 25 ... silicon carbide member, 26 ... rotation control device, 28 ... cone, 34 ... curved surface, 35 ... silicon carbide member, 37 ... partition member, 40 ... silicon carbide member, 46 ... first stage Eye crusher 47, 48 ... Second stage crusher.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上原 賢一 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 渡邊 啓子 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Kenichi Uehara 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd. (72) Keiko Watanabe 1-3-6 Nakamagome, Ota-ku, Tokyo Stocks Company Ricoh

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 粉砕室内にジェット噴流を噴出する噴出
ノズルと、前記ジェット噴流中に被粉砕物を供給する供
給口と、前記噴出ノズルと対向して設置され、前記被粉
砕物が前記ジェット噴流と共に直接衝突されて微粉砕さ
れる衝突面を持つ衝突部材を有する粉砕装置において、
前記噴射ノズルは噴出ノズル出口を鉛直上向きに有し、
かつ、該噴出ノズル出口より上方の位置に衝突面を鉛直
下方に向けて前記衝突部材を有することを特徴とする粉
砕装置。
1. A jet nozzle for jetting a jet jet into a crushing chamber, a supply port for supplying an object to be ground into the jet jet, and a jet nozzle which is installed to face the jet nozzle. In a crushing device having a collision member having a collision surface that is directly collided with and finely crushed,
The jet nozzle has a jet nozzle outlet vertically upward,
Further, the crushing device is characterized in that it has the collision member with a collision surface facing vertically downward at a position above the outlet of the ejection nozzle.
【請求項2】 前記噴出ノズルの内壁面は、衝突面方向
に延長した面が噴出ノズルの中心軸に垂直で、かつ、衝
突面位置にできる面と交わる面が、衝突面上に収まるこ
とを特徴とする請求項1に記載の粉砕装置。
2. The inner wall surface of the ejection nozzle has a surface extending in the collision surface direction that is perpendicular to the central axis of the ejection nozzle and intersects with a surface that can be located at the collision surface position on the collision surface. The crushing device according to claim 1, which is characterized in that.
【請求項3】 噴出ノズル内に被粉砕物を供給する供給
口を複数有することを特徴とする請求項1又は2に記載
の粉砕装置。
3. The crushing device according to claim 1, wherein the jetting nozzle has a plurality of supply ports for supplying the crushed object.
【請求項4】 衝突面の材質が炭化珪素であることを特
徴とする請求項1乃至3のいずれかに記載の粉砕装置。
4. The crushing device according to claim 1, wherein the material of the collision surface is silicon carbide.
【請求項5】 前記衝突部材が鉛直軸回りに回転可能
で、かつ、回転装置を有することを特徴とする請求項1
乃至4のいずれかに記載の粉砕装置。
5. The collision member is rotatable about a vertical axis and has a rotating device.
The crushing device according to any one of 1 to 4.
【請求項6】 前記噴出ノズルの中心軸を鉛直軸より偏
心させたことを特徴とする請求項1乃至5のいずれかに
記載の粉砕装置。
6. The crushing device according to claim 1, wherein a central axis of the jet nozzle is eccentric from a vertical axis.
【請求項7】 前記噴出ノズルの内壁面は、衝突面方向
に延長した面が噴出ノズルの中心軸に垂直で、かつ、衝
突面位置にできる面と交わる面に収まる底面を持ち、か
つ、衝突面上に頂点を鉛直下方に向けた円錐体を有する
ことを特徴とする請求項1乃至6のいずれかに記載の粉
砕装置。
7. The inner wall surface of the ejection nozzle has a bottom surface whose surface extending in the collision surface direction is perpendicular to the central axis of the ejection nozzle and which intersects with a surface that can be at the collision surface position, and which has a collision surface. The crushing device according to any one of claims 1 to 6, further comprising a conical body having an apex directed vertically downward on the surface.
【請求項8】 前記衝突面端部が鉛直軸に対してテーパ
ーを有することを特徴とする請求項1乃至7のいずれか
に記載の粉砕装置。
8. The crushing device according to claim 1, wherein an end portion of the collision surface has a taper with respect to a vertical axis.
【請求項9】 前記粉砕室の内壁面から局所的な突起を
無くしたことを特徴とする請求項1乃至8のいずれかに
記載の粉砕装置。
9. The crushing device according to claim 1, wherein a local protrusion is eliminated from the inner wall surface of the crushing chamber.
【請求項10】 前記粉砕室の内壁面の材質が炭化珪素
であることを特徴とする請求項1乃至9のいずれかに記
載の粉砕装置。
10. The crushing device according to claim 1, wherein the material of the inner wall surface of the crushing chamber is silicon carbide.
【請求項11】 前記噴出ノズルの出口表面から局所的
な突起を無くしたことを特徴とする請求項1乃至10の
いずれかに記載の粉砕装置。
11. The crushing device according to claim 1, wherein a local protrusion is eliminated from the outlet surface of the jet nozzle.
【請求項12】 前記粉砕室の内壁面と噴出ノズルの間
に仕切りを有し、かつ、粉砕室の内壁面と前記仕切りの
間が前記被粉砕物供給口に通じ、かつ、前記仕切りと噴
出ノズルの間が分級工程へ通ずることを特徴とする請求
項1乃至11のいずれかに記載の粉砕装置。
12. A partition is provided between the inner wall surface of the crushing chamber and the ejection nozzle, and a space between the inner wall surface of the crushing chamber and the partition communicates with the object to be crushed supply and the partition and the ejection. The crushing apparatus according to any one of claims 1 to 11, wherein the nozzles are connected to a classification step.
【請求項13】 前記仕切りの粉砕室の内壁面側の表面
材質が炭化珪素であることを特徴とする請求項1乃至1
2のいずれかに記載の粉砕装置。
13. The surface material on the inner wall surface side of the crushing chamber of the partition is silicon carbide.
2. The crushing device according to any one of 2.
【請求項14】 前記仕切りと噴出ノズルの間を、仕切
りと粉砕室の内壁面の間よりも低圧にする吸引装置及び
制御装置を有することを特徴とする請求項1乃至13の
いずれかに記載の粉砕装置。
14. The suction device and the control device for controlling the pressure between the partition and the jet nozzle to be lower than the pressure between the partition and the inner wall surface of the crushing chamber. Crusher.
【請求項15】 請求項14における粉砕装置を鉛直方
向上部に位置する1段目粉砕手段とし、かつ、請求項1
1における粉砕装置を鉛直方向下部に位置する2段目粉
砕手段として有し、かつ、上部1段目粉砕装置の粉砕室
の内壁面と仕切りの間が下部2段目粉砕装置の被粉砕物
供給口へ通じ、かつ、上部1段目粉砕装置の仕切りと噴
出ノズルの間が、下部2段目粉砕装置の粉砕室の内壁面
と噴出ノズルの間と共に分級工程へ通ずることを特徴と
する2段式粉砕装置。
15. The crushing device according to claim 14 is a first-step crushing device located vertically above, and
1 has a crushing device as a second-stage crushing device located in the lower part in the vertical direction, and the space between the inner wall surface and the partition of the crushing chamber of the upper first-stage crushing device is supplied to the crushed product of the lower second-stage crushing device. A two-stage that is connected to the mouth, and between the partition of the upper first-stage crushing device and the jet nozzle communicates with the inner wall surface of the crushing chamber of the lower second-stage pulverizer and the jet nozzle to the classification process. Type crusher.
【請求項16】 請求項14における粉砕装置を鉛直方
向上部に1段目粉砕手段とし、かつ、請求項14におけ
る粉砕装置を鉛直方向下部に2段目粉砕手段として有す
る2段式粉砕装置において、上部1段目粉砕装置の粉砕
室の内壁面と仕切りの間が、下部2段目粉砕装置の粉砕
室の内壁面と仕切りの間と共に2段目粉砕装置の被粉砕
物供給口へ通じ、かつ、上部1段目粉砕装置の仕切りと
噴出ノズルの間が、下部2段目粉砕装置の仕切りと噴出
ノズルの間と共に分級工程へ通ずることを特徴とする2
段式粉砕装置。
16. A two-stage crushing apparatus having the crushing apparatus according to claim 14 as a first-stage crushing means in an upper portion in the vertical direction, and the crushing apparatus according to claim 14 as a second-stage crushing means in a lower portion in the vertical direction, The space between the inner wall surface and the partition of the crushing chamber of the upper first-stage crushing device communicates with the space between the inner wall surface of the crushing chamber of the lower second-stage crushing device and the partition to the crushed object supply port of the second-stage crushing device, and The partition between the upper first-stage pulverizer and the jet nozzle is connected to the classification step together with the partition between the lower second-stage pulverizer and the jet nozzle.
Stepped crusher.
JP18886295A 1995-07-25 1995-07-25 Crusher Expired - Fee Related JP3283728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18886295A JP3283728B2 (en) 1995-07-25 1995-07-25 Crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18886295A JP3283728B2 (en) 1995-07-25 1995-07-25 Crusher

Publications (2)

Publication Number Publication Date
JPH0929127A true JPH0929127A (en) 1997-02-04
JP3283728B2 JP3283728B2 (en) 2002-05-20

Family

ID=16231171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18886295A Expired - Fee Related JP3283728B2 (en) 1995-07-25 1995-07-25 Crusher

Country Status (1)

Country Link
JP (1) JP3283728B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270780A (en) * 2004-03-24 2005-10-06 Mitsui Mining Co Ltd Dry type media stirring type crushing machine
JP2008513005A (en) * 2004-09-15 2008-05-01 シージェイ コーポレーション Manufacturing method of micron size carrot powder by mechanical grinding
JP2010506706A (en) * 2006-10-16 2010-03-04 ローランド・ニード Fine particle production method, jet mill and classifier therefor, and operation method thereof
US8267340B2 (en) 2009-01-05 2012-09-18 Ricoh Company Limited Airflow pulverization and classification device, and pulverization method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270780A (en) * 2004-03-24 2005-10-06 Mitsui Mining Co Ltd Dry type media stirring type crushing machine
JP2008513005A (en) * 2004-09-15 2008-05-01 シージェイ コーポレーション Manufacturing method of micron size carrot powder by mechanical grinding
JP2010506706A (en) * 2006-10-16 2010-03-04 ローランド・ニード Fine particle production method, jet mill and classifier therefor, and operation method thereof
US8267340B2 (en) 2009-01-05 2012-09-18 Ricoh Company Limited Airflow pulverization and classification device, and pulverization method

Also Published As

Publication number Publication date
JP3283728B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
KR970008350B1 (en) Pneumatic pulverizer and process for producing toner
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JPH0929127A (en) Pulverizer
JP3182039B2 (en) Crusher
JPH01254266A (en) Impact type air crusher and crushing method
JP3114040B2 (en) Collision type air crusher
JP3219955B2 (en) Collision type air crusher
JP3313922B2 (en) Crusher
JP2759499B2 (en) Powder grinding method
JP2654989B2 (en) Powder grinding method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3219918B2 (en) Crusher
JP3260572B2 (en) Crusher
JP3229470B2 (en) Crusher
JP3101786B2 (en) Collision type air crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH03109951A (en) Collision type air flow grinder and grinding method
JPH07289933A (en) Grinder
JP2001025678A (en) Collision type crusher
JPH0515802A (en) Impact type pneumatic grinder
JP2566158B2 (en) Collision airflow crusher
JPH1119531A (en) Collision type air flow crusher and manufacture of toner
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees