JPH09287004A - Metal porous body and its production - Google Patents

Metal porous body and its production

Info

Publication number
JPH09287004A
JPH09287004A JP15502796A JP15502796A JPH09287004A JP H09287004 A JPH09287004 A JP H09287004A JP 15502796 A JP15502796 A JP 15502796A JP 15502796 A JP15502796 A JP 15502796A JP H09287004 A JPH09287004 A JP H09287004A
Authority
JP
Japan
Prior art keywords
cumulative frequency
particle size
metal
pore diameter
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15502796A
Other languages
Japanese (ja)
Inventor
Ryutaro Motoki
龍太郎 元木
Atsushi Funakoshi
淳 船越
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15502796A priority Critical patent/JPH09287004A/en
Publication of JPH09287004A publication Critical patent/JPH09287004A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2034Metallic material the material being particulate sintered or bonded by inorganic agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an improved metal porous body having pore distributing characteristics, mechanical properties or the like and useful as dies, filters, etc. SOLUTION: This metal porous body is composed of a HIP sintered body in which porosity is regulated to 7 to 50% and the pore diameter is regulated to <=500μm and having a pore distribution in which the pore diameter D5 of 5% cumulative frequency in the integrated distribution curve of the pore diameter, the pore diameter D50 of 50% cumulative frequency and the pore diameter D95 of 95% cumulative frequency satisfy (D95 -D5 )/D50 <=1.5. Metal powder having a certain grain diameter distribution is used as a sintering raw material, and it is produced by the below-mentioned process (A) or (B). (A) Powder is sealed into a capsule, which is subjected to low temp.-low pressure HIP treatment ((temp.: 0.35 to 0.85mpK (mpK denotes the m.p. of the powder; absolute temp.) and pressure: 5 to 150MPa)), and then, this sintered body (temporarily sintered body) is subjected to heat treatment (temp.: 0.6 to 0.95mpK). (B) Powder is subjected to compacting, and the green compact is subjected to HIP treatment (temp.: 0.7 to 0.95mpK and pressure: 5 to 150MPa) without being sealed into a capsule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂の熱成形・非
鉄金属の鋳造等に使用される金型の構成部材、ガス,微
粒子等を濾過するフィルタの構成部材、あるいは断熱
材,防音材,防振材等として有用な金属多孔体およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural member of a mold used for thermoforming of resin, casting of non-ferrous metal, etc., a structural member of a filter for filtering gas, fine particles, etc., or a heat insulating material, a soundproofing material, The present invention relates to a metal porous body useful as a vibration isolator and the like and a method for producing the same.

【0002】[0002]

【従来の技術】樹脂の熱成形(射出成形,発泡成形,ブ
ロー成形等)に使用される金型は、キャビティ内の空
気,樹脂から発生するガスを外部に排出するためのガス
抜き用細孔を必要とする。アルミ合金,チタン合金等の
非鉄金属の低圧鋳造,ダイキャスト等に使用される金型
についても、キャビティ内の脱気および鋳造金属溶湯か
ら発生するガスを排出するためのガス抜き用細孔が設け
られる。このような成形・鋳造用金型として、従来より
金型の要所に機械加工による細孔を形成したものや、細
径のパイプを埋設したもの、あるいは型を分割して隙間
を形設したもの等が使用されてきた。近時は、成形・鋳
造操業の効率化,製品品質の向上等を目的として、多孔
性の金属焼結体を金型の要所に組み込み、または金型の
全体を多孔質焼結体で構成したもの等の実用化が試みら
れており、その多孔体の製法および金型構成について種
々の提案がなされている(特開平1-205846号公報,特開
平3-170656号公報,特開平4-7204号公報,特開平4-8060
3 号公報等)。
2. Description of the Related Art A mold used for thermoforming a resin (injection molding, foaming molding, blow molding, etc.) is a vent hole for discharging air in a cavity and gas generated from the resin to the outside. Need. Even for dies used for low pressure casting of non-ferrous metals such as aluminum alloys and titanium alloys, die casting, etc., degassing holes in the cavity and vent holes for discharging gas generated from the molten cast metal are provided. To be As such a molding / casting mold, a mold having pores formed by machining in a key part of the mold, a pipe having a small diameter embedded therein, or a mold divided to form a gap. Things have been used. Recently, for the purpose of improving the efficiency of molding / casting operations, improving product quality, etc., a porous metal sintered body has been incorporated into key parts of the mold, or the entire mold has been constructed with a porous sintered body. Attempts have been made to put these materials into practical use, and various proposals have been made regarding the manufacturing method of the porous body and the mold construction (Japanese Patent Laid-Open No. 1-205846, Japanese Patent Laid-Open No. 3-170656, Japanese Patent Laid-Open No. 4-70656). 7204, JP 4-8060
No. 3, etc.).

【0003】[0003]

【発明が解決しようとする課題】樹脂成形・金属鋳造用
金型の構成部材として使用される多孔質焼結体は、所要
のガス透過性を得るための高多孔性と金型に作用する荷
重・衝撃等に耐え得る機械強度を必要とする。しかし、
多孔性と機械強度とは相反する特性であり、従来の金属
多孔体は、この両面の特性を十分に満足し得るものとは
言い難い。また、金属多孔体の用途は、この他にガス・
微粒子を濾過するフィルタ材、あるいは防音材,防振
材,触媒担体、断熱材等の多方面に亘り、その用途・使
用態様に応じた多孔性と機械性質が要求される。しか
し、従来の金属多孔体の製造法では、金属多孔体の気孔
分布特性および機械性質を、目的・用途等に応じて適切
に制御することが困難である。本発明は、上記に鑑みて
なされたものであり、成形・鋳造用金型をはじめ、高多
孔性を要求される各種構造用部材・機能部材等として有
用な金属多孔体およびその製造方法を提供するものであ
る。
The porous sintered body used as a constituent member of a resin molding / metal casting mold has a high porosity for obtaining a required gas permeability and a load acting on the mold.・ Mechanical strength that can withstand impacts is required. But,
Since the porosity and the mechanical strength are contradictory properties, it cannot be said that the conventional metal porous body can sufficiently satisfy the properties on both sides. In addition to this, the porous metal is used for gas
In various fields such as filter materials for filtering fine particles, soundproofing materials, vibration-proofing materials, catalyst carriers, heat insulating materials, etc., porosity and mechanical properties are required according to the application and usage. However, in the conventional method for producing a porous metal body, it is difficult to appropriately control the pore distribution characteristics and mechanical properties of the porous metal body in accordance with the purpose and application. The present invention has been made in view of the above, and provides a metal porous body useful as a molding / casting die, various structural members / functional members that require high porosity, and a method for producing the same. To do.

【0004】[0004]

【課題を解決するための手段】本発明の金属多孔体は、
気孔率7〜50%,気孔径500μm以下(最大気孔径
100 : 500μm),および気孔径の積算分布曲線
(体積基準)における累積頻度5%の気孔径D5 ,同累
積頻度50%の気孔径D50,同累積頻度95%の気孔径
95が、 (D95−D5 )/D50 ≦1.5 … 〔1〕 を満たす気孔分布を有する熱間等方加圧焼結体であるこ
とを特徴としている。本発明の金属多孔体は、一定の粒
径分布を有する金属粉末を焼結原料とし、(A)原料粉末
をカプセルに封入し、低温・低圧力の熱間等方加圧焼結
処理(仮焼結処理)により多孔質の仮焼結体を形成した
後、カプセルを除去しもしくは除去することなく、仮焼
結体に粒子間結合を強化するための加熱処理を施す方
法、または (B)原料粉末をを所望形状に加圧成形し、粉
末成形体をカプセルに封入することなく熱間等方加圧焼
結する方法により製造される。
The metal porous body of the present invention comprises:
Porosity 7 to 50%, pore diameter 500 μm or less (maximum pore diameter D 100 : 500 μm), and 5% cumulative pore diameter D 5 and 50% cumulative pore diameter cumulative distribution curve (volume basis) A hot isotropic pressure-sintered body having a pore size D 50 and a pore size D 95 having the same cumulative frequency of 95% satisfying (D 95 −D 5 ) / D 50 ≦ 1.5 (1) It is characterized by being. The porous metal body of the present invention uses a metal powder having a certain particle size distribution as a sintering raw material, (A) the raw material powder is encapsulated, and is subjected to hot isostatic pressing at low temperature and low pressure (temporary After forming a porous pre-sintered body by (sintering treatment), the pre-sintered body is subjected to a heat treatment for strengthening the interparticle bond without removing the capsule or without removing the capsule, or (B) It is manufactured by a method in which the raw material powder is pressure-molded into a desired shape and the powder compact is hot isostatically pressed without being encapsulated.

【0005】[0005]

【発明の実施の形態】本発明の金属多孔体は7〜50%
の気孔率を有する。気孔率の下限を7%とするのは、開
気孔(貫通気孔)の分布を確保するためであり、これに
より流体の透過性を必要とする用途への適用が可能とな
る。気孔率の増大に伴って開気孔の分布が豊富化される
が、50%を超えると多孔体の機械強度の低下が大き
く、所要形状に成形するための機械加工が困難となる。
このため50%を上限とする。本発明の金属多孔体は、
気孔径の積算分布曲線(図1参照)における累積頻度5
%,50%,および95%に対応する気孔径D5
50,およびD95が前記〔1〕式を満たす気孔分布を有
する。気孔径D50(平均気孔径)に対する、気孔径D5
とD95の幅の比、(D95−D5 )/D50を、1.5以下
に限定したのは、多孔特性の改善に実質的な寄与をなさ
ない微小気孔や、多孔体の機械性質に有害な粗大気孔の
混在を排除し、多孔体の均質性を確保するものである。
より好ましくは、1〜1.2である。また、気孔径50
0μm以下という規定は、最大気孔径(気孔径の積算分
布曲線における累積頻度100%に対応する気孔径D
100 )500μmまでの大きな気孔を包含し得るという
意味である。このように気孔径の大きさが上方に拡大さ
れる効果として、ガスや微細粒子の透過性能が高めら
れ、また気孔内に捕捉された微粒子の洗浄除去処理も容
易化される。このことは、金属多孔体の金型やフィルタ
等の構成部材としての適性を高めるものである。しか
し、最大気孔径が500μmを超える気孔分布を有する
多孔体では、気孔率を上記のように50%以下に制御し
ても、金属多孔体の強度の低下が大きく、金型やフィル
タ等の構成部材としての適性が損なわれる。このため、
その上限を500μmとした。
BEST MODE FOR CARRYING OUT THE INVENTION The porous metal body of the present invention is 7 to 50%.
Has a porosity of. The lower limit of the porosity is set to 7% in order to secure the distribution of open pores (through pores), which enables application to applications requiring fluid permeability. The distribution of open pores is enriched as the porosity increases, but if it exceeds 50%, the mechanical strength of the porous body is greatly reduced, and it becomes difficult to perform machining to form the desired shape.
Therefore, the upper limit is 50%. The metal porous body of the present invention,
Cumulative frequency 5 in the cumulative distribution curve of pore size (see Fig. 1)
%, 50%, and 95% corresponding pore size D 5 ,
D 50 and D 95 have a pore distribution satisfying the above formula [1]. The pore diameter D 5 (average pore diameter) relative to the pore diameter D 5
The ratio of (D 95 -D 5 ) / D 50, which is the ratio of the width of D 95 to D 95 , is limited to 1.5 or less because the mechanical properties of micropores and porous materials that do not substantially contribute to the improvement of the porous characteristics. The inclusion of coarse air holes that are harmful to the properties is eliminated, and the homogeneity of the porous body is ensured.
More preferably, it is 1 to 1.2. Also, the pore size is 50
The definition of 0 μm or less means that the maximum pore diameter (the pore diameter D corresponding to 100% cumulative frequency in the cumulative distribution curve of pore diameters)
100 ) Means that large pores up to 500 μm can be included. As an effect of increasing the pore size in this way, the gas and fine particle permeation performance is enhanced, and the cleaning and removal treatment of fine particles trapped in the pores is facilitated. This enhances the suitability of the metal porous body as a component such as a mold or a filter. However, in a porous body having a pore distribution in which the maximum pore diameter exceeds 500 μm, even if the porosity is controlled to 50% or less as described above, the strength of the porous metal body is greatly reduced, and the structure of a mold, a filter, or the like is formed. The suitability as a member is impaired. For this reason,
The upper limit was set to 500 μm.

【0006】本発明の金属多孔体の気孔分布は、具体的
用途・使用態様に応じた適正な範囲に調整される。例え
ば、樹脂成形や金属鋳造用の金型材に適用される場合
は、金属多孔体の表面に孔径の大きい気孔が多数分布し
ていると、その表面凹凸が成形品の表面に転写され、製
品の表面品質を損なう原因となるので、このような用途
の金属多孔体は、気孔径D50(平均気孔径)が約3〜6
0μmの範囲にある気孔分布を有するものが好ましい。
より好ましくは、20〜40μmである。また、その気
孔率を約10〜30%の範囲に調整することにより、金
型に必要なガス抜き性等の透過性能を維持しつつ、高荷
重や機械的・熱的衝撃等の反復作用に対する材料特性を
確保することが容易になる。より好ましい気孔率は約1
5〜25%である。他方、フィルタ等のように高い透過
性能を要求される金属多孔体の場合は、気孔率約15〜
40%、気孔径D50は約30〜300μmと、前記金型
用途の場合に比べて高い範囲に調整することが好まし
く、これにより濾過操作における圧力損失が少なく、効
率的な濾過処理を維持することが容易になる。より好ま
しくは、気孔率約20〜35%,気孔径D50約50〜2
00μmである。
The pore distribution of the porous metal body of the present invention is adjusted to an appropriate range according to the specific application and use mode. For example, when it is applied to a mold material for resin molding or metal casting, if a large number of pores with a large pore size are distributed on the surface of the porous metal body, the surface irregularities are transferred to the surface of the molded product, Since the metal porous body for such an application has a pore diameter D 50 (average pore diameter) of about 3 to 6 because it becomes a cause of impairing the surface quality.
Those having a pore distribution in the range of 0 μm are preferable.
More preferably, it is 20 to 40 μm. In addition, by adjusting the porosity within the range of about 10 to 30%, it is possible to maintain the permeation performance such as the degassing property required for the mold, and to prevent repeated actions such as high load and mechanical / thermal shock. It becomes easy to secure material properties. A more preferable porosity is about 1.
5 to 25%. On the other hand, in the case of a porous metal body such as a filter which requires high permeability, the porosity is about 15-
40%, the pore diameter D 50 is about 30 to 300 μm, which is preferably adjusted to a higher range as compared with the case of the above-mentioned mold application, whereby the pressure loss in the filtration operation is small and the efficient filtration treatment is maintained. It will be easier. More preferably, the porosity is about 20 to 35% and the pore diameter D 50 is about 50 to 2
It is 00 μm.

【0007】本発明の金属多孔体は熱間等方加圧焼結体
として製造される。熱間等方加圧焼結処理(以下「HI
P処理」)によれば、被処理体の形状・サイズの如何に
拘らず、被処理物に対する均一な加圧力の作用下に原料
粒子の焼結反応が行われ、気孔分布や機械性質の均一性
の良好な焼結体を得ることができる。焼結原料である金
属粉末の材種は、金属多孔体の用途・使用条件等に応じ
て、例えば、スレンレス鋼系(SUS304、SUS3
16L,SUS630等)、工具鋼系(SKD61,S
KD11等)、マルエージング鋼系(18Ni系,20
Ni系等)、高速度鋼(SKH51,SKH55等)、
非鉄金属系(アルミニウムまたはその合金,チタンまた
はその合金,銅またはその合金等)の各種金属が適用さ
れる。
The metal porous body of the present invention is manufactured as a hot isotropically pressurized sintered body. Hot isotropic pressure sintering (hereinafter referred to as "HI
According to “P treatment”), regardless of the shape and size of the object to be treated, the sintering reaction of the raw material particles is performed under the action of a uniform pressing force to the object to be treated, and the pore distribution and mechanical properties are uniform. A sintered body having good properties can be obtained. The grade of the metal powder that is the sintering raw material is, for example, a stainless steel type (SUS304, SUS3) depending on the application and use conditions of the porous metal body.
16L, SUS630, etc.), tool steel system (SKD61, S
KD11), maraging steel system (18Ni system, 20)
Ni-based), high-speed steel (SKH51, SKH55, etc.),
Various metals of non-ferrous metal type (aluminum or its alloy, titanium or its alloy, copper or its alloy, etc.) are applied.

【0008】金属粉末は、下記〔2〕式を満たす粒度分
布を有するものが使用される。R5,R50,R95は、粒
径積算分布曲線(重量基準)における累積頻度5%,5
0%,95%に対応する粒子径である(図2参照)。 (R95−R5 )/R50 ≦ 1.5 … 〔2〕 粒径R50(平均粒径)に対する、粒径R95と粒径R5
幅(R95−R5 )の比「(R95−R5 )/R50」の値が
大きい粒径分布の粉末では、粉末充填層内の粒子間に粗
大な空隙を生じ易く、また粒子間の空隙に微細粒子が侵
入することによる空隙の閉塞を生じ易くなる。前者は、
焼結体内における粗大な気孔の分布を増大させ、後者は
開気孔の分布を減少させ、製品多孔体の多孔質性能を低
下させる原因となる。(R95−R5 )/R50の比を、約
1.5以下に調整することは、このような不具合を抑制
緩和するのに有効である。また、粉末の粒径R50(平均
粒子径)は、約10〜1000μmの範囲内にあるのが
適当である。平均粒子径がこれより細かくなると、得ら
れる焼結体内の気孔が過度に微細となってガス透過性能
が損なわれ、他方これを超える粗大粒子径のものでは、
粗大気孔の分布が過多となるので好ましくない。
As the metal powder, one having a particle size distribution satisfying the following formula [2] is used. R 5 , R 50 , and R 95 are cumulative frequencies 5% and 5 in the particle size cumulative distribution curve (weight basis).
The particle diameters correspond to 0% and 95% (see FIG. 2). (R 95 −R 5 ) / R 50 ≦ 1.5 (2) Ratio of particle size R 95 and particle size R 5 width (R 95 −R 5 ) to particle size R 50 (average particle size) In the powder having a particle size distribution with a large value of (R 95 −R 5 ) / R 50 ″, coarse voids are easily generated between the particles in the powder packed bed, and fine particles enter the voids between the particles. Clogging of voids is likely to occur. The former is
The distribution of coarse pores in the sintered body is increased, and the latter reduces the distribution of open pores, which causes deterioration of the porous performance of the product porous body. The ratio of (R 95 -R 5) / R 50, be adjusted to about 1.5 or less is effective in suppressing alleviate such a problem. The particle size R 50 (average particle size) of the powder is suitably in the range of about 10 to 1000 μm. When the average particle size becomes finer than this, the pores in the obtained sintered body become excessively fine and the gas permeation performance is impaired, while on the other hand, with coarse particle sizes exceeding this,
It is not preferable because the distribution of coarse air holes becomes excessive.

【0009】更に、樹脂成形・金属鋳造等の金型材等の
用途に供される金属多孔体のように、機械強度を維持し
ながら、孔径の比較的小さい開気孔が豊富に分布したも
のを望む場合は、(R95−R5 )/R50が1.5以下
で、粒子径R50が約10〜200μm程度である比較的
小径の粉末を使用するのが好ましく、一方フィルタ等に
供される金属多孔体を製造する場合には、(R95
5 )/R50が1.3以下で、粒子径R50約100〜7
00μmの粗粒粉末が好ましく使用される。
Furthermore, it is desired that the open pores having relatively small pore diameters are abundantly distributed while maintaining the mechanical strength, such as a porous metal body used for a mold material such as resin molding and metal casting. In this case, it is preferable to use a powder having a relatively small diameter (R 95 -R 5 ) / R 50 of 1.5 or less and a particle diameter R 50 of about 10 to 200 μm, while being used for a filter or the like. in the production of that metal porous body, (R 95 -
R 5 ) / R 50 is 1.3 or less, and particle size R 50 is about 100 to 7
A coarse powder of 00 μm is preferably used.

【0010】本発明の金属多孔体は、下記のAまたはB
法、すなわち、(A)金属粉末をカプセルに封入し、低
温・低圧力のHIP処理(仮焼結処理)に付して多孔質
の仮焼結体を形成し、ついでその仮焼結体の粒子間結合
を強化するための熱処理(強化熱処理)を施す工程
(「仮焼結HIP法」)、(B)金属粉末を所望形状に
加圧成形し、その粉末成形体を、カプセルに封入するこ
となくHIP処理する工程(「カプセルフリーHIP
法」)により製造される。金属粉末のHIP処理は、焼
結合金製品の工業的製法としてよく知られているが、そ
れは真密度に近い高緻密質焼結体の製造を目的とするも
のであり、そのHIP処理形態は、原料粒子同士の融着
・結合が十分に達成されるように、原料粉末をカプセル
(軟鋼製等の容器)に真空密封したうえ、高温・高圧力
の作用下に焼結反応を行わせている。別法として、原料
粉末を予め所要形状に加圧成形し、その粉末成形体にH
IP処理を施すこともあるが、その場合も粉末成形体の
高緻密化が十分に達成されるように、粉末成形体の表面
に気密性の被膜(ガラス膜,真空蒸着膜等)をコーティ
ングし、開気孔を封止した状態で高温・高圧のHIP処
理を行っている。本発明は、このような従来のHIP法
の適用形態と異なって、多孔質焼結体の形成手段として
HIP処理を適用するものであり、上記A法(仮焼結H
IP法)では、低温・低圧力の処理条件によりカプセル
内の粉末の焼結反応を抑制し、またB法(カプセルフリ
ーHIP法)では、粉末成形体表面の開気孔の分布を利
用し、開口を介して静水圧媒体圧力を内部に伝達させる
ことにより、高多孔質の均質な焼結体を形成するように
している。
The metal porous body of the present invention has the following A or B:
Method, that is, (A) the metal powder is encapsulated and subjected to a low-temperature, low-pressure HIP treatment (pre-sintering treatment) to form a porous pre-sintered body. A step of performing heat treatment (reinforcement heat treatment) for strengthening interparticle bonding (“temporary sintering HIP method”), (B) metal powder is pressure-molded into a desired shape, and the powder compact is encapsulated. Process without HIP treatment (“Capsule-free HIP
Method "). HIP treatment of metal powder is well known as an industrial production method of sintered alloy products, but it is intended for the production of a highly dense sintered body having a true density and its HIP treatment form is The raw material powder is vacuum-sealed in a capsule (container made of mild steel, etc.) and the sintering reaction is performed under the action of high temperature and high pressure so that fusion and bonding of the raw material particles can be sufficiently achieved. . Alternatively, the raw material powder is preliminarily pressure-molded into a desired shape, and H
IP treatment may be applied, but in this case as well, in order to sufficiently achieve high densification of the powder compact, the surface of the powder compact is coated with an airtight film (glass film, vacuum deposition film, etc.). The high temperature and high pressure HIP process is performed with the open pores sealed. The present invention is different from the conventional application method of the HIP method in that the HIP treatment is applied as a means for forming a porous sintered body.
In the IP method), the sintering reaction of the powder in the capsule is suppressed by the processing conditions of low temperature and low pressure, and in the B method (capsule-free HIP method), the distribution of open pores on the surface of the powder compact is utilized to open the powder. By transmitting the hydrostatic pressure of the medium through the inside, a highly porous and homogeneous sintered body is formed.

【0011】まず、A法(仮焼結HIP法)による金属
多孔体の製造について説明する。 〔金属粉末のカプセル封入・仮焼結処理〕金属粉末のカ
プセル封入は、通常のHIP処理では減圧下(例えば 1
×10-1〜1 ×10-3Torr) に行われるが、多孔質焼結体を
製造する本発明では、必ずしもその必要はなく、大気圧
のもとで封入するようにしてもよい。カプセルに封入し
た金属粉末のHIP処理(仮焼結処理)は、通常のHI
P処理の場合と異なって、低温・低圧力の条件下に行
う。その処理温度は、0.35〜0.85mpK(mpK
は、金属粉末の融点,絶対温度)〔例えば,融点1680K
の場合は、(0.35 〜0.85) ×1680K=約590 〜1430K 〕、
圧力は約5〜150MPaの範囲が適当である。処理温
度を0.35mpK以上,加圧力を5MPa以上とするの
は、それに満たないHIP処理では、仮焼結体の形成に
長時間を要し、また金属粉末の材種により長時間の処理
を施しても、ハンドリングに耐え得る仮焼結体の形成が
困難であるからであり、他方温度0.85mpK、加圧力
150MPaを超える処理条件では、金属粉末の粒子同
士の融着が過剰に進行し、多孔質の仮焼結体を得ること
が困難となるからである。このように制御された低温・
低圧力の処理条件下に、適当時間(約0.5〜8Hr)
保持することにより、金属粉末は適度に軟化して粒子同
士の結合を生じ、多孔質の焼結体(仮焼結体)が形成さ
れる。金型類等に使用される金属多孔体を目的とする場
合や、フィルタ類等に使用される金属多孔体を目的とす
る場合における仮焼結処理は、温度約0.4〜0.7mp
K,加圧力約50〜120MPaの範囲で行うのが好ま
しい。
First, the production of a metal porous body by the method A (temporary sintering HIP method) will be described. [Metal powder encapsulation / pre-sintering treatment] Metal powder encapsulation is performed under reduced pressure (for example, 1
Is performed in × 10 -1 ~1 × 10 -3 Torr ), in the present invention for producing a porous sintered body, which is not always necessary, may be sealed under atmospheric pressure. The HIP process (pre-sintering process) of the metal powder enclosed in the capsule is a normal HI process.
Unlike the case of P treatment, it is performed under the condition of low temperature and low pressure. The processing temperature is 0.35-0.85 mpK (mpK
Is the melting point or absolute temperature of the metal powder) [eg melting point 1680K
In the case of, (0.35 ~ 0.85) × 1680K = about 590 ~ 1430K],
The pressure is appropriately in the range of about 5 to 150 MPa. The treatment temperature of 0.35 mpK or more and the pressure of 5 MPa or more require that the HIP treatment, which is less than that, takes a long time to form a pre-sintered body, and the treatment for a long time depends on the kind of the metal powder. Even if it is applied, it is difficult to form a temporary sintered body that can withstand handling. On the other hand, under the processing conditions where the temperature exceeds 0.85 mpK and the applied pressure exceeds 150 MPa, the fusion of the particles of the metal powder excessively proceeds. This is because it becomes difficult to obtain a porous pre-sintered body. Low temperature controlled in this way
Appropriate time (about 0.5 to 8 hours) under low pressure processing conditions
By holding the metal powder, the metal powder is appropriately softened to bond the particles to each other, and a porous sintered body (temporary sintered body) is formed. For the purpose of a metal porous body used for molds or the like, or for a metal porous body used for filters or the like, the temporary sintering treatment is performed at a temperature of about 0.4 to 0.7 mp.
It is preferable to carry out at a pressure of about 50 to 120 MPa.

【0012】〔仮焼結体の強化熱処理〕上記低温・低圧
力のHIP処理により得られる焼結体(仮焼結体)は、
そのままでは粒子間結合力が十分でないので、その強度
を高めるための措置として、熱処理(強化熱処理)が実
施される。その熱処理は、約0.6〜0.95mpK(mp
Kは前記と同義)の温度域で行うのがよい。約0.6mp
Kに満たない温度では、粒子間の拡散反応による結合強
化に長時間を要する。処理温度の上限を約0.95mpK
とすることにより、粒子同士の凝集および焼結体の気孔
分布(気孔率,気孔径等)に実質的な変化を生じさせず
に、仮焼結体の強度を高めることができる。処理時間
は、約0.5〜15Hr程度である。金型材やフィルタ
等の構成部材の用途を目的とする場合は、約0.63〜
0.90mpKの温度範囲を適用するのが好ましい。この
強化熱処理は、焼結体をカプセルから取り出し、または
カプセルに被包されたままの状態で行うことができる。
原料粉末が難焼結性の材種であるような場合の焼結体は
脆弱であり、焼結体をカプセルから取り出すためのカプ
セルの機械加工や、取り出された焼結体のハンドリング
過程で、焼結体に欠損・崩壊等を生じ易いので、このよ
うな場合にはカプセルに被包したまま熱処理を行った
後、カプセルから取り出すようにすれば、上記のトラブ
ルを防止することができる。また、原料粉末が活性な材
種である場合も、焼結体の熱処理を、カプセルに被包さ
れた状態で行うこととすれば、真空炉や雰囲気炉を必要
とせず、大気雰囲気でその処理を達成することができ
る。
[Temperature Strengthening Heat Treatment of Temporary Sintered Body] The sintered body (temporary sintered body) obtained by the HIP treatment at low temperature and low pressure is
Since the interparticle bond strength is not sufficient as it is, a heat treatment (strengthening heat treatment) is performed as a measure for increasing the strength. The heat treatment is about 0.6 to 0.95 mpK (mp
It is preferable that K is performed in the temperature range defined above. About 0.6mp
At a temperature below K, it takes a long time to strengthen the bond due to the diffusion reaction between particles. The upper limit of processing temperature is about 0.95mpK
With the above, the strength of the pre-sintered body can be increased without causing agglomeration of particles and a substantial change in the pore distribution (porosity, pore diameter, etc.) of the sintered body. The processing time is about 0.5 to 15 hours. When the purpose is to use components such as mold materials and filters, it is approx.
It is preferable to apply a temperature range of 0.90 mpK. This strengthening heat treatment can be performed while the sintered body is taken out of the capsule or is still encapsulated in the capsule.
When the raw material powder is a material that is difficult to sinter, the sintered body is fragile, and during the machining of the capsule to remove the sintered body from the capsule and the handling process of the removed sintered body, Since the sintered body is likely to be damaged or collapsed, in such a case, the above trouble can be prevented by taking out the capsule after the heat treatment while the capsule is still encapsulated. Further, even if the raw material powder is an active material, if the heat treatment of the sintered body is performed in a state of being encapsulated, it is not necessary to use a vacuum furnace or an atmosphere furnace, and the treatment is performed in an air atmosphere. Can be achieved.

【0013】次に、B法(圧粉体のカプセルフリーHI
P法)による金属多孔体の製造について説明する。 〔圧粉成形〕金属粉末の加圧成形は、一軸プレス成形
法,押出成形法,冷間静水圧プレス成形法(CIP成形
法)等を適用し常法に従って行われる。CIP成形法
は、サイズの大きいもの、形状の複雑なもの等である場
合にも、均質性の高い粉末成形体を成形できる点で好適
である。粉末成形体の相対密度は、製品多孔体(焼結
体)を多孔質体とするために、約93%以下とし、製品
焼結体に要求される気孔分布特性に応じて、約30〜9
5%と幅広く制御される。このための成形圧力は、粉末
の種類によっても異なるが、例えば、比較的球形態の良
好なアトマイズ粉末を使用してCIP成形する場合の加
圧力は、約50〜250MPaに制御される。
Next, method B (capsule-free HI of green compact)
The production of the porous metal body by the P method) will be described. [Powder molding] The pressure molding of the metal powder is carried out according to a conventional method by applying a uniaxial press molding method, an extrusion molding method, a cold isostatic press molding method (CIP molding method) or the like. The CIP molding method is suitable in that a powder compact having high homogeneity can be molded even when it has a large size or a complicated shape. The relative density of the powder compact is about 93% or less in order to make the product porous body (sintered body) a porous body, and the relative density is about 30 to 9 depending on the pore distribution characteristics required for the product sintered body.
Widely controlled with 5%. The molding pressure for this purpose varies depending on the type of powder, but for example, the pressure applied when CIP molding is performed using atomized powder having a relatively good spherical shape is controlled to about 50 to 250 MPa.

【0014】〔粉末成形体のHIP処理〕粉末成形体の
HIP処理は、カプセルによる被包や、コーティングを
施すことなく、多孔表面を静水圧媒体に接触させて行
う。そのHIP処理は、温度約0.7mpK〜0.95mp
K、加圧力約5〜150MPaの高温・高圧力条件下に
行うことができる。処理時間は約0.5 〜8Hrである。
このHIP処理条件は、高密度焼結製品を目的とする通
常の高温・高圧のHIP処理(温度約0.8 mpK〜0.95mp
K, 圧力約80〜120 MPa) と特に異ならないが、被処
理物(粉末成形体)の表面には、通常のHIP処理と異
なって静水圧媒体(Ar,N2 等の不活性流体)が接触
しているので、その加圧力は粉末成形体の外表面に作用
すると同時に、開気孔を介してその内部にも作用する。
すなわち粉末成形体の焼結反応は、その外表面と内部と
に対する静水圧媒体の圧力作用のバランスのもとに生起
する。このため、粉末成形体は、高温・高圧力のHIP
処理条件にも拘らず、開気孔の分布を損なわれずに、焼
結反応による粒子間結合が強化され、高多孔性と良好な
機械性質を具備する金属多孔体に仕上げられる。金型や
フィルタ等の構成部材として使用される金属多孔体を目
的とする場合における上記HIP処理は、温度約0.7
5〜0.95mpK,加圧力約50〜120MPaの範囲
で行うのが好ましい。なお、カプセルフリーHIP法を
適用する場合は、そのHIP処理工程で焼結反応による
粒子間結合が十分に達成されるので、前記仮焼結HIP
処理法の場合と異なって、HIP処理後の加熱処理は不
要である。
[HIP treatment of powder compact] The HIP treatment of the powder compact is carried out by bringing the porous surface into contact with a hydrostatic medium without encapsulation with a capsule or coating. The HIP process is performed at a temperature of about 0.7 mpK to 0.95 mp
K, pressure can be performed under high temperature and high pressure conditions of about 5 to 150 MPa. The processing time is about 0.5 to 8 hours.
This HIP processing condition is the normal high temperature and high pressure HIP processing (temperature about 0.8 mpK to 0.95 mp) for high density sintered products.
K, pressure about 80-120 MPa), but the surface of the object to be treated (powder compact) is different from the normal HIP treatment in that hydrostatic medium (inert fluid such as Ar, N 2 ) is present. Since they are in contact with each other, the pressing force acts not only on the outer surface of the powder compact but also on the inside thereof through the open pores.
That is, the sintering reaction of the powder compact occurs under the balance of the pressure action of the hydrostatic medium on the outer surface and the inside. For this reason, the powder compact is a high temperature, high pressure HIP.
Regardless of the treatment conditions, the interparticle bonding by the sintering reaction is strengthened without impairing the distribution of open pores, and a porous metal body having high porosity and good mechanical properties is finished. The above HIP treatment for a metal porous body used as a component such as a mold or a filter has a temperature of about 0.7.
It is preferable to carry out at a pressure of 5 to 0.95 mpK and a pressure of about 50 to 120 MPa. When the capsule-free HIP method is applied, the inter-particle bonding by the sintering reaction is sufficiently achieved in the HIP processing step, so that the pre-sintered HIP method is used.
Unlike the case of the treatment method, the heat treatment after the HIP treatment is unnecessary.

【0015】[0015]

【実施例】【Example】

〔原料粉末の材種〕 M1: SUS 630(JIS G 4303)ステンレス鋼粉末〔融点: 14
20℃〕 M2: SKD 61(JIS G 4404)合金工具鋼粉末〔融点: 1405
℃〕 M3: SUS 316L(JIS G 4303 )ステンレス鋼粉末〔融点:
1385℃〕 〔製造工程〕 A: 原料粉末をプセル封入→仮焼結HIP処理→強化熱
処理 B: 原料粉末を加圧成形→カプセルフリーHIP処理
[Material powder grade] M1: SUS 630 (JIS G 4303) stainless steel powder [Melting point: 14
20 ℃) M2: SKD 61 (JIS G 4404) alloy tool steel powder (melting point: 1405
° C] M3: SUS 316L (JIS G 4303) stainless steel powder (melting point:
1385 ℃] [Manufacturing process] A: Encapsulation of raw material powder → Temporary sintering HIP treatment → Reinforcement heat treatment B: Pressurizing raw material powder → Capsule-free HIP treatment

【0016】表1に金属多孔体の製造条件、表2に得ら
れた金属多孔体の諸特性を示す。No.1〜11は発明例、N
o.21 〜26は比較例であり、比較例No.21 〜25は原料粉
末の粒度構成が本発明の規定から外れている例、No.26
は、樹脂成型用ステンレス鋼製多孔質金型(市販品)で
ある。表2中、「曲げ強度」は、JIS B1601 の曲げ試験
(スパン距離:30mm)により測定された3点曲げ強度
(Kgf /mm 2 ) である。「ガス抜き性」欄の数値は、金
属多孔体から切り出した円板(直径 100mm, 厚さ10mm)
を使用して測定された、流量104 cc/minの空気の通過
に必要な空気圧力(kg/ cm2 ) であり、「圧力損失」欄
は、厚さ3 mmの試験板を使用した空気透過試験におい
て、通気速度1m/min で空気を通過させるときの圧力
損失( mmAq )の測定結果を示している。発明例No.1
は、比較例No.21, No.23、および市販品No.26 と同等の
ガス抜き性を有しつつ、これらに比し著しく高い機械強
度を備えている。発明例No.4と比較例No.22 についても
同様である。また本発明の金属多孔体は、発明例No.9〜
No.12 と比較例No.24,No.25 とに示されるように、比較
的高い透過性能と強度とをバランスよく帯有し、更にN
o.2, No.3, No.5〜No.8のように、金型やフィルタ構成
部材としての適用が可能な強度を維持しつつ、ガス透過
性を大きく高めることも可能である。
Table 1 shows manufacturing conditions of the porous metal body, and Table 2 shows various characteristics of the porous metal body obtained. No. 1 to 11 are invention examples, N
o.21 ~ 26 is a comparative example, Comparative Example No. 21 ~ 25 is an example in which the particle size composition of the raw material powder is out of the regulation of the present invention, No. 26
Is a stainless steel porous mold for resin molding (commercial product). In Table 2, "bending strength" is the three-point bending strength (Kgf / mm 2 ) measured by the bending test (span distance: 30 mm) of JIS B1601. The value in the "Gas release" column is a disk cut from a porous metal body (diameter 100 mm, thickness 10 mm)
Is the air pressure (kg / cm 2 ) required for the passage of air with a flow rate of 10 4 cc / min, and the "pressure loss" column shows the air pressure using a test plate with a thickness of 3 mm. In the permeation test, the measurement results of the pressure loss (mmAq) when air is passed at a ventilation rate of 1 m / min are shown. Invention Example No. 1
Has the same degassing properties as those of Comparative Examples No. 21, No. 23, and the commercial product No. 26, but has significantly higher mechanical strength than these. The same applies to Invention Example No. 4 and Comparative Example No. 22. Further, the metal porous body of the present invention, invention example No. 9 ~
As shown in No. 12 and Comparative Examples No. 24 and No. 25, it has a relatively high permeability and a good balance of strength,
As in o.2, No.3, No.5 to No.8, it is possible to greatly enhance the gas permeability while maintaining the strength applicable as a mold or a filter constituent member.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の金属多孔体は、改良された気孔
分布特性や機械強度を有し、例えば樹脂成形・金属鋳造
用金型の構成部材の用途では、良好なガス抜き性が得ら
れ、成形・鋳造操業の効率化、金型の耐用寿命の向上、
成形品の品質の安定・向上等を可能にし、またフィルタ
の構成部材として適用することにより、濾過操業の効率
化を可能とするものである。本発明の金属多孔体の用途
は、この他に各種のセンサ、触媒担体、フィルタ、隔膜
等として、あるいは断熱材,防音材,防振材等の各種分
野における構造部材,機能部材として、金属多孔質体の
工学的応用の拡大・多様化を可能とするものである。
Industrial Applicability The metal porous body of the present invention has improved pore distribution characteristics and mechanical strength. For example, when used as a constituent member of a resin molding / metal casting mold, a good degassing property can be obtained. , The efficiency of molding and casting operations, the improvement of the service life of the mold,
By making it possible to stabilize and improve the quality of molded products, and by applying it as a constituent member of a filter, it is possible to improve the efficiency of filtration operation. In addition to the above, the porous metal body of the present invention can be used as various sensors, catalyst carriers, filters, diaphragms, etc., or as structural members and functional members in various fields such as heat insulating materials, soundproofing materials, and vibration damping materials. It enables the expansion and diversification of the engineering application of the body.

【図面の簡単な説明】[Brief description of drawings]

【図1】多孔質焼結体の気孔径の積算分布曲線の説明図
である。
FIG. 1 is an explanatory diagram of a cumulative distribution curve of pore diameters of a porous sintered body.

【図2】金属粉末の粒径積算分布曲線の説明図である。FIG. 2 is an explanatory diagram of a particle size cumulative distribution curve of metal powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小阪 晃 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kosaka 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Kubota Hirakata Factory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 気孔率7〜50%,気孔径500μm以
下,および気孔径の積算分布曲線(体積基準)における
累積頻度5%の気孔径D5 ,同累積頻度50%の気孔径
50,同累積頻度95%の気孔径D95が、 (D95−D5 )/D50 ≦1.5 を満たす気孔分布を有する熱間等方加圧焼結体であるこ
とを特徴とする金属多孔体。
1. A porosity of 7 to 50%, a pore diameter of 500 μm or less, and a pore diameter D 5 with a cumulative frequency of 5% in a cumulative pore diameter distribution curve (volume basis), a pore diameter D 50 with the same cumulative frequency of 50%, Porous metal having a pore size distribution D 95 with the same cumulative frequency of 95% and a pore size distribution satisfying (D 95 −D 5 ) / D 50 ≦ 1.5. body.
【請求項2】 粒径の積算分布曲線(重量基準)におけ
る累積頻度5%の粒子径R5 ,同累積頻度50%の粒子
径R50,同累積頻度95%の粒子径R95が、 (R95−R5 )/R50≦1.5 を満たし、かつ粒子径R50が10〜1000μmの範囲
にある粒径分布を有する金属粉末をカプセルに封入し、
低温・低圧力の熱間等方加圧焼結処理(仮焼結処理)に
付して多孔質の仮焼結体を形成した後、カプセルを除去
しもしくは除去することなく、仮焼結体に粒子間結合を
強化するための加熱処理を施すことを特徴とする請求項
1に記載の金属多孔体の製造方法。
2. A particle diameter R 5 having a cumulative frequency of 5%, a particle diameter R 50 having a cumulative frequency of 50 %, and a particle diameter R 95 having a cumulative frequency of 95% in a cumulative distribution curve (weight basis) of particle diameters are: R 95 −R 5 ) / R 50 ≦ 1.5 is satisfied, and a metal powder having a particle size distribution with a particle size R 50 in the range of 10 to 1000 μm is encapsulated,
After forming a porous temporary sintered body by subjecting it to hot isotropic pressure sintering (temporary sintering) at low temperature and low pressure, the temporary sintered body is removed with or without removing the capsule. The method for producing a porous metal body according to claim 1, wherein the porous body is subjected to a heat treatment for strengthening interparticle bonding.
【請求項3】 カプセルへの金属粉末の封入を大気圧で
行うことを特徴とする請求項2に記載の金属多孔体の製
造方法。
3. The method for producing a metal porous body according to claim 2, wherein the encapsulation of the metal powder in the capsule is performed at atmospheric pressure.
【請求項4】 カプセルに封入した金属粉末の仮焼結処
理を、温度0.35〜0.85mpK(但し,mpKは金属
粉末の融点,絶対温度)、加圧力5〜150MPaで行
い、仮焼結体の加熱処理を、温度0.6〜0.95mpK
で行うことを特徴とする請求項2または請求項3に記載
の金属多孔体の製造方法。
4. The calcination is carried out at a temperature of 0.35 to 0.85 mpK (where mpK is the melting point and absolute temperature of the metal powder) and a pressurizing force of 5 to 150 MPa for the calcination process of the metal powder enclosed in the capsule. The heat treatment of the bonded body, the temperature of 0.6 ~ 0.95mpK
The method for producing a metal porous body according to claim 2 or 3, wherein
【請求項5】 粒径の積算分布曲線(重量基準)におけ
る累積頻度5%の粒子径R5 ,同累積頻度50%の粒子
径R50,同累積頻度95%の粒子径R95が (R95−R5 )/R50≦1.5 を満たし、かつ粒子径R50が10〜1000μmの範囲
にある粒径分布を有する金属粉末を所望形状に加圧成形
し、粉末成形体をカプセルに封入することなく熱間等方
加圧焼結処理に付すことを特徴とする請求項1に記載の
金属多孔体の製造方法。
5. The particle size of the cumulative frequency 5% in cumulative distribution curve of the particle size (by weight) R 5, the same cumulative frequency of 50% of the particle diameter R 50, the cumulative frequency 95% of the particle diameter R 95 is (R 95 −R 5 ) / R 50 ≦ 1.5 and a metal powder having a particle size distribution with a particle size R 50 in the range of 10 to 1000 μm is pressure-molded into a desired shape, and the powder molded body is formed into a capsule. The method for producing a metal porous body according to claim 1, wherein the method is subjected to hot isostatic pressing sintering without encapsulation.
【請求項6】 粉末成形体の熱間等方加圧焼結を、温度
0.7〜0.95mpK(但し、mpKは金属粉末の融点
(絶対温度)〕、加圧力5〜150MPaで行うことを
特徴とする請求項5に記載の金属多孔体の製造方法。
6. The hot isostatic pressing of the powder compact is performed at a temperature of 0.7 to 0.95 mpK (where mpK is the melting point (absolute temperature) of the metal powder) and a pressure of 5 to 150 MPa. The method for producing a porous metal body according to claim 5, wherein
【請求項7】 樹脂成形用または金属鋳造用金型の構成
部材として使用される、気孔径10〜35%,気孔径5
00μm以下,および気孔径の積算分布曲線(体積基
準)における累積頻度5%の気孔径D5 ,同累積頻度5
0%の気孔径D50,同累積頻度95%の気孔径D95が、 (D95−D5 )/D50 ≦1.5 を満たし、かつ気孔径D503〜60μmである気孔分布
を有する熱間等方加圧焼結体であることを特徴とする金
属多孔体。
7. A pore diameter of 10 to 35% and a pore diameter of 5 used as a constituent member of a resin molding or metal casting mold.
Pore diameter D 5 of 5 μm or less and a cumulative frequency of 5% in the cumulative distribution curve (volume basis) of pore diameters, and the same cumulative frequency 5
0% of the pore diameter D 50, the cumulative frequency 95% of the pore diameter D 95 is the pore distribution is met (D 95 -D 5) / D 50 ≦ 1.5, and the pore diameter D 50 3~60μm A porous metal body, which is a hot isotropically pressurized sintered body having.
【請求項8】 粒径の積算分布曲線(重量基準)におけ
る累積頻度5%の粒子径R5 ,同累積頻度50%の粒子
径R50,同累積頻度95%の粒子径R95が (R95−R5 )/R50≦1.5 を満たし、かつ粒子径R50が10〜200μmの範囲に
ある粒径分布を有する金属粉末を、大気圧または減圧下
にカプセルに封入し、温度0.4〜0.7mpK(但し、
mpKは金属粉末の融点(絶対温度)〕、加圧力50〜1
20MPaでの熱間等方加圧焼結処理(仮焼結処理)に
付して多孔質の仮焼結体を形成した後、カプセルを除去
しもしくは除去することなく、仮焼結体に温度0.63
〜0.90mpKの加熱処理を施すことを特徴とする請求
項7に記載の金属多孔体の製造方法。
8. particle size of cumulative frequency 5% in cumulative distribution curve of the particle size (by weight) R 5, the same cumulative frequency of 50% of the particle diameter R 50, the cumulative frequency 95% of the particle diameter R 95 is (R 95 −R 5 ) / R 50 ≦ 1.5 and a metal powder having a particle size distribution with a particle size R 50 in the range of 10 to 200 μm is encapsulated under atmospheric pressure or reduced pressure, and the temperature is set to 0. 4 to 0.7 mpK (however,
mpK is the melting point of metal powder (absolute temperature)], applied pressure 50 to 1
After forming the porous pre-sintered body by subjecting it to hot isostatic pressing treatment (pre-sintering treatment) at 20 MPa, the temperature of the pre-sintered body is removed without removing the capsule. 0.63
The method for producing a metal porous body according to claim 7, wherein the heat treatment is performed at up to 0.90 mpK.
【請求項9】 粒径の積算分布曲線(重量基準)におけ
る累積頻度5%の粒子径R5 ,同累積頻度50%の粒子
径R50,同累積頻度95%の粒子径R95が (R95−R5 )/R50≦1.5 を満たし、かつ粒子径R50が10〜200μmの範囲に
ある粒径分布を有する金属粉末を所望形状に加圧成形
し、その粉末成形体をカプセルに封入することなく、温
度0.75〜0.95mpK,加圧力50〜120MPa
の熱間等方加圧焼結処理に付すことを特徴とする請求項
7に記載の金属多孔体の製造方法。
9. particle size of cumulative frequency 5% in cumulative distribution curve of the particle size (by weight) R 5, the same cumulative frequency of 50% of the particle diameter R 50, the cumulative frequency 95% of the particle diameter R 95 is (R 95 −R 5 ) / R 50 ≦ 1.5 and a metal powder having a particle size distribution with a particle size R 50 in the range of 10 to 200 μm is pressure molded into a desired shape, and the powder molded body is encapsulated. Temperature 0.75 to 0.95mpK, pressure 50 to 120MPa
The method for producing a metal porous body according to claim 7, wherein the hot isotropic pressure sintering treatment is performed.
【請求項10】 フィルターの構成部材として使用され
る、気孔径15〜40%,気孔径500μm以下、およ
び気孔径の積算分布曲線(体積基準)における累積頻度
5%の気孔径D5 ,同累積頻度50%の気孔径D50,同
累積頻度95%の気孔径D95が、 (D95−D5 )/D50 ≦1.5 を満たし、かつ気孔径D5030〜300μmである気孔
分布を有する熱間等方加圧焼結体であることを特徴とす
る金属多孔体。
10. A pore diameter D 5 having a pore diameter of 15 to 40%, a pore diameter of 500 μm or less, and a cumulative frequency of 5% in a cumulative distribution curve (volume basis) of the pore diameter, which is used as a constituent member of a filter, and the same accumulation. frequency 50% of the pore diameter D 50, the cumulative frequency 95% of the pore diameter D 95 is, satisfies the (D 95 -D 5) / D 50 ≦ 1.5, and the pore distribution with pore diameter D 50 30 to 300 [mu] m A porous metal body, which is a hot isotropically pressurized sintered body having:
【請求項11】 粒径の積算分布曲線(重量基準)にお
ける累積頻度5%の粒子径R5 ,同累積頻度50%の粒
子径R50,同累積頻度95%の粒子径R95が (R95−R5 )/R50≦1.3 を満たし、かつ粒子径R50が100〜700μmの範囲
にある粒径分布を有する金属粉末を、大気圧または減圧
下にカプセルに封入し、温度0.4〜0.7mpK(但
し、mpKは金属粉末の融点(絶対温度)〕、加圧力50
〜120MPaの熱間等方加圧焼結処理(仮焼結処理)
に付して多孔質の仮焼結体を形成した後、カプセルを除
去しもしくは除去することなく、仮焼結体に、温度0.
63〜0.90mpKの加熱処理を施すことを特徴とする
請求項10に記載の金属多孔体の製造方法。
11. particle size of cumulative frequency 5% in cumulative distribution curve of the particle size (by weight) R 5, the same cumulative frequency of 50% of the particle diameter R 50, the cumulative frequency 95% of the particle diameter R 95 is (R 95 −R 5 ) / R 50 ≦ 1.3 and a metal powder having a particle size distribution with a particle size R 50 in the range of 100 to 700 μm is encapsulated under atmospheric pressure or reduced pressure, and the temperature is set to 0. 4 to 0.7 mpK (where mpK is the melting point (absolute temperature) of the metal powder), pressure 50
Hot isotropic pressure sintering process of ~ 120MPa (temporary sintering process)
After forming a porous pre-sintered body, the pre-sintered body is heated to a temperature of 0.
The method for producing a metal porous body according to claim 10, wherein the heat treatment is performed at 63 to 0.90 mpK.
【請求項12】 粒径の積算分布曲線(重量基準)にお
ける累積頻度5%の粒子径R5 ,同累積頻度50%の粒
子径R50,同累積頻度95%の粒子径R95が (R95−R5 )/R50≦1.3 を満たし、かつ粒子径R50が100〜700μmの範囲
にある粒径分布を有する金属粉末を所望形状に加圧成形
し、その粉末成形体をカプセルに封入することなく、温
度0.75〜0.95mpK,加圧力50〜120MPa
の熱間等方加圧焼結処理に付すことを特徴とする請求項
10に記載の金属多孔体の製造方法。
12. cumulative frequency of 5% particle diameter R 5 in cumulative distribution curve of the particle size (by weight), the cumulative frequency of 50% of the particle diameter R 50, the cumulative frequency 95% of the particle diameter R 95 is (R 95 −R 5 ) / R 50 ≦ 1.3 and a metal powder having a particle size distribution with a particle size R 50 in the range of 100 to 700 μm is pressure-molded into a desired shape, and the powder compact is encapsulated. Temperature 0.75 to 0.95mpK, pressure 50 to 120MPa
The method for producing a metal porous body according to claim 10, wherein the hot isotropic pressure sintering treatment is performed.
JP15502796A 1996-04-20 1996-04-20 Metal porous body and its production Pending JPH09287004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15502796A JPH09287004A (en) 1996-04-20 1996-04-20 Metal porous body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15502796A JPH09287004A (en) 1996-04-20 1996-04-20 Metal porous body and its production

Publications (1)

Publication Number Publication Date
JPH09287004A true JPH09287004A (en) 1997-11-04

Family

ID=15597076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15502796A Pending JPH09287004A (en) 1996-04-20 1996-04-20 Metal porous body and its production

Country Status (1)

Country Link
JP (1) JPH09287004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236843A (en) * 2002-02-22 2003-08-26 Towa Corp Resin molding die and resin molding method
JP2007077461A (en) * 2005-09-15 2007-03-29 Cabot Supermetal Kk Tantalum powder or niobium powder, and anode for solid electrolytic capacitor
KR100918593B1 (en) * 2008-08-07 2009-09-24 주학식 Fragrance emitting and method for manufacturing the same
JP2010053414A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Porous material, sound absorbing and insulating structure, electric equipment, vacuum cleaner and method for producing porous material
US8657915B2 (en) 2005-05-31 2014-02-25 Global Advanced Metals Japan, K.K. Metal powder and manufacturing methods thereof
JP2021514875A (en) * 2018-03-02 2021-06-17 チャン ヤン マテリアル コーポレーションChang Yang Material Corp. Transformer injection type, injection shoe material and its manufacturing method
CN115921866A (en) * 2022-10-09 2023-04-07 季华实验室 Thermally cavitated refractory metal and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236843A (en) * 2002-02-22 2003-08-26 Towa Corp Resin molding die and resin molding method
US8657915B2 (en) 2005-05-31 2014-02-25 Global Advanced Metals Japan, K.K. Metal powder and manufacturing methods thereof
JP2007077461A (en) * 2005-09-15 2007-03-29 Cabot Supermetal Kk Tantalum powder or niobium powder, and anode for solid electrolytic capacitor
KR100918593B1 (en) * 2008-08-07 2009-09-24 주학식 Fragrance emitting and method for manufacturing the same
WO2010016744A3 (en) * 2008-08-07 2010-06-17 Joo Hak Sik Method for manufacturing a fragrance-emitting sintered sheet
JP2010053414A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Porous material, sound absorbing and insulating structure, electric equipment, vacuum cleaner and method for producing porous material
JP2021514875A (en) * 2018-03-02 2021-06-17 チャン ヤン マテリアル コーポレーションChang Yang Material Corp. Transformer injection type, injection shoe material and its manufacturing method
CN115921866A (en) * 2022-10-09 2023-04-07 季华实验室 Thermally cavitated refractory metal and method for producing same

Similar Documents

Publication Publication Date Title
US5625861A (en) Porous metal body and process for producing same
EP1755809B1 (en) Method of production of porous metallic materials
JP4546238B2 (en) Method for producing a highly porous metal compact close to the final contour
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
JP3497461B2 (en) Method for producing porous metal
JPH01201082A (en) Production of powder molded article by isostactic press
JPH09287004A (en) Metal porous body and its production
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
JPH06144948A (en) Production of ceramic porous body
US5841041A (en) Porous mold material for casting and a method of producing the same
JP2849710B2 (en) Powder forming method of titanium alloy
JPH08170107A (en) Metallic porous body
JPH08218103A (en) Production of metallic porous body
JPH08218102A (en) Production of metallic porous body
JPH09194906A (en) Production of porous sintered compact of metal
JP4524591B2 (en) Composite material and manufacturing method thereof
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JP2005320581A (en) Method for manufacturing porous metal body
WO2023286407A1 (en) Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body
JPH08311505A (en) High damping member
CA2033489C (en) Method of making plate-shaped material
JPH08311506A (en) Pressurizing member for blank for molding building material
JPH08319678A (en) Moisture conditioning building material
JP2001303106A (en) Method for producing porous sintered compact
JPH0225565A (en) Production of sputtering target material