JPH09286688A - Method for doping gas to silicon single crystal - Google Patents

Method for doping gas to silicon single crystal

Info

Publication number
JPH09286688A
JPH09286688A JP12412196A JP12412196A JPH09286688A JP H09286688 A JPH09286688 A JP H09286688A JP 12412196 A JP12412196 A JP 12412196A JP 12412196 A JP12412196 A JP 12412196A JP H09286688 A JPH09286688 A JP H09286688A
Authority
JP
Japan
Prior art keywords
nitrogen
single crystal
silicon single
silicon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12412196A
Other languages
Japanese (ja)
Inventor
Takuya Tsuruta
卓也 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP12412196A priority Critical patent/JPH09286688A/en
Publication of JPH09286688A publication Critical patent/JPH09286688A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for doping gas to a silicon single crystal capable of suppressing the occurrence of the crystal defects which arise in the silicon single crystal and averting the dislocation by the excessive addition of nitrogen used as an impurity in production of the silicon single crystal by an FZ method. SOLUTION: A gaseous mixture composed of nitrogen and high-purity argon is blown through a gaseous mixture blowing nozzle 3 to a silicon polycrystalline rod 2 heated red near a melting zone and the silicon polycrystalline rod 2 nitrided at its surface is melted, by which the nitrogen is added to the silicon single crystal 5. The time for blowing the gaseous mixture composed of the nitrogen and the high-purity argon to the silicon polycrystalline rod 2 is regulated until the total blowing rate of the nitrogen attains 1.0×10<22> to 6.9×10<33> atoms, by which the concn. of the nitrogen included in the silicon single crystal 5 is controlled and the dislocation by the excessive addition of the nitrogen is averted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浮遊帯域溶融法に
よるシリコン単結晶の製造における不純物添加方法に係
り、特にシリコン単結晶中に生じる結晶欠陥の発生を抑
制するとともに、不純物の過剰添加による有転位化を回
避することを目的としたシリコン単結晶へのガスドープ
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impurity addition method in the production of a silicon single crystal by a floating zone melting method, and in particular, it suppresses the occurrence of crystal defects occurring in a silicon single crystal, and it is effective to prevent the addition of impurities. The present invention relates to a gas doping method for a silicon single crystal for the purpose of avoiding dislocation.

【0002】[0002]

【従来の技術】浮遊帯域溶融法(以下FZ法という)に
よってシリコン単結晶棒を製造する場合、モノシラン等
を熱分解あるいは加熱還元して得られたシリコン多結晶
棒の先端を、不活性ガス雰囲気中で高周波誘導加熱によ
り溶解し、種結晶と接触させてなじませた後、部分的な
溶融帯域を、通常、下部から上部に移動させることによ
り、種結晶と同一の結晶軸をもつ単結晶化を行ってい
る。
2. Description of the Related Art When a silicon single crystal ingot is manufactured by a floating zone melting method (hereinafter referred to as FZ method), the tip end of a silicon polycrystal ingot obtained by thermally decomposing or heat-reducing monosilane is placed in an inert gas atmosphere. After being melted by high frequency induction heating in the solution, it is contacted with the seed crystal to make it fit, and then the partial melting zone is usually moved from the lower part to the upper part to form a single crystal having the same crystal axis as the seed crystal. It is carried out.

【0003】上記FZ法によるシリコン単結晶の製造に
おいて、不純物のドープ方法としては、ノズルを用いて
溶融帯域にホスフィン等を含むアルゴンガスを吹きつけ
る。これにより、シリコン単結晶の全体的な電気的特性
を制御することができる。
In the production of a silicon single crystal by the FZ method, as a method of doping impurities, a nozzle is used to blow argon gas containing phosphine or the like into the melting zone. This makes it possible to control the overall electrical characteristics of the silicon single crystal.

【0004】更に、従来の技術によれば、最近の傾向と
してシリコン単結晶棒が大径化するに従い、雰囲気ガス
中に窒素を混入する工夫がなされている。たとえば、特
公平3−41437号公報に示されているように、雰囲
気ガス中に微量の窒素ガスを混入させることでシリコン
ウェーハの機械的強度が上昇するため、窒素ガスの混入
による窒素ドープが有効とされている。
Further, according to the conventional technique, as a recent tendency, as the diameter of a silicon single crystal ingot increases, nitrogen gas is mixed into the atmosphere gas. For example, as disclosed in Japanese Patent Publication No. 3-41437, the mechanical strength of a silicon wafer is increased by mixing a slight amount of nitrogen gas into the atmosphere gas, so nitrogen doping by mixing nitrogen gas is effective. It is said that.

【0005】また、従来の技術では、窒素等の多原子ガ
ス元素をシリコン多結晶棒に拡散する工夫もなされてい
る。たとえば、特開昭59−137393号公報で開示
されているように、窒素雰囲気中でシリコン多結晶棒に
窒素を拡散させることによりシリコン単結晶の窒素濃度
を均一化することができる。このように、多原子ガス元
素をシリコン多結晶棒に拡散させることが有効である。
Further, in the conventional technique, a device for diffusing a polyatomic gas element such as nitrogen into a silicon polycrystalline rod has been made. For example, as disclosed in JP-A-59-137393, the nitrogen concentration of a silicon single crystal can be made uniform by diffusing nitrogen into a silicon polycrystalline rod in a nitrogen atmosphere. Thus, it is effective to diffuse the polyatomic gas element into the polycrystalline silicon rod.

【0006】特公平3−41437号公報に示されてい
るように、FZ法によるシリコン単結晶の製造において
アルゴンガス雰囲気中に容積比0.05〜3%の窒素ガ
スを混入させることで、また、特開昭59−13739
3号公報で開示されているように、窒素を拡散させたシ
リコン多結晶棒を用いてFZ法によるシリコン単結晶の
製造を行うことで、シリコン単結晶中に窒素がドープさ
れる。この窒素ドープは、シリコン単結晶に従来それな
しでは多発したスワール状結晶欠陥等の発生を抑制する
効果がある。
As disclosed in Japanese Examined Patent Publication No. 3-41437, by mixing a nitrogen gas in a volume ratio of 0.05 to 3% into an argon gas atmosphere in the production of a silicon single crystal by the FZ method, JP-A-59-13739
As disclosed in Japanese Patent Publication No. 3, a silicon single crystal is manufactured by the FZ method using a silicon polycrystalline rod in which nitrogen is diffused, whereby the silicon single crystal is doped with nitrogen. This nitrogen doping has the effect of suppressing the generation of swirl-like crystal defects that would otherwise frequently occur in a silicon single crystal without it.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来のガスドープ方法を用いて窒素をドープする場合、次
のような問題点がある。 (1)ホスフィン等をドープする場合、溶融帯域にホス
フィン等を含むアルゴンガスを吹き付けているが、窒素
はシリコン融液との反応性が乏しいため、ノズルを通し
て溶融帯域に窒素ガスを含んだアルゴンガスを吹き付け
ても窒素のドープはほとんど行われない。 (2)1200℃以上の固体シリコンに対する窒素ガス
の反応性は高く、特公平3−41437号公報が示すよ
うに雰囲気ガス中に窒素ガスを混入すると、1200℃
以上に加熱された固体シリコンの原料多結晶棒の表面に
窒化物の薄膜が形成され、原料多結晶棒の溶融とともに
融液シリコン中に窒素が溶解し、シリコン単結晶中に窒
素のドープができる。しかし、育成直後の温度から12
00℃までの温度域にあるシリコン単結晶の表面にも窒
化物が形成されるため、シリコン単結晶の直径方向にお
ける窒素濃度は外周部近傍が他の領域に比べて高くなっ
てしまう。また、窒素とアルゴンとの混合ガス雰囲気中
でシリコン単結晶の育成を続けていると、窒素が供給さ
れ続けるが、窒素のシリコンに対する偏析係数が7×1
-4と小さいため、シリコン融液中の窒素濃度が増加す
る。そして、シリコン単結晶中の窒素の固溶度が4.5
×1015atoms/cm3 を超えると有転位化が起き
る。 (3)特開昭59−137393号公報が示すように、
窒素を拡散させたシリコン多結晶棒を用いてシリコン単
結晶を育成すると、前記(2)項と同様にシリコン多結
晶棒から窒化物が供給され続けるため、シリコン単結晶
中の窒素の固溶度が4.5×1015atoms/cm3
を超えると有転位化が起きる。
However, when nitrogen is doped by using the above-mentioned conventional gas doping method, there are the following problems. (1) When doping phosphine or the like, argon gas containing phosphine or the like is blown into the melting zone, but since nitrogen has poor reactivity with a silicon melt, argon gas containing nitrogen gas in the melting zone is passed through a nozzle. Nitrogen is hardly doped even by spraying. (2) The reactivity of nitrogen gas with respect to solid silicon at 1200 ° C. or higher is high, and if nitrogen gas is mixed into the atmospheric gas as shown in Japanese Patent Publication No. 3-41437, 1200 ° C.
A thin film of nitride is formed on the surface of the raw material polycrystalline rod of the solid silicon heated as above, and nitrogen is dissolved in the melted silicon as the raw polycrystalline rod is melted, so that nitrogen can be doped into the silicon single crystal. . However, 12
Since nitrides are also formed on the surface of the silicon single crystal in the temperature range up to 00 ° C., the nitrogen concentration in the diameter direction of the silicon single crystal becomes higher in the vicinity of the outer peripheral portion than in other regions. Further, when the silicon single crystal is continuously grown in a mixed gas atmosphere of nitrogen and argon, nitrogen is continuously supplied, but the segregation coefficient of nitrogen with respect to silicon is 7 × 1.
Since it is as small as 0 -4 , the nitrogen concentration in the silicon melt increases. The solid solubility of nitrogen in the silicon single crystal is 4.5.
When it exceeds × 10 15 atoms / cm 3 , dislocation occurs. (3) As shown in JP-A-59-137393,
When a silicon single crystal is grown using a silicon polycrystal rod in which nitrogen is diffused, nitride is continuously supplied from the silicon polycrystal rod similarly to the above item (2), so that the solid solubility of nitrogen in the silicon single crystal is increased. Is 4.5 × 10 15 atoms / cm 3
If it exceeds, dislocation occurs.

【0008】本発明は上記従来の問題点に着目してなさ
れたもので、FZ法によるシリコン単結晶の製造におい
て、シリコン単結晶中に生じる結晶欠陥の発生を抑制す
るとともに、不純物として用いる窒素の過剰添加による
有転位化を回避することが可能なシリコン単結晶へのガ
スドープ方法を提供することを目的としている。
The present invention has been made by paying attention to the above-mentioned conventional problems. In the production of a silicon single crystal by the FZ method, the generation of crystal defects occurring in the silicon single crystal is suppressed, and nitrogen used as an impurity is removed. It is an object of the present invention to provide a gas doping method for a silicon single crystal, which is capable of avoiding dislocation due to excessive addition.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るシリコン単結晶へのガスドープ方法
は、FZ法を用いてシリコン単結晶を製造する際に、溶
融帯域近傍の赤熱したシリコン多結晶棒に窒素と高純度
アルゴンとの混合ガスをノズルを通して吹き付け、表面
が窒化されたシリコン多結晶棒を溶融することによりシ
リコン単結晶に窒素を添加し、シリコン単結晶における
結晶欠陥の発生を抑制する構成とした。
In order to achieve the above object, the gas doping method for a silicon single crystal according to the present invention is a method for producing a silicon single crystal by using the FZ method. A mixed gas of nitrogen and high-purity argon is blown to the polycrystalline rod through a nozzle, and nitrogen is added to the silicon single crystal by melting the silicon polycrystalline rod whose surface has been nitrided. It is configured to suppress.

【0010】上記構成において、シリコン多結晶棒に対
する窒素と高純度アルゴンとの混合ガスの吹き付け時間
を調整し、窒素の総吹き付け量を1.0×1022〜6.
0×1023atomsとすることにより、シリコン単結
晶に添加する窒素濃度を制御し、窒素の過剰添加による
有転位化を回避することを特徴としている。
In the above structure, the time of spraying the mixed gas of nitrogen and high-purity argon onto the polycrystalline silicon rod is adjusted so that the total spray amount of nitrogen is 1.0 × 10 22 to 6.
By setting it to 0 × 10 23 atoms, the concentration of nitrogen added to the silicon single crystal is controlled, and dislocation-induced dislocation due to excessive addition of nitrogen is characterized.

【0011】[0011]

【発明の実施の形態および実施例】本発明においては、
窒素と高純度アルゴンとの混合ガスを用いて溶融帯域近
傍のシリコン多結晶棒(固体シリコン部分)に吹き付け
ることによってシリコン多結晶棒の表面に窒化物を形成
させるので、この多結晶棒を溶解することによりシリコ
ン単結晶に窒素をドープすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention,
A mixed gas of nitrogen and high-purity argon is used to blow onto a polycrystalline silicon rod (solid silicon portion) in the vicinity of the melting zone to form a nitride on the surface of the polycrystalline silicon rod, so that the polycrystalline rod is melted. As a result, the silicon single crystal can be doped with nitrogen.

【0012】また、シリコン単結晶中の窒素濃度は窒化
物の形成量すなわち窒素とアルゴンとの混合ガス比なら
びに混合ガスの吹き付け時間に依存するため、混合ガス
の吹き付け時間を調整することによりシリコン単結晶の
窒素濃度を制御することができる。
Further, since the nitrogen concentration in the silicon single crystal depends on the amount of nitrides formed, that is, the mixed gas ratio of nitrogen and argon and the spraying time of the mixed gas, the silicon single crystal is adjusted by adjusting the spraying time of the mixed gas. The nitrogen concentration of the crystal can be controlled.

【0013】次に、本発明に係るシリコン単結晶へのガ
スドープ方法の実施例について図面を参照して説明す
る。図1は本発明によるガスドープ方法を示す概略断面
模式図である。同図において、高周波誘導加熱コイル1
の上方には、シリコン多結晶棒2の軸線に向かって開口
する混合ガス吹き付けノズル3がシリコン多結晶棒2の
外周に近接して設置されている。シリコン多結晶棒2は
高周波誘導加熱コイル1により加熱されてシリコン融液
4となった後、凝固してシリコン単結晶5となる。この
ような装置を用いてシリコン多結晶棒2と図示しない種
結晶とを互いに反対方向に回転させながら、シリコン単
結晶5を育成する。
Next, an embodiment of a method for doping a gas into a silicon single crystal according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing a gas doping method according to the present invention. In the figure, a high frequency induction heating coil 1
Above the above, a mixed gas spray nozzle 3 opening toward the axis of the silicon polycrystalline rod 2 is installed close to the outer periphery of the silicon polycrystalline rod 2. The silicon polycrystalline rod 2 is heated by the high frequency induction heating coil 1 to become a silicon melt 4 and then solidified to become a silicon single crystal 5. A silicon single crystal 5 is grown while rotating the silicon polycrystal rod 2 and a seed crystal (not shown) in opposite directions using such an apparatus.

【0014】実施例1〜4では、アルゴンガス雰囲気中
で混合ガス吹き付けノズル3を通して窒素と高純度アル
ゴンとの混合ガスをシリコン多結晶棒2の溶融帯域近傍
に吹き付けながら、直径127mm、結晶方位<111
>のシリコン単結晶5を育成した。窒素の総吹き付け量
はそれぞれ5.0×1022atoms,1.0×1023
atoms,2.0×1023atoms,4.0×10
23atomsとした。
In Examples 1 to 4, while the mixed gas of nitrogen and high-purity argon was blown in the vicinity of the melting zone of the silicon polycrystalline rod 2 through the mixed gas blowing nozzle 3 in an argon gas atmosphere, the diameter 127 mm, the crystal orientation < 111
> Silicon single crystal 5 was grown. The total amount of nitrogen sprayed is 5.0 × 10 22 atoms and 1.0 × 10 23 , respectively.
atoms, 2.0 × 10 23 atoms, 4.0 × 10
It was set to 23 atoms.

【0015】このようにして育成したシリコン単結晶の
転位状態を観察した後、無転位単結晶から直径125m
m、厚さ800±10μmのウェーハを切り出し、厚さ
が650±10μmとなるように前記ウェーハの両面を
鏡面に仕上げた。これらのウェーハをSeccoエッチ
液で30分間エッチングし、欠陥(フローパターン)の
発生状況を調べた。
After observing the dislocation state of the silicon single crystal thus grown, the diameter of 125 m from the dislocation-free single crystal was observed.
A wafer having a thickness of m and a thickness of 800 ± 10 μm was cut out, and both surfaces of the wafer were mirror-finished so that the thickness was 650 ± 10 μm. These wafers were etched with a Secco etchant for 30 minutes, and the occurrence of defects (flow patterns) was examined.

【0016】上記実施例1〜4と比較するため、FZ法
による4水準のシリコン単結晶育成を行った。比較例1
ではアルゴンガス雰囲気中で混合ガス吹き付けノズル3
を通して高純度アルゴンのみをシリコン多結晶棒2の溶
融帯域近傍に吹き付けながら、シリコン単結晶5を育成
した。また、比較例2,3では、アルゴンガス雰囲気中
で混合ガス吹き付けノズル3を通して窒素と高純度アル
ゴンとの混合ガスをシリコン多結晶棒2の溶融帯域近傍
に吹き付けながら、シリコン単結晶5を育成した。窒素
の総吹き付け量はそれぞれ2.0×1021atoms,
1.0×1024atomsとした。更に、比較例4では
混合ガス吹き付けノズル3によるガスドープを行わなか
った。育成したシリコン単結晶は、比較例1〜4とも前
記実施例と同様に直径127mm、結晶方位<111>
である。
For comparison with the above Examples 1 to 4, 4 levels of silicon single crystal were grown by the FZ method. Comparative Example 1
Then, the mixed gas blowing nozzle 3 in the argon gas atmosphere
The silicon single crystal 5 was grown while spraying only high-purity argon in the vicinity of the melting zone of the silicon polycrystalline rod 2 through. In Comparative Examples 2 and 3, the silicon single crystal 5 was grown while the mixed gas of nitrogen and high-purity argon was blown in the vicinity of the melting zone of the silicon polycrystalline rod 2 through the mixed gas blowing nozzle 3 in the argon gas atmosphere. . The total amount of nitrogen sprayed is 2.0 × 10 21 atoms,
It was set to 1.0 × 10 24 atoms. Further, in Comparative Example 4, gas doping by the mixed gas spray nozzle 3 was not performed. The grown silicon single crystals were 127 mm in diameter and had a crystal orientation <111> in Comparative Examples 1 to 4 as in the above Examples.
It is.

【0017】このようにして育成したシリコン単結晶の
転位状態を観察した後、無転位単結晶から直径125m
m、厚さ800±10μmのウェーハを切り出し、厚さ
が650±10μmとなるように前記ウェーハの両面を
鏡面に仕上げ、実施例1〜4と同一条件でエッチング
し、欠陥の発生状況を調べた。
After observing the dislocation state of the silicon single crystal thus grown, the diameter of 125 m from the dislocation-free single crystal was observed.
m, a thickness of 800 ± 10 μm was cut out, both sides of the wafer were mirror-finished so that the thickness was 650 ± 10 μm, and etching was performed under the same conditions as in Examples 1 to 4 to examine the occurrence of defects. .

【0018】前記各実施例、比較例の育成結晶状態と欠
陥(フローパターン)の発生状況を表1に示す。
Table 1 shows the grown crystal states and defects (flow patterns) in each of the examples and comparative examples.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、本発明により結
晶品質であるフローパターン欠陥の発生が解消すること
と、窒素の過剰添加による有転位化を回避できることが
認められる。
As is clear from Table 1, it is recognized that the present invention can eliminate the occurrence of flow pattern defects of crystal quality and avoid dislocation due to excessive addition of nitrogen.

【0021】[0021]

【発明の効果】以上説明したように、FZ法における本
発明によるシリコン単結晶へのガスドープ方法は、ノズ
ルによる吹き付け方式を用いて窒素と高純度アルゴンと
の混合ガスの吹き付け位置ならびに窒素の総吹き付け量
を任意に調整することにしたので、望ましくない位置で
の窒素ドープや、過剰量の窒素ドープによる有転位化を
回避することが容易となる。従って、結晶欠陥を低減し
た大径の無転位シリコン単結晶を高収量で製造すること
ができる。
As described above, in the gas doping method for a silicon single crystal according to the present invention in the FZ method, the blowing position of a mixed gas of nitrogen and high-purity argon and the total blowing of nitrogen are used by using a blowing method using a nozzle. Since the amount is arbitrarily adjusted, it becomes easy to avoid the nitrogen doping at an undesired position and the occurrence of dislocation due to the excessive amount of nitrogen doping. Therefore, a large diameter dislocation-free silicon single crystal with reduced crystal defects can be produced in high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガスドープ方法を示す概略断面模
式図である。
FIG. 1 is a schematic cross-sectional schematic view showing a gas doping method according to the present invention.

【符号の説明】[Explanation of symbols]

1 高周波誘導加熱コイル 2 シリコン多結晶棒 3 混合ガス吹き付けノズル 4 シリコン融液 5 シリコン単結晶 1 high frequency induction heating coil 2 silicon polycrystalline rod 3 mixed gas spray nozzle 4 silicon melt 5 silicon single crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浮遊帯域溶融法を用いてシリコン単結晶
を製造する際に、溶融帯域近傍の赤熱したシリコン多結
晶棒に窒素と高純度アルゴンとの混合ガスをノズルを通
して吹き付け、表面が窒化されたシリコン多結晶棒を溶
融することによりシリコン単結晶に窒素を添加し、シリ
コン単結晶における結晶欠陥の発生を抑制することを特
徴とするシリコン単結晶へのガスドープ方法。
1. When manufacturing a silicon single crystal using the floating zone melting method, a mixed gas of nitrogen and high-purity argon is blown through a nozzle onto a red-hot silicon polycrystalline rod near the melting zone to nitride the surface. A method for doping gas into a silicon single crystal, wherein nitrogen is added to the silicon single crystal by melting the polycrystalline silicon rod to suppress the generation of crystal defects in the silicon single crystal.
【請求項2】 シリコン多結晶棒に対する窒素と高純度
アルゴンとの混合ガスの吹き付け時間を調整し、窒素の
総吹き付け量を1.0×1022〜6.0×1023ato
msとすることにより、シリコン単結晶に添加する窒素
濃度を制御し、窒素の過剰添加による有転位化を回避す
ることを特徴とする請求項1記載のシリコン単結晶への
ガスドープ方法。
2. The total spraying amount of nitrogen is adjusted to 1.0 × 10 22 to 6.0 × 10 23 ato by adjusting the spraying time of the mixed gas of nitrogen and high-purity argon onto the polycrystalline silicon rod.
The gas doping method for a silicon single crystal according to claim 1, wherein the concentration of nitrogen added to the silicon single crystal is controlled by setting the time to ms to avoid dislocation generation due to excessive addition of nitrogen.
JP12412196A 1996-04-22 1996-04-22 Method for doping gas to silicon single crystal Withdrawn JPH09286688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12412196A JPH09286688A (en) 1996-04-22 1996-04-22 Method for doping gas to silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12412196A JPH09286688A (en) 1996-04-22 1996-04-22 Method for doping gas to silicon single crystal

Publications (1)

Publication Number Publication Date
JPH09286688A true JPH09286688A (en) 1997-11-04

Family

ID=14877450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12412196A Withdrawn JPH09286688A (en) 1996-04-22 1996-04-22 Method for doping gas to silicon single crystal

Country Status (1)

Country Link
JP (1) JPH09286688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333114C (en) * 2006-04-21 2007-08-22 天津市环欧半导体材料技术有限公司 Process for preparing vapor doping zone-melted silicon single crystal
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method
CN103866375A (en) * 2012-12-10 2014-06-18 有研半导体材料股份有限公司 Preparation method for doped float zone silicon crystal
JP2017105650A (en) * 2015-12-07 2017-06-15 株式会社Sumco Silicon single crystal manufacturing method
CN111270300A (en) * 2018-12-04 2020-06-12 有研半导体材料有限公司 Preparation method of gas-phase doped zone-melting silicon single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333114C (en) * 2006-04-21 2007-08-22 天津市环欧半导体材料技术有限公司 Process for preparing vapor doping zone-melted silicon single crystal
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method
CN103866375A (en) * 2012-12-10 2014-06-18 有研半导体材料股份有限公司 Preparation method for doped float zone silicon crystal
JP2017105650A (en) * 2015-12-07 2017-06-15 株式会社Sumco Silicon single crystal manufacturing method
CN106894083A (en) * 2015-12-07 2017-06-27 胜高股份有限公司 The manufacture method of monocrystalline silicon
CN106894083B (en) * 2015-12-07 2019-08-06 胜高股份有限公司 The manufacturing method of monocrystalline silicon
CN111270300A (en) * 2018-12-04 2020-06-12 有研半导体材料有限公司 Preparation method of gas-phase doped zone-melting silicon single crystal

Similar Documents

Publication Publication Date Title
US6592662B2 (en) Method for preparing silicon single crystal and silicon single crystal
EP1785511B1 (en) Method of growing silicon single crystal
US6843848B2 (en) Semiconductor wafer made from silicon and method for producing the semiconductor wafer
US7837791B2 (en) Silicon single crystal wafer for particle monitor
JPH11189495A (en) Silicon single crystal and its production
KR20000005835A (en) Silicon Single Crystal Wafer and Method for Producing Silicon Single Crystal Wafer
KR20230175318A (en) Quartz crucible and crystal pulling furnace
US7048796B2 (en) Silicon single crystal wafer fabricating method and silicon single crystal wafer
JP2686223B2 (en) Single crystal manufacturing equipment
EP0435440B1 (en) Method for growing antimony-doped silicon single crystals
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
JPH09286688A (en) Method for doping gas to silicon single crystal
JP2003068743A (en) Epitaxial wafer and its manufacturing method
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
JPH07277887A (en) Appartus and process for producing single crystal
JPH11130592A (en) Production of silicon single crystal
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP4273793B2 (en) Single crystal manufacturing method
CA1237641A (en) Method of controlled, uniform doping of floating zone silicon
KR20190092417A (en) Silicon single crystal manufacturing method and silicon single crystal wafer
US7122082B2 (en) Silicon wafer and manufacturing method thereof
JP2735740B2 (en) Method for producing silicon single crystal
WO2001088230A1 (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JP2735741B2 (en) Method for producing silicon single crystal
JP4007193B2 (en) Method for producing silicon single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701