JPH09281252A - Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument - Google Patents

Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument

Info

Publication number
JPH09281252A
JPH09281252A JP9566896A JP9566896A JPH09281252A JP H09281252 A JPH09281252 A JP H09281252A JP 9566896 A JP9566896 A JP 9566896A JP 9566896 A JP9566896 A JP 9566896A JP H09281252 A JPH09281252 A JP H09281252A
Authority
JP
Japan
Prior art keywords
light
light receiving
particles
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9566896A
Other languages
Japanese (ja)
Inventor
Tadashi Kimura
忠志 木村
Taminoe Ishimaru
民之永 石丸
Tsutomu Kato
務 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA DENKI KK
Original Assignee
NIIGATA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA DENKI KK filed Critical NIIGATA DENKI KK
Priority to JP9566896A priority Critical patent/JPH09281252A/en
Publication of JPH09281252A publication Critical patent/JPH09281252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve continuous and automatic measurement precision of blown snow or blown sand by using a light emitting element which is a sufficiently practical spot light source as compared with the size of particles to be measured and has high light output. SOLUTION: At a light-projection part 1, a superluminescent diode which has wide light emission spectrum width, low coherence characteristics, and high light output is used as the light emitting element, and stored in a case 5 which has drip-preventive glass 4 together with a collimator lens 6, and parallel light beams are projected. At a photodetection part 2, a PIN photodiode with a condenser lens is used as a light receiving element and put in a case 9 with drip-preventive glass 8 together with a slit plate 10, and all of light passed through a measurement area R is detected through a slit 10a, outputted to a preamplifer part, and inputted to a signal processing part after specific processing. Then the output signal of the preamplifier part is amplified, and the size of particles, counts by particle size, flow rates by particle size, etc., are continuously and automatically measured and recorded through 3/2-th power operation for converting the wave height value of pulses to the diameter and volume of the particles, peak holding, and integrating operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えば吹雪中の飛雪
粒子や砂漠における飛砂粒子の粒径別計数及び粒径別流
量等の連続自動計測に用いられる光学式飛雪・飛砂粒子
粒径別連続自動計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, optical snow flying / sand flying particles used for continuous automatic measurement of snow flying particles in snowstorms and flying sand particles in deserts by particle size and flow rate by particle size. The present invention relates to a diameter-based continuous automatic measuring device.

【0002】[0002]

【従来の技術】従来この種の光学式粒子計測装置の類似
装置として、例えば特開平2−103445号公報に示
す如く、計測領域の一方に配置され発光素子と光ファイ
バーを有する投光部と、計測領域の他方に配置され受光
面をスリット状に配列した光ファイバー受光素子を有す
る受光部二組と、投光部と受光部との間に形成された計
測領域内を通過する粒子による光量変化を計測する信号
処理部とを備えてなる構造のものが知られ、又、特開昭
61−157854号公報に示す如く、顕微鏡写真撮影
装置を利用して蒸気タービンや燃料噴射弁等のダクト内
を通過する粒子の粒径を計測する構造のものが知られて
いる。
2. Description of the Related Art As a conventional device similar to this type of optical particle measuring device, as shown in, for example, Japanese Patent Application Laid-Open No. 2-103445, a light projecting section having a light emitting element and an optical fiber disposed in one of the measuring regions, and measuring Measures the change in the amount of light due to particles that pass through the measurement area formed between the light-receiving section and the two sets of light-receiving sections that have optical fiber light-receiving elements that are arranged on the other side of the area and whose light-receiving surfaces are arranged in slits. There is also known a structure including a signal processing unit for performing the above, and as shown in Japanese Patent Laid-Open No. 61-157854, a microphotograph is used to pass through a duct such as a steam turbine or a fuel injection valve. It is known to have a structure for measuring the particle size of the particles.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記前者
の従来構造の場合、光ファイバーを経由して投光させる
構造のため、光ファイバーの末端面の面積を有する光源
の使用と等価であって、例えば現在実用になっている最
も細い直径10μmの光ファイバーを使用したとして
も、その太さの数10倍以下の直径の粒子、具体的には
飛雪計測において重要な数100μm以下の粒子に対し
ては、実用上の点光源となり得ず、この光源からレンズ
によって集光された光線は、平行光線として作用してお
らず、光軸方向に沿った感度差が存在し、同一粒径から
なる粒子であっても計測領域内の通過位置により出力が
変化するため、粒径の計測が事実上不可能であり、又、
投光部の発光素子としてレーザーダイオードが用いられ
ており、よって単一波長の発光となると共にレーザー光
はコヒーレンス性の高い光であるため顕著な光の干渉作
用により同心円状に光の強弱をもった干渉波が現れ、こ
のため巨大な粒子の衝突によってもたらされる、投光部
・受光部のごく僅かな光軸と直交方向の振動であって
も、受光部にマイクロフォニック雑音となって検出さ
れ、それだけ光量の計測精度を低下させることになり易
く、更に、二つのスリットを用いて計測する構造となっ
ているため、計測領域を通過する粒子間の移動方向に沿
った水平距離の分解能が二つのスリットの外側間隔以下
にならず、かつ光学系の構造が複雑化し、コスト低減を
図ることができない。又、パルス波形である信号出力を
通常のアンプを用いて増幅する従来の場合には、アンダ
ーシュートを伴うため、アンダーシュートによる信号波
形のゼロレベルの低下により計測精度が低下することが
あり、又、後者の従来構造にあっては、顕微鏡写真撮影
装置を利用することから、装置の複雑化及びコスト高は
避けられず、しかも飛雪・飛砂粒子の粒径計測にあって
は、リアルタイムでの計測及び連続自動計測が必須であ
るが、このような計測には不向きであり、そのまま適用
することができないという不都合を有している。
However, in the case of the former conventional structure, since the structure is such that the light is projected through the optical fiber, it is equivalent to the use of a light source having the area of the end face of the optical fiber, and for example, it is currently used. Even if the thinnest optical fiber with a diameter of 10 μm is used, it is practical for particles with a diameter less than several tens of times its thickness, specifically particles with a diameter of less than 100 μm, which is important for snowfall measurement. The rays that cannot be the above point light source and are condensed by the lens from this light source do not act as parallel rays, have a difference in sensitivity along the optical axis direction, and are particles of the same particle size. Also, since the output changes depending on the passing position in the measurement area, it is practically impossible to measure the particle size.
A laser diode is used as the light emitting element of the light projecting section, and therefore, light having a single wavelength is emitted, and since the laser light is light with high coherence, the light intensity is concentrically increased due to the remarkable light interference effect. Interference waves appear, and even if the vibrations caused by the collision of huge particles in the direction perpendicular to the optical axis of the light emitter / light receiver are detected, they are detected as microphonic noise in the light receiver. However, the measurement accuracy of the light quantity is likely to be reduced, and since the measurement is performed using two slits, the resolution of the horizontal distance along the moving direction between particles passing through the measurement area is two. It is not less than the outer distance of one slit, and the structure of the optical system becomes complicated, so that the cost cannot be reduced. Further, in the conventional case in which a signal output which is a pulse waveform is amplified by using a normal amplifier, there is an undershoot, so that the measurement accuracy may be deteriorated due to a decrease in the zero level of the signal waveform due to the undershoot. However, in the latter conventional structure, since a microscopic photography device is used, it is inevitable that the device is complicated and the cost is high, and in measuring the particle size of snow and sand particles in real time. However, it is inadequate for such measurement and cannot be applied as it is.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不都
合を解決することを目的とし、この発明のうちで、請求
項1記載の発明にあっては、計測領域の一方に配置され
発光素子を有する投光部と、計測領域の他方に配置され
受光素子を有する受光部と、該受光部からの出力信号を
増幅するプリアンプ部と、該投光部と受光部との間に形
成された計測領域内を通過する粒子による光量変化を計
測する信号処理部とを備えてなり、上記発光素子は広発
光スペクトル幅、低コヒーレンス特性及び高光出力をも
つスーパールミネッセントダイオードからなることを特
徴とする光学式飛雪・飛砂粒子粒径別連続自動計測装置
にある。
SUMMARY OF THE INVENTION The present invention is intended to solve such inconvenience, and in the invention according to claim 1 of the present invention, the light emitting element is arranged in one of the measurement regions. Is formed between the light emitting unit and the light receiving unit, the light receiving unit having a light receiving element arranged on the other side of the measurement region, the preamplifier unit for amplifying the output signal from the light receiving unit, And a signal processing unit for measuring a change in light amount due to particles passing through the measurement region, wherein the light emitting element is a superluminescent diode having a wide emission spectrum width, low coherence characteristics and high light output. It is in a continuous automatic measuring device for each particle size of optical snow and sand particles.

【0005】又、請求項2記載の発明にあっては、上記
プリアンプ部として、単一電源計装アンプにピークホー
ルド回路を付属せしめてなるものが用いられていること
を特徴とするものであり、又、請求項3記載の発明にあ
っては、上記投光部には発光素子からの光線を平行光線
になすコリメータを付けたスーパールミネッセントダイ
オードが用いられると共に上記受光部は集光レンズ付フ
ォトダイオードからなることを特徴とするものであり、
又、請求項4記載の発明にあっては、上記受光素子の前
方に一個のスリットを有するスリット板を配置してなる
ことを特徴とするものである。
Further, the invention according to claim 2 is characterized in that, as the preamplifier section, a single power supply instrumentation amplifier to which a peak hold circuit is attached is used. In the invention according to claim 3, a super luminescent diode having a collimator for converting light rays from the light emitting element into parallel light rays is used in the light projecting section, and the light receiving section is a condensing lens. It is characterized by comprising a photodiode with
Further, the invention according to claim 4 is characterized in that a slit plate having one slit is arranged in front of the light receiving element.

【0006】[0006]

【発明の実施の形態】図1乃至図8は本発明の実施の形
態例を示し、1は投光部、2は受光部であって、例えば
投光部1と受光部2とを25mmの離間距離をおいて対
向設置し、投光部1と受光部2との間に図2、図3中の
斜線部分としての計測領域Rを形成し、しかして投光部
1は計測領域Rの一方に配置され、受光部2は計測領域
Rの他方に配置され、計測領域Rの水平幅は25mmに
なる。
1 to 8 show an embodiment of the present invention, in which 1 is a light projecting portion, 2 is a light receiving portion, and, for example, the light projecting portion 1 and the light receiving portion 2 are each 25 mm long. The measurement area R is formed between the light projecting portion 1 and the light receiving portion 2 as a shaded portion in FIGS. The light receiving unit 2 is arranged on one side and the light receiving unit 2 is arranged on the other side of the measurement region R, and the horizontal width of the measurement region R is 25 mm.

【0007】この投光部1には発光素子3が内蔵され、
この発光素子3は、その発光部分の大きさが粒子Kの、
計測する最小粒径(=数10μm)に比べて充分に小さ
く(約1μm×0.5μm)、計測領域R内を通過する
粒子に対して実用上平行光線を発生し得る点光源が用い
られ、この場合発光素子3として、この条件を満たす、
広発光スペクトル幅、低コヒーレンス特性及び高光出力
をもつスーパールミネッセントダイオードが用いられて
おり、発光素子3は防滴ガラス4をもつケース5内にコ
リメータレンズ6と共に内蔵され、このコリメータを付
けたスーパールミネッセントダイオードにより平行光線
を投光するように構成されている。
A light emitting element 3 is built in the light projecting section 1,
In the light emitting element 3, the size of the light emitting portion is particles K.
A point light source that is sufficiently smaller than the minimum particle size to be measured (= several tens of μm) (about 1 μm × 0.5 μm) and can practically generate parallel rays with respect to particles passing through the measurement region R is used. In this case, the light emitting element 3 satisfies this condition,
A super luminescent diode having a wide emission spectrum width, a low coherence characteristic and a high light output is used, and the light emitting element 3 is built in a case 5 having a drip-proof glass 4 together with a collimator lens 6, and this collimator is attached. It is configured to project parallel rays by a super luminescent diode.

【0008】又、受光部2には受光素子7が内蔵され、
この場合受光素子7として、集光レンズ付PINフォト
ダイオードが用いられ、かつ計測領域Rを通過した光の
すべてが受光素子7に検知され、受光素子7は防滴ガラ
ス8をもつケース9内に内蔵され、又、ケース9内にお
いて、受光素子7の前方に一個のスリット10aを有す
るスリット板10が内蔵され、スリット10aは長さ
2.0mm×幅0.5mmの長四角穴形状に形成され、
よって、計測領域Rの粒子通過方向に沿った断面は図4
の如く、高さL=2.0mm×厚さB=0.5mmとな
る。
Further, a light receiving element 7 is built in the light receiving section 2,
In this case, a PIN photodiode with a condenser lens is used as the light receiving element 7, and all the light that has passed through the measurement region R is detected by the light receiving element 7, and the light receiving element 7 is provided in a case 9 having a drip-proof glass 8. A slit plate 10 having one slit 10a is built in the case 9 in front of the light receiving element 7 in the case 9, and the slit 10a is formed in a rectangular hole shape having a length of 2.0 mm and a width of 0.5 mm. ,
Therefore, the cross section of the measurement region R along the particle passage direction is shown in FIG.
As described above, the height L is 2.0 mm and the thickness B is 0.5 mm.

【0009】12はプリアンプ部であって、この場合単
一電源計装アンプ13にピークホールド回路14を付属
せしめてなるものが用いられ、図5の如く、単一電源計
装アンプ13は単一電源としてのプラス電源ESのみに
より動作する二個のオペアンプからなり、ここにEB
発光素子3による投射光により受光素子7に発生する直
流電圧及び周囲の外乱光により受光素子3に発生する低
周波雑音電圧で、信号から除去されるべき電圧成分であ
り、よって、同図中受光素子7により検出された信号の
パルス列が電圧EBに重塁した入力信号VINにおいて、
この入力信号VI Nを単一電源計装アンプ13のリバース
入力とピークホールド回路14に分岐して入力し、V
OUT=(1+R1/R2)(EB−VIN)=G(EB
IN))なる出力信号VOUTを得るようにし、単一電源
計装アンプ13においては、(EB≦VIN)の場合には
OUT=0で、出力信号VOUTが出力されず、(EB>V
IN)の場合にのみVOUTが出力されるため、信号である
パルス波形のみがオーバーシュートを伴うことなくV
OUTとして出力されるように構成している。
Reference numeral 12 denotes a preamplifier unit, in which a single power supply instrumentation amplifier 13 with a peak hold circuit 14 attached is used. As shown in FIG. It is composed of two operational amplifiers which are operated only by the positive power source E S as a power source, where E B is generated in the light receiving element 3 by the DC voltage generated in the light receiving element 7 by the light projected by the light emitting element 3 and the ambient disturbance light. in the low-frequency noise voltage, a voltage component to be removed from the signal, thus, the input signal V iN pulse train of the signal detected by the light receiving element 7 in the figure is Jurui voltage E B,
The input signal V I N inputted to all reverse input and a peak hold circuit 14 of a single power-amp 13, V
OUT = (1 + R 1 / R 2 ) (E B −V IN ) = G (E B
To obtain the V IN)) becomes the output signal V OUT, in single-supply instrumentation amplifier 13, at V OUT = 0 in the case of the (E B ≦ V IN), not output the output signal V OUT is, (E B > V
Since V OUT is output only in the case of ( IN ), only the pulse waveform that is the signal is V
It is configured to be output as OUT .

【0010】15は信号処理部であって、上記プリアン
プ部12からの出力信号を増幅、パルスの波高値から粒
子の直径及び体積に換算する3/2乗演算、ピークホー
ルド、積算演算により粒子の粒径、粒径別計数及び粒径
別流量等を連続自動計測及び連続自動記録するように構
成されている。
A signal processing unit 15 amplifies the output signal from the preamplifier unit 12, converts the peak value of the pulse into the diameter and volume of the particle, and performs a 3/2 power calculation, a peak hold, and an integration calculation of the particle. It is configured to continuously and automatically measure and continuously record the particle size, the particle count by particle size, the flow rate by particle size, and the like.

【0011】図7は具体的構造例を示し、この場合筒状
の支持部材16の下部に旋回部材17を支持部材16の
軸線を中心として水平旋回自在に配設し、この旋回部材
17に投光部1及び受光部2を計測領域Rをはさんで対
設し、旋回部材17に二枚の風向舵18を配設し、地面
より立設された図示省略の取付枠に吊下部材19を鉛直
方向に吊下垂設し、二枚の風向舵18により旋回部材1
7を旋回させ、雪面に沿って又は地面に沿って粒子Kと
共に流れてくる風の方向Wに光軸Nが常に直交するよう
にして連続自動計測を行うように構成している。
FIG. 7 shows a concrete structure example. In this case, a swivel member 17 is arranged below the cylindrical support member 16 so as to be horizontally swivelable about the axis of the support member 16 and is thrown to the swivel member 17. The light unit 1 and the light receiving unit 2 are placed opposite to each other across the measurement region R, two wind direction rudders 18 are disposed on the turning member 17, and the hanging member 19 is attached to a mounting frame (not shown) that is erected from the ground. Is vertically suspended, and the turning member 1 is provided by two wind direction rudders 18.
7 is turned so that the optical axis N is always orthogonal to the direction W of the wind that flows with the particles K along the snow surface or along the ground, and continuous automatic measurement is performed.

【0012】この実施の形態例は上記構成であるから、
投光部1と受光部2との間に形成された計測領域R内を
風Wと共に粒子Kが通過すると受光部2により検出され
る光量に変化が生じ、この光量変化はプリアンプ部12
により増幅され、信号処理部15は光量変化を連続自動
計測し、粒子の粒径、計数及び流量等を連続的に演算し
て自動計測することになり、この際、上記発光素子3と
して、計測する粒子の大きさに比較して実用上十分な点
光源で高光出力のスーパールミネッセントダイオードが
用いられており、スーパールミネッセントダイオードは
その発光の波長が単一でなく、広発光スペクトル幅、低
コヒーレンス特性を有し、光の強さが略一様に分布して
いるため、レーザー光と大きく異なり、同心円状の干渉
波が現れることがなく、従って、巨大な粒子の衝突等に
よって、投光部1及び受光部2のそれぞれが光軸Nに直
交して多少振動しても、受光素子7の検出量が変化せ
ず、マイクロフォニック雑音の発生を無くすことがで
き、それだけ粒子の粒径の計測精度を高めることがで
き、粒子の粒径別計数及び粒径別流量等の飛雪・飛砂の
連続自動計測精度を向上することができる。
Since this embodiment has the above configuration,
When the particles K together with the wind W pass through the measurement region R formed between the light projecting unit 1 and the light receiving unit 2, the amount of light detected by the light receiving unit 2 changes, and this change in the light amount changes.
The signal processing unit 15 continuously and automatically measures the change in the light amount and continuously calculates the particle size, the count, the flow rate, etc. of the particles, and at this time, the light emitting element 3 measures A superluminescent diode with a high light output is used with a point light source that is practically sufficient compared to the size of the particles to be emitted.The superluminescent diode is not a single emission wavelength and has a wide emission spectrum width. , It has low coherence characteristics and the intensity of light is distributed almost evenly, so it does not show concentric interference waves, which is very different from laser light. Therefore, due to the collision of huge particles, Even if each of the light projecting unit 1 and the light receiving unit 2 vibrates slightly orthogonal to the optical axis N, the detection amount of the light receiving element 7 does not change, and the occurrence of microphonic noise can be eliminated. The measurement accuracy can be enhanced, thereby improving the continuous automatic measurement accuracy of drifting snow-blown sand, such as grain 径別 counting and particle 径別 flow of the particles.

【0013】またこの場合上記プリアンプ部12とし
て、単一電源計装アンプ13にピークホールド回路14
を付属せしめてなるものを用いているため、計測光の照
射に伴う受光素子3の直流出力電圧及び外乱光等により
受光素子3に発生する低周波の雑音出力電圧を消去し、
かつ信号成分については、増幅に伴ういわゆるアンダー
シュートの発生が無くなり、このため信号対雑音比が高
くなると共に信号波形を正確に増幅することができ、例
えば周囲の外乱光による雑音を除去するために採用され
る交流アンプ回路或いはサーボアンプ回路等にあって
は、図8の如く、パルスの大きさに応じたマイナス側の
反動が生じ、いわゆるアンダーシュートUが発生し、こ
のアンダーシュートUにより具体的には大きな粒子が通
過すると、本来零レベルであるべき出力信号のベースラ
インが長期間マイナス側に移動し、その状態が回復しな
いうちに、次に通過する粒子の波高値Hは実際より低い
見掛けの値hとなってしまうが、このプリアンプ部12
によれば、図6の如く、アンダーシュートが無いため、
信号の波高値の低下が生ぜず、直流入力及び低周波雑音
入力の消去機能と相俟って、一層連続自動計測精度を向
上することができる。
In this case, as the preamplifier section 12, a single power supply instrumentation amplifier 13 and a peak hold circuit 14 are provided.
Since the one that is attached is used, the DC output voltage of the light receiving element 3 due to the irradiation of the measurement light and the low frequency noise output voltage generated in the light receiving element 3 due to the disturbance light are erased,
And for the signal component, so-called undershoot due to amplification disappears, so that the signal-to-noise ratio can be increased and the signal waveform can be accurately amplified. For example, in order to remove noise due to ambient disturbance light. In the adopted AC amplifier circuit or servo amplifier circuit, as shown in FIG. 8, a negative reaction occurs according to the magnitude of the pulse, so-called undershoot U occurs, and this undershoot U causes When a large particle passes through, the baseline of the output signal, which should originally be at zero level, moves to the negative side for a long period of time, and while that state is not recovered, the peak value H of the next particle that passes is apparently lower than it actually is. However, this preamplifier section 12
According to, there is no undershoot as shown in FIG.
The peak value of the signal is not lowered, and the continuous automatic measurement accuracy can be further improved in combination with the function of eliminating the DC input and the low frequency noise input.

【0014】又、この場合上記投光部1には発光素子3
からの光線を平行光線になすコリメータを付けたスーパ
ールミネッセントダイオードが用いられていると共に上
記受光素子7は集光レンズ付フォトダイオードからなる
ため、投光部1から計測領域R内を通ってスリット板1
0に照射される光線は、計測する粒子の大きさに対して
実用上十分な平行光線であり、かつスリット10aを通
過した光の全てを受光素子7に受光することができ、よ
って光軸N方向及び軸直交方向に沿った感度差を無くす
ことができ、計測領域R内の通過位置による出力の変化
が無いため、計測精度を高めることができ、又、この場
合、受光素子7の前方に一個のスリット10aを有する
スリット板10を配置しているから、二つのスリットを
用いるものに対して、計測領域の厚さがスリットの幅に
まで縮小され、計測領域Rを通過する粒子間の移動方向
に沿った水平距離の分解能をスリットの幅にまで向上す
ることができ、飛雪・飛砂粒子の計測において、複数の
粒子を単一の粒子として計測することを実用上無くする
ことができ、かつ光学系及び信号処理回路15を簡素化
することができ、コスト低減を図ることができる。
In this case, the light emitting element 3 is provided in the light projecting section 1.
Since a super luminescent diode with a collimator for making the light rays from the above into parallel light rays is used and the above-mentioned light receiving element 7 is composed of a photodiode with a condenser lens, it passes from the light projecting section 1 through the inside of the measurement region R. Slit plate 1
The light beam radiated to 0 is a parallel light beam that is practically sufficient for the size of the particle to be measured, and all the light beams that have passed through the slit 10a can be received by the light receiving element 7, and therefore the optical axis N Direction and the direction orthogonal to the axis can be eliminated, and since there is no change in the output due to the passing position in the measurement region R, the measurement accuracy can be improved, and in this case, in front of the light receiving element 7. Since the slit plate 10 having one slit 10a is arranged, the thickness of the measurement region is reduced to the width of the slit as compared with the one using two slits, and the movement between particles passing through the measurement region R is performed. The resolution of the horizontal distance along the direction can be improved to the width of the slit, and it is possible to practically eliminate the measurement of multiple particles as a single particle when measuring snow and sand particles. ,And It is possible to simplify the academic system and the signal processing circuit 15, the cost can be reduced.

【0015】尚、本発明は上記実施の形態例に限定され
るものではなく、特に信号処理回路15等は適宜改変し
て設計されるものである。
The present invention is not limited to the above-mentioned embodiment, and the signal processing circuit 15 and the like are designed by being modified appropriately.

【0016】[0016]

【発明の効果】本発明は上述の如く、請求項1記載の発
明にあっては、投光部と受光部との間に形成された計測
領域内を風と共に粒子が通過すると受光部により検出さ
れる光量に変化が生じ、この光量変化はプリアンプ部に
より増幅され、信号処理部は光量変化を連続自動計測
し、粒子の粒径、粒径別計数及び粒径別流量等を連続的
に演算して自動計測することになり、この際、上記発光
素子として、計測する粒子の大きさに比較して実用上十
分な点光源で高光出力のスーパールミネッセントダイオ
ードが用いられており、スーパールミネッセントダイオ
ードはその発光の波長が単一でなく、広発光スペクトル
幅、低コヒーレンス特性を有し、光の強さが略一様に分
布しているため、レーザー光と大きく異なり、同心円状
の干渉波が現れることがなく、従って、巨大な粒子の衝
突等によって、投光部及び受光部のそれぞれが光軸に直
交して多少振動しても、受光素子の検出量が変化せず、
マイクロフォニック雑音の発生を無くすことができ、そ
れだけ粒子の粒径の計測精度を高めることができ、粒子
の粒径別計数及び粒径別流量等の飛雪・飛砂の連続自動
計測精度を向上することができる。
As described above, according to the present invention, in the invention described in claim 1, it is detected by the light receiving section that the particles together with the wind pass through the measurement region formed between the light projecting section and the light receiving section. A change in the amount of light generated occurs, and this change in the amount of light is amplified by the preamplifier, and the signal processing unit continuously and automatically measures the change in the amount of light and continuously calculates the particle size, particle size-specific count, particle size-specific flow rate, etc. In this case, as the light emitting element, a super luminescent diode with a high light output with a point light source that is practically sufficient compared to the size of the particle to be measured is used. Nesting diodes have a single emission wavelength, a wide emission spectrum width, low coherence characteristics, and light intensity is almost evenly distributed. Interference wave appears No, therefore, the collision of large particles, even if some vibration each of the light projecting unit and the light receiving portion is perpendicular to the optical axis, the detection amount of the light receiving element is not changed,
The generation of microphonic noise can be eliminated, the accuracy of particle size measurement can be improved, and the accuracy of continuous automatic measurement of snow and sand flying such as counting by particle size and flow rate by particle size can be improved. can do.

【0017】また請求項2記載の発明にあっては、上記
プリアンプ部として、単一電源計装アンプにピークホー
ルド回路を付属せしめてなるものを用いているため、計
測光の照射に伴う受光素子の直流出力電圧及び外乱光に
より受光素子に発生する低周波の雑音出力電圧を消去
し、かつ信号成分については、増幅に伴ういわゆるアン
ダーシュートの発生が無く、このため信号対雑音比が高
くなると共に信号波形を正確に増幅することができ、一
層計測精度を向上することができる。
Further, according to the invention of claim 2, since the preamplifier section is a single power supply instrumentation amplifier to which a peak hold circuit is attached, is used. Therefore, the light receiving element accompanying the irradiation of the measurement light is used. The low-frequency noise output voltage generated in the light receiving element due to the DC output voltage and the ambient light is eliminated, and so-called undershoot due to amplification does not occur in the signal component, so that the signal-to-noise ratio increases and The signal waveform can be accurately amplified, and the measurement accuracy can be further improved.

【0018】又、請求項3記載の発明にあっては、投光
部には発光素子からの光線を平行光線になすコリメータ
を付けたスーパールミネッセントダイオードが用いられ
ていると共に上記受光素子は集光レンズ付フォトダイオ
ードからなるため、投光部から照射される計測領域内を
通過する光線は、計測する粒子の大きさに対して実用上
十分な平行光線であり、かつすべて受光素子に検知さ
れ、よって光軸方向及び軸直交方向に沿った感度差を無
くすことができ、このため計測精度を高めることがで
き、又、請求項4記載の発明にあっては、受光素子の前
方に一個のスリットを有するスリット板を配置している
から、二つのスリットを用いるものに対して、計測領域
の厚さがスリットの幅にまで縮小され、計測領域を通過
する粒子間の移動方向に沿った水平距離の分解能をスリ
ットの幅にまで向上することができ、飛雪飛砂粒子の計
測において、複数の粒子を単一の粒子として計測するこ
とを実用上なくすることができ、かつ光学系及び信号処
理回路を簡素化することができ、コスト低減を図ること
ができる。
Further, in the invention according to claim 3, a super luminescent diode provided with a collimator for making a light beam from the light emitting element into a parallel light beam is used in the light projecting portion, and the light receiving element is Since it consists of a photodiode with a condenser lens, the light rays that pass through the measurement area from the light projection unit are parallel rays that are practically sufficient for the size of the particles to be measured, and all are detected by the light receiving element. Therefore, the difference in sensitivity along the optical axis direction and the direction orthogonal to the axis can be eliminated, so that the measurement accuracy can be improved. Further, in the invention according to claim 4, one sensor is provided in front of the light receiving element. Since the slit plate with the slits is arranged, the thickness of the measurement area is reduced to the width of the slit as compared with the one using two slits, and the moving direction between the particles passing through the measurement area. The resolution of the horizontal distance along the distance can be improved to the width of the slit, and it is possible to practically eliminate the measurement of multiple particles as a single particle in the measurement of snow flying sand particles, and The system and the signal processing circuit can be simplified, and the cost can be reduced.

【0019】以上、所期の目的を充分達成することがで
きる。
As described above, the intended purpose can be sufficiently achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態例の全体系統ブロック図で
ある。
FIG. 1 is an overall system block diagram of an embodiment of the present invention.

【図2】本発明の実施の形態例の部分説明図である。FIG. 2 is a partial explanatory diagram of an embodiment of the present invention.

【図3】本発明の実施の形態例の部分説明斜視図であ
る。
FIG. 3 is a partial explanatory perspective view of the embodiment of the present invention.

【図4】本発明の実施の形態例の計測領域の断面図であ
る。
FIG. 4 is a sectional view of a measurement region according to the embodiment of the present invention.

【図5】本発明の実施の形態例のプリアンプ部の説明電
子回路図である。
FIG. 5 is an explanatory electronic circuit diagram of a preamplifier unit according to the embodiment of the present invention.

【図6】本発明の実施の形態例のプリアンプ部からの出
力パルス波形図である。
FIG. 6 is an output pulse waveform diagram from the preamplifier unit according to the embodiment of the present invention.

【図7】本発明の実施の形態例の具体例を示す斜視図で
ある。
FIG. 7 is a perspective view showing a specific example of the embodiment of the present invention.

【図8】従来例のプリアンプ部からの出力パルス波形図
である。
FIG. 8 is a waveform diagram of an output pulse from a preamplifier unit in a conventional example.

【符号の説明】[Explanation of symbols]

R 計測領域 K 粒子 1 投光部 2 受光部 3 発光素子 6 コリメータレンズ 7 受光素子 10 スリット板 10a スリット 12 プリアンプ部 13 単一電源計装アンプ 14 ピークホールド回路 15 信号処理部 R measurement region K particle 1 light emitting unit 2 light receiving unit 3 light emitting element 6 collimator lens 7 light receiving element 10 slit plate 10a slit 12 preamplifier unit 13 single power supply instrumentation amplifier 14 peak hold circuit 15 signal processing unit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年4月18日[Submission date] April 18, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】12はプリアンプ部であって、この場合単
一電源計装アンプ13にピークホールド回路14を付属
せしめてなるものが用いられ、図5の如く、単一電源計
装アンプ13は単一電源としてのプラス電源Eのみに
より動作する二個のオペアンプからなり、ここにE
発光素子3による投射光により受光素子7に発生する直
流電圧及び周囲の外乱光により受光素子3に発生する低
周波雑音電圧で、信号から除去されるべき電圧成分であ
り、よって、同図中受光素子7により検出された信号の
パルス列が電圧Eに重塁した入力信号VINにおい
て、この入力信号VINを単一電源計装アンプ13のリ
バース入力とピークホールド回路14に分岐して入力
し、VOUT=(1+R/R)(E−VIN)=
G(E−VIN))なる出力信号VOUTを得るよう
にし、単一電源計装アンプ13においては、(E≦V
IN)の場合にはVOUT=0で、出力信号VOUT
出力されず、(E>VIN)の場合にのみVOUT
出力されるため、信号であるパルス波形のみがアンダー
シュートを伴うことなくVOUTとして出力されるよう
に構成している。
Reference numeral 12 denotes a preamplifier unit, in which a single power supply instrumentation amplifier 13 with a peak hold circuit 14 attached is used. As shown in FIG. consists two operational amplifier which operates only by the positive power source E S as a power supply, wherein the E B is generated in the light receiving element 3 by disturbance light DC voltage and ambient generated in the light receiving element 7 by the projection light from the light emitting element 3 in the low-frequency noise voltage, a voltage component to be removed from the signal, thus, the input signal V iN pulse train of the signal detected by the light receiving element 7 in the figure is Jurui voltage E B, the input signal V IN is branched and input to the reverse input of the single power supply instrumentation amplifier 13 and the peak hold circuit 14, and V OUT = (1 + R 1 / R 2 ) (E B −V IN ) =
An output signal V OUT of G (E B −V IN ) is obtained, and in the single power source instrumentation amplifier 13, (E B ≦ V
IN ), V OUT = 0, the output signal V OUT is not output, and V OUT is output only when (E B > V IN ), so only the pulse waveform that is the signal is under
It is configured to be output as V OUT without being accompanied by a shoot .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 計測領域の一方に配置され発光素子を有
する投光部と、計測領域の他方に配置され受光素子を有
する受光部と、該受光部からの出力信号を増幅するプリ
アンプ部と、該投光部と受光部との間に形成された計測
領域内を通過する粒子による光量変化を計測する信号処
理部とを備えてなり、上記発光素子は広発光スペクトル
幅、低コヒーレンス特性及び高光出力をもつスーパール
ミネッセントダイオードからなることを特徴とする光学
式飛雪・飛砂粒子粒径別連続自動計測装置。
1. A light projecting section having a light emitting element arranged in one of the measurement areas, a light receiving section having a light receiving element arranged in the other of the measurement areas, and a preamplifier section for amplifying an output signal from the light receiving section. The light emitting device comprises a signal processing unit configured to measure a change in light amount due to particles passing through a measurement region formed between the light emitting unit and the light receiving unit, wherein the light emitting element has a wide emission spectrum width, a low coherence characteristic, and a high light emission. A continuous automatic measuring device for particle size of optical snow and sand particles, which consists of a super luminescent diode with output.
【請求項2】 上記プリアンプ部として、単一電源計装
アンプにピークホールド回路を付属せしめてなるものが
用いられていることを特徴とする請求項1記載の光学式
飛雪・飛砂粒子粒径別連続自動計測装置。
2. The optical snow flying / sandblasting particles according to claim 1, wherein the preamplifier section is a single power supply instrumentation amplifier with a peak hold circuit attached. Continuous automatic measuring device by diameter.
【請求項3】 上記投光部には発光素子からの光線を平
行光線になすコリメータを付けたスーパールミネッセン
トダイオードが用いられると共に上記受光部は集光レン
ズ付フォトダイオードからなることを特徴とする請求項
1又は2記載の光学式飛雪・飛砂粒子粒径別連続自動計
測装置。
3. A super luminescent diode provided with a collimator for converting a light beam from a light emitting element into a parallel light beam is used for the light projecting unit, and the light receiving unit is a photodiode with a condenser lens. The continuous automatic measuring device according to claim 1, wherein the optical snow and sand particles are classified by particle size.
【請求項4】 上記受光素子の前方に一個のスリットを
有するスリット板を配置してなることを特徴とする請求
項1乃至3記載の光学式飛雪・飛砂粒子粒径別連続自動
計測装置。
4. A continuous automatic measuring device according to claim 1, wherein a slit plate having one slit is arranged in front of the light receiving element. .
JP9566896A 1996-04-17 1996-04-17 Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument Pending JPH09281252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9566896A JPH09281252A (en) 1996-04-17 1996-04-17 Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9566896A JPH09281252A (en) 1996-04-17 1996-04-17 Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument

Publications (1)

Publication Number Publication Date
JPH09281252A true JPH09281252A (en) 1997-10-31

Family

ID=14143885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9566896A Pending JPH09281252A (en) 1996-04-17 1996-04-17 Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument

Country Status (1)

Country Link
JP (1) JPH09281252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121337A (en) * 2001-08-07 2003-04-23 Sysmex Corp Apparatus and method for measuring particle size
JP2004260127A (en) * 2003-02-27 2004-09-16 Brave Co Ltd Infrared light introduction device and light-receiving component of infrared sensor
JP2008157765A (en) * 2006-12-25 2008-07-10 Ccs Inc Weather measuring device
JP2009170635A (en) * 2008-01-16 2009-07-30 Takenaka Electronic Industrial Co Ltd Photoreceptor of transmission-typephotoelectric sensor
JP2010032557A (en) * 2009-11-18 2010-02-12 Ccs Inc Weather measurement apparatus
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121337A (en) * 2001-08-07 2003-04-23 Sysmex Corp Apparatus and method for measuring particle size
JP2004260127A (en) * 2003-02-27 2004-09-16 Brave Co Ltd Infrared light introduction device and light-receiving component of infrared sensor
JP2008157765A (en) * 2006-12-25 2008-07-10 Ccs Inc Weather measuring device
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device
JP2009170635A (en) * 2008-01-16 2009-07-30 Takenaka Electronic Industrial Co Ltd Photoreceptor of transmission-typephotoelectric sensor
JP2010032557A (en) * 2009-11-18 2010-02-12 Ccs Inc Weather measurement apparatus

Similar Documents

Publication Publication Date Title
US5121988A (en) Single particle detector method and apparatus utilizing light extinction within a sheet of light
US6137572A (en) High sensitivity optical fluid-borne particle detection
JPH07501618A (en) Laser diode liquid level/distance measuring device
US4984889A (en) Particle size measuring system with coincidence detection
US4168126A (en) Electro-optical measuring system using precision light translator
Scalise et al. Laser Doppler vibrometry based on self-mixing effect
JP6190880B2 (en) Horizontal tape movement detector
US3680961A (en) Measurement of particle sizes
JPH09281252A (en) Optical type continuous and automatic by-blown-snow/ sand-size measuring instrument
US7450222B1 (en) Correlated-intensity velocimeter for arbitrary reflector
JP3520356B2 (en) Magnetic film defect inspection system for magnetic disks
GB2117511A (en) Laser beam alignment detection
US6844936B2 (en) Device for the non-contacting measurement of an object to be measured, particularly for distance and/or vibration measurement
US6034769A (en) Method and device for counting and measuring particles
JP2008070314A (en) Gas detection apparatus
US4190367A (en) Device for establishing a condition at the surface of a subject
Rudd The laser anemometer-a review
CN109839514A (en) A kind of high-precision optical accelerometer with from zeroing function
JPS5856094B2 (en) Microvibration measuring device
JPH02193041A (en) Particle size distribution apparatus
JPH06294777A (en) Measuring method for ultrasonic vibration
Panda Effect of Electronic Shot Noise on Dynamic Measurements Using Optical Techniques: Examples from Rayleigh scattering and Unsteady PSP
JPS59210304A (en) Displacement measuring device
JPH0718788B2 (en) Optical particle measuring device
Cerez et al. Accurate measurement of the fluorescence collection efficiency in a light-atom interaction experiment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630