JPH09283266A - Manufacture of surface heater - Google Patents

Manufacture of surface heater

Info

Publication number
JPH09283266A
JPH09283266A JP8096729A JP9672996A JPH09283266A JP H09283266 A JPH09283266 A JP H09283266A JP 8096729 A JP8096729 A JP 8096729A JP 9672996 A JP9672996 A JP 9672996A JP H09283266 A JPH09283266 A JP H09283266A
Authority
JP
Japan
Prior art keywords
sheet
resin
heating element
carbon fiber
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096729A
Other languages
Japanese (ja)
Inventor
Yasuhiko Yumitate
恭彦 弓立
Takayuki Mine
孝之 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP8096729A priority Critical patent/JPH09283266A/en
Publication of JPH09283266A publication Critical patent/JPH09283266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a product, in which a change of resistance value is not generated before and after the forming, by using a sheet, which is formed by heating, compressing and curing a composite material formed of carbon fiber and thermosetting resin, as a conductive sheet at the time of manufacturing surface heater. SOLUTION: A surface heater is formed by providing a conductive sheet, in which electrode materials are arranged, between resin layers, and heating and compressing them for integration. As a conductive sheet, a sheet formed by heating, compressing and curing a composite sheet, which is formed of carbon fiber and thermosetting resin, and forming it at the predetermined thickness is used. For example, after impregnating a carbon fiber surface material with the thermosetting resin, which is diluted with the solvent, the resin is formed into a sheet as a tack-free prepreg in the precuring condition. In this composite sheet, content of the carbon fiber is set at 30g/m<2> , and as a carbon fiber, pitch group curved carbon fiber is desirably used. As a thermosetting resin, phenol resin, urea-formaldehyde resin, melamine resin, unsaturated polyester resin and polyurethane resin or the like is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は形態がシート状で通
電により加熱される、いわゆる面状発熱体の製造方法に
関する。さらに詳しくは炭素繊維を用いた遠赤外線放射
面状発熱体に有利な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a so-called planar heating element, which is in the form of a sheet and is heated by energization. More specifically, the present invention relates to a manufacturing method advantageous for a far-infrared radiation surface heating element using carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維を用いた面状発熱体の場合、炭
素繊維をシート状の形態として用いると、樹脂や無機硬
化物に混入分散するものに比べて炭素繊維の分布が均質
で、面状発熱体の発熱温度のばらつきが少なくなる利点
があり、これらのシート状の炭素繊維を基材とした面状
発熱体に関しては、多くの提案がなされている。
2. Description of the Related Art In the case of a planar heating element using carbon fibers, when the carbon fibers are used in the form of a sheet, the distribution of the carbon fibers is more uniform than that of those mixed with and dispersed in a resin or an inorganic cured product, There is an advantage that the variation of the heat generation temperature of the sheet heating element is reduced, and many proposals have been made regarding the sheet heating element using these sheet-shaped carbon fibers as a base material.

【0003】例えば、特公昭51−3098号や特開昭
63−6169号公報には炭素繊維とセルロース繊維な
どとの混抄ペーパーを用いる面状発熱体について、また
特開昭61−196487号や特開昭62−95311
号公報には、炭素繊維混抄紙に熱硬化性樹脂を含浸さ
せ、一体成形する方法が記載されている。
For example, JP-B-51-3098 and JP-A-63-6169 disclose a planar heating element using a mixed paper made of carbon fibers and cellulose fibers, and JP-A-61-196487 and JP-A-61-196487. Kaisho 62-95311
The publication describes a method of impregnating a carbon fiber mixed paper with a thermosetting resin and integrally molding the paper.

【0004】特開平6−260264号公報には、シー
ト間に隙間を生じることなく電気絶縁性を十分確保し、
一体成形を可能とするとして、導電体シート(炭素繊維
抄紙シート)と絶縁シートとの間に樹脂層(ポリウレタ
ンフィルム)を設けた後に加熱圧縮して、該ウレタン樹
脂を該抄紙シートに含浸させると同時に成形する方法が
提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 6-260264 discloses that electric insulation is sufficiently secured without forming a gap between sheets.
When a resin layer (polyurethane film) is provided between a conductor sheet (carbon fiber papermaking sheet) and an insulating sheet, the urethane resin is impregnated into the papermaking sheet to enable integral molding. A method of simultaneously molding has been proposed.

【0005】[0005]

【発明が解決しようとする課題】炭素繊維自体はもとも
と遠赤外線放出体であるが、その遠赤外線放射能を発揮
できるまで炭素繊維目付量を増やすと、面状発熱体とし
ての電気抵抗値が低くなりすぎて、実用的な範囲を逸脱
して使用できなくなったり、炭素繊維目付量の増加によ
り、ペーパーの厚さが嵩むため、特開平6−26026
4号などの従来の方法では、加熱加圧成形において、ペ
ーパーの圧縮による厚密の程度に微妙な差異が生じて、
得られた面状発熱体の個々の電気抵抗値のバラツキが大
きくなり、製品歩留まりが著しく低下するなどの問題を
生じて、実用化に至っていない。
The carbon fiber itself is originally a far infrared ray emitter, but if the carbon fiber areal weight is increased until the far infrared ray radioactivity can be exhibited, the electric resistance value as a planar heating element becomes low. If the amount of carbon fiber is too large to use beyond the practical range, or the carbon fiber areal weight is increased, the thickness of the paper is increased.
In the conventional method such as No. 4, in the heat and pressure molding, there is a slight difference in the degree of denseness due to the compression of the paper,
The obtained sheet-like heat generating element has a large variation in the electric resistance value, resulting in a problem that the product yield is remarkably reduced, and has not been put into practical use.

【0006】また、遠赤外線放射面状発熱体に関し、例
えば、特開平2−312180号公報に記載のごとく加
熱源となる発熱体と特殊セラミックスなどの遠赤外線放
出体との組み合わせの提案があるのみで、炭素繊維その
ものを遠赤外線放出体とする、炭素繊維赤外線放射面状
発熱体の技術に関する記述はほとんどみられない。
Regarding the far-infrared radiation surface heating element, for example, only a combination of a heating element serving as a heating source and a far-infrared emitting element such as special ceramics has been proposed, as described in JP-A-2-312180. However, there is almost no description about the technology of the carbon fiber infrared radiating surface heating element in which the carbon fiber itself is used as the far infrared emitting body.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
炭素繊維赤外線放射面状発熱体に関する課題を解決すべ
く鋭意検討した結果、上記の炭素繊維を含むペーパーの
替わりに、炭素繊維と熱硬化性樹脂とからなる複合体シ
ートを加熱圧縮硬化により予め所定の厚さに形状固定し
たシートを導電体シートとして用いると、加熱圧縮成形
前後の電気抵抗値の変化がほとんどなく、安定した抵抗
値となる事を見いだし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the problems associated with these carbon fiber infrared radiating surface heating elements, the present inventors have found that instead of the paper containing the carbon fibers, carbon fibers When a composite sheet composed of a thermosetting resin and having a shape fixed in advance to a predetermined thickness by heat compression curing is used as a conductor sheet, there is almost no change in the electric resistance value before and after heat compression molding, and a stable resistance is obtained. After finding the value, the present invention was completed.

【0008】すなわち、本発明は、電極材を配した導電
体シートを樹脂層の間に設けた後に加熱圧縮して一体成
形する面状発熱体の製造方法において、導電体シート
が、炭素繊維と熱硬化性樹脂とからなる複合体シートを
加熱圧縮硬化により予め所定の厚さに形状固定したシー
トであることを特徴とする面状発熱体の製造方法を提供
するものである。
That is, according to the present invention, in a method for producing a planar heating element, in which a conductor sheet having an electrode material is provided between resin layers and then heated and compressed to integrally mold the conductor sheet, the conductor sheet is made of carbon fiber. It is intended to provide a method for producing a planar heating element, which is a sheet in which a composite sheet made of a thermosetting resin is fixed in shape to a predetermined thickness in advance by heat compression compression.

【0009】本発明では、炭素繊維と熱硬化性樹脂とか
らなる複合体シートが用いられる。本発明の炭素繊維と
しては、例えばピッチ系炭素繊維、PAN系炭素繊維、
レーヨン系炭素繊維など、いずれの種類も適用可能であ
るが、ピッチ系炭素繊維が好ましく、とりわけ等方性ピ
ッチから誘導される炭素繊維が最適である。本発明の狙
いである遠赤外線放出体としての効果を得るまで炭素繊
維の含有量を高めると、体積固有抵抗値の低いPAN系
炭素繊維の場合は、面状発熱体としての電気抵抗値が小
さく成りすぎ、実用の範囲を逸脱する傾向にある。これ
に比べてピッチ系炭素繊維は体積固有抵抗値が適度な範
囲にあり、本発明に適しているといえる。
In the present invention, a composite sheet made of carbon fiber and thermosetting resin is used. Examples of the carbon fiber of the present invention include pitch-based carbon fiber, PAN-based carbon fiber,
Although any type such as rayon-based carbon fiber can be applied, pitch-based carbon fiber is preferable, and carbon fiber derived from isotropic pitch is most preferable. When the content of the carbon fiber is increased until the effect of the far-infrared ray emitting body, which is the aim of the present invention, is obtained, in the case of the PAN-based carbon fiber having a low volume specific resistance value, the electric resistance value as the planar heating element is small. There is a tendency for it to become excessive and deviate from the practical range. On the other hand, the pitch-based carbon fiber has a volume resistivity value in an appropriate range, and can be said to be suitable for the present invention.

【0010】本発明の炭素繊維としては、材料構成とし
て、炭素繊維を単独で、もしくは必要に応じて金属メッ
キ繊維、パルプ、有機繊維やガラス繊維等を併用したも
のが挙げられる。
As the carbon fiber of the present invention, as the material constitution, carbon fiber alone or in combination with metal-plated fiber, pulp, organic fiber, glass fiber or the like as required can be mentioned.

【0011】炭素繊維の単繊維の形状は、上記シートの
形成に際して、各々単繊維状態にまで開繊し、方向性が
なくランダムに、均一に分散して、単繊維同士が適度に
絡み合うのが好ましい。この観点から曲状の炭素繊維が
適しており、例えば、渦流法で製造されたピッチ系曲状
炭素繊維が挙げられる。
When forming the above-mentioned sheet, the shape of the single fiber of carbon fiber is such that the single fiber is opened to a single fiber state and randomly dispersed uniformly without directionality so that the single fibers are appropriately entangled with each other. preferable. From this viewpoint, curved carbon fibers are suitable, and examples thereof include pitch-based curved carbon fibers manufactured by the vortex method.

【0012】ここでいう曲状炭素繊維としては、繊維の
モノフィラメントを抜き取り、無荷重下に於ける繊維直
径の200倍の長さの任意の2点間のモノフィラメント
の実長と当該2点間距離との比率が、平均1.2以上の
曲状炭素繊維が好ましい。
As the curved carbon fiber, the monofilament of the fiber is extracted, and the actual length of the monofilament between two arbitrary points having a length 200 times the fiber diameter under no load and the distance between the two points. Curved carbon fibers having an average ratio of 1.2 or more are preferred.

【0013】炭素繊維としては、面状のもの、例えばペ
ーパー、シート、マット、不織布、織布等の形態を示す
ものが挙げられる。これらの形態のうち炭素繊維の分散
の均一性から、ペーパーが最適である。本発明では、機
械的絡み合いのみで、或いはバインダーとして例えばエ
ポキシ樹脂、アクリル樹脂、ポバール樹脂等の少量を用
いて、二次元方向(縦横)の形状のみが保持された、厚
み方向には形状固定されていない炭素繊維面状体が好適
に用いられる。
Examples of carbon fibers include sheet-like ones such as paper, sheet, mat, non-woven fabric and woven fabric. Of these forms, paper is most suitable because of the uniform dispersion of carbon fibers. In the present invention, only the mechanical entanglement is used, or a small amount of epoxy resin, acrylic resin, Poval resin, etc. is used as the binder, and only the two-dimensional (vertical and horizontal) shape is retained, and the shape is fixed in the thickness direction. A carbon fiber sheet which is not present is preferably used.

【0014】二次元方向(縦横)の形状のみが固定され
た、厚み方向には形状固定されていない本発明で用いる
好適な炭素繊維面状体は、厚み方向に圧力をかけたとき
にその厚みが小さくなるものである。
The preferred carbon fiber sheet for use in the present invention, which has a fixed shape only in the two-dimensional direction (longitudinal and horizontal directions) and is not fixed in the thickness direction, has a thickness when pressure is applied in the thickness direction. Is smaller.

【0015】複合シート中に含まれる炭素繊維の含有量
は、いずれの範囲であっても本発明の方法を適用できる
が、遠赤外線放射効果を得るには炭素繊維としての含有
量は30g/m2以上が、さらに好ましくは50g/m2
以上で適用される。
The content of carbon fiber contained in the composite sheet can be applied to the method of the present invention in any range, but the content as carbon fiber is 30 g / m in order to obtain the far infrared radiation effect. 2 or more, more preferably 50 g / m 2
The above applies.

【0016】上記複合体シートを構成する熱硬化性樹脂
としては、例えばフェノール樹脂、尿素樹脂、メラミン
樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ア
ルキッド樹脂、エポキシ樹脂、シリコン樹脂、ポリイミ
ド樹脂などが使用でき、必要に応じて硬化させるための
硬化剤、促進剤を併用する。即ち樹脂自体で熱硬化性の
ものと、樹脂自体は熱可塑性樹脂であるがそれに硬化剤
を併用することにより、全体として熱硬化性となる熱硬
化性樹脂組成物も、本発明の熱硬化性樹脂には包含され
るものとする。これらの樹脂のうち、フェノール樹脂
は、複合体シートの製造および導電体シートの成形の容
易さ、耐熱性、形状を維持するための適度の硬さなどの
性能バランスがよく、本発明にとって好ましい樹脂とい
える。
As the thermosetting resin constituting the above composite sheet, for example, phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, alkyd resin, epoxy resin, silicone resin, polyimide resin, etc. can be used. If necessary, a curing agent and an accelerator for curing are used together. That is, the thermosetting resin composition itself is a thermosetting resin, and the resin itself is a thermoplastic resin, but a thermosetting resin composition which becomes thermosetting as a whole when a curing agent is used in combination with the thermosetting resin of the present invention. It shall be included in the resin. Among these resins, the phenol resin is a resin preferable for the present invention because it has a good performance balance such as ease of production of the composite sheet and molding of the conductor sheet, heat resistance, and appropriate hardness for maintaining the shape. Can be said.

【0017】本発明における炭素繊維と熱硬化性樹脂か
らなる複合体シートは、既存の種々の方法で作成され
る。例えば、炭素繊維面状体に熱硬化性樹脂を必要に応
じて例えばアセトン、MEK、メタノール等の溶剤で希
釈して、または樹脂の粘度によっては溶剤を用いないで
そのまま含浸させたのち、B−Stage化を行って樹
脂を半硬化状態でタックフリーのプリプレグとする方
法、炭素繊維シートの製造時に同時に熱硬化性樹脂粉末
を添加し、湿式抄紙またはエアレイ法などの乾式法でシ
ート状とする方法が挙げられる。
The composite sheet composed of carbon fiber and thermosetting resin in the present invention is prepared by various existing methods. For example, the carbon fiber sheet may be diluted with a thermosetting resin as needed, for example, with a solvent such as acetone, MEK, or methanol, or may be impregnated as it is without using a solvent depending on the viscosity of the resin. A method of making a resin into a tack-free prepreg in a semi-cured state by making it into a stage, and a method of adding a thermosetting resin powder at the same time when manufacturing a carbon fiber sheet and making it into a sheet by a dry method such as wet papermaking or an air laid method. Is mentioned.

【0018】導電体シートは、炭素繊維と熱硬化性樹脂
とからなる複合体シートを加熱圧縮硬化して予め所定の
厚さに形状固定される。ここで、二次元形状固定だけで
なく厚さ方向の形状固定がなされ、三次元形状全体が固
定される。
The conductor sheet is preliminarily fixed in shape to a predetermined thickness by heat-compressing and curing a composite sheet made of carbon fiber and thermosetting resin. Here, not only the two-dimensional shape is fixed but also the shape in the thickness direction is fixed, and the entire three-dimensional shape is fixed.

【0019】この成形方法は特に限定されないが、例え
ば、通常の圧縮成形機を用いて炭素繊維と熱硬化性樹脂
からなる複合体シートを加熱加圧して樹脂を硬化させる
方法、該複合体シートを加熱装置を備えたダブルベルト
プレスのような連続プレス機で加熱加圧硬化させる方法
が適用される。
This molding method is not particularly limited, but for example, a method of heating and pressing a composite sheet composed of carbon fibers and a thermosetting resin using an ordinary compression molding machine to cure the resin, the composite sheet A method of heating, pressurizing and curing with a continuous press machine such as a double belt press equipped with a heating device is applied.

【0020】導電体シートの厚さは、加熱加圧硬化時
に、スペーサーを用いれば用意に調整できるが、場合に
よっては加圧圧力の調整のみでも制御することができ
る。
The thickness of the conductor sheet can be easily adjusted by using a spacer at the time of heat and pressure curing, but in some cases, it can be controlled only by adjusting the pressure applied.

【0021】樹脂未充填の空隙を有する多孔質の厚み方
向の形状固定がなされた導電性シートは、その空隙
(孔)に樹脂成分が侵入して、後記樹脂層(接着性樹
脂)との接着性をより向上させるのに好適である。2つ
の樹脂層からこの空隙に樹脂が侵入してそれらが合一す
る様にすると、導電性シートと樹脂層との接着は、理論
的に最大となる。
In a conductive sheet in which the shape is fixed in the thickness direction of a porous material having voids not filled with resin, a resin component penetrates into the voids (pores) and adheres to a resin layer (adhesive resin) described later. It is suitable for further improving the property. When the resin enters the voids from the two resin layers and they are united with each other, the adhesion between the conductive sheet and the resin layer theoretically becomes maximum.

【0022】導電性シートの空隙率(樹脂未充填部分の
割合)は、例えばそれを得るための炭素繊維と熱硬化性
樹脂との比率で調節することができる。
The porosity of the conductive sheet (ratio of the resin-unfilled portion) can be adjusted by, for example, the ratio of the carbon fiber and the thermosetting resin for obtaining it.

【0023】炭素繊維と熱硬化性樹脂との比率は、特に
制限されるものではなく、通常は炭素繊維100部に対
して樹脂固形分換算で10〜200部の範囲で、好まし
くは炭素繊維100部に対して樹脂20〜70部の範囲
で使用する。
The ratio of the carbon fiber to the thermosetting resin is not particularly limited, and is usually in the range of 10 to 200 parts in terms of resin solid content based on 100 parts of the carbon fiber, preferably 100 parts of the carbon fiber. Used in the range of 20 to 70 parts of resin with respect to parts.

【0024】上記範囲であると、導電体シートに樹脂未
充填の空隙が発現し多孔質となり、そこに樹脂層の樹脂
が侵入する結果、樹脂層との接着性が単なる面接着の場
合に比べて、極めて良好になる。しかも、導電体シート
の厚み方向の形状が十分固定され、次工程の各成形サイ
クル毎のみならず、次工程での加熱圧縮成形前後で電気
抵抗値の変動も小さくなり極めて好ましい。
Within the above range, voids not filled with resin appear in the conductor sheet and become porous, and as a result of the resin in the resin layer penetrating there, the adhesiveness with the resin layer is higher than that in the case of simple surface adhesion. Will be extremely good. Moreover, the shape of the conductor sheet in the thickness direction is sufficiently fixed, and variation in electric resistance value before and after the heat compression molding in the next step is small, which is extremely preferable.

【0025】通電の為の電極材は、導電性シートの所定
の電極材取付位置に直接配置して一体成形に供する。通
常、電極材は、最終的に得られる発熱体の発熱面積をよ
り大きく取るために、形状固定された導電性シートの対
向する2辺に、帯状となる様に辺に沿って配される。ま
た、電極へ電圧を印可するのを容易なものにするために
は、沿わした各辺よりもやや長い電極を用いる様にすれ
ばよい。
The electrode material for energizing is directly arranged at a predetermined electrode material mounting position on the conductive sheet and is subjected to integral molding. Usually, the electrode material is arranged along two sides facing each other of the shape-fixed conductive sheet so as to form a strip shape in order to increase the heat generation area of the finally obtained heating element. Further, in order to make it easy to apply a voltage to the electrodes, it suffices to use electrodes that are slightly longer than the respective sides along which they are arranged.

【0026】電極材は、予め複合体シートのみを加熱圧
縮硬化した形状固定されたシートに配する様にしてもよ
いし、加熱圧縮硬化する前の複合体シートにそれを配し
て、熱硬化性樹脂の硬化と同時にこの電極材をそれに接
着する様にしてもよい。この電極材としては各種の導電
性材料が使用可能である。電極線の具体例としては、例
えば金属または導電性ポリマーのシート、箔、線束、編
み線、編物、織物等が使用可能である。
As the electrode material, only the composite sheet may be preliminarily arranged on a shape-fixed sheet obtained by heating and compression curing, or it may be disposed on the composite sheet before being heat compression curing, and then thermosetting. The electrode material may be adhered to the resin at the same time as the hardening of the resin. Various conductive materials can be used as the electrode material. As a specific example of the electrode wire, for example, a sheet of metal or conductive polymer, foil, wire bundle, braided wire, knitted fabric, woven fabric, or the like can be used.

【0027】本発明で導電体シートを挟んで配置される
樹脂層の樹脂としては、加熱により溶融して積層物を一
体化接着できるものであればよい。熱接着性樹脂として
は、熱硬化性樹脂も熱可塑性樹脂も使用できる。熱硬化
性樹脂としては、例えばフェノール樹脂、尿素樹脂、メ
ラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹
脂、アルキッド樹脂、エポキシ樹脂、シリコン樹脂、ポ
リイミド樹脂が、熱可塑性樹脂としては例えばポリアミ
ド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、
ABS樹脂、ポリフェニレンオキシド樹脂、ポリエチレ
ンテレフタレート樹脂、ポリブチレンテレフタレート樹
脂、ポリアリレート樹脂、ポリサルフォン樹脂、ポリフ
ェニレンサルファイド樹脂、ポリエーテルサルフォン樹
脂、ポリアリルサルフォン樹脂、ポリオキシベンジレン
樹脂、ポリテトラフロロエチレン樹脂、ポリエーテルエ
ーテルケトン樹脂、ポリエーテルイミド樹脂、ポリイミ
ド樹脂、ポリアミドイミド樹脂、液晶樹脂等が適用され
る。
In the present invention, the resin for the resin layers arranged with the conductor sheet interposed therebetween may be any resin that can be melted by heating to integrally bond the laminate. A thermosetting resin or a thermoplastic resin can be used as the thermoadhesive resin. Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, alkyd resin, epoxy resin, silicone resin, and polyimide resin, and examples of thermoplastic resin include polyamide resin, polyacetal resin, Polycarbonate resin,
ABS resin, polyphenylene oxide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyarylate resin, polysulfone resin, polyphenylene sulfide resin, polyether sulfone resin, polyallyl sulfone resin, polyoxybenzylene resin, polytetrafluoroethylene resin , Polyetheretherketone resin, polyetherimide resin, polyimide resin, polyamideimide resin, liquid crystal resin and the like are applied.

【0028】これらの樹脂は単独のシート、フィルムと
して使用できるが、表面に使う絶縁シートあるいはフィ
ルムに塗布、又はラミネートした状態でも使用できる。
或いは、絶縁のためにガラス繊維、アラミド繊維、パル
プ繊維等に代表される非導電繊維からなる織布、不織
布、マット等を基材とした上記樹脂とのプリプレグも使
用できる。または、表面に使う絶縁シートあるいはフィ
ルムに塗布、又はラミネートした状態で使用することも
できる。
These resins can be used as a single sheet or film, but can also be used in a state of being coated or laminated on an insulating sheet or film used on the surface.
Alternatively, for insulation, a prepreg with the above resin based on a woven cloth, a non-woven cloth, a mat or the like made of a non-conductive fiber typified by glass fiber, aramid fiber, pulp fiber or the like can also be used. Alternatively, it can be used in a state of being coated or laminated on an insulating sheet or film used for the surface.

【0029】これらの樹脂層は、用途、使用温度、使用
環境、雰囲気などに応じて適宜選択されるが、ガラス繊
維とエポキシ樹脂とのプリプレグシートは、成形の容易
さ、接着性、電気絶縁性、耐熱性などの性能バランスが
採れており、本発明にとって好ましい樹脂層といえる。
These resin layers are appropriately selected according to the application, operating temperature, operating environment, atmosphere, etc., but the prepreg sheet of glass fiber and epoxy resin is easy to mold, has an adhesive property, and has an electrical insulating property. It has a good balance of properties such as heat resistance and can be said to be a preferable resin layer for the present invention.

【0030】本発明での絶縁シートは、表面の電気絶縁
性を確実にし安全を確保するために有効である。この絶
縁シートとしては、成形時または使用温度、圧力で溶融
しないフィルム、シートを使用することが好ましい。例
えば、ポリフッ化ビニリデン、耐熱性ポリ塩化ビニル、
各種のポリエステル、ポリウレタン、ナイロン、ポリカ
ーボネート、各種ポリオレフィン、ポリフェニレンサル
ファイド樹脂、ポリサルフォン樹脂、液晶樹脂等、ほと
んどのフィルム、シートが使用でき、面状発熱体の最高
使用温度および成形温度を考慮して適宜選定する。
The insulating sheet of the present invention is effective for ensuring the electrical insulation of the surface and ensuring safety. As this insulating sheet, it is preferable to use a film or sheet that does not melt at the time of molding or at the operating temperature and pressure. For example, polyvinylidene fluoride, heat resistant polyvinyl chloride,
Most films and sheets such as various polyesters, polyurethanes, nylons, polycarbonates, various polyolefins, polyphenylene sulfide resins, polysulfone resins, liquid crystal resins, etc. can be used. To do.

【0031】本発明では、各シートを積層しそれぞれが
接着する様に、一体成形して面状発熱体とする。まず始
めに、面状発熱体の構成に従いレイアップする。下層か
ら順に、樹脂層/導電体シート/電極材/樹脂層と積み
重ねれば良い。製品形態のものは、下層から順に、絶縁
シート/樹脂層/導電体シート/電極材/樹脂層/絶縁
シートと積み重ねる。
In the present invention, the sheet-like heating elements are integrally formed so that the sheets are laminated and adhered to each other. First, layup is performed according to the structure of the sheet heating element. The resin layer / conductor sheet / electrode material / resin layer may be stacked in order from the lower layer. In the product form, the insulating sheet / resin layer / conductor sheet / electrode material / resin layer / insulating sheet are stacked in order from the bottom layer.

【0032】樹脂層として熱可塑性樹脂を使用した場合
の成形方法としては、加熱圧縮成形に際し、接着させた
樹脂フィルムの溶融温度以下に成形品温度を下げてから
除圧、離型する。勿論、本工程に於いて、表面層となる
ポリエステルフィルムに、接着させる熱可塑性、又は熱
硬化性樹脂を予めコーティング、又はフィルムをラミネ
ートして表面層と接着用樹脂とを一体として使用するこ
とは可能であり、成形工程の簡略化の点でより好まし
い。
As a molding method when a thermoplastic resin is used as the resin layer, the temperature of the molded product is lowered to a temperature not higher than the melting temperature of the adhered resin film, and then depressurized and released during the heat compression molding. Of course, in this step, the polyester film to be the surface layer may be previously coated with a thermoplastic or thermosetting resin to be adhered, or the film may be laminated to use the surface layer and the adhesive resin as one body. It is possible and more preferable in terms of simplification of the molding process.

【0033】樹脂層として熱硬化性樹脂または熱可塑性
樹脂を含浸させたプリプレグを使用する場合の成形方法
としては、加熱圧縮成形法が最も適しており、常圧、真
空成形等の成形装置、成形条件を適宜選択できる。
As a molding method when a prepreg impregnated with a thermosetting resin or a thermoplastic resin is used as a resin layer, a heat compression molding method is most suitable, and a molding apparatus such as normal pressure or vacuum molding, molding The conditions can be appropriately selected.

【0034】[0034]

【発明の実施形態】本発明は、次の実施態様を含む。BEST MODE FOR CARRYING OUT THE INVENTION The present invention includes the following embodiments.

【0035】1.炭素繊維と熱硬化性樹脂を必須成分と
した縦横の二次元形状のみが形状固定された複合体シー
トを、前記シート中の熱硬化性樹脂が硬化する様に加熱
圧縮硬化して予め所定の厚さに形状固定した、通電可能
に電極が配された導電性シートを、前記導電性シートに
接着しうる同一でも異なっていてもよい2つの熱接着性
樹脂層の間に設けた後に、加熱圧縮して、それらを接着
し一体成形する面状発熱体の製造方法。 2.炭素繊維として曲状炭素繊維を用いた、形状固定し
た、電極が配された導電性シートを用いる上記1記載の
製造方法。 3.曲状炭素繊維が、繊維のモノフィラメントを抜き取
り、無荷重下に於ける繊維直径の200倍の長さの任意
の2点間のモノフィラメントの実長と当該2点間距離と
の比率が、平均1.2以上の曲状炭素繊維である上記1
又は2記載の製造方法。 4.形状固定した、電極が配された導電性シートが、熱
硬化性樹脂未充填の空隙を有する多孔質のシートであ
り、当該形状固定されたシートの空隙に熱接着性樹脂が
侵入する様に加熱圧縮する上記1、2又は3記載の製造
方法。 5.熱接着性樹脂が熱硬化性樹脂の場合には、それを溶
融して熱硬化する様に加熱圧縮をし、熱接着性樹脂が熱
可塑性樹脂の場合には、それ溶融して加熱圧縮をしてか
ら冷却を行う上記1、2、3又は4記載の製造方法。 6.形状固定した、電極が配された導電性シートが、炭
素繊維と熱硬化性樹脂を必須成分とした半硬化状態のタ
ックフリーの複合体シートに、通電可能となる様にその
対向する2辺に帯状となる様に電極を配し、前記シート
中の熱硬化性樹脂が硬化する様に加熱圧縮硬化して、予
め所定の厚さに形状固定するとともに、電極をも接着固
定した、電極が配された導電性シートである上記1、
2、3、4又は5記載の製造方法。
1. A composite sheet in which only the vertical and horizontal two-dimensional shapes having carbon fiber and thermosetting resin as essential components are fixed in shape is heated and compression-cured so that the thermosetting resin in the sheet is cured to a predetermined thickness. After providing a conductive sheet having a fixed shape and provided with electrodes capable of conducting electricity between two thermally adhesive resin layers which may be the same or different and which can be adhered to the conductive sheet, the sheet is heated and compressed. Then, a method for manufacturing a planar heating element in which they are bonded and integrally molded. 2. 2. The production method according to 1 above, wherein a curved shaped carbon fiber is used as the carbon fiber, and a conductive sheet having a fixed shape and provided with electrodes is used. 3. The curved carbon fiber extracts the monofilament of the fiber, and the ratio of the actual length of the monofilament between any two points having a length 200 times the fiber diameter under no load and the distance between the two points is 1 on average. 1 above, which is a curved carbon fiber of 2 or more
Or the production method according to 2. 4. The shape-fixed conductive sheet on which the electrodes are arranged is a porous sheet having voids not filled with a thermosetting resin, and heated so that the thermoadhesive resin enters the voids of the shape-fixed sheet. The manufacturing method according to the above 1, 2, or 3, which comprises compressing. 5. If the heat-adhesive resin is a thermosetting resin, heat and compress it so that it melts and thermosets.If the heat-adhesive resin is a thermoplastic resin, melt it and heat-compress it. The manufacturing method according to the above 1, 2, 3 or 4, which is performed after cooling. 6. A shape-fixed conductive sheet with electrodes is attached to a semi-cured, tack-free composite sheet that contains carbon fiber and a thermosetting resin as its essential components on its two opposite sides so that it can be energized. The electrodes are arranged so as to form a strip shape, and are heat-compression-cured so that the thermosetting resin in the sheet is cured, and the shape is fixed in advance to a predetermined thickness, and the electrodes are also fixed by adhesion. The above-mentioned 1, which is a conductive sheet,
The manufacturing method according to 2, 3, 4 or 5.

【0036】次に本発明の実施の形態を、好ましい実施
態様に基づいて説明する。繊維のモノフィラメントを抜
き取り、無荷重下に於ける繊維直径の200倍の長さの
任意の2点間のモノフィラメントの実長と当該2点間距
離との比率が、平均1.2以上の曲状ピッチ系炭素繊維
の、縦横の二次元の面形状のみが形状固定された面状体
に、熱硬化性樹脂を含浸した、それら二者を必須成分と
した、炭素繊維含有量50g/m2で、炭素繊維100
重量部当たり熱硬化性樹脂20〜70重量部である、半
硬化状態のタックフリーの複合体シートの一方の面に、
通電可能となる様にその対向する2辺に帯状となる様
に、そして各辺よりその帯状がやや長くなる様に各辺に
沿って電極を配し、前記シート中の熱硬化性樹脂が硬化
する様に加熱圧縮硬化して、予め所定の厚さに形状固定
された、電極をも接着固定された、熱硬化性樹脂の硬化
体が未充填の部分を有する、空隙を有する、多孔質の、
縦横の二次元の面形状のみが形状固定された炭素繊維面
状体以下の厚みの、電極が配された導電性シートを、そ
の導電性シート全体が包含される大きさの、前記導電性
シートに良好に接着しうる、同一でも異なっていてもよ
い2つの熱接着性樹脂層の間に設け、さらにその2つの
熱接着樹脂層の外側にそれと熱接着する絶縁性シートを
更に設け、前記電極が配され形状固定された導電性シー
トの空隙に熱接着性樹脂が侵入する様に、熱接着性樹脂
が熱硬化性樹脂の場合には、それを溶融して熱硬化する
様に加熱圧縮をし、熱接着性樹脂が熱可塑性樹脂の場合
には、それ溶融して加熱圧縮をしてから冷却を行って、
それらを接着し一体成形して、導電性シート全体が絶縁
性シートで被覆包含された面状発熱体を製造する。
Next, embodiments of the present invention will be described based on preferred embodiments. The monofilament of the fiber is extracted, and the ratio of the actual length of the monofilament between any two points having a length of 200 times the fiber diameter under no load and the distance between the two points is 1.2 or more on average. A pitch-based carbon fiber, in which only the vertical and horizontal two-dimensional surface shapes are fixed, is impregnated with a thermosetting resin, and these two are essential components, and the carbon fiber content is 50 g / m 2 . , Carbon fiber 100
20 to 70 parts by weight of thermosetting resin per part by weight, on one surface of the semi-cured tack-free composite sheet,
Electrodes are arranged along each side so that the two sides facing each other can be energized so as to form a strip, and the strip is slightly longer than each side, and the thermosetting resin in the sheet is cured. As described above, it is heat-compressed and hardened, and the shape is fixed in advance to a predetermined thickness. The electrodes are also adhesively fixed. The hardened body of the thermosetting resin has an unfilled portion. ,
A conductive sheet in which electrodes are arranged, having a thickness equal to or less than that of a carbon fiber planar body in which only the vertical and horizontal two-dimensional surface shapes are fixed, the conductive sheet having a size that includes the entire conductive sheet. The two heat-adhesive resin layers, which may be the same as or different from each other, that can adhere well to each other, and an insulating sheet that is heat-adhered to the two heat-adhesive resin layers. If the thermo-adhesive resin is a thermosetting resin, heat compression is applied so that the thermo-adhesive resin is a thermosetting resin so that the thermo-adhesive resin enters the voids of the conductive sheet in which If the thermo-adhesive resin is a thermoplastic resin, it is melted, heated and compressed, and then cooled,
These are bonded and integrally molded to manufacture a planar heating element in which the entire conductive sheet is covered with an insulating sheet.

【0037】[0037]

【実施例】以下、実施例に従い説明する。尚、本発明は
以下の実施例のみ限定されるものではないことは、勿論
のことである。上記好ましい実施態様は、実施例1及び
3のものである。
EXAMPLES Examples will be described below. Needless to say, the present invention is not limited to the following examples. The preferred embodiments described above are those of Examples 1 and 3.

【0038】実施例1 ドナカーボS−255〔(株)ドナック製、ピッチ系曲
状炭素繊維ペーパー、目付量75g/m2〕に、フェノ
ライトJ−325〔大日本インキ化学工業(株)製フェ
ノール樹脂メタノール溶液〕を含浸させ、樹脂含有率4
0重量%のプリプレグ(炭素繊維と熱硬化性樹脂との複
合体シート)を得た。次いで、該プリプレグの両端に平
行に導電体シートと直接接触する状態で幅10mm、厚
み45μmの銅箔を設置し、加熱圧縮成形機を用いて1
30℃、20kg/cm2で加熱加圧して電極付きの導
電体シートを得た。
Example 1 Phenolite J-325 (Dainippon Ink and Chemicals, Incorporated) was added to Donacarb S-255 (produced by Donac, pitch-based curved carbon fiber paper, basis weight 75 g / m 2 ). Resin methanol solution]
0% by weight of prepreg (composite sheet of carbon fiber and thermosetting resin) was obtained. Then, a copper foil having a width of 10 mm and a thickness of 45 μm was placed in parallel with both ends of the prepreg in direct contact with the conductor sheet, and a copper foil with a heat compression molding machine was used to
It was heated and pressed at 30 ° C. and 20 kg / cm 2 to obtain a conductor sheet with electrodes.

【0039】このようにして得られた20枚の導電体シ
ートは、いずれも厚さが2.0mmであり、表面には多
くの空隙が観察された。また、これら面積抵抗値はいず
れも15±0.3Ωの範囲にあり、ばらつきが小さかっ
た。
The 20 conductor sheets thus obtained each had a thickness of 2.0 mm, and many voids were observed on the surface. Further, all of these sheet resistance values were in the range of 15 ± 0.3Ω, and the variation was small.

【0040】実施例2 下層より、前記H7W〔(株)帝人製、ポリエステルフ
ィルム、両面易接着性、厚さ100μm〕、1661G
〔松下電工(株)製ガラス繊維織物/熱硬化性エポキシ
樹脂プリプレグシート、0.2mm用〕、実施例1の電
極付き導電体シート、1661G、H7Wの順に積層
し、加熱圧縮成形機を用いて160℃、15kg/cm
2で加熱加圧して一体化し、面状発熱体を得た。このよ
うにして得られた10枚の面状発熱体の面積抵抗値は1
5±0.5Ωの範囲と安定しており、面状発熱体の成形
前の導電体シートとほとんど変化がなかった。該面状発
熱体の遠赤外線放射率(FTIR測定)は90%であっ
た。
Example 2 From the lower layer, the above-mentioned H7W [manufactured by Teijin Limited, polyester film, easy adhesion on both sides, thickness 100 μm], 1661G
[Matsushita Electric Works Co., Ltd. glass fiber fabric / thermosetting epoxy resin prepreg sheet, for 0.2 mm], the electrode-attached conductor sheet of Example 1, 1661G, and H7W are laminated in this order and using a heat compression molding machine. 160 ℃, 15kg / cm
By heating and pressurizing at 2 , they were integrated to obtain a planar heating element. The area resistance value of the 10 sheet heating elements thus obtained is 1
It was stable in the range of 5 ± 0.5Ω, and was almost unchanged from the conductor sheet before forming the planar heating element. The far-infrared emissivity (FTIR measurement) of the sheet heating element was 90%.

【0041】比較例1 実施例1の電極付き導電体シートの代わりに、ドナカー
ボSー255に直接接触する状態で幅10mm、厚み4
5μmの銅箔を設置したものを用いるほかは実施例2と
同様にして面状発熱体10枚を得た。得られた面状発熱
体の面積抵抗値は18±5Ωとばらつき大であった。
Comparative Example 1 Instead of the conductor sheet with an electrode of Example 1, a width of 10 mm and a thickness of 4 in a state of being in direct contact with Dona Carbo S-255.
Ten sheet heating elements were obtained in the same manner as in Example 2 except that a copper foil having a thickness of 5 μm was used. The area resistance value of the obtained sheet heating element was as large as 18 ± 5Ω.

【0042】実施例3 前記H7W(絶縁性シート)を用いない以外は実施例2
と同様にして面状発熱体10枚を得た。該面状発熱体の
面積抵抗値は15±0.5Ωの範囲と安定しており、面
状発熱体の成形前の導電体シートとほとんど変化がなか
った。該面状発熱体の遠赤外線放射率は90%であっ
た。また、該面状発熱体の厚さ方向の電気絶縁性は良好
であった。
Example 3 Example 2 except that the H7W (insulating sheet) was not used.
In the same manner as above, 10 sheet heating elements were obtained. The sheet resistance of the sheet heating element was stable in the range of 15 ± 0.5Ω, and was almost the same as that of the conductor sheet before the sheet heating was formed. The far-infrared emissivity of the sheet heating element was 90%. In addition, the electric insulation in the thickness direction of the sheet heating element was good.

【0043】実施例4 ドナカーボS−251〔(株)ドナック製ピッチ系曲状
炭素繊維ペーパー、目付量50g/m2〕にフェノライ
トJ−325を含浸させ、樹脂含有率35重量%のプリ
プレグ(炭素繊維と熱硬化性樹脂との複合体シート)を
得た。次いで、該プリプレグの両端に平行に導電体シー
トと直接接触する状態で幅10mm、厚み45μmの銅
箔を設置し、加熱圧縮成形機を用いて130℃、20k
g/cm 2で加熱加圧して電極付きの導電体シートを1
0枚得た。該導電体シートは、いずれも厚さが1.3m
mであり、表面には多くの空隙が観察された。これら1
0枚の面積抵抗値はいずれも23±0.4Ωの範囲にあ
り、ばらつきが小さかった。
Example 4 Donacarb S-251 [Pitch-based curved shape manufactured by Donak Co., Ltd.]
Carbon fiber paper, basis weight 50g / mTwo] To Fenorai
Pre-impregnated with a resin content of 35% by weight
Prepreg (composite sheet of carbon fiber and thermosetting resin)
Obtained. The conductor sheet is then placed parallel to the ends of the prepreg.
Copper with a width of 10 mm and a thickness of 45 μm in direct contact with
Install foil and use heat compression molding machine at 130 ℃, 20k
g / cm TwoHeat and press to heat the conductor sheet with electrodes 1
I got 0 sheets. Each of the conductor sheets has a thickness of 1.3 m.
m, and many voids were observed on the surface. These one
The area resistance value of 0 sheets is in the range of 23 ± 0.4Ω.
The variation was small.

【0044】実施例5 下層より、前記H7WとパンデックスT−5108〔大
日本インキ化学工業(株)製、熱可塑性ポリウレタン樹
脂〕厚さ60μmとのラミネートフィルムをウレタン層
を上向きに、次いで上記実施例4で得た電極付き導電体
シート、上記ラミネートフィルムをウレタン層を下向き
に順に積層し、加熱圧縮成形機を用いて170℃、20
kg/cm2で加熱加圧して一体化して冷却し、面状発
熱体を得た。この方法で得た10枚の面状発熱体の面積
抵抗値は23±0.5Ωの範囲と安定しており、面状発
熱体の成形前の導電体シートとほとんど変化がなかっ
た。該面状発熱体の遠赤外線放射率は86%であった。
Example 5 From the lower layer, a laminate film of H7W and Pandex T-5108 (a thermoplastic polyurethane resin manufactured by Dainippon Ink and Chemicals, Incorporated) having a thickness of 60 μm was placed with the urethane layer facing upward, and then the above operation was performed. The conductor sheet with an electrode obtained in Example 4 and the above-mentioned laminate film were laminated in this order with the urethane layer facing downward, and were heated at 170 ° C. for 20 minutes using a heat compression molding machine.
A planar heating element was obtained by heating and pressurizing at kg / cm 2 and integrating and cooling. The area resistance value of the 10 sheet heating elements obtained by this method was stable in the range of 23 ± 0.5Ω, and was almost the same as that of the conductor sheet before molding the sheet heating element. The far-infrared emissivity of the sheet heating element was 86%.

【0045】実施例2と比較例1との対比からわかる通
り、炭素繊維を熱硬化性樹脂で予め所定の厚さとなる様
に加熱加圧硬化して形状固定してから、さらに接着性樹
脂層で挟んだ後、加熱圧縮接着するという本発明の製造
方法は、比較例1の様な、炭素繊維の厚み方向の形状が
何ら形状固定されないままに、接着性樹脂層で挟んだ
後、加熱圧縮接着するという従来の方法に対して、接着
性樹脂層とのラミネート時における成形条件等の動的要
因による、成形サイクル毎の、圧縮による厚み方向の厚
密の変動が極めて小さく、結果的に各成形サイクル毎に
得られる面状発熱体の電気抵抗値のバラツキが小さくな
っていることがわかる。
As can be seen from the comparison between Example 2 and Comparative Example 1, the carbon fiber was heated and pressure-cured with the thermosetting resin in advance so as to have a predetermined thickness, and the shape was fixed. The production method of the present invention, in which the carbon fiber is sandwiched by heating and compression bonding, the carbon fiber is sandwiched by an adhesive resin layer and then heat-compressed while the shape in the thickness direction of the carbon fiber is not fixed. Compared with the conventional method of bonding, the variation in the density in the thickness direction due to the compression for each molding cycle due to dynamic factors such as molding conditions at the time of lamination with the adhesive resin layer is extremely small, resulting in It can be seen that the variation in the electric resistance value of the sheet heating element obtained in each molding cycle is small.

【0046】[0046]

【発明の効果】電極材を配した導電体シートを樹脂層の
間に設けた後に加熱圧縮して一体成形する面状発熱体の
製造方法において、導電体シートが、炭素繊維と熱硬化
性樹脂とからなる複合体シートを加熱圧縮硬化により予
め所定の厚さに形状固定したシートを用いる本発明の面
状発熱体の製造方法によると、従来の製造方法に比べ
て、一体化の成形条件の影響が極めて小さいので、得ら
れた面状発熱体の電気抵抗値が安定し、歩留まりが極め
て高いという格別顕著な効果を奏する。この製造方法
は、工業的に有利な手段である。
In the method for manufacturing a planar heating element, in which a conductor sheet having an electrode material is provided between resin layers and then heated and compressed, the conductor sheet is made of carbon fiber and thermosetting resin. According to the method for manufacturing a planar heating element of the present invention using a sheet in which a composite sheet consisting of and is heat-compressed and cured to a predetermined thickness is used, compared with the conventional manufacturing method, Since the influence is extremely small, the electric resistance of the obtained sheet heating element is stable, and the yield is extremely high, which is a remarkable effect. This manufacturing method is an industrially advantageous means.

【0047】また、炭素繊維含有量の大きな面状発熱体
の製造が容易に可能となるため、遠赤外線放射面状発熱
体の製造に好適である。
Further, since it becomes possible to easily manufacture a planar heating element having a large carbon fiber content, it is suitable for manufacturing a far-infrared radiating planar heating element.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 電極材を配した導電体シートを樹脂層の
間に設けた後に加熱圧縮して一体成形する面状発熱体の
製造方法において、導電体シートが、炭素繊維と熱硬化
性樹脂とからなる複合体シートを加熱圧縮硬化により予
め所定の厚さに形状固定したシートであることを特徴と
する面状発熱体の製造方法。
1. A method for manufacturing a planar heating element, wherein a conductor sheet provided with an electrode material is provided between resin layers and then heat-compressed to integrally mold the conductor sheet, wherein the conductor sheet comprises carbon fibers and a thermosetting resin. A method for producing a planar heating element, characterized in that it is a sheet having a shape fixed in advance to a predetermined thickness by heat-compression-hardening a composite sheet consisting of
【請求項2】 樹脂層の最外層に絶縁シートを設けるこ
とを特徴とする請求項1に記載の面状発熱体の製造方
法。
2. The method for producing a planar heating element according to claim 1, wherein an insulating sheet is provided on the outermost layer of the resin layer.
【請求項3】 炭素繊維と熱硬化性樹脂とからなる複合
体シートにおける炭素繊維の含有量が30g/m2以上
であり、且つその炭素繊維がピッチ系曲状炭素繊維であ
る請求項1〜2のいずれか1つに記載の面状発熱体の製
造方法。
3. A composite sheet comprising carbon fibers and a thermosetting resin, wherein the content of carbon fibers is 30 g / m 2 or more, and the carbon fibers are pitch-based curved carbon fibers. 2. The method for manufacturing the sheet heating element according to any one of 2.
【請求項4】 導電体シートが、炭素繊維と熱硬化性樹
脂からなる複合体を加熱圧縮硬化して予め所定の厚さに
形状固定したのちも、樹脂未充填の空隙が残存している
シートである請求項1〜3のいずれか1つに記載の面状
発熱体の製造方法。
4. A sheet in which voids not filled with resin remain even after a conductor sheet is heat-compression-cured to heat-compress and harden a composite of carbon fibers and a thermosetting resin to fix the shape in advance. The method for producing a sheet heating element according to claim 1, wherein
【請求項5】 導電体シートが、炭素繊維を含むシート
に熱硬化性樹脂を含浸してなるプリプレグを加熱圧縮硬
化したシートである請求項1〜4のいずれか1つに記載
の面状発熱体の製造方法。
5. The sheet-like heat generation according to claim 1, wherein the conductor sheet is a sheet obtained by heating and compression-hardening a prepreg obtained by impregnating a sheet containing carbon fibers with a thermosetting resin. Body manufacturing method.
【請求項6】 導電体シートが、炭素繊維と熱硬化性樹
脂粉末との混抄シートを加熱圧縮硬化したシートである
請求項1〜4のいずれか1つに記載の面状発熱体の製造
方法。
6. The method for producing a planar heating element according to claim 1, wherein the conductive sheet is a sheet obtained by heating and compression-hardening a mixed paper sheet of carbon fiber and thermosetting resin powder. .
【請求項7】 導電体シートに用いる樹脂がフェノール
樹脂である請求項5〜6のいずれか1つに記載の面状発
熱体の製造方法。
7. The method for producing a sheet heating element according to claim 5, wherein the resin used for the conductor sheet is a phenol resin.
【請求項8】 樹脂層が、フィルム状又はシート状の樹
脂である請求項1〜7のいずれか1つに記載の面状発熱
体の製造方法。
8. The method for manufacturing a planar heating element according to claim 1, wherein the resin layer is a film-shaped or sheet-shaped resin.
【請求項9】 樹脂層の樹脂が熱硬化性樹脂と非導電繊
維からなる織布又は不織布からなるプリプレグである請
求項8に記載の面状発熱体の製造方法。
9. The method for producing a planar heating element according to claim 8, wherein the resin of the resin layer is a prepreg made of a woven cloth or a nonwoven cloth made of a thermosetting resin and a non-conductive fiber.
【請求項10】 樹脂層の樹脂がエポキシ樹脂とガラス
繊維織布からなるプリプレグである請求項9に記載の面
状発熱体の製造方法。
10. The method for producing a planar heating element according to claim 9, wherein the resin of the resin layer is a prepreg made of an epoxy resin and a glass fiber woven cloth.
JP8096729A 1996-04-18 1996-04-18 Manufacture of surface heater Pending JPH09283266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096729A JPH09283266A (en) 1996-04-18 1996-04-18 Manufacture of surface heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096729A JPH09283266A (en) 1996-04-18 1996-04-18 Manufacture of surface heater

Publications (1)

Publication Number Publication Date
JPH09283266A true JPH09283266A (en) 1997-10-31

Family

ID=14172828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096729A Pending JPH09283266A (en) 1996-04-18 1996-04-18 Manufacture of surface heater

Country Status (1)

Country Link
JP (1) JPH09283266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523066A (en) * 2000-02-17 2003-07-29 ネドスタック ホールディング ビー.ブイ. Method for producing conductive composite material
KR20070015667A (en) * 2005-08-01 2007-02-06 에스케이케미칼주식회사 Plane heater made of carbon fiber non-woven mat, and manufacturing method of the same
KR20200073840A (en) * 2018-12-14 2020-06-24 재단법인 한국탄소융합기술원 method for manufacturing carbon fiber nonwoven fabric to which metal-plated carbon fiber is added, and carbon surface heating element
CN114103375A (en) * 2021-11-26 2022-03-01 铁力山(北京)控制技术有限公司 Carbon fiber composite electric heating wood board with heat storage performance and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523066A (en) * 2000-02-17 2003-07-29 ネドスタック ホールディング ビー.ブイ. Method for producing conductive composite material
KR20070015667A (en) * 2005-08-01 2007-02-06 에스케이케미칼주식회사 Plane heater made of carbon fiber non-woven mat, and manufacturing method of the same
KR20200073840A (en) * 2018-12-14 2020-06-24 재단법인 한국탄소융합기술원 method for manufacturing carbon fiber nonwoven fabric to which metal-plated carbon fiber is added, and carbon surface heating element
CN114103375A (en) * 2021-11-26 2022-03-01 铁力山(北京)控制技术有限公司 Carbon fiber composite electric heating wood board with heat storage performance and preparation method thereof

Similar Documents

Publication Publication Date Title
US6483087B2 (en) Thermoplastic laminate fabric heater and methods for making same
JP4187090B2 (en) Composite carbon fiber material and method for producing the same
US3940534A (en) Electrical laminate
KR101238667B1 (en) Manufacturing method for both sides impregnated heating-plate using carbon fiber heating-plate for graphene
JPS6312357B2 (en)
JP2709371B2 (en) Manufacturing method of fiber reinforced plastic insulation
EP0428991A2 (en) Composite material of carbon fibers and method for producing the same
JPH09283266A (en) Manufacture of surface heater
JP2912914B1 (en) FIBER REINFORCED BASE AND PROCESS FOR PRODUCING THE SAME, FIBER REINFORCED MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2948048B2 (en) Composite material for bending and its bending method
JP3314867B2 (en) Heating laminate and electric heating board for floor heating
JPS63294610A (en) Conductive molding plate and its manufacture
KR20070015667A (en) Plane heater made of carbon fiber non-woven mat, and manufacturing method of the same
KR20180085174A (en) calorific plate and manufacturing method thereof
JPH09283265A (en) Manufacture of surface heater
JPH09277295A (en) Cushion material for molding laminated sheet
JP2002151811A (en) Substrate for wiring board
JPH06260264A (en) Manufacture of surface heating element
JPH07115435B2 (en) Honeycomb sandwich plate and method for manufacturing the same
JPH11200218A (en) Heat-resistant nonwoven fabric
JP2000058234A (en) Heating device, its component, their manufacture and application
JP3816587B2 (en) Planar heating element and manufacturing method thereof
JPS6314823B2 (en)
RU2094957C1 (en) Multiple-layer heater
JPH03368Y2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207