JPH09281118A - Scanning type probe microscope - Google Patents

Scanning type probe microscope

Info

Publication number
JPH09281118A
JPH09281118A JP8542796A JP8542796A JPH09281118A JP H09281118 A JPH09281118 A JP H09281118A JP 8542796 A JP8542796 A JP 8542796A JP 8542796 A JP8542796 A JP 8542796A JP H09281118 A JPH09281118 A JP H09281118A
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
modulation signal
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8542796A
Other languages
Japanese (ja)
Inventor
Takaaki Takenobu
貴亮 武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8542796A priority Critical patent/JPH09281118A/en
Publication of JPH09281118A publication Critical patent/JPH09281118A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure unevenness on a sample surface keeping contact area between a probe and the sample constant by providing a modulated signal sweeping means producing a modulated signal swept in an arbitrary range and impressing it to a cantilever and a servo-means to servo-control so that an effective amplitude value becomes constant by detecting the effective amplitude value. SOLUTION: An X scanning circuit 7 and a Y scanning circuit 8 scan in X and Y axes directions the three dimensional scanner 6 whereon a sample to be measured is put and which is made of a piezoelectric body and the like freely displacable in X, Y and Z directions by impressing a specific voltage. A Z servo-circuit 9 controls the scanner 6 displacement in Z direction based on the effective value signal of an effective value circuit 5 so that the distance between a probe 1 and the surface of the sample is maintained constant at a desired distance and that the effective value is constant. The vibration part of a modulation piezoelectric body 11 moves the probe 1 of a cantilever 22 in vertical direction. A modulated signal sweep circuit 12 converts the modulated signal produced by a modulation signal generator 10 into a frequency-swept signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査型プローブ顕
微鏡(SPM)に係り、特に片持ち梁タイプの装置の改
善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope (SPM), and more particularly to improvement of a cantilever type device.

【0002】[0002]

【従来の技術】従来、Binning とRohrer等により発明さ
れた走査トンネル顕微鏡(STM;Scanning Tunneling
Microscope )におけるサーボ技術を始めとする要素技
術を利用しながら、STMでは測定し難かった絶縁性の
試料を原子オーダーの精度で観察することのできる顕微
鏡として、例えば、特開昭62−130302号公報に
は、サンプル表面の像を形成する方法及び装置としての
原子間力顕微鏡(AFM;Atomic Force Microscope )
が提案されている。
2. Description of the Related Art A scanning tunneling microscope (STM; Scanning Tunneling) was invented by Binning and Rohrer.
As a microscope capable of observing an insulating sample, which has been difficult to measure by STM with atomic order accuracy, while utilizing elemental technologies such as servo technology in Microscope), for example, JP-A-62-130302. Includes an atomic force microscope (AFM) as a method and apparatus for forming an image of a sample surface.
Has been proposed.

【0003】このAFMの構成は、STMの構成と類似
しており、走査型プローブ顕微鏡(SPM)の1つとし
て位置づけられている。AFMでは、自由端に鋭い突起
部分(探針部)を持つ片持ち梁を、試料に対向・近接し
てあり、探針の先端の原子と試料原子との間に働く相互
作用力により、変位する片持ち梁の動きを電気的あるい
は光学的にとらえて測定しつつ、試料をXY方向に走査
し、カンチレバーの探針部との位置関係を相対的に変化
させることによって、試料の凹凸情報などを三次元的に
とらえることができる(ノンコンタクトモード)。ま
た、試料と探針とを接触させて、試料の凹凸を測定する
方法(コンタクトモード)も知られている。
The structure of the AFM is similar to that of the STM and is positioned as one of scanning probe microscopes (SPM). In the AFM, a cantilever having a sharp protrusion (probe) at its free end is opposed to and close to the sample, and is displaced by the interaction force acting between the atom at the tip of the probe and the sample atom. While measuring the movement of the cantilever electrically or optically, the sample is scanned in the XY directions and the positional relationship between the cantilever and the probe part is relatively changed to obtain information on the unevenness of the sample. Can be seen three-dimensionally (non-contact mode). Also known is a method (contact mode) in which the sample and the probe are brought into contact with each other to measure the unevenness of the sample.

【0004】前記AFMにおいて、片持ち梁を共振周波
数近傍で変調をかけ、そのときの変位信号の交流成分に
より試料の凹凸を三次元に測定する方法(励振モード、
若しくは、ACモード)は 例えば、T.R.Albrecht,P.G
rutter,D.Horne,D.Rugar J.Appl.Phys.69(2),668(199
1) 等に開示されている。
In the AFM, a cantilever is modulated near the resonance frequency, and the unevenness of the sample is three-dimensionally measured by the AC component of the displacement signal at that time (excitation mode,
Or AC mode), for example, TRAlbrecht, PG
rutter, D.Horne, D.Rugar J.Appl.Phys.69 (2), 668 (199
1) etc.

【0005】また、励振モードの1つで、片持ち梁を共
振周波数近傍で変調を掛け、探針で試料表面をたたき、
このときの変位信号を検出することで、試料の凹凸を三
次元に測定する方法(タッピングモード)も知られてい
る。
In one of the excitation modes, the cantilever is modulated near the resonance frequency, and the sample surface is hit with a probe,
A method (tapping mode) for three-dimensionally measuring the unevenness of the sample by detecting the displacement signal at this time is also known.

【0006】さらに、前述したような励振モードの中で
も、試料と探針とを接触させるタッピングモードにおい
ては、探針で試料を傷つける可能性があり、極微小な力
で試料をたたくことが重要である。また、試料の再現性
を高めるために、一定の力でたたくことも重要である。
Further, among the excitation modes as described above, in the tapping mode in which the sample and the probe are brought into contact with each other, the sample may be damaged by the probe, and it is important to strike the sample with an extremely small force. is there. It is also important to hit with a constant force in order to enhance the reproducibility of the sample.

【0007】以下には、図4(a)乃至(e)を参照し
て、片持ち梁に変調周波数を加える測定(励振モード)
において、探針と試料との間に、静電力、磁力、原子間
力等の力が働いたときや、探針と試料とが接触したとき
等の片持ち梁の振幅変化について説明する。
Below, referring to FIGS. 4 (a) to 4 (e), measurement in which a modulation frequency is applied to a cantilever (excitation mode)
In, a change in the amplitude of the cantilever when an electrostatic force, a magnetic force, an atomic force, or the like acts between the probe and the sample, or when the probe and the sample contact each other will be described.

【0008】図4(a)には、片持ち梁に変調周波数を
加えたときの片持ち梁の振幅変化曲線を示す。この図に
おいて、振幅が急激に変化していることが分かる。この
振幅曲線の頂点は、共振周波数の共振点(ピーク)を示
すものである。以下、この共振点における変調周波数を
図4中では、Aとして示している。
FIG. 4A shows an amplitude change curve of the cantilever when a modulation frequency is applied to the cantilever. In this figure, it can be seen that the amplitude is changing rapidly. The peak of this amplitude curve shows the resonance point (peak) of the resonance frequency. Hereinafter, the modulation frequency at this resonance point is shown as A in FIG.

【0009】図4(b)には、探針に静電力、磁力、原
子間力等の力が働いたときの片持ち梁の振幅変化が太線
で示されている。この図から、探針に何らかの力が働い
た場合、共振周波数のピーク位置が変調周波数Aから矢
印方向にシフトすることが分かる。
In FIG. 4B, a thick line shows the amplitude change of the cantilever when an electrostatic force, a magnetic force, an interatomic force or the like acts on the probe. From this figure, it can be seen that when some force acts on the probe, the peak position of the resonance frequency shifts from the modulation frequency A in the arrow direction.

【0010】図4(c)には、探針と試料との間に力が
働いていない状態で、探針と試料とが接触したときの片
持ち梁の振幅変化が太線で示されている。この図から、
探針と試料とが接触した場合には、共振周波数のピーク
が押しつぶされるような形状となることが分かる。この
場合変調周波数Aは、変化しないと考えられる。
In FIG. 4 (c), the thick line shows the amplitude change of the cantilever when the probe and the sample are in contact with each other in the state where no force is applied between the probe and the sample. . From this figure,
It can be seen that when the probe and the sample come into contact with each other, the peak of the resonance frequency is crushed. In this case, the modulation frequency A is considered not to change.

【0011】図4(d)には、図4(b)及び図4
(c)で説明した両方の力が探針に加わった場合の片持
ち波の振幅変化が太線で示されている。特に、大気中で
行われるAFM測定においては、この図に示すような力
が探針に加わっていると考えられている。
In FIG. 4 (d), FIG. 4 (b) and FIG.
A thick line shows the change in the amplitude of the cantilever wave when both the forces described in (c) are applied to the probe. Particularly, in the AFM measurement performed in the atmosphere, it is considered that the force shown in this figure is applied to the probe.

【0012】また、図4(e)には、溶液中の測定を行
ったときに探針に加わる粘性の影響が太線で示されてい
る。この粘性により、共振点がなだらかになっているこ
とが分かる。
Further, in FIG. 4 (e), the influence of the viscosity applied to the probe when the measurement in the solution is performed is shown by a thick line. It can be seen that this viscosity makes the resonance point gentle.

【0013】[0013]

【発明が解決しようとする課題】しかし、前述した従来
技術は、以下のような問題点がある。片持ち梁を共振周
波数近傍で変調させる方法(励振モード、又は、ACモ
ードと称する)では、図4(a)に示す共振点の変調周
波数(変調信号)Aの近傍の変調周波数が片持ち梁に加
えられる。この変調信号Aを図5(a)に示す。この様
な変調信号が加えられることで、片持ち梁は、図5
(b)に示すような波形で振幅を繰り返す。
However, the above-mentioned prior art has the following problems. In the method of modulating the cantilever beam near the resonance frequency (excitation mode or AC mode), the modulation frequency near the resonance frequency (modulation signal) A at the resonance point shown in FIG. Added to. This modulated signal A is shown in FIG. By applying such a modulation signal, the cantilever beam is
The amplitude is repeated with a waveform as shown in (b).

【0014】また、探針が試料表面に近接し、探針に力
(静電力、磁力、原子間力)が働いたときは、図4
(b)に示すような現象が起こり、共振点がシフトす
る。加えて、探針に働く力の影響で振幅も減少する。こ
のため、変調信号Aを加えた場合には、図4(b)から
も分かるように、振幅が減少した図5(c)に示すよう
な波形で片持ち梁が変位する。また、探針と試料が接触
したときは、図4(c)のような現象が起こり、探針と
試料とが接触した部分の振幅が減少した図6(a)に示
すような波形で片持ち梁が変位する。尚、図6(a)
は、探針と試料との間に力が働いていない状態での振幅
を示す。
When the probe approaches the sample surface and a force (electrostatic force, magnetic force, interatomic force) acts on the probe,
The phenomenon as shown in (b) occurs and the resonance point shifts. In addition, the amplitude also decreases due to the influence of the force acting on the probe. Therefore, when the modulation signal A is applied, as can be seen from FIG. 4B, the cantilever is displaced with a waveform as shown in FIG. 5C in which the amplitude is reduced. Further, when the probe and the sample come into contact with each other, a phenomenon as shown in FIG. 4 (c) occurs, and the amplitude of the portion where the probe and the sample come into contact with each other is reduced. The cantilever is displaced. Incidentally, FIG. 6 (a)
Indicates the amplitude when no force is applied between the probe and the sample.

【0015】また、通常、励振モードの中でもタッピン
グモードを用いたAFM測定を行う場合には、探針と試
料とが接触し、それと同時に、探針と試料との間に力が
働く。即ち、図5(c)と図6(a)に示した減少が同
時に起こり、片持ち梁は、図4(d)の変調信号Aにお
ける変位振幅を示す。このときの片持ち梁の変位振幅を
図6(b)に示す。
Further, in the case of performing AFM measurement using the tapping mode among the excitation modes, the probe and the sample usually come into contact with each other, and at the same time, a force acts between the probe and the sample. That is, the reductions shown in FIG. 5C and FIG. 6A occur simultaneously, and the cantilever shows the displacement amplitude in the modulation signal A of FIG. 4D. The displacement amplitude of the cantilever at this time is shown in FIG.

【0016】ところで、AFM測定では、図6(b)に
示す片持ち梁の変位振幅を積分し、その積分した値を実
効値として検出する。そして、その検出された値に基づ
いて、その試料の凹凸を再現している。従って、図6
(b)の波形から得られる凹凸信号は、探針と試料との
間に働く力の影響及び探針と試料とが接触した影響の両
者を含む凹凸信号となってしまう。即ち、図6(b)に
基づく試料表面に関する信号は、探針と試料との関係が
明らかでないため、実際の試料表面の凹凸を示す信号で
はないと考えられる。
By the way, in the AFM measurement, the displacement amplitude of the cantilever beam shown in FIG. 6B is integrated, and the integrated value is detected as an effective value. Then, the unevenness of the sample is reproduced based on the detected value. Therefore, FIG.
The unevenness signal obtained from the waveform of (b) becomes an unevenness signal including both the influence of the force acting between the probe and the sample and the influence of the contact between the probe and the sample. That is, it is considered that the signal related to the sample surface based on FIG. 6B is not a signal indicating the actual unevenness of the sample surface because the relationship between the probe and the sample is not clear.

【0017】この様に、タッピングモードにおいて、探
針と試料との関係がはっきりしない状態で片持ち梁を励
振し、探針で試料をたたくことは、試料を傷つける可能
性が高い上に、一定の力で試料をたたくことも困難であ
る。
As described above, in the tapping mode, if the cantilever is excited and the sample is hit with the probe in a state where the relationship between the probe and the sample is not clear, the sample is likely to be damaged, and the sample is constant. It is also difficult to hit the sample with the force of.

【0018】そこで本発明は、静電力、磁力、原子間力
等の力と、探針と試料との接触とを判別すると共に、探
針と試料との接触量を一定にして、試料表面凹凸形状を
測定する走査型プローブ顕微鏡を提供することを目的と
する。
In view of this, the present invention discriminates between electrostatic force, magnetic force, interatomic force, and the like, and contact between the probe and the sample, and the contact amount between the probe and the sample is kept constant, so that the sample surface irregularities are An object of the present invention is to provide a scanning probe microscope that measures a shape.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するために、先端に尖鋭化した探針を設けた片持ち梁
に、所定の変調信号を印加して振動させ、前記探針を試
料に接触して走査させ、前記片持ち梁の変位を光学的に
検出し、前記試料表面の形状を検知する走査型プローブ
顕微鏡において、前記変調信号の周波数を任意の範囲内
でスウィープした変調信号を生成し、前記片持ち梁に印
加する変調信号スウィープ手段を有する走査型プローブ
顕微鏡を提供する。さらに、前記走査型プローブ顕微鏡
は、前記片持ち梁の変位の振幅実効値を検出し、振幅実
効値が一定になるようにサーボをかけるサーボ手段を有
する。
In order to achieve the above-mentioned object, the present invention applies a predetermined modulation signal to a cantilever having a sharpened probe at its tip to vibrate the probe, In a scanning probe microscope that detects the shape of the sample surface by optically detecting the displacement of the cantilever while contacting and scanning the sample, a modulation signal obtained by sweeping the frequency of the modulation signal within an arbitrary range. To provide a scanning probe microscope having a modulation signal sweeping means for generating and applying to the cantilever. Further, the scanning probe microscope has servo means for detecting an effective amplitude value of the displacement of the cantilever and applying a servo so that the effective amplitude value becomes constant.

【0020】以上のように構成された走査型プローブ顕
微鏡により、片持ち梁に周波数スウィープした変調信号
を加えて振動させて、共振周波数になったときだけ片持
ち梁の変位振幅を大きくした変位信号を検出し変位の位
相の変化により、探針に働く力の有無を判定し、変位信
号の実効値の減少により探針が試料に接触したことを判
別することが可能になり、この変位信号の実効値を測定
すれば、どの程度探針と試料が接触しているかを、探針
に働いている力を無視して、試料の表面凹凸のみ測定す
る。
With the scanning probe microscope configured as described above, a frequency swept modulation signal is applied to the cantilever to make it vibrate, and a displacement signal in which the displacement amplitude of the cantilever is increased only when the resonance frequency is reached. It is possible to determine the presence or absence of force acting on the probe by detecting the change in the displacement phase, and it is possible to determine that the probe has contacted the sample due to the decrease in the effective value of the displacement signal. If the effective value is measured, how much the probe and the sample are in contact with each other is measured, ignoring the force acting on the probe, and measuring only the surface unevenness of the sample.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態について詳細に説明する。図1には、本発明によ
る実施形態として、走査型プローブ顕微鏡の概略的な構
成を示し説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a schematic configuration of a scanning probe microscope as an embodiment according to the present invention and will be described.

【0022】この走査型プローブ顕微鏡は、先端に先鋭
化した探針1が設けられた片持ち梁2と、測定する試料
3の表面に対して探針1の先端を相対的に走査させる走
査部と、片持ち梁2を振動させる振動部と、片持ち梁2
の変位を光学的に検出する変位センサ4と、この変位セ
ンサ4の変位信号の実効値を測定する実効値回路5とを
備えている。
In this scanning probe microscope, a cantilever 2 having a sharpened probe 1 at its tip and a scanning unit for scanning the tip of the probe 1 relative to the surface of a sample 3 to be measured. And a vibrating part that vibrates the cantilever 2, and the cantilever 2
Is provided with a displacement sensor 4 for optically detecting the displacement, and an effective value circuit 5 for measuring the effective value of the displacement signal of the displacement sensor 4.

【0023】前記走査部は、測定する試料3を載置し、
所定電圧の印加によって、図中のXYZ軸方向に変位自
在な圧電体等からなる3次元スキャナ6と、3次元スキ
ャナ6をXY軸方向に走査するX走査回路7及びY走査
回路8と、探針1と試料3の表面からの距離が所望の距
離に維持されるように、実効値回路5の実効値信号に基
づいて、その実行値が一定になるように、3次元スキャ
ナ6をZ方向に変位制御するZサーボ回路9とで構成さ
れる。
The scanning unit mounts a sample 3 to be measured,
A three-dimensional scanner 6 made of a piezoelectric material or the like that is displaceable in the XYZ axis directions in the figure by applying a predetermined voltage, an X scanning circuit 7 and a Y scanning circuit 8 for scanning the three-dimensional scanner 6 in the XY axis directions, The three-dimensional scanner 6 is moved in the Z direction so that the actual value is constant based on the effective value signal of the effective value circuit 5 so that the distance from the surface of the needle 1 and the sample 3 is maintained at a desired distance. And a Z servo circuit 9 for displacement control.

【0024】前記振動部は、片持ち梁2の探針1を垂直
方向(Z方向)に動かせるための変調圧電体11と、前
記探針1を振動させるために変調圧電体11に印加する
変調信号を生成する変調信号発生器10と、前記変調信
号発生器10により生成された変調信号を後述する周波
数スウィープされた信号に変換する変調信号スウィープ
回路12とで構成される。
The vibrating section includes a modulation piezoelectric body 11 for moving the probe 1 of the cantilever 2 in the vertical direction (Z direction), and a modulation applied to the modulation piezoelectric body 11 for vibrating the probe 1. A modulation signal generator 10 for generating a signal and a modulation signal sweep circuit 12 for converting the modulation signal generated by the modulation signal generator 10 into a frequency-swept signal described later.

【0025】図2及び図3を参照して、このように構成
された走査型プローブ顕微鏡の作用について説明する。
ここで、図2(a)は、変調信号スウィープ回路12か
ら変調圧電体11に印加する周波数がスウィープされた
信号を示す。この周波数スウィープ変調信号は、図5
(a)に相当する信号に図4(a)に示す変調周波数−
片持ち梁変位振幅の関係の変位波形を加えた信号であ
る。通常、片持ち梁を振動させるための周波数は、その
振幅が図4(a)に示す共振点Aの近傍で一定になるよ
うに固定されるが、本実施形態においては、例えば、共
振点Aを含む任意の周波数帯域で周波数を変動させるよ
うにする。従って、片持ち梁は、図4(a)に示した片
持ち梁の振動特性を反映する図2(b)のような振動を
繰り返すことになる。勿論、この変調信号をスィープす
る帯域幅は、片持ち梁毎の特性に適正する値で定められ
るものであり、片持ち梁の変位振幅のピーク値(共振
点)を中心として、任意の幅の周波数帯域を設定すれば
よい。また、試料が溶液中にある測定の場合は、図4
(e)に示すように、粘性が働き、緩やかな変位波形と
なる。この場合には、図4(a)のような通常の大気の
変位振幅と積分値が同じ即ち、実効値が同じになるよう
に周波数の帯域幅を広く設定すれば、同様に扱うことが
できる。
The operation of the scanning probe microscope thus constructed will be described with reference to FIGS. 2 and 3.
Here, FIG. 2A shows a signal in which the frequency applied from the modulation signal sweep circuit 12 to the modulation piezoelectric body 11 is swept. This frequency sweep modulated signal is shown in FIG.
The signal corresponding to (a) has the modulation frequency shown in (a) of FIG.
This is a signal to which a displacement waveform related to the cantilever displacement amplitude is added. Normally, the frequency for vibrating the cantilever is fixed so that its amplitude is constant near the resonance point A shown in FIG. 4A. However, in the present embodiment, for example, the resonance point A The frequency is changed in any frequency band including. Therefore, the cantilever repeats the vibration as shown in FIG. 2B, which reflects the vibration characteristic of the cantilever shown in FIG. Of course, the bandwidth for sweeping this modulation signal is determined by a value that is appropriate for the characteristics of each cantilever, and it has an arbitrary width around the peak value (resonance point) of the displacement amplitude of the cantilever. The frequency band should be set. In the case of measurement in which the sample is in the solution,
As shown in (e), the viscosity acts and a gentle displacement waveform is obtained. In this case, the same treatment can be performed if the frequency bandwidth is set wide so that the displacement value of the normal atmosphere and the integrated value are the same as shown in FIG. 4A, that is, the effective value is the same. .

【0026】この変調信号スウィープ回路12により発
生させた周波数スウィープ変調信号を変調圧電体11に
印加すると、探針1に力が働いていない状態において、
片持ち梁2は、図2(b)に示すように共振周波数にな
ったときだけ片持ち梁の変位振幅が大きく振れる。これ
は、従来の図5(b)に相当する。
When the frequency sweep modulation signal generated by the modulation signal sweep circuit 12 is applied to the modulation piezoelectric body 11, in a state where no force is exerted on the probe 1,
In the cantilever 2, the displacement amplitude of the cantilever largely fluctuates only when the resonance frequency is reached as shown in FIG. This corresponds to the conventional FIG. 5 (b).

【0027】そして、この振れ状態で、探針1を試料3
に近づけていき、探針1に静電力、磁力、原子間力等の
力が働いたときは、変位センサ4に入る変位信号が、図
2(c)に示すように変位する。この信号は、図2
(b)の信号と比較して探針1と試料3との間に力が働
いたため、共振周波数の共振点がシフトしている。この
力の影響により、ピーク−ピークの距離が変化してい
る。また、このときの実効値は、ピーク−ピークの距離
に関係なく、図2(b)と等しくなる。この変位信号
は、従来の図4(b)に示す状態の時、検出される信号
である。
Then, in this swinging state, the probe 1 is moved to the sample 3
When a force such as electrostatic force, magnetic force, or atomic force acts on the probe 1, the displacement signal entering the displacement sensor 4 is displaced as shown in FIG. 2 (c). This signal is
Since a force acts between the probe 1 and the sample 3 as compared with the signal of (b), the resonance point of the resonance frequency is shifted. Due to the influence of this force, the peak-to-peak distance changes. The effective value at this time is equal to that in FIG. 2B regardless of the peak-peak distance. This displacement signal is a signal detected in the conventional state shown in FIG.

【0028】さらに、探針1が試料3に接触したとき
は、片持ち梁の振れ幅が制限され、図3(a)に示す様
な変位信号になる。この変位信号は、図2(b)と比較
して試料3と接触している部分を除いては、図3(b)
と同じである。また、接触している分、実効値は図2
(b)より減少している。但し、ここでは、探針1と試
料3との間には力が働いていないものと考える。
Further, when the probe 1 comes into contact with the sample 3, the deflection width of the cantilever is limited, and the displacement signal as shown in FIG. 3 (a) is obtained. This displacement signal is shown in FIG. 3 (b) except for the portion in contact with the sample 3 as compared with FIG. 2 (b).
Is the same as In addition, the effective value is as shown in Fig. 2 because of contact.
It is less than that of (b). However, here, it is considered that no force acts between the probe 1 and the sample 3.

【0029】次に、実際に、探針1で試料3をタッピン
グモードでAFM測定した変位信号を図3(b)に示
す。この図3(b)に示す変位信号は、探針1と試料3
との接触量を同じにした場合、図3(a)と実効値が同
じである。また、図2(c)と同様に、探針1と試料3
との間に働く力に基づき、ピーク−ピークの距離が変化
している。この変位信号は、図4(d)の影響を受けた
変位信号である。
Next, FIG. 3B shows a displacement signal obtained by actually performing AFM measurement of the sample 3 with the probe 1 in the tapping mode. The displacement signal shown in FIG.
When the amount of contact with is the same, the effective value is the same as in FIG. In addition, similarly to FIG. 2C, the probe 1 and the sample 3
The peak-to-peak distance changes based on the force exerted between and. This displacement signal is the displacement signal affected by FIG.

【0030】以上によれば、探針1と試料3との接触量
の増加に伴い、図3(b)の変位信号の実効値が減少
し、探針1と試料3との間に働く力は、ピーク−ピーク
の距離変化に置き換えられたことが理解できる。言い換
えれば、実効値を一定に保つように制御すれば、探針1
と試料3とが一定の接触量を保つようにAFM測定する
ことができると言うことである。
According to the above, as the contact amount between the probe 1 and the sample 3 increases, the effective value of the displacement signal in FIG. 3B decreases, and the force acting between the probe 1 and the sample 3 decreases. It can be seen that was replaced by the peak-to-peak distance change. In other words, if the effective value is controlled to be constant, the probe 1
That is, the AFM measurement can be performed so that the sample 3 and the sample 3 maintain a constant contact amount.

【0031】以下、実効値を一定にする動作について説
明する。前述したように、スウィープされた片持ち梁2
の変位は、変位センサ4によって、光学的に検出され
る。この検出された変位信号は、実効値回路5に入力さ
れる。この実効値回路5では、変位センサ4で検出され
た変位信号が積分処理され、その変位信号に基づく実効
値が算出され、出力される。
The operation for keeping the effective value constant will be described below. As mentioned above, the swept cantilever 2
The displacement of 4 is optically detected by the displacement sensor 4. The detected displacement signal is input to the effective value circuit 5. In the effective value circuit 5, the displacement signal detected by the displacement sensor 4 is integrated, and the effective value based on the displacement signal is calculated and output.

【0032】そして実効値回路5の出力が一定になるよ
う、Zサーボ回路9により、3次元スキャナ6をZ軸方
向にコントロールしながら、X走査回路7、Y走査回路
8により、XY軸方向に試料3を走査すると、探針1先
端は、試料3表面の凹凸に追従しながら動き、試料3の
表面凹凸が測定される。
Then, the Z-servo circuit 9 controls the three-dimensional scanner 6 in the Z-axis direction so that the output of the effective value circuit 5 becomes constant, while the X-scan circuit 7 and the Y-scan circuit 8 move in the XY-axis direction. When the sample 3 is scanned, the tip of the probe 1 moves while following the unevenness of the surface of the sample 3, and the surface unevenness of the sample 3 is measured.

【0033】従って、本実施形態においては、周波数ス
ウィープ変調信号を探針の圧電体に印加し、得られた変
位信号の実効値を測定すれば、どの程度、探針と試料が
接触しているかを、探針に働いている力を無視して測定
することができる。
Therefore, in the present embodiment, when the frequency sweep modulation signal is applied to the piezoelectric body of the probe and the effective value of the obtained displacement signal is measured, how much the probe and the sample are in contact with each other. Can be measured by ignoring the force acting on the probe.

【0034】さらに、溶液中の測定の場合であっても、
図4(e)に示すように、粘性が働き共振点がなだらか
になったとしても、本実施形態の走査型プローブ顕微鏡
を用いれば、ある幅の周波数分で積分したのと同じ効果
がでるため、粘性が働こうとも変位信号の実効値は変わ
らない、よって、粘性による実測の誤差を無視して測定
することができる。
Furthermore, even in the case of measurement in a solution,
As shown in FIG. 4 (e), even if the viscosity works and the resonance point becomes gentle, the same effect as that obtained by integrating at a frequency of a certain width can be obtained by using the scanning probe microscope of this embodiment. Even if the viscosity works, the effective value of the displacement signal does not change. Therefore, the measurement error due to the viscosity can be ignored for the measurement.

【0035】また、変位センサにより得られた検出信号
に基づき、変位信号の実効値が一定になるようサーボを
かけ、試料を走査すると、場所による試料の粘性や、探
針に働いている力を無視し、探針と試料の接触量を一定
にしてサンプルの表面凹凸のみ測定することができる。
Further, based on the detection signal obtained by the displacement sensor, the servo is applied so that the effective value of the displacement signal becomes constant, and the sample is scanned, the viscosity of the sample depending on the location and the force acting on the probe are detected. Ignoring this, it is possible to measure only the surface irregularities of the sample while keeping the contact amount between the probe and the sample constant.

【0036】さらに、前述した実施形態では、探針と試
料との間に働く力を無視するものとして説明したが、図
2(c)や図3(b)に示す変位信号から任意にピック
アップしたピーク−ピークの距離を求め、元の状態と比
較し、その変化量に基づいて、この力を表面凹凸と分離
して検出することも可能である。また、ピークの一点の
み注目して、そのピーク値の移動量からも同様に検出で
きる。
Further, in the above-mentioned embodiment, the force acting between the probe and the sample is ignored, but it is arbitrarily picked up from the displacement signals shown in FIG. 2 (c) and FIG. 3 (b). It is also possible to obtain the peak-peak distance, compare it with the original state, and detect this force separately from the surface irregularities based on the amount of change. Further, it is possible to detect only one point of the peak and similarly detect it from the movement amount of the peak value.

【0037】[0037]

【発明の効果】以上詳述したように本発明によれば、静
電力、磁力、原子間力等の探針に働いている力の影響を
無くし、探針と試料の接触量を一定にしてサンプルの表
面凹凸形状を測定できるため、接触量を最適にして、安
定的にACモードのAFMの測定を行う走査型プローブ
顕微鏡を提供することができる。
As described above in detail, according to the present invention, the influence of force acting on the probe such as electrostatic force, magnetic force, and atomic force is eliminated, and the contact amount between the probe and the sample is made constant. Since the surface unevenness of the sample can be measured, it is possible to provide a scanning probe microscope that optimizes the contact amount and stably measures the AC mode AFM.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施形態としての走査型プローブ
顕微鏡の概略的な構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a scanning probe microscope as an embodiment according to the present invention.

【図2】本実施形態の走査型プローブ顕微鏡の測定に用
いる周波数スウィープした変調信号の波形と変位波形を
示す図である。
FIG. 2 is a diagram showing waveforms of a frequency-swept modulation signal and displacement waveforms used for measurement of the scanning probe microscope of the present embodiment.

【図3】本実施形態の走査型プローブ顕微鏡の測定にお
ける検出された変調信号の変位波形を示す図である。
FIG. 3 is a diagram showing a displacement waveform of a detected modulation signal in the measurement of the scanning probe microscope of the present embodiment.

【図4】片持ち梁の変調周波数と変位振幅の関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a modulation frequency and a displacement amplitude of a cantilever beam.

【図5】従来の片持ち梁の変調周波数と変位振幅の関係
を示す図である。
FIG. 5 is a diagram showing a relationship between a modulation frequency and a displacement amplitude of a conventional cantilever.

【図6】従来の片持ち梁における検出された変調信号の
変位波形を示す図である。
FIG. 6 is a diagram showing a displacement waveform of a detected modulation signal in a conventional cantilever.

【符号の説明】[Explanation of symbols]

1…探針 2…片持ち梁 3…試料 4…変位センサ 5…実効値回路 6…3次元スキャナ 7…X走査回路 8…Y走査回路 9…Zサーボ回路 10…変調信号発生器 11…変調圧電体 12…変調信号スウィープ回路 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Cantilever 3 ... Sample 4 ... Displacement sensor 5 ... Effective value circuit 6 ... Three-dimensional scanner 7 ... X scanning circuit 8 ... Y scanning circuit 9 ... Z servo circuit 10 ... Modulation signal generator 11 ... Modulation Piezoelectric body 12 ... Modulation signal sweep circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 先端に尖鋭化した探針を設けた片持ち梁
に、所定の変調信号を印加して振動させ、前記探針を試
料に接触して走査させ、前記片持ち梁の変位を光学的に
検出し、前記試料表面の形状を検知する走査型プローブ
顕微鏡において、 前記変調信号の周波数を任意の範囲内でスウィープした
変調信号を生成し、前記片持ち梁に印加する変調信号ス
ウィープ手段を具備することを特徴とする走査型プロー
ブ顕微鏡。
1. A cantilever having a sharpened probe at its tip is applied with a predetermined modulation signal to vibrate, the probe is brought into contact with a sample to scan, and the displacement of the cantilever is measured. In a scanning probe microscope that optically detects and detects the shape of the sample surface, a modulation signal sweep means for generating a modulation signal by sweeping the frequency of the modulation signal within an arbitrary range and applying the modulation signal to the cantilever. A scanning probe microscope comprising:
【請求項2】 前記片持ち梁の変位の振幅実効値を検出
し、前記振幅実効値が一定になるようにサーボをかける
サーボ手段をさらに具備し、 周波数をスィープしている変調信号を印加する際に、前
記片持ち梁の変位の振幅実効値を検出し、前記振幅実効
値が一定になるようにサーボをかけて、測定することを
特徴とする請求項1記載の走査型プローブ顕微鏡。
2. A servo means for detecting an effective amplitude value of the displacement of the cantilever and applying a servo so that the effective amplitude value becomes constant, further comprising a modulation signal sweeping a frequency. 2. The scanning probe microscope according to claim 1, wherein the effective amplitude value of the displacement of the cantilever is detected, and servo is applied so that the effective amplitude value becomes constant.
【請求項3】 先端に先鋭化した探針が設けられた片持
ち梁と、 測定する試料を載置して、3次元(XYZ方向)に移動
自在で、試料表面上に前記探針の先端を接触させて相対
的に走査する走査部と、 前記探針を振動させるための所定の変調信号を生成する
変調信号生成部と、 前記探針の振動の変位を光学的に検出し、変位の実効値
信号を生成する実効値生成部と、 前記探針と前記試料表面からの距離が所望の一定距離に
維持されるように、前記実効値生成部が生成した実効値
信号に基づいて、その実行値が一定になるように、前記
走査部をZ方向に変位制御するサーボ部と、 前記変調信号生成部が生成した変調信号を、前記片持ち
梁の振幅のピーク値を中心とする任意の周波数幅でスィ
ープさせて前記片持ち梁に印加する周波数スウィープ発
生部と、を具備することを特徴とする走査型プローブ顕
微鏡。
3. A cantilever having a sharpened probe at its tip, and a sample to be measured placed on the cantilever, which is movable in three dimensions (XYZ directions) and the tip of the probe on the surface of the sample. A scanning unit for contacting and relatively scanning, a modulation signal generation unit for generating a predetermined modulation signal for vibrating the probe, and a displacement of vibration of the probe is optically detected to An rms value generating section that generates a rms value signal, so that the distance from the probe and the sample surface is maintained at a desired constant distance, based on the rms value signal generated by the rms value generating section, A servo unit that controls displacement of the scanning unit in the Z direction so that the execution value becomes constant, and a modulation signal generated by the modulation signal generation unit with an arbitrary peak value of the amplitude of the cantilever as a center. Frequency sweep applied to the cantilever by sweeping with frequency band Scanning probe microscope characterized by comprising a generating unit.
JP8542796A 1996-04-08 1996-04-08 Scanning type probe microscope Withdrawn JPH09281118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8542796A JPH09281118A (en) 1996-04-08 1996-04-08 Scanning type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8542796A JPH09281118A (en) 1996-04-08 1996-04-08 Scanning type probe microscope

Publications (1)

Publication Number Publication Date
JPH09281118A true JPH09281118A (en) 1997-10-31

Family

ID=13858545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8542796A Withdrawn JPH09281118A (en) 1996-04-08 1996-04-08 Scanning type probe microscope

Country Status (1)

Country Link
JP (1) JPH09281118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529839A (en) * 2011-07-26 2014-11-13 中国科学院物理研究所 Nanopatterning and ultra-wideband electromagnetic property measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529839A (en) * 2011-07-26 2014-11-13 中国科学院物理研究所 Nanopatterning and ultra-wideband electromagnetic property measurement system

Similar Documents

Publication Publication Date Title
JP2915554B2 (en) Barrier height measurement device
KR100961571B1 (en) Scanning probe microscope
EP0587459B1 (en) Tapping atomic force microscope
JP3485244B2 (en) Field detection by single pass dual amplitude mode scanning force microscope
US5418363A (en) Scanning probe microscope using stored data for vertical probe positioning
EP0839312B1 (en) Tapping atomic force microscope with phase or frequency detection
EP0410131B1 (en) Near-field lorentz force microscopy
US6008489A (en) Method for improving the operation of oscillating mode atomic force microscopes
US5866807A (en) Method and apparatus for measuring mechanical properties on a small scale
US6005246A (en) Scanning probe microscope
USRE36488E (en) Tapping atomic force microscope with phase or frequency detection
US5907096A (en) Detecting fields with a two-pass, dual-amplitude-mode scanning force microscope
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
JP5252389B2 (en) Scanning probe microscope
JP4314328B2 (en) Compliance measurement microscope
US5652377A (en) Scanning method with scanning probe microscope
JPH11160333A (en) Scanning probe microscope
JP2002228572A (en) Noncontact interatomic force microscope and observation method using the same
JPH07159465A (en) Surface potential reading device
JPH09281118A (en) Scanning type probe microscope
JP3754821B2 (en) Cantilever amplitude measuring method and non-contact atomic force microscope
JP3497913B2 (en) Scanning probe microscope and its measuring method
Murdfield et al. Acoustic and dynamic force microscopy with ultrasonic probes
JPH063397A (en) Potential distribution measuring device
JP2000036139A (en) Surface observation method, recording/reproducing method, scanning type probe microscope and recording/ reproducing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701