JPH092845A - Joined body of conductor thin film and amorphous insulator and its formation - Google Patents

Joined body of conductor thin film and amorphous insulator and its formation

Info

Publication number
JPH092845A
JPH092845A JP17545495A JP17545495A JPH092845A JP H092845 A JPH092845 A JP H092845A JP 17545495 A JP17545495 A JP 17545495A JP 17545495 A JP17545495 A JP 17545495A JP H092845 A JPH092845 A JP H092845A
Authority
JP
Japan
Prior art keywords
thin film
conductor thin
substrate
amorphous insulator
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17545495A
Other languages
Japanese (ja)
Other versions
JP3599428B2 (en
Inventor
Takayuki Yagi
隆行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17545495A priority Critical patent/JP3599428B2/en
Publication of JPH092845A publication Critical patent/JPH092845A/en
Application granted granted Critical
Publication of JP3599428B2 publication Critical patent/JP3599428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To enable low-temperature formation of a bonded body of a conductor thin film and an amorphous insulator, having high bond strength without being restricted by the material of a substrate, by adding lithium ion as a mobile ion to the amorphous insulator. CONSTITUTION: A substrate 1 vapor deposited with a conductor thin film 12 is set on a platen 20 provided with a heater and is brought into contact with an amorphous insulator 4 (glass) containing lithium ions. A needle-like electrode 22 which is electrically connected to a DC electric source 21 for connecting an anode and to the conductor thin film 12 is connected by a lead wire 24 to a needle-like electrode 23 electrically connected to the amorphous insulator 4 (glass). The platen 20 is heated and a voltage is impressed to the platen to subject the amorous insulator 4 (glass) and the substrate 1 vapor deposited with the conductor thin film to anodic joining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板上に形成した導電体
薄膜と非晶質絶縁体とを陽極接合により接合してなる接
合体及びその形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded body obtained by bonding a conductive thin film formed on a substrate and an amorphous insulator by anodic bonding, and a method for forming the bonded body.

【0002】[0002]

【従来の技術】従来、ガラスと導電体材料の接合を行う
方法としては、ガラスを高温加熱し液状にして金属に接
着する、あるいは接着剤による接合が用いられてきた。
高温加熱ではガラスを液状になる温度まで加熱する必要
があり、ガラスの原形を留めることができない。接着剤
を用いる方法では、接合体の使用可能温度範囲が低く、
また経時変化等の問題がある。また、これら接着方法で
は接着時の接合寸法精度を保った精密な接合は期待でき
ない。これに対して、陽極接合法では、熱膨張係数の比
較的近い非晶質絶縁体であるナトリウムイオンを可動イ
オンとするガラスと導電体材料を200〜400℃と比
較的低温で、数十〜数kV程度の電圧を印加することに
より接合できるために、上述の問題点が解消される
(G.Wallis et al.,“FieldAs
sisted Glass−Metal Sealin
g”,J.Appl.Phys.,Vol.40,N
o.10,pp3946−3949,1969)。導電
体材料とガラスの熱膨張係数差が大きい場合にはガラス
と熱膨張係数の略一致した基板上に成膜した導電体薄膜
を用いることにより接合することが可能である(須田
他、“マロリー接着法による機密シール技術”、東北大
学科学計測研究会報告、第33巻、第1号、ppl65
〜175、1984)。導電体薄膜はガラス、半導体、
金属、セラミックス等の様々な基板上に真空蒸着法を用
いることにより形成でき、基板の熱膨張係数と略一致し
たガラスを用いることで導電体薄膜を介してガラスと他
種類の基板との接合体を形成することが可能となる。こ
れにより、導電体薄膜とガラスとの陽極接合を行い、ガ
ス封入、真空管、マイクロメカニクスデバイス、光学品
等の様々な分野への応用が期待できる。このような陽極
接合では、導電体薄膜としてAl、Ti、Ni、Si、
W等の酸化物を比較的容易に形成する材料が用いられ、
抵抗加熱蒸着法、スパッタリング法、電子ビーム蒸着
法、化学気相成長法(CVD)等により形成される。特
に、Alは抵抗が小さく、作製が容易かつ安価な導電体
材料であり、様々なデバイスに適合しやすく、陽極接合
用の導電体薄膜として好ましい材料である。
2. Description of the Related Art Heretofore, as a method for bonding glass and a conductive material, glass has been heated at a high temperature to be in a liquid state and bonded to a metal, or bonding with an adhesive has been used.
High-temperature heating requires heating the glass to a temperature at which it becomes liquid, and the original shape of the glass cannot be retained. In the method using the adhesive, the usable temperature range of the joined body is low,
In addition, there are problems such as aging. Further, with these bonding methods, it is not possible to expect precise bonding while maintaining the bonding dimensional accuracy during bonding. On the other hand, in the anodic bonding method, the glass and the conductive material, in which the sodium ions, which are amorphous insulators having a relatively close thermal expansion coefficient, are used as the mobile ions, and the conductive material are relatively low at 200 to 400 ° C. Since the bonding can be performed by applying a voltage of about several kV, the above problems are solved (G. Wallis et al., “FieldAs”).
sisted Glass-Metal Sealin
g ", J. Appl. Phys., Vol. 40, N.
o. 10, pp3946-3949, 1969). When the difference in the coefficient of thermal expansion between the conductor material and the glass is large, it is possible to bond by using a conductor thin film formed on a substrate whose coefficient of thermal expansion is substantially the same as that of the glass (Suda
Others, "Confidential sealing technology by Mallory bonding method", Tohoku University Scientific Measurement Research Group Report, Vol. 33, No. 1, ppl65
~ 175, 1984). Conductor thin film is made of glass, semiconductor,
It can be formed by using the vacuum deposition method on various substrates such as metals and ceramics, and by using glass that has a coefficient of thermal expansion that is substantially the same as that of the substrate, a joined body of glass and another type of substrate through a conductive thin film. Can be formed. As a result, anodic bonding of the conductor thin film and glass can be performed, and application to various fields such as gas filling, vacuum tubes, micromechanics devices, and optical products can be expected. In such anodic bonding, Al, Ti, Ni, Si, and
A material that forms an oxide such as W relatively easily is used,
It is formed by a resistance heating vapor deposition method, a sputtering method, an electron beam vapor deposition method, a chemical vapor deposition method (CVD), or the like. In particular, Al is a conductive material that has low resistance, is easy to manufacture and is inexpensive, is easily adapted to various devices, and is a preferable material as a conductive thin film for anodic bonding.

【発明が解決しようとする課題】しかしながら、Alは
陽極接合時にガラス中への引き込み、及びAlの表面酸
化が起こるという問題を生じる(P.B.DeNee,
“Low EnergyMetal−Glass Bo
nding”,J.Appl.Phys.,No.4
0,pp5396−5397,1969)。したがっ
て、陽極接合にAl薄膜を用いる場合には、Al薄膜が
酸化されAl酸化物が形成される。図2(B)、(C)
に青板ガラス上に形成したAl薄膜(膜厚100nm)
を青板ガラスに陽極接合した接合体のAl接合面の20
0倍の光学顕微鏡写真を示す。図(B)の陽極接合条件
は、接合温度が250℃、印加電圧が500Vであり、
20分間電圧を印加し接合した。図(C)の陽極接合条
件は、接合温度が350℃、印加電圧が300Vであ
り、20分間電圧を印加し接合した。図2(B)、
(C)において、黒く見える箇所は透過光による顕微鏡
観察により光が透過しておりAlの酸化が起こった箇所
であり、Al薄膜の反射像を観察しているために黒く見
える。前記接合体をせん断し、Alとガラスとの接合面
を観察したところ、Alの酸化が起こった部分はガラス
と接合していなかった。すなわち、Alの酸化は接合に
寄与せず、Alとガラスとの接合する面積を減少させ、
有効接合面積を小さくし、接合強度を低下させる原因と
なる。図2(B)、(C)に見られる様に接合温度が高
いとAlの酸化は促進され、また陽極接合時間の経過と
共にAl薄膜の酸化が促進される。上記導電体薄膜の酸
化の問題は、Al薄膜のみならず陽極接合に用いる導電
体薄膜に共通の課題であり、酸化を防止することは、接
合強度の低下を抑さえると共に安定した接合を行う上で
重要である。導電体薄膜の酸化を抑さえるには、より低
温での陽極接合をする必要がある。さらに、ナトリウム
イオンを可動イオンとするガラスを用いた場合、陽極接
合時の接合温度は200℃から400℃程度であり、該
温度で接合した後に接合体を室温に除冷する際に生じる
熱応力により基板またはガラスが破損しないよう導電体
薄膜を形成した基板とほぼ等しい熱膨張係数を有するガ
ラス基板を用いる必要がある。また、強誘電体からなる
圧電体を基板として用いる場合、接合後室温に除冷する
際、接合温度まで加熱された該基板の焦電性による自発
分極にて生じた応力により圧電体またはガラスが破損す
ることがある。しかしながら、ガラスと基板の熱膨張係
数を室温から接合温度までの各温度で略一致させること
は困難であり、陽極接合に用いる基板の材料が自ずと制
限されることになる。基板材料によらずに陽極接合法に
て接合体を形成するには、熱膨張係数による熱応力を低
減する上で、より低温での陽極接合をすることが好まし
い。
However, Al causes a problem that it is drawn into the glass at the time of anodic bonding and surface oxidation of Al occurs (P.B. DeNe,
"Low Energy Metal-Glass Bo
nding ", J. Appl. Phys., No. 4
0, pp5396-5397, 1969). Therefore, when an Al thin film is used for anodic bonding, the Al thin film is oxidized to form an Al oxide. FIG. 2 (B), (C)
Al thin film formed on soda lime glass (film thickness 100 nm)
Of the Al-bonded surface of the bonded body obtained by anodic-bonding
The optical microscope photograph of 0 times is shown. As for the anodic bonding conditions in FIG. (B), the bonding temperature is 250 ° C., the applied voltage is 500 V,
A voltage was applied for 20 minutes to bond. The anodic bonding conditions in FIG. 6C were a bonding temperature of 350 ° C. and an applied voltage of 300 V, and the voltage was applied for 20 minutes for bonding. 2 (B),
In (C), a black portion is a portion where light is transmitted by microscopic observation with transmitted light and Al is oxidized, and it looks black because the reflection image of the Al thin film is observed. When the bonded body was sheared and the bonding surface between Al and glass was observed, the portion where Al oxidation occurred was not bonded to glass. That is, the oxidation of Al does not contribute to the bonding, and reduces the bonding area between Al and glass,
This will reduce the effective bonding area and reduce the bonding strength. As shown in FIGS. 2B and 2C, when the bonding temperature is high, the oxidation of Al is promoted, and the oxidation of the Al thin film is promoted as the anodic bonding time elapses. The problem of oxidation of the above-mentioned conductor thin film is a problem common to not only Al thin films but also conductor thin films used for anodic bonding, and preventing oxidation suppresses decrease in bonding strength and achieves stable bonding. Is important in. In order to suppress the oxidation of the conductor thin film, it is necessary to perform anodic bonding at a lower temperature. Furthermore, when glass having sodium ions as mobile ions is used, the bonding temperature at the time of anodic bonding is about 200 to 400 ° C., and the thermal stress generated when the bonded body is cooled to room temperature after bonding at the temperature. Therefore, it is necessary to use a glass substrate having a coefficient of thermal expansion almost equal to that of the substrate on which the conductive thin film is formed so that the substrate or the glass is not damaged. Further, when a piezoelectric body made of a ferroelectric material is used as a substrate, when it is cooled to room temperature after bonding, the piezoelectric body or glass is not heated by the stress generated by spontaneous polarization due to pyroelectricity of the substrate heated to the bonding temperature. It may be damaged. However, it is difficult to make the coefficients of thermal expansion of the glass and the substrate substantially equal to each other from room temperature to the bonding temperature, and the material of the substrate used for anodic bonding is naturally limited. In order to form a bonded body by the anodic bonding method regardless of the substrate material, it is preferable to perform anodic bonding at a lower temperature in order to reduce the thermal stress due to the thermal expansion coefficient.

【0003】そこで、本発明は上記問題を解決し、基板
の材料が制限されることなく、導電体薄膜の酸化を抑さ
え、接合強度が高く低温にて形成可能な導電体薄膜と非
晶質絶縁体との接合体及びその形成方法を提供すること
を目的とするものである。
Therefore, the present invention solves the above problems and suppresses the oxidation of the conductor thin film without restricting the material of the substrate, has a high bonding strength, and can form a conductor thin film and an amorphous material. It is an object to provide a joined body with an insulator and a method for forming the joined body.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するため、リチウムイオンを可動イオンとして含有する
非晶質絶縁体を構成し、基板上に形成した導電体薄膜と
陽極接合により接合するようにしたものである。本発明
の接合体は、上記のように構成した点に特徴を有するも
のであるが、本発明においてはその非晶質絶縁体を、感
光性ガラスで構成し、また、基板を圧電体、特に圧電セ
ラミックスを用いて構成している。そして、本発明にお
いてはその非晶質絶縁体を、前記導電体薄膜の形成され
た基板と別の基板上に形成するようにしてもよい。ま
た、その接合体の形成方法として、基板上に導電体薄膜
を形成し、該導電体薄膜にリチウムを含有する非晶質絶
縁体を接し、加熱しつつ前記導電体薄膜と絶縁体薄膜と
に電圧を印加し導電体薄膜と非晶質絶縁体とを接合する
ことにより行うことができる。この場合においても、そ
の非晶質絶縁体を前記導電体薄膜の形成された基板とは
別の基板上に形成し、導電体薄膜と接合するようにして
もよい。
In order to achieve the above object, the present invention comprises an amorphous insulator containing lithium ions as mobile ions, which is bonded to a conductive thin film formed on a substrate by anodic bonding. It was done like this. The bonded body of the present invention is characterized in that it is configured as described above, but in the present invention, the amorphous insulator is composed of photosensitive glass, and the substrate is a piezoelectric body, particularly It is configured using piezoelectric ceramics. In the present invention, the amorphous insulator may be formed on a substrate different from the substrate on which the conductor thin film is formed. As a method for forming the bonded body, a conductor thin film is formed on a substrate, an amorphous insulator containing lithium is brought into contact with the conductor thin film, and the conductor thin film and the insulator thin film are heated while heating. This can be performed by applying a voltage and joining the conductive thin film and the amorphous insulator. Also in this case, the amorphous insulator may be formed on a substrate different from the substrate on which the conductor thin film is formed and bonded to the conductor thin film.

【0005】[0005]

【作用】本発明は上記したように、リチウムイオンを可
動イオンとして含有する非晶質絶縁体を構成し、これを
基板上に形成した導電体薄膜と陽極接合によって接合す
ることにより、低温による陽極接合が可能となり、前記
基板の材料が制限されることなく、導電体薄膜の酸化を
抑さえて接合強度の高い接合体を提供することが可能と
なる。以下に、これを更に詳細に説明する。陽極接合法
では、導電体薄膜とガラスに電圧を印加し接合時の温度
を上げることによりガラス中の可動イオン(陽イオン)
が移動し易くなり、ガラス界面近傍に空間電荷層が形成
され、このとき発生する静電引力にて導電体薄膜とガラ
スが接合する。本発明の接合体では、ナトリウムイオン
に比ベイオン半径の小さいリチウムイオンを主たる可動
イオンとする非晶質絶縁体を用いることにより、200
℃以下の低温でも移動することが容易となり、接合に寄
与するに十分な静電引力を発生できる空間電荷層が形成
でき、約200℃以下の低温にて陽極接合が可能とな
る。これにより導電体薄膜の酸化を抑さえることがで
き、熱膨張係数の異なる様々な基板との接合体を形成す
ることが可能となる。上記理由により本発明の非晶質絶
縁体はリチウムイオンを含有しておればよく、他の可動
イオンであるナトリウムイオンを含有していても何ら差
しつかえない。本発明の非晶質絶縁体のリチウムの濃度
としては、リチウムイオンが移動し静電引力を発生させ
るため非晶質絶縁体の界面の空間電荷層とバルクとの電
気抵抗の差が必要であり、リチウムイオンを形成する修
飾酸化物であるLi2O、Li2O3、Li2CO3等の含
有率としては少なくとも1%以上が必要である。また、
リチウムイオン量が多すぎると、抵抗率が減少し陽極接
合時の電圧印加により絶縁破壊が起こりやすく、さらに
ガラスの網状構造の弛みが大きくなり機械的強度も低減
するために、安定して接合でき且つ機械的強度の高い接
合体を得るにはリチウムイオンを形成する修飾酸化物の
含有率は30%以下が好ましい。感光性ガラスは、Li
2O、又は/及びLi2CO3の含有率が10〜20%で
あり(ガラス工学ハンドブック、森谷、他 編集、朝倉
書店、昭和41年発刊、p763−774)、本発明の
接合体に用いる非晶質絶縁体として好ましい。また化学
切削用感光ガラスでは、紫外線を照射した後に加熱し光
の照射部と未照射部とでのフッ酸エッチング速度が異な
ることを利用しガラス基板への高精度の加工が可能であ
り、体積抵抗率が高く絶縁性に優れており、機械的強度
も高いことから、マイクロメカニクス等に用いる構造体
形成材料として最適である。これら、リチウムイオンを
有するガラスを用い他の基板上に薄膜形成し該リチウム
イオンを有する非晶質絶縁体の薄膜と導電体薄膜を陽極
接合してもよいことは言うまでもない。
As described above, according to the present invention, an amorphous insulator containing lithium ions as mobile ions is formed, and the amorphous insulator is joined to a conductor thin film formed on a substrate by anodic bonding to obtain an anode at low temperature. Bonding becomes possible, and it is possible to provide a bonded body having a high bonding strength by suppressing the oxidation of the conductor thin film without restricting the material of the substrate. This will be described in more detail below. In the anodic bonding method, mobile ions (cations) in the glass are generated by applying a voltage to the conductor thin film and the glass to raise the temperature during bonding.
Becomes easy to move, and a space charge layer is formed near the glass interface, and the conductive thin film and glass are bonded by the electrostatic attraction generated at this time. In the joined body of the present invention, by using an amorphous insulator in which lithium ions having a small Beion radius as a main mobile ion relative to sodium ions are used,
It becomes easy to move even at a low temperature of 0 ° C. or lower, a space charge layer capable of generating an electrostatic attractive force sufficient to contribute to bonding can be formed, and anodic bonding can be performed at a low temperature of about 200 ° C. or lower. As a result, the oxidation of the conductor thin film can be suppressed, and it becomes possible to form a bonded body with various substrates having different thermal expansion coefficients. For the above reason, the amorphous insulator of the present invention only needs to contain lithium ions, and it does not matter even if it contains sodium ions which are other mobile ions. Regarding the concentration of lithium in the amorphous insulator of the present invention, a difference in electric resistance between the space charge layer and the bulk at the interface of the amorphous insulator is necessary because lithium ions move to generate electrostatic attraction. The content of Li2O, Li2O3, Li2CO3, etc., which is a modified oxide forming lithium ions, must be at least 1% or more. Also,
If the amount of lithium ions is too large, the resistivity decreases and dielectric breakdown is likely to occur due to the voltage application during anodic bonding.In addition, the looseness of the glass network structure increases and the mechanical strength also decreases, resulting in stable bonding. In addition, in order to obtain a joined body having high mechanical strength, the content of the modified oxide forming lithium ions is preferably 30% or less. The photosensitive glass is Li
The content of 2O and / or Li2CO3 is 10 to 20% (Glass Engineering Handbook, Moriya, et al., Edited by Asakura Shoten, published in 1966, p763-774), and amorphous insulation used for the joined body of the present invention. Good for the body. In addition, in the case of photosensitive glass for chemical cutting, it is possible to perform high-precision processing on a glass substrate by utilizing the difference in the hydrofluoric acid etching rate between the light-irradiated portion and the light-irradiated portion after being irradiated with ultraviolet rays Since it has high resistivity, excellent insulating properties, and high mechanical strength, it is optimal as a material for forming a structure used for micromechanics and the like. Needless to say, a thin film may be formed on another substrate using glass having lithium ions and the thin film of the amorphous insulator having lithium ions and the conductive thin film may be anodically bonded.

【0006】本発明の接合体は低温にて接合し形成する
ことから、導電体薄膜を形成する基板としては、Si、
Ge、GaAs、InP等の半導体、ガラス、石英、ア
ルミナ、MgO等の絶縁体、圧電体等様々の材料を用い
ることが可能である。圧電体としては、LiNbO3、
LiTaO3、水晶等の単結晶圧電体、チタン酸バリウ
ム(BaTiO3)、チタン酸ジルコン酸鉛(Pb(Z
r−Ti)O3、以下PZTと略記)、(Pb、La)
(Zr、Ti)O3等の圧電セラミックスを用いること
が可能である。陽極接合では、導電体薄膜としてはA
l、Ti、Ni、Si、W等の材料が用いられる。ま
た、これら材料とAu、Pt等の非酸化性の貴金属材料
との合金を用いることも可能である。陽極接合法により
ガラスと基板上に形成した導電体薄膜を接合する場合、
接合する面の凹凸が大きいと接合に寄与する実行面積が
凸部での接触部分のみとなり接合強度が低下することか
ら、平滑性の良い基板を用いる必要がある。導電体薄膜
を形成する基板として焼結体からなるセラミックスを用
いる場合には接合面は研磨したものを用いる。図1は本
発明の接合体を形成する陽極接合装置を示す概略図であ
り、また本発明の接合体の実施形態も示している。導電
体薄膜12を蒸着した基板1をヒーター付きプラテン2
0に設置し、リチウムイオンを含む非晶質絶縁体である
ガラス4を接する。陽極接合用の直流電源21と前記導
電体薄膜12に電気的に接続している針状電極22、及
びガラス4に電気的に接続している針状電極23との間
をリード線24にて電気的に接続する。プラテン20を
加熱し、電圧を印加しガラス4と、導電体薄膜を蒸着し
た基板1を陽極接合する。
Since the bonded body of the present invention is formed by bonding at a low temperature, Si,
It is possible to use various materials such as semiconductors such as Ge, GaAs and InP, insulators such as glass, quartz, alumina and MgO, and piezoelectric bodies. As the piezoelectric material, LiNbO3,
LiTaO3, single crystal piezoelectric such as quartz, barium titanate (BaTiO3), lead zirconate titanate (Pb (Z
r-Ti) O3, hereinafter abbreviated as PZT), (Pb, La)
Piezoelectric ceramics such as (Zr, Ti) O3 can be used. In anodic bonding, the conductor thin film is A
Materials such as l, Ti, Ni, Si and W are used. It is also possible to use an alloy of these materials and a non-oxidizing noble metal material such as Au or Pt. When joining glass and the conductor thin film formed on the substrate by the anodic bonding method,
If the unevenness of the surfaces to be joined is large, the effective area that contributes to the joining is only the contact portion at the convex portion, and the joining strength is reduced. Therefore, it is necessary to use a substrate having good smoothness. When a ceramic made of a sintered body is used as the substrate for forming the conductor thin film, the bonded surface is polished. FIG. 1 is a schematic diagram showing an anodic bonding apparatus for forming the bonded body of the present invention, and also shows an embodiment of the bonded body of the present invention. A substrate 1 on which a conductor thin film 12 is vapor-deposited and a platen 2 with a heater
0, and the glass 4 which is an amorphous insulator containing lithium ions is in contact therewith. A lead wire 24 is provided between the DC power source 21 for anodic bonding, the needle electrode 22 electrically connected to the conductor thin film 12, and the needle electrode 23 electrically connected to the glass 4. Connect electrically. The platen 20 is heated, a voltage is applied, and the glass 4 and the substrate 1 on which the conductor thin film is deposited are anodically bonded.

【0007】[0007]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。 [実施例1]図1に本発明の実施例1における接合体の
構成及び陽極接合装置の概略図を示す。本実施例の接合
体の構成は以下の通りである。 基板1:青板ガラス(日本板硝子社製) 30mm×l2mm×0.5mm(厚さ) 導電体薄膜12:Al(100nm) 非晶質絶縁体4:感光性ガラス(HOYA社製、商品名
PEG3) 30mm×12mm×lmm(厚さ) Al導電体薄膜は電子ビーム蒸着法を用いて成膜した。
以上の構成にて、図1における陽極接合装置を用いて陽
極接合を行い接合体を形成した。表1に、実施例の接合
体である試料(a)の陽極接合条件を示す。比較の為に
形成した非晶質絶縁体を青板ガラスにした以外は同様の
構成の試料(b)、(c)の陽極接合条件も表1に合わ
せて示す。なお、青板ガラスは板ソーダガラスであり、
アルカリ酸化物Na2Oの組成成分比が13〜15%の
ものを用いてあり、リチウムは含有していない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. [Embodiment 1] FIG. 1 shows a schematic view of a structure of a bonded body and an anodic bonding apparatus in Embodiment 1 of the present invention. The structure of the bonded body of this example is as follows. Substrate 1: Blue plate glass (manufactured by Nippon Sheet Glass Co., Ltd.) 30 mm x 12 mm x 0.5 mm (thickness) Conductor thin film 12: Al (100 nm) Amorphous insulator 4: Photosensitive glass (manufactured by HOYA, trade name PEG3) 30 mm × 12 mm × 1 mm (thickness) The Al conductor thin film was formed by using the electron beam evaporation method.
With the above configuration, anodic bonding was performed using the anodic bonding apparatus in FIG. 1 to form a bonded body. Table 1 shows the anodic bonding conditions of the sample (a) which is the bonded body of the example. Table 1 also shows the anodic bonding conditions of samples (b) and (c) having the same structure except that the amorphous insulator formed for comparison was made of soda lime glass. In addition, blue plate glass is plate soda glass,
Alkali oxide Na2O having a composition ratio of 13 to 15% was used, and lithium was not contained.

【0008】[0008]

【表1】 接合後の非晶質絶縁体4と導電体薄膜の接合面の光学顕
微鏡写真を図2に示す。導電体薄膜の反射像を観察して
いるために光が透過した部分は黒く見え、酸化が起こっ
た箇所である。図2(A)は試料(a)、図2(B)は
試料(b)、図2(C)は試料(c)の写真に基づく図
である。写真の倍率はすべて200倍となっている。図
2(B)、(C)と比較して低温にて接合した図2
(A)では酸化した部分が減少しており、図2(B)と
比べ酸化された箇所の数は2分の1以下となっている。
図3を用いて、本実施例の構成の接合体の接合温度と接
合強度の依存性を測定した結果(黒丸)を示す。なお、
接合強度は曲げ強度試験にて測定した。結果に示すせん
断応力は接合した接合体の剥がれた際の曲げ荷重により
計算した接合面にかかるせん断応力である。比較に非晶
質絶縁体を青板ガラスとした接合体の接合強度の結果
(白抜き丸)も示す。実施例の接合体では90℃以上で
導電体薄膜と感光性ガラスは接合され、105℃を越え
る接合温度では接合した界面でせん断する前にガラスが
表面の引っ張り応力により破損し、せん断応力を測定す
ることはできなかった。この試料寸法の測定可能なせん
断応力の上限は30kg/cm2であり、これ以上の機
械的強度で接合されていることが分かった。このため、
図3では105℃を越えるせん断応力を示さなかった。
比較例である青板ガラスからなる接合体では220℃に
てせん断応力は20kg/cm2となり、250℃以上
ではせん断する前にガラスが破損した。青板ガラスから
なる接合体では、本実施例の接合体と同じ接合強度を得
る接合温度が100℃以上高いことが分かる。すなは
ち、本実施例において低温にて陽極接合した接合体は、
陽極接合時に発生する導電体薄膜の酸化が抑さえられて
おり、高い接合強度を有している。
[Table 1] An optical micrograph of the joint surface between the amorphous insulator 4 and the conductor thin film after joining is shown in FIG. Since the reflection image of the conductor thin film is being observed, the portion where the light is transmitted looks black and is the portion where oxidation has occurred. 2A is a diagram based on a photograph of the sample (a), FIG. 2B is a sample (b), and FIG. 2C is a diagram based on a photograph of the sample (c). All the magnification of the photograph is 200 times. As shown in FIG. 2 which is bonded at a low temperature as compared with FIGS. 2B and 2C.
In (A), the oxidized portion is reduced, and the number of oxidized portions is less than half as compared with FIG. 2 (B).
FIG. 3 shows the results (black circles) of the dependency of the bonding temperature and the bonding strength of the bonded structure of the present example measured. In addition,
The joint strength was measured by a bending strength test. The shear stress shown in the results is the shear stress applied to the joint surface calculated by the bending load when the joined joint body is peeled off. For comparison, the results (joint circles) of the bonding strength of the bonded body in which the amorphous insulator is soda lime glass are also shown. In the bonded body of the example, the conductive thin film and the photosensitive glass were bonded at 90 ° C. or higher, and at a bonding temperature higher than 105 ° C., the glass was damaged by tensile stress on the surface before shearing at the bonded interface, and the shear stress was measured. I couldn't. The upper limit of the measurable shear stress of this sample size was 30 kg / cm 2 , and it was found that bonding was performed with mechanical strength higher than this. For this reason,
In FIG. 3, no shear stress exceeding 105 ° C. was shown.
In the joined body made of soda lime glass as a comparative example, the shear stress was 20 kg / cm 2 at 220 ° C, and the glass was broken before shearing at 250 ° C or higher. It can be seen that in the joined body made of soda lime glass, the joining temperature at which the same joining strength as that of the joined body of this example is obtained is 100 ° C. or higher. That is, in the present embodiment, the joined body anodic-bonded at low temperature is
Oxidation of the conductor thin film generated during anodic bonding is suppressed, and high bonding strength is achieved.

【0009】[実施例2]図4に本発明の接合体の実施
例2の断面図を示す。本実施例の接合体の構成は以下の
通りである。 基板31:圧電セラミックス(富士セラミックス社製、
製品番号C−8) 12mm×8mm×0.3mm(厚さ) 導電体薄膜36、37:Al(300nm) 非晶質絶縁体34:感光性ガラス(HOYA社製、商品
名PEG3) 12mm×8mm×lmm(厚さ) 用いた圧電セラミックスは分極処理された角板形であ
り、その熱膨張係数は20℃〜210℃で分極方向で−
1〜−3.6×10-6/℃、長手方向では2.2〜3.
6×10-6/℃である。また、非晶質絶縁体34の熱膨
張係数は8.4×10-6/℃である。本実施例の非晶質
絶縁体と基板との熱膨張係数は2倍以上異なっている。
圧電セラミックスは焼結体であるため、表面を研磨した
後に導電体薄膜36、37を形成した。Al導電体薄膜
36、37は電子ビーム蒸着法を用いて圧電セラミック
スの両面に成膜した。以上の構成にて、図1における陽
極接合装置を用いて陽極接合を行い接合体を形成した。
陽極接合条件は、接合温度が110℃、印加電圧が10
00Vであり、20分間電圧を印加し接合した。接合後
の非晶質絶縁体34と導電体薄膜36の接合面を光学顕
微鏡にて観察したところ、図2(A)と同様に導電体薄
膜の酸化は抑さえられていた。
[Embodiment 2] FIG. 4 shows a sectional view of Embodiment 2 of the joined body of the present invention. The structure of the bonded body of this example is as follows. Substrate 31: Piezoelectric ceramics (Fuji Ceramics,
Product number C-8) 12 mm x 8 mm x 0.3 mm (thickness) Conductor thin films 36 and 37: Al (300 nm) Amorphous insulator 34: Photosensitive glass (HOYA company, trade name PEG3) 12 mm x 8 mm The piezoceramic used was a rectangular plate that was polarized, and its coefficient of thermal expansion was 20 ° C to 210 ° C in the polarization direction.
1 to −3.6 × 10 −6 / ° C., 2.2 to 3 in the longitudinal direction.
6 × 10 −6 / ° C. The coefficient of thermal expansion of the amorphous insulator 34 is 8.4 × 10 -6 / ° C. The coefficient of thermal expansion of the amorphous insulator and the substrate of this example is more than doubled.
Since the piezoelectric ceramics is a sintered body, the conductor thin films 36 and 37 were formed after polishing the surface. The Al conductor thin films 36 and 37 were formed on both surfaces of the piezoelectric ceramic by using the electron beam evaporation method. With the above configuration, anodic bonding was performed using the anodic bonding apparatus in FIG. 1 to form a bonded body.
The anodic bonding conditions are a bonding temperature of 110 ° C. and an applied voltage of 10
The voltage was 00 V, and a voltage was applied for 20 minutes for bonding. When the joint surface between the amorphous insulator 34 and the conductor thin film 36 after joining was observed by an optical microscope, the oxidation of the conductor thin film was suppressed as in FIG. 2A.

【0010】接合後に接合体の長手方向の一端を固定
し、基板の両面の導電体薄膜36、37を電極として直
流電圧を印加したところ接合体は屈曲し、キュリー点
(Tc=210℃)以下の低温にて接合したことによ
り、接合後も圧電セラミックスは圧電性を有していた。
次に交流電圧(周波数10kHz、50Vp-p)を1時
間印加し振動させた後に、接合体を観察したところ、接
合面での剥がれは見られず、十分な接合強度を有してい
た。このことから、本実施例の接合体は圧電アクチュエ
ータとして利用することが可能である。すなはち、本実
施例において低温にて陽極接合した接合体は、陽極接合
時に発生する導電体薄膜の酸化が抑さえられており、さ
らに、熱膨張係数の異なる基板材料を用いても破損する
ことなく高い接合強度を有していた。本発明の接合体に
用いる基板は、熱応力や焦電性に起因する材料制限がな
い。
After joining, one end in the longitudinal direction of the joined body was fixed, and when a DC voltage was applied using the conductor thin films 36 and 37 on both surfaces of the substrate as electrodes, the joined body was bent and the Curie point (Tc = 210 ° C.) or less. Due to the low temperature bonding, the piezoelectric ceramic had piezoelectricity even after the bonding.
Next, when an alternating voltage (frequency: 10 kHz, 50 Vp-p) was applied and vibrated for 1 hour, the bonded body was observed. As a result, no peeling was observed on the bonded surface and sufficient bonding strength was obtained. From this, the joined body of this embodiment can be used as a piezoelectric actuator. That is, in the present embodiment, the bonded body anodic-bonded at a low temperature suppresses the oxidation of the conductive thin film generated at the time of anodic bonding, and is further damaged even when the substrate material having a different thermal expansion coefficient is used. It had a high bonding strength without any. The substrate used for the bonded body of the present invention has no material limitation due to thermal stress or pyroelectricity.

【0011】[実施例3]本発明の実施例3として、基
板に分極処理された角板形の基板寸法12mm×8mm
×0.3mm(厚さ)のチタン酸バリウム(BaTiO
3)を用い、実施例2と同様の構成の接合体を形成し
た。基板の両面に成膜した導電体薄膜には、Crを下敷
き層とするAl−Au合金薄膜を用いた。該導電体薄膜
は、電子ビーム蒸着法を用いてCr(膜厚50nm)、
Au(膜厚90nm)、Al(膜厚l0nm)を同一真
空中で順次基板上に成膜した後に、該基板を100℃で
30分間熱処理し合金化することにより作製した。Cr
は基板と導電体薄膜の密着力を上げるために導入した。
非晶質絶縁体は同様のものを用いた。以上の構成にて、
図1における陽極接合装置を用いて実施例2と同様の陽
極接合条件にて接合体を形成した。接合後に接合体の長
手方向の一端を固定し、基板の両面の圧電セラミックス
の両面の導電体薄膜を電極として直流電圧を印加したと
ころ接合体は屈曲した。キュリー点(Tc=120℃)
以下の低温にて接合したことにより、接合後も圧電セラ
ミックスは圧電性を有していた。すなはち、本実施例に
おいて低温にて陽極接合し形成した接合体は、予め分極
処理されたチタン酸バリウムの圧電性をなくすことなく
非晶質絶縁体と高い接合強度で接合できていた。
[Embodiment 3] As Embodiment 3 of the present invention, the dimensions of a square plate having a polarization-treated substrate are 12 mm × 8 mm.
× 0.3 mm (thickness) barium titanate (BaTiO 3
Using 3), a joined body having the same structure as in Example 2 was formed. The conductor thin film formed on both surfaces of the substrate was an Al-Au alloy thin film having Cr as an underlying layer. The conductor thin film is formed of Cr (film thickness 50 nm) by using an electron beam evaporation method,
After Au (film thickness 90 nm) and Al (film thickness 10 nm) were sequentially formed on the substrate in the same vacuum, the substrate was heat-treated at 100 ° C. for 30 minutes for alloying. Cr
Was introduced to increase the adhesion between the substrate and the conductor thin film.
The same amorphous insulator was used. With the above configuration,
A bonded body was formed under the same anodic bonding conditions as in Example 2 using the anodic bonding apparatus shown in FIG. After the joining, one end in the longitudinal direction of the joined body was fixed, and when a DC voltage was applied using the conductor thin films on both surfaces of the piezoelectric ceramics on both surfaces of the substrate as electrodes, the joined body was bent. Curie point (Tc = 120 ° C)
By joining at the following low temperature, the piezoelectric ceramic had piezoelectricity even after joining. That is, the bonded body formed by anodic bonding at a low temperature in this example could be bonded to the amorphous insulator with high bonding strength without losing the piezoelectricity of barium titanate that had been polarized in advance.

【0012】[実施例4]図5に本発明の接合体の実施
例4の断面図を示す。本実施例はリチウムイオンを有す
るガラスからなる非晶質絶縁体を真空蒸着法を用い第2
基板上に薄膜形成し、該非晶質絶縁体薄膜と第1基板上
の導電体薄膜を陽極接合した接合体に関するものであ
る。非晶質絶縁体薄膜44は、酸化リチウム(Li2
O)粉末のペレットを石英ガラスのスパッタリング用タ
ーゲット上に置き、真空蒸着法の一つであるスパッタリ
ング法を用いて第2基板41上に膜厚が10μmとなる
ように形成した。非晶質絶縁体薄膜44は、リチウム酸
化物を8%含有するシリコン酸化膜となっている。図5
において、本実施例の接合体の構成は以下の通りであ
る。第1基板40はAl導電体薄膜(100nm)4
6、47を電子ビーム蒸着法により圧電セラミックス4
2(富士セラミックス社製、製品番号C−8、12mm
×8mm×0.3mm(厚さ))の両面に成膜したもの
であり、第2基板41はAl導電体薄膜(100nm)
48を電子ビーム蒸着法によりパイレックスガラス43
(コーニング#7740、12mm×8mm×0.5m
m(厚さ))に成膜したものである。用いた圧電セラミ
ックスは予め分極処理してある。以上の構成にて、図1
における陽極接合装置を用いて非晶質絶縁体薄膜44と
Al導電体薄膜46を陽極接合し接合体を形成した。陽
極接合条件は、接合温度が150℃、導電体薄膜46と
導電体薄膜48に30Vの電圧を10分間印加し接合し
た。接合後に接合体の長手方向の一端を固定し、基板の
両面の導電体薄膜46、47を電極として直流電圧を印
加したところ接合体は屈曲し、キュリー点(Tc=21
0℃)以下の低温にて接合したことにより、接合後も圧
電セラミックスは圧電性を有していた。次に交流電圧
(周波数10kHz、50Vp-p)を1時間印加し振動
させた後に、接合体を観察したところ、接合面での剥が
れは見られず、十分な接合強度を有していた。このこと
から、本実施例の接合体は圧電アクチュエータとして利
用することが可能である。すなはち、本実施例により、
リチウムを含有する非晶質絶縁体薄膜と導電体薄膜を陽
極接合し高い接合強度を有する接合体を提供することが
可能となった。
[Embodiment 4] FIG. 5 shows a sectional view of Embodiment 4 of the joined body of the present invention. In this embodiment, an amorphous insulator made of glass containing lithium ions is formed by a vacuum evaporation method.
The present invention relates to a bonded body in which a thin film is formed on a substrate and the amorphous insulating thin film and the conductive thin film on the first substrate are anodically bonded. The amorphous insulator thin film 44 is made of lithium oxide (Li2
O) The powder pellets were placed on a quartz glass sputtering target and formed on the second substrate 41 by sputtering, which is one of the vacuum deposition methods, so that the film thickness was 10 μm. The amorphous insulator thin film 44 is a silicon oxide film containing 8% of lithium oxide. FIG.
In, the structure of the joined body of the present embodiment is as follows. The first substrate 40 is an Al conductor thin film (100 nm) 4
6 and 47 are piezoelectric ceramics 4 by electron beam evaporation method
2 (manufactured by Fuji Ceramics Co., product number C-8, 12 mm
X 8 mm x 0.3 mm (thickness)), and the second substrate 41 is an Al conductor thin film (100 nm).
Pyrex glass 43 by electron beam evaporation method
(Corning # 7740, 12mm x 8mm x 0.5m
m (thickness)). The piezoelectric ceramic used has been polarized in advance. With the above configuration, FIG.
The amorphous insulator thin film 44 and the Al conductor thin film 46 were anodic-bonded by using the anodic bonding apparatus in 1 above to form a bonded body. Regarding the anodic bonding conditions, the bonding temperature was 150 ° C., and a voltage of 30 V was applied to the conductor thin film 46 and the conductor thin film 48 for 10 minutes to bond them. After joining, one end in the longitudinal direction of the joined body was fixed, and when a DC voltage was applied using the conductor thin films 46 and 47 on both surfaces of the substrate as electrodes, the joined body was bent and the Curie point (Tc = 21
By bonding at a low temperature of 0 ° C.) or less, the piezoelectric ceramic had piezoelectricity even after bonding. Next, when an alternating voltage (frequency: 10 kHz, 50 Vp-p) was applied and vibrated for 1 hour, the bonded body was observed. As a result, no peeling was observed on the bonded surface and sufficient bonding strength was obtained. From this, the joined body of this embodiment can be used as a piezoelectric actuator. In other words, according to this example,
It has become possible to provide a bonded body having high bonding strength by anodic bonding an amorphous insulator thin film containing lithium and a conductive thin film.

【0013】[0013]

【発明の効果】本発明は、以上のようにリチウムイオン
を可動イオンとして含有する非晶質絶縁体を構成し、こ
れを基板上に形成した導電体薄膜と陽極接合によって接
合することにより、低温による陽極接合が可能となり、
これにより基板の材料が制限されることなく、導電体薄
膜の酸化を抑さえて接合強度の高い接合体を形成するこ
とができる。また、本発明においては、その非晶質絶縁
体を前記導電体薄膜の形成された基板とは別の基板上に
形成し、導電体薄膜と接合する構成を採用することによ
っても、同様に陽極接合時の接合温度を低温化すること
ができ、上記効果を達成することができる。
As described above, according to the present invention, by forming an amorphous insulator containing lithium ions as mobile ions as described above and joining it with a conductive thin film formed on a substrate by anodic bonding, Anodic bonding by
As a result, the material of the substrate is not limited, and it is possible to suppress the oxidation of the conductor thin film and form a bonded body having high bonding strength. Further, in the present invention, the amorphous insulator is formed on a substrate different from the substrate on which the conductor thin film is formed, and the structure in which the amorphous insulator is bonded to the conductor thin film is adopted. The joining temperature at the time of joining can be lowered, and the above effect can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接合体の実施例1の構成及び形成する
陽極接合装置の概略図である。
FIG. 1 is a schematic diagram of a configuration and an anodic bonding apparatus for forming a bonded body according to a first embodiment of the present invention.

【図2】本発明の実施例1である接合体のガラスから見
た導電体薄膜の接合面の光学顕微鏡写真に基づく図であ
る。
FIG. 2 is a diagram based on an optical microscope photograph of a bonding surface of a conductor thin film viewed from the glass of a bonding body that is Embodiment 1 of the present invention.

【図3】本発明の実施例1である接合体の接合温度と接
合強度の依存性を示す図である。
FIG. 3 is a diagram showing the dependency of the bonding temperature and the bonding strength of the bonded body of Example 1 of the present invention.

【図4】本発明の接合体の実施例2の断面図である。FIG. 4 is a cross-sectional view of a second embodiment of the joined body of the present invention.

【図5】本発明の接合体の実施例3の断面図である。FIG. 5 is a sectional view of Example 3 of the joined body of the present invention.

【符号の説明】 1、31 基板 4、34 非晶質絶縁体 12、36、37、46、47、48 導電体薄膜 20 プラテン 21 直流電源 22、23 針状電極 24 リード線 40 第1基板 41 第2基板 42 圧電セラミックス 43 パイレックスガラス 44 非晶質絶縁体薄膜[Description of Reference Signs] 1, 31 Substrate 4, 34 Amorphous insulator 12, 36, 37, 46, 47, 48 Conductor thin film 20 Platen 21 DC power source 22, 23 Needle-shaped electrode 24 Lead wire 40 First substrate 41 Second substrate 42 Piezoelectric ceramics 43 Pyrex glass 44 Amorphous insulator thin film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成した導電体薄膜と非晶質絶
縁体とを陽極接合により接合してなる接合体において、
前記非晶質絶縁体がリチウムイオンを可動イオンとして
含有していることを特徴とする導電体薄膜と非晶質絶縁
体との接合体。
1. A joined body obtained by joining a conductive thin film formed on a substrate and an amorphous insulator by anodic bonding,
A joined body of a conductor thin film and an amorphous insulator, wherein the amorphous insulator contains lithium ions as mobile ions.
【請求項2】 前記非晶質絶縁体が、感光性ガラスより
なることを特徴とする請求項1に記載の導電体薄膜と非
晶質絶縁体との接合体。
2. The joined body of a conductor thin film and an amorphous insulator according to claim 1, wherein the amorphous insulator is made of photosensitive glass.
【請求項3】 前記基板が、圧電体よりなることを特徴
とする請求項1に記載の導電体薄膜と非晶質絶縁体との
接合体。
3. The bonded body of a conductor thin film and an amorphous insulator according to claim 1, wherein the substrate is made of a piezoelectric material.
【請求項4】 前記圧電体が、圧電セラミックスよりな
ることを特徴とする請求項3に記載の導電体薄膜と非晶
質絶縁体との導電体薄膜と非晶質絶縁体との接合体。
4. The joined body of a conductor thin film and an amorphous insulator according to claim 3, wherein the piezoelectric body is made of piezoelectric ceramics.
【請求項5】 前記非晶質絶縁体が、前記導電体薄膜の
形成された基板と別の基板上に形成されていることを特
徴とする請求項1に記載の導電体薄膜と非晶質絶縁体と
の接合体。
5. The conductor thin film and amorphous according to claim 1, wherein the amorphous insulator is formed on a substrate different from the substrate on which the conductor thin film is formed. A joint with an insulator.
【請求項6】 前記導電体薄膜の形成された基板又は/
及び前記非晶質絶縁体の形成された基板が、圧電体より
なることを特徴とする請求項5に記載の導電体薄膜と非
晶質絶縁体との接合体。
6. A substrate on which the conductor thin film is formed or /
The joined body of a conductor thin film and an amorphous insulator according to claim 5, wherein the substrate on which the amorphous insulator is formed is made of a piezoelectric material.
【請求項7】 前記圧電体が、圧電セラミックスよりな
ることを特徴とする請求項6に記載の導電体薄膜と非晶
質絶縁体との導電体薄膜と非晶質絶縁体との接合体。
7. The bonded body of a conductor thin film and an amorphous insulator according to claim 6, wherein the piezoelectric body is made of piezoelectric ceramics.
【請求項8】 基板上に導電体薄膜を形成し、該導電体
薄膜にリチウムを含有する非晶質絶縁体を接し、加熱し
つつ前記導電体薄膜と前記絶縁体薄膜とに電圧を印加し
前記導電体薄膜と前記非晶質絶縁体とを接合することを
特徴とする接合体の形成方法。
8. A conductor thin film is formed on a substrate, an amorphous insulator containing lithium is brought into contact with the conductor thin film, and a voltage is applied to the conductor thin film and the insulator thin film while heating. A method for forming a bonded body, which comprises bonding the conductive thin film and the amorphous insulator.
【請求項9】 前記非晶質絶縁体を前記導電体薄膜の形
成された基板とは別の基板上に形成し、前記導電体薄膜
と接合するようにしたことを特徴とする請求項8に記載
の接合体の形成方法。
9. The method according to claim 8, wherein the amorphous insulator is formed on a substrate different from the substrate on which the conductor thin film is formed, and is joined to the conductor thin film. A method for forming a joined body as described above.
JP17545495A 1995-06-19 1995-06-19 Joint of conductive thin film and amorphous insulator and method of forming the same Expired - Fee Related JP3599428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17545495A JP3599428B2 (en) 1995-06-19 1995-06-19 Joint of conductive thin film and amorphous insulator and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17545495A JP3599428B2 (en) 1995-06-19 1995-06-19 Joint of conductive thin film and amorphous insulator and method of forming the same

Publications (2)

Publication Number Publication Date
JPH092845A true JPH092845A (en) 1997-01-07
JP3599428B2 JP3599428B2 (en) 2004-12-08

Family

ID=15996360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17545495A Expired - Fee Related JP3599428B2 (en) 1995-06-19 1995-06-19 Joint of conductive thin film and amorphous insulator and method of forming the same

Country Status (1)

Country Link
JP (1) JP3599428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363374A2 (en) 2010-03-05 2011-09-07 Seiko Instruments Inc. Manufacturing Method of MEMS Package, and Oscillator
KR101068115B1 (en) * 2009-04-03 2011-09-27 한밭대학교 산학협력단 Fabrication Method of Glass Substrate for FlipChip of Image Sensor
KR20110108290A (en) 2010-03-26 2011-10-05 세이코 인스트루 가부시키가이샤 Method of manufacturing an electronic device package, an electronic device package, and oscillator
EP2552020A2 (en) 2011-07-28 2013-01-30 Seiko Instruments Inc. Electronic device, oscillator, and method of manufacturing electronic device
CN113677824A (en) * 2019-04-18 2021-11-19 赛安希股份公司 Promoting adhesion of thin layers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068115B1 (en) * 2009-04-03 2011-09-27 한밭대학교 산학협력단 Fabrication Method of Glass Substrate for FlipChip of Image Sensor
EP2363374A2 (en) 2010-03-05 2011-09-07 Seiko Instruments Inc. Manufacturing Method of MEMS Package, and Oscillator
JP2011188145A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Manufacturing method of electronic device package, electronic device package, and oscillator
KR20110108290A (en) 2010-03-26 2011-10-05 세이코 인스트루 가부시키가이샤 Method of manufacturing an electronic device package, an electronic device package, and oscillator
JP2011205033A (en) * 2010-03-26 2011-10-13 Seiko Instruments Inc Method of manufacturing electronic device package, electronic device package, and oscillator
EP2390908A2 (en) 2010-03-26 2011-11-30 Seiko Instruments Inc. Method of manufacturing an electronic device package
US8530986B2 (en) 2010-03-26 2013-09-10 Seiko Instruments Inc. Manufacturing method of electronic device package, electronic device package, and oscillator
EP2552020A2 (en) 2011-07-28 2013-01-30 Seiko Instruments Inc. Electronic device, oscillator, and method of manufacturing electronic device
CN113677824A (en) * 2019-04-18 2021-11-19 赛安希股份公司 Promoting adhesion of thin layers

Also Published As

Publication number Publication date
JP3599428B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
Wallis Field assisted glass sealing
GB2161647A (en) Piezoelectric devices
EP3637486B1 (en) Laminated substrate with potassium sodium niobate piezoelectric film and manufacturing method thereof
US9841472B2 (en) Magnetoelectric sensor and method for the production thereof
US5036241A (en) Piezoelectric laminate and method of manufacture
US20210111698A1 (en) Bonded body and elastic wave element
JPS61177900A (en) Piezo-electric element and its manufacture
JP3599428B2 (en) Joint of conductive thin film and amorphous insulator and method of forming the same
Rittenmyer Electrostrictive ceramics for underwater transducer applications
JPH10209517A (en) Piezoelectric element
Yamashita et al. Enhanced electrical properties by AC poling of relaxor-Pb (Zr, Ti) O3 single crystals manufactured by the solid state crystal growth method
Sayer et al. Integrated piezoelectric and pyroelectric devices from thin film ferroelectrics
JPS63124555A (en) Substrate for semiconductor device
Steinhausen et al. Clamping of piezoelectric thin films on metallic substrates: influence on the effective piezoelectric modulus d/sub 33
Sasaki et al. Materials science communication mechanism of the anodic bonding between pzt ceramics and silicon wafer
JPH10215008A (en) Piezoelectric ceramic thin-film device
JP3114459B2 (en) Method for manufacturing piezoelectric element
KR950001294B1 (en) Thin layer infrared ray sensor manufacturing method
WO2022191011A1 (en) Vibration power generation element
JPS6030115A (en) Ferrodielectric thin film element
JPS63279504A (en) Manufacture of ferroelectric thin film
WO2024135076A1 (en) Manufacturing method for wavelength conversion element, and wavelength conversion element
JPH01114085A (en) Piezoelectric multilayer film and manufacture of the same
JP2001068750A (en) Laminated piezoelectric actuator
JPH0745801A (en) Method of joining boards

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees