JPH09279318A - Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state - Google Patents

Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state

Info

Publication number
JPH09279318A
JPH09279318A JP8088425A JP8842596A JPH09279318A JP H09279318 A JPH09279318 A JP H09279318A JP 8088425 A JP8088425 A JP 8088425A JP 8842596 A JP8842596 A JP 8842596A JP H09279318 A JPH09279318 A JP H09279318A
Authority
JP
Japan
Prior art keywords
amorphous alloy
amorphous
alloy
electrode material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8088425A
Other languages
Japanese (ja)
Inventor
Takumi Sakamoto
巧 坂本
Takeshi Sudo
毅 須藤
Takahiro Aoki
崇広 青木
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Yasushi Takahagi
泰 高萩
Takeshi Kamoshita
武 鴨志田
Kazuya Saito
和哉 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRANUMA SANGYO KK
Japan Science and Technology Agency
Ibaraki Prefecture
Original Assignee
HIRANUMA SANGYO KK
Ibaraki Prefecture
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRANUMA SANGYO KK, Ibaraki Prefecture, Research Development Corp of Japan filed Critical HIRANUMA SANGYO KK
Priority to JP8088425A priority Critical patent/JPH09279318A/en
Publication of JPH09279318A publication Critical patent/JPH09279318A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous electrode for electrolysis, increased in electrolytic efficiency, requiring no activation treatment, excellent in corrosion resistance, and capable of forming into various shapes. SOLUTION: This anode electrolysis electrode material is produced by using a noble-metal-base amorphous alloy of amorphous structure, having a composition which contains, by atomic percentage (at%, hereinafter), 65-80at% of Pd and Pt as essential elements and contains 15-40at% Pt and has the balance essentially 4-15at% Cu and 10-20at% Si and also having >=50K temp. width of supercooled solution region ▵Tx, [▵Tx=(crystallization temp. Tx)-(glass transition temp. Tg)].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,非晶質構造を有し
たままのバルク化が容易であり,且つ高耐食性を有する
非晶質合金を使用して作成した,塩化ナトリウム水溶液
を始めとする種々の水溶液の電解用電極として高活性の
電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention includes an aqueous sodium chloride solution prepared by using an amorphous alloy which has an amorphous structure and can be easily formed into a bulk and has high corrosion resistance. The present invention relates to a highly active electrode as an electrode for electrolysis of various aqueous solutions.

【0002】[0002]

【従来の技術】塩化ナトリウムなどの水溶液を電解する
ための電極としては,一般的に白金(Pt)などの貴金
属が用いられている。電解用電極としては目的対象物に
対する電解効率が高いこと,長時間にわたって電解効率
が安定していること,激しい酸化環境で耐食性が高いこ
となどが要求される。
2. Description of the Related Art As an electrode for electrolyzing an aqueous solution of sodium chloride or the like, a noble metal such as platinum (Pt) is generally used. Electrodes for electrolysis are required to have high electrolysis efficiency for the target object, stable electrolysis efficiency for a long time, and high corrosion resistance in a severe oxidizing environment.

【0003】現在用いられている純Ptをはじめとする
貴金属材料では,次のような問題がある。一例としてN
aCl溶液の純Ptによる陽極電解を挙げる。
The noble metal materials currently used, such as pure Pt, have the following problems. N as an example
Anodic electrolysis using pure Pt of aCl solution is given.

【0004】NaCl溶液中での長時間電解により,
電極の表面酸化が進行し,塩素ガス発生に有効な表面積
が減少する。その結果塩素ガス発生の過電圧が上昇し,
酸素ガス発生量が増加するため塩素発生効率が低下し,
長期的な信頼性に欠ける。
By long-term electrolysis in a NaCl solution,
The surface oxidation of the electrode progresses and the effective surface area for chlorine gas generation decreases. As a result, the overvoltage of chlorine gas generation increases,
Since the oxygen gas generation amount increases, the chlorine generation efficiency decreases,
It lacks long-term reliability.

【0005】塩素発生効率の低下した電極の再生に
は,研磨や逆電解などの表面活性化処理が必要でありメ
ンテナンスに時間がかかる。
Regeneration of the electrode having a reduced chlorine generation efficiency requires surface activation treatment such as polishing and reverse electrolysis, which requires time for maintenance.

【0006】電解後大気中に放置すると塩素発生効率
が低下する。
If left in the atmosphere after electrolysis, the chlorine generation efficiency decreases.

【0007】貴金属を利用した電極材料は高価であ
る。
An electrode material using a noble metal is expensive.

【0008】非晶質合金に関する特許としては,特公昭
59−35417号の公報にみられるような,遷移金属
−半金属系非晶質合金の組成一般を幅広く含む非晶質合
金針金の製造方法が示されている。
As a patent relating to amorphous alloys, a method for producing an amorphous alloy wire including a wide range of compositions of transition metal-semimetal amorphous alloys as disclosed in Japanese Patent Publication No. 59-35417. It is shown.

【0009】しかし,上述したような電極への応用検討
は具体的に成されていなかった。
However, the application study to the electrode as described above has not been concretely made.

【0010】また,特開昭62−96633号,特開平
4−68394号および5−65604号の公報に示さ
れた,非晶質合金を利用した電極材料の特許について
は,陽極電解材料としては優れたものであるけれども,
以下のような問題点があった。
Further, regarding the patents of electrode materials using amorphous alloys, which are disclosed in JP-A-62-96633, JP-A-4-68394 and JP-A-5-65604, the anode electrolytic material is Excellent, but
There were the following problems.

【0011】特開平4-68394号の公報の合金に
は,合金表面にZnを拡散浸透することによってZnを
含む合金層を表面に作成したのち,アルカリまたは酸溶
液処理によってZnを選択的に溶解し,表面層を多孔質
化する処理を施さねばならない。
In the alloy disclosed in Japanese Unexamined Patent Publication No. 4-68394, an Zn-containing alloy layer is formed on the surface of the alloy by diffusing and permeating Zn on the surface of the alloy, and then Zn is selectively dissolved by an alkali or acid solution treatment. However, the surface layer must be treated to make it porous.

【0012】特開昭62−96633号および特開平
4−68394号の公報の合金は,非晶質形成能を示す
過冷却液体域△Txも低いので非晶質のバルク化が困難
なために形状的な制約もあり,製造できる非晶質合金は
薄帯および薄片状のものに限られていた。
The alloys disclosed in JP-A-62-96633 and JP-A-4-68394 have a low supercooled liquid region ΔTx exhibiting an amorphous forming ability, so that it is difficult to form an amorphous bulk. Due to shape restrictions, the amorphous alloys that can be manufactured were limited to ribbons and flakes.

【0013】特開平5−65604号の公報の合金
は,高エネルギ−密度ビ−ムを利用して表面のみを非晶
質化する手法のため,ビ−ムの境界域が結晶化したり気
孔や欠陥が生じやすく,均一な非晶質組織が得られにく
い欠点がある。
The alloy disclosed in Japanese Unexamined Patent Publication No. 5-65604 uses a high energy density beam to amorphize only the surface of the alloy. There is a defect that defects are likely to occur and it is difficult to obtain a uniform amorphous structure.

【0014】特開昭62−96633号および特開平
5−65604号の公報の合金は,フッ酸による表面活
性化処理により電解に寄与する貴金属元素の濃縮化が必
要であるなどの問題がある。
The alloys disclosed in JP-A-62-96633 and JP-A-5-65604 have a problem that it is necessary to concentrate a precious metal element that contributes to electrolysis by a surface activation treatment with hydrofluoric acid.

【0015】[0015]

【発明が解決しようとする課題】前述したように,結晶
および非晶質合金のそれぞれにおいて,陽極電解電極材
料として優れた性質を示し,且つバルク化が可能である
ような材料が今までのところ満足し得るものがなかっ
た。
As described above, as far as the crystalline and amorphous alloys are concerned, the materials which have excellent properties as the anode electrolytic electrode material and are capable of being bulked have so far been obtained. There was nothing satisfactory.

【0016】本発明者は,別出願により,過冷却液体域
△Txが広く,非晶質構造を有したままのバルク化が容
易であり,且つ高耐食性を有する貴金属基非晶質合金を
提案した。
The present inventor proposes, by another application, a noble metal-based amorphous alloy which has a wide supercooled liquid region ΔTx, can be easily formed into a bulk while having an amorphous structure, and has high corrosion resistance. did.

【0017】そこで本発明においては,前述の発明した
非晶質合金を利用し,電解効率が高く活性化処理を必要
としないで耐久性が優れ,且つさまざまな形状が作成で
きる陽極電解電極材料を提供するものである。
Therefore, in the present invention, an anode electrolysis electrode material which utilizes the above-mentioned amorphous alloy and has high electrolysis efficiency and excellent durability without requiring activation treatment and which can be formed into various shapes is provided. It is provided.

【0018】[0018]

【課題を解決するための手段】本発明において「バルク
化」とは,非晶質構造を有したまま,粉末,薄帯,細線
などよりも大型(長さ100mm,径1mm以上)に作
製可能であることを示したものである。
[Means for Solving the Problems] In the present invention, "bulking" means that an amorphous structure can be produced in a larger size (100 mm in length, 1 mm or more in diameter) than a powder, a ribbon, a fine wire or the like. It means that.

【0019】本発明において「耐食性」とは,合金表面
から塩素ガスなどが発生するような,高電位における激
しい酸化環境下でも,合金表面での腐食がみられない性
質を示したものである。
In the present invention, the term "corrosion resistance" refers to the property that corrosion does not occur on the alloy surface even under a severe oxidizing environment at a high potential such as chlorine gas generated from the alloy surface.

【0020】本発明者等は,上述の課題を達成するため
に鋭意考察研究の結果,これらの課題を満足させ得る発
明を成し遂げた。以下にそれらを述べる。
The inventors of the present invention have made an invention capable of satisfying the above-mentioned problems as a result of earnest study for achieving the above-mentioned problems. These are described below.

【0021】本発明による非晶質合金を使用した陽極
電解電極材料は,PdとPtを必須元素として元素を原
子百分率(以下at%とする)65から80at%含
み,且つPtを15から40at%,そして主として残
余がCuおよびSiから成り,且つCuを4から15a
t%,Siを10から20at%含む合金組成で構成さ
れ,且つ50K以上の過冷却液体域△Txを有するた
め,非晶質構造を有したままのバルク化が容易である。
The anode electrolysis electrode material using the amorphous alloy according to the present invention contains Pd and Pt as essential elements in atomic percentage (hereinafter referred to as at%) of 65 to 80 at%, and Pt of 15 to 40 at%. , And the balance mainly consists of Cu and Si, and Cu is 4 to 15a
Since it is composed of an alloy composition containing t% and Si at 10 to 20 at% and has a supercooled liquid region ΔTx of 50 K or more, it is easy to form a bulk while maintaining an amorphous structure.

【0022】本発明による非晶質合金を使用した陽極
電解電極材料は,PdとPtおよびNiを必須元素とし
て元素を原子百分率(以下at%とする)55から80
at%含み,Ptを15から40at%,且つNiを1
0から20at%,そして主として残余がCuおよびS
iから成り,且つCuを4から15at%,Siを10
から20at%含む合金組成で構成され,且つ50K以
上の過冷却液体域△Txを有するため,非晶質構造を有
したままのバルク化が容易である。
The anode electrolysis electrode material using the amorphous alloy according to the present invention has Pd, Pt and Ni as essential elements, and the atomic percentage of elements (hereinafter referred to as at%) 55 to 80.
including at%, Pt 15 to 40 at%, and Ni 1
0 to 20 at%, and the balance mainly Cu and S
i, and 4 to 15 at% Cu and 10 Si
To 20 at% of the alloy composition and having a supercooled liquid region ΔTx of 50 K or more, it is easy to form a bulk with an amorphous structure.

【0023】本発明による非晶質合金を使用した陽極
電解電極材料は,およびにおいて過冷却液体域△T
xの値が50〜70Kである合金組成で構成される。
The anode electrolytic electrode material using the amorphous alloy according to the present invention has a supercooled liquid region ΔT at
The alloy composition is such that the value of x is 50 to 70K.

【0024】本発明による非晶質合金を使用した陽極
電解電極材料は,少なくともPd,Ni,Si,Cu,
Ptを必須元素とし,PdとPtとは,前者が(80−
X)at%,後者がXat%(Xは15から40at
%),そして主として残余が実質Ni,Si,Cuから
成り、且つCuを4から15at%,Siを10から2
0at%含む合金組成で構成される。
The anode electrolytic electrode material using the amorphous alloy according to the present invention is at least Pd, Ni, Si, Cu,
Pt is an essential element, and the former is (80-
X) at%, the latter is X at% (X is 15 to 40 at)
%), And the balance consists essentially of Ni, Si, Cu, and 4 to 15 at% Cu and 10 to 2 Si.
It is composed of an alloy composition containing 0 at%.

【0025】本発明による非晶質合金を使用した陽極
電解電極材料は,からの非晶質合金を使用し,加熱
処理前では非晶質単相を示し,加熱処理後は非晶質と結
晶質の混在した構造の合金で構成される。
The anode electrolysis electrode material using the amorphous alloy according to the present invention uses the amorphous alloy from, and shows an amorphous single phase before the heat treatment, and is amorphous and crystalline after the heat treatment. Composed of alloys of mixed quality.

【0026】本発明による非晶質合金を使用した陽極
電解電極材料は,過冷却液体域での粘性流動を利用し塑
性加工したからに記載の貴金属基非晶質合金部材を
使用したものである。
The anode electrolytic electrode material using the amorphous alloy according to the present invention uses the noble metal-based amorphous alloy member described in the above because it is plastically processed by utilizing viscous flow in the supercooled liquid region. .

【0027】上述の非晶質合金の組成は,上述の特公昭
59−35417号に比較すると,陽極電解電極材料
として優れた性質を示す,非晶質構造を有したままバ
ルク化が容易である,これら2つのことについて同時に
満足し得る点である。
The composition of the above-mentioned amorphous alloy exhibits excellent properties as an anode electrolytic electrode material as compared with the above-mentioned Japanese Patent Publication No. 59-35417, and can be easily formed into a bulk while having an amorphous structure. , It is a point that these two things can be satisfied at the same time.

【0028】次に,これらについて可能とさせる手段に
ついて述べる。
Next, means for enabling these will be described.

【0029】非晶質合金は,原子配列が無定形であるた
めの構造的特徴と様々な元素を均一に混ぜ合わせた合金
組成が作成可能な組成的特徴を持ち,高強度,高耐食,
軟磁性などに優れた機能性を示す。このことは結晶金属
では得られない組成が可能となり,電子分布の変化から
電気化学的特性も変化することを意味している。
Amorphous alloys have structural characteristics that the atomic arrangement is amorphous, and composition characteristics that allow alloy compositions to be uniformly mixed with various elements, and have high strength, high corrosion resistance, and
It has excellent functionality such as soft magnetism. This means that a composition that cannot be obtained with a crystalline metal is possible, and the electrochemical characteristics change due to changes in the electron distribution.

【0030】本発明においては,耐食性の向上に有効で
あり,電極として高触媒活性を示す貴金属元素,特に酸
化されにくく且つ安定であるPtに着目し,この元素を
合金の主構成金属元素Pdと置換して添加することで,
優れた耐食性を示す非晶質合金を提供可能とするもので
ある。
In the present invention, attention is focused on a noble metal element which is effective in improving corrosion resistance and has a high catalytic activity as an electrode, particularly Pt which is hardly oxidized and is stable, and this element is referred to as a main constituent metal element Pd of the alloy. By replacing and adding,
It is possible to provide an amorphous alloy exhibiting excellent corrosion resistance.

【0031】また,本発明において,遷移金属元素Cu
を添加すると,合金内の原子半径の相互関係から,合金
内の原子の充填密度が増大し,無秩序充填性の高い液体
構造が形成されるため,液体からの結晶の核生成が抑制
される。このことにより大きな非晶質形成能が得られ,
過冷却液体域の温度幅△Txが増大する。
In the present invention, the transition metal element Cu
Addition of Al increases the packing density of atoms in the alloy due to the mutual relationship of the atomic radii in the alloy, and forms a liquid structure with high disorder packing, thus suppressing the nucleation of crystals from the liquid. This gives a large amorphous forming ability,
The temperature range ΔTx of the supercooled liquid region increases.

【0032】さらに,本発明において,遷移金属元素S
iを添加すると,合金内の原子半径の相互関係から,合
金内の原子の充填密度が増大し,無秩序充填性の高い液
体構造が形成されるため,液体からの結晶の核生成が抑
制される,という同じような効果が期待できる。 ある昇温速度で非晶質合金を加熱していくと,特定組成
の非晶質合金は結晶化温度以下の温度領域で過冷却液体
状態に遷移することが知られている(公開特許公報 平
3−158446等)。このような過冷却液体状態では
非晶質合金の粘性が急激に低下するために, 該温度領
域で閉塞鍛造等の適切な加工方法により容易に任意形状
の非晶質合金の製造が可能となる。
Further, in the present invention, the transition metal element S
When i is added, the packing density of atoms in the alloy increases due to the mutual relation of the atomic radii in the alloy, and a liquid structure with high disorder packing is formed, so that nucleation of crystals from the liquid is suppressed. The same effect can be expected. It is known that when an amorphous alloy is heated at a certain temperature rising rate, the amorphous alloy having a specific composition transitions to a supercooled liquid state in a temperature range below the crystallization temperature (Patent Document 1 3-158446 etc.). In such a supercooled liquid state, the viscosity of the amorphous alloy sharply decreases, so that it is possible to easily produce an amorphous alloy of any shape by an appropriate processing method such as closed forging in this temperature range. .

【0033】[0033]

【発明の実施の態様】続いて,本発明に関する非晶質合
金製造方法について述べる。図3は非晶質合金を作製す
る装置を示している。この器具を用いてバルク材を製造
する方法の一例について説明する。電気炉または高周波
炉により所定の組成に調製した原料合金51をインダク
ションコイル52で溶解し,その溶融合金をガス圧53
によりるつぼ54の先端ノズル孔から噴出させ,冷却し
た銅製の金型55に接触,凝固させる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a method for producing an amorphous alloy according to the present invention will be described. FIG. 3 shows an apparatus for producing an amorphous alloy. An example of a method of manufacturing a bulk material using this device will be described. A raw material alloy 51 prepared in a predetermined composition by an electric furnace or a high frequency furnace is melted by an induction coil 52, and the molten alloy is gas pressure 53
It is ejected from the tip nozzle hole of the crucible 54 and is brought into contact with the cooled copper mold 55 and solidified.

【0034】本発明になる合金の非晶質形成能は,既存
の非晶質合金に比べて小さな冷却速度で非晶質相が生成
するため,上述の手法によりバルク材の作製が可能とな
る。また,これらの作製においては上述の装置と同程度
以上の冷却速度が得られる方法であればどの様な装置で
も本発明になる非晶質合金を作製することが可能であ
る。
Since the amorphous phase of the alloy according to the present invention forms an amorphous phase at a cooling rate lower than that of existing amorphous alloys, it is possible to manufacture a bulk material by the above-mentioned method. . Further, in the production of these, the amorphous alloy according to the present invention can be produced by any apparatus as long as the cooling rate is equal to or higher than that of the apparatus described above.

【0035】ここで,本発明により作成した非晶質合金
成分組成を特定する理由を述べる。
Here, the reason for specifying the composition of the amorphous alloy prepared according to the present invention will be described.

【0036】半金属元素Siは,本非晶質合金を作成可
能とさせるのに基本となる元素である。その添加量は1
0at%未満または20at%超となると非晶質相を形
成しなくなるので10〜20at%の範囲とした。
The semi-metal element Si is a basic element for making the present amorphous alloy possible. The addition amount is 1
When it is less than 0 at% or more than 20 at%, an amorphous phase is not formed, so the range was made 10 to 20 at%.

【0037】遷移金属元素Cuは,過冷却液体域を増大
させる元素で,その添加量を4〜15at%の範囲とし
た。Cu添加量が4at%未満または15at%超とな
ると非晶質相形成能が低下した。
The transition metal element Cu is an element that increases the supercooled liquid region, and its addition amount is set to the range of 4 to 15 at%. When the amount of Cu added was less than 4 at% or more than 15 at%, the ability to form an amorphous phase decreased.

【0038】遷移金属元素Niは,Cuと比べて弱いも
のの,過冷却液体域を増大させる元素で,その添加量を
10〜20at%の範囲とした。Ni添加量が10at
%未満または20at%超となると非晶質相形成能が低
下した。
Although the transition metal element Ni is weaker than Cu, it is an element that increases the supercooled liquid region, and its addition amount was set to the range of 10 to 20 at%. Ni addition amount is 10 at
If it is less than 20% or exceeds 20 at%, the amorphous phase forming ability is lowered.

【0039】さらに,貴金属元素PdおよびPt,特に
Ptは耐食性の向上および電極としての触媒活性に関わ
る重要な元素であり,PdとPtの合計添加量を55〜
80at%の範囲とした。Pt添加量が15から40a
t%の範囲とし,15at%未満では触媒活性能が低下
し,40at%超となると非晶質形成能が低下した。
Further, the noble metal elements Pd and Pt, especially Pt, are important elements relating to the improvement of corrosion resistance and the catalytic activity as an electrode, and the total addition amount of Pd and Pt is 55-55.
The range was 80 at%. Pt addition amount is 15 to 40a
When the content is within the range of t%, the catalytic activity is lowered when the content is less than 15 at% and the amorphous forming ability is decreased when the content is more than 40 at%.

【0040】つまり,これらが合金組成成分を特定した
理由であり,本発明により作成した非晶質合金の陽極電
解電極材料として優れた特性を示す理由である。
That is, these are the reasons why the alloy composition components are specified, and the reason why the amorphous alloy produced according to the present invention exhibits excellent characteristics as the anode electrolytic electrode material.

【0041】なお少量の他の元素,例えば2at%程度
のFe,Co,P,Cr,Mn,Tiなどを含んでいて
も本発明の目的を達成できる。
The object of the present invention can be achieved even if a small amount of other elements such as Fe, Co, P, Cr, Mn, and Ti are contained at about 2 at%.

【0042】以下は,本発明に関する実施例を図面に基
づいて説明する。
Embodiments relating to the present invention will be described below with reference to the drawings.

【0043】図1は,発明された非晶質合金を使用した
装置,塩素要求量計CD−20を示し,図2は,図1の
測定機構の詳細を示したものである。
FIG. 1 shows a device using the invented amorphous alloy, chlorine demand meter CD-20, and FIG. 2 shows the details of the measuring mechanism of FIG.

【0044】塩素要求量計CD−20は市販されてお
り,一般によく知られている装置である。
The chlorine demand meter CD-20 is commercially available and is a well-known device.

【0045】装置の詳細(図1参照)を示すと,1は表
示器(測定値),2は表示器(時間),3は測定ビ−カ
−(100ml),4は電解電極,5は紫外線ランプ,6は
検出電極,7は撹拌器,8はブランク設定ダイヤル,9
はブランク設定スイッチ,10はスパン設定スイッチ,
11はスパン設定ダイヤル,12は電源スイッチ,13
は撹拌スイッチ,14は測定停止スイッチ,15は測定
時間設定ダイヤル,16は電解電極活性化スイッチ,1
7は制御系遮断スイッチ,18は測定ランプ,19は測
定開始スイッチ,20は測定ランプ電源,21は制御
器,22は電解電流,23は測定ビ−カ−である。
The details of the apparatus (see FIG. 1) are as follows: 1 is an indicator (measured value), 2 is an indicator (time), 3 is a measurement beaker (100 ml), 4 is an electrolytic electrode, and 5 is an electrolytic electrode. UV lamp, 6 detection electrode, 7 agitator, 8 blank setting dial, 9
Is a blank setting switch, 10 is a span setting switch,
11 is a span setting dial, 12 is a power switch, 13
Is a stirring switch, 14 is a measurement stop switch, 15 is a measurement time setting dial, 16 is an electrolytic electrode activation switch, 1
Reference numeral 7 is a control system cutoff switch, 18 is a measurement lamp, 19 is a measurement start switch, 20 is a measurement lamp power supply, 21 is a controller, 22 is an electrolytic current, and 23 is a measurement beaker.

【0046】また図2において,本件の発明による電解
電極を使用した測定機構の詳細を示す。
Further, FIG. 2 shows details of a measuring mechanism using the electrolytic electrode according to the present invention.

【0047】図2に示したとおり,測定部各部をNaC
l溶液中に浸漬し,5の紫外線ランプを点灯および7の
撹拌器をONにした状態で,22の電解電流を4の本発
明による電極に流すと,4の電極では塩素ガスが主とし
て発生する。4の電極より発生した塩素ガスは,溶液中
に存在する有機物質やアンモニアなどと反応する。
As shown in FIG. 2, each part of the measuring part was
When the electrolysis current of 22 is applied to the electrode of the present invention of 4 with the ultraviolet lamp of 5 being turned on and the stirrer of 7 being ON, chlorine gas is mainly generated at the electrode of 4 . The chlorine gas generated from the electrode of No. 4 reacts with the organic substances and ammonia present in the solution.

【0048】この際塩素ガスが発生する速度は,塩素ガ
スと有機物質やアンモニアなどとの反応速度に比べて速
いために,一時的に塩素ガスが過剰になり遊離(残留塩
素)する。
At this time, the chlorine gas is generated at a higher rate than the reaction rate of the chlorine gas with the organic substance or ammonia, so that the chlorine gas is temporarily excessive and is released (residual chlorine).

【0049】この遊離塩素ガスを6の検出電極で検知す
る。この残留塩素ガスの量が一定レベルを越えると,2
1の制御器が作動し,22の電解電流を停止させる。遊
離塩素ガスは,徐々に有機物質やアンモニアなどと反応
するので,その量は減少していく。残留塩素ガス量が
0.1mg/l以下となると,21の制御器が再作動
し,22の電解電流を4の電極に流し,上述の反応が繰
り返し起こる。
This free chlorine gas is detected by 6 detection electrodes. If the amount of residual chlorine gas exceeds a certain level, 2
The controller of 1 operates and the electrolysis current of 22 is stopped. Free chlorine gas gradually reacts with organic substances and ammonia, so the amount decreases. When the amount of residual chlorine gas becomes 0.1 mg / l or less, the controller of 21 is restarted, the electrolytic current of 22 is passed to the electrode of 4, and the above-mentioned reaction is repeated.

【0050】このような反応が完全に終結したのち,1
の表示器で測定に要した塩素量を読み取る仕組みとなっ
ている。
After such a reaction is completely terminated, 1
It is a system to read the amount of chlorine required for measurement on the display of.

【0051】[0051]

【実施例】【Example】

(実施例1)表1に,本発明により開発した合金組成の
例を示す。各合金の組成はat%で表されている。
(Example 1) Table 1 shows an example of an alloy composition developed by the present invention. The composition of each alloy is expressed in at%.

【0052】 (実施例2)表1に示す合金組成からなる材料を図3に
示す器具を用いて,長さ100mm,径1mmの試料を
作製した。
[0052] Example 2 A sample having a length of 100 mm and a diameter of 1 mm was prepared from the material having the alloy composition shown in Table 1 by using the equipment shown in FIG.

【0053】各試料の非晶質相の確認はX線回折により
行い,全て非晶質単相であることを確認した。測定例を
図4に示す。
The amorphous phase of each sample was confirmed by X-ray diffraction, and it was confirmed that all the samples were an amorphous single phase. A measurement example is shown in FIG.

【0054】本発明による非晶質合金を実施例合金と
し,既製非晶質合金を比較例合金とした。
The amorphous alloy according to the present invention was used as the example alloy, and the ready-made amorphous alloy was used as the comparative example alloy.

【0055】また,本発明による非晶質合金および上述
の比較例合金について,示差走査熱量計(DSC)によ
り,結晶化温度Tx(K),ガラス遷移温度Tg
(K),および過冷却液体域△Tx(K)を調べ,比較
を行った。
With respect to the amorphous alloy according to the present invention and the above-mentioned comparative alloys, the crystallization temperature Tx (K) and the glass transition temperature Tg were measured by a differential scanning calorimeter (DSC).
(K) and the supercooled liquid region ΔTx (K) were investigated and compared.

【0056】表2はその一例である。Table 2 is an example.

【0057】 表2に示したとおり,本発明の1例である非晶質合金P
d56Si18Cu6Pt20は結晶化温度Tx(K),ガラ
ス遷移温度Tg(K),および過冷却液体域の温度幅△
Tx(K)は,それぞれ701K,641K,60Kで
あった。バルク化の目安として△Tx>50Kであるこ
とが要求されるが,測定例は△Tx=60Kと大きい。
それに対して上述比較例合金の実施合金は△Tx<50
Kもしくは得られないという結果となっている。
[0057] As shown in Table 2, the amorphous alloy P which is an example of the present invention
d56Si18Cu6Pt20 has a crystallization temperature Tx (K), a glass transition temperature Tg (K), and a temperature range of a supercooled liquid region Δ
Tx (K) was 701K, 641K, and 60K, respectively. As a standard for bulking, ΔTx> 50K is required, but the measurement example is large, ΔTx = 60K.
On the other hand, the working alloy of the above comparative example alloy has ΔTx <50.
K or the result is that it cannot be obtained.

【0058】このことから,過冷却液体域形成にCuお
よびPtの添加は不可欠である。
From this, the addition of Cu and Pt is indispensable for forming the supercooled liquid region.

【0059】(実施例3)上述の方法により作成した非
晶質合金を用いて,塩素発生効率を測定し,比較例合金
および純Ptとの比較を行った。測定は,室温における
pH5〜6の2.5M NaCl溶液中で,各非晶質合
金および純Ptを陽極電解(それぞれ電解表面積が等し
くなるようにする)して行った。
Example 3 The chlorine generation efficiency was measured using the amorphous alloy produced by the above method, and comparison was made with the comparative alloy and pure Pt. The measurement was carried out by anodic electrolysis of each amorphous alloy and pure Pt (so that the electrolytic surface areas are equal to each other) in a 2.5 M NaCl solution having a pH of 5 to 6 at room temperature.

【0060】測定例を表3に示す。Table 3 shows a measurement example.

【0061】 表3に示した通り,上述の比較例合金では80%以下と
低い塩素発生効率を示す。
[0061] As shown in Table 3, the above-mentioned comparative alloys show low chlorine generation efficiency of 80% or less.

【0062】表中の比較例合金5では表面活性化処理を
施してもその塩素発生効率は70〜80%であり,本発
明合金では表面活性化処理を施さなくとも,90%以上
の高い塩素発生効率を示す。
In the comparative alloy 5 in the table, the chlorine generation efficiency is 70 to 80% even if the surface activation treatment is applied, and in the alloy of the present invention, even if the surface activation treatment is not applied, high chlorine of 90% or more is obtained. Indicates the generation efficiency.

【0063】また,純Ptでは約90%の塩素発生効率
を示すのに対し,本発明により作成した非晶質合金で
も,Pt添加量が15〜40at%の合金で,90%以
上の塩素発生効率が得られた。
In addition, while pure Pt shows a chlorine generation efficiency of about 90%, even in the amorphous alloy prepared according to the present invention, 90% or more of chlorine is generated in the alloy containing 15 to 40 at% of Pt. Efficiency was obtained.

【0064】つまり,本発明により作成した非晶質合金
は,純Ptと比べて塩素ガス発生に有効なPt量が少な
くても,90%以上の高い塩素発生効率を示すことが分
かる。
That is, it can be seen that the amorphous alloy produced according to the present invention exhibits a high chlorine generation efficiency of 90% or more, even if the amount of Pt effective for chlorine gas generation is smaller than that of pure Pt.

【0065】(実施例4)前述したような,90%以上
の塩素発生効率が得られた本発明による非晶質合金につ
いて,90%以上の塩素発生効率の保持時間を測定し,
純Ptとの比較を行ってみた。
(Example 4) As described above, the retention time of chlorine generation efficiency of 90% or more was measured for the amorphous alloy according to the present invention from which chlorine generation efficiency of 90% or more was obtained.
I compared it with pure Pt.

【0066】純Ptは,室温におけるpH5〜6の2.
5M NaCl溶液中で陽極電解して行い,本発明によ
る非晶質合金は,室温におけるpH5〜6の6.3M
NaCl溶液中で連続陽極電解(それぞれ電解表面積が
等しくなるようにする)して測定を行った。
Pure Pt has a pH of 5 to 6 at room temperature.2.
The amorphous alloy according to the present invention was subjected to anodic electrolysis in a 5M NaCl solution, and the amorphous alloy according to the present invention had a pH of 5-6 at 6.3M.
The measurement was carried out by continuous anodic electrolysis (so that the electrolytic surface areas are equal) in a NaCl solution.

【0067】図5に測定結果を示す。The measurement results are shown in FIG.

【0068】図5に示したとおり,本発明による非晶質
合金では純Ptの3倍以上の効率保持時間を有すること
を確認した。
As shown in FIG. 5, it was confirmed that the amorphous alloy according to the present invention has an efficiency retention time which is three times or more that of pure Pt.

【0069】また,前述した溶液中での陽極電解後大気
中に放置しても,純Ptのように塩素発生効率の低下が
起こることはなく,極めて安定している。
Further, even when left in the atmosphere after the anodic electrolysis in the above-mentioned solution, the chlorine generation efficiency does not decrease unlike pure Pt, and it is extremely stable.

【0070】つまり,本発明により作成した合金は,純
Ptに比べて安定した塩素発生効率を保証でき,安価な
素材を提供するものである。
That is, the alloy produced according to the present invention can guarantee a stable chlorine generation efficiency as compared with pure Pt, and provides an inexpensive material.

【0071】(実施例5)前述の図5に示した本発明に
よる非晶質合金(実施例3)は,90%以上の塩素発生
効率を示し,効率の安定性についても,純Ptの3倍以
上の安定性を示すものが確認されている。
(Example 5) The amorphous alloy according to the present invention (Example 3) shown in FIG. 5 has a chlorine generation efficiency of 90% or more, and the stability of the efficiency is 3% of that of pure Pt. It has been confirmed that the stability is more than doubled.

【0072】しかし,この非晶質合金のバルク材を作成
する際に,冷却速度などの問題から一部結晶化が起こ
り,上述の特性が変化する恐れがある。
However, when the bulk material of this amorphous alloy is produced, crystallization may occur partially due to problems such as cooling rate, and the above characteristics may change.

【0073】そこで,加熱処理を施して人工的に非晶質
と結晶質構造が混在した構造を作り出し,上述の特性に
変化がみられるかどうか実験した。
Therefore, a heat treatment was performed to artificially create a structure in which an amorphous and a crystalline structure were mixed, and it was tested whether or not the above-mentioned characteristics were changed.

【0074】実験サンプルは実施例3の合金を用い,結
晶化温度Txの約50K低い温度(650K)にて,3
時間加熱処理を行った。
As the experimental sample, the alloy of Example 3 was used, and the temperature was reduced to about 50 K lower than the crystallization temperature Tx (650 K).
Heat treatment was performed for a time.

【0075】加熱処理前後のX線回折を図6に示す。FIG. 6 shows the X-ray diffraction before and after the heat treatment.

【0076】図6に示したとおり,加熱処理前では非晶
質単相を示す結果を得たのに対し,加熱処理後は非晶質
と結晶質の混在した構造を示す結果を得た。
As shown in FIG. 6, the result showing the amorphous single phase was obtained before the heat treatment, while the result showing the structure in which the amorphous and the crystalline were mixed was obtained after the heat treatment.

【0077】そこで,加熱処理を行った合金について塩
素発生効率および効率の安定性を調べ,加熱処理前と比
較してみた。
Therefore, the chlorine generation efficiency and the stability of the efficiency of the heat-treated alloy were examined and compared with those before the heat treatment.

【0078】その結果を図7に示す。The results are shown in FIG.

【0079】図7に示したとおり,加熱前後で変化はほ
とんどみられない。
As shown in FIG. 7, almost no change was observed before and after heating.

【0080】つまり,本発明による非晶質合金は,完全
な非晶質構造を有していなくとも,塩素発生効率などの
特性は維持されるという性質を持つ。
That is, the amorphous alloy according to the present invention has a property that characteristics such as chlorine generation efficiency are maintained even if it does not have a completely amorphous structure.

【0081】(実施例6)本発明により作成した非晶質
合金の耐食性について,アノ−ド分極特性およびクロノ
ポテンショメトリ−により,合金表面から塩素ガスが発
生するような,高電位での激しい酸化環境下における耐
食性を検討したものを一例として示す。アノ−ド分極測
定では,本発明により作成した非晶質合金,比較例
合金および純Ptとの比較を行い,室温におけるpH
5〜6の2.5M NaCl溶液中で電位を0から15
00mVまで変化させたときの電流挙動を調べた。また
クロノポテンショメトリ−測定では,上述溶液中で電流
値を20mA/cm2一定としたときの電位挙動を調べ
た。
(Example 6) Regarding the corrosion resistance of the amorphous alloy produced according to the present invention, due to the anodic polarization characteristics and chronopotentiometry, the severe oxidation at a high potential such that chlorine gas is generated from the alloy surface. An example is shown in which the corrosion resistance under the environment is examined. In the anodic polarization measurement, the amorphous alloy prepared according to the present invention, the comparative alloy and pure Pt were compared, and the pH at room temperature was measured.
The potential was changed from 0 to 15 in a 2.5 M NaCl solution of 5 to 6
The current behavior when changing to 00 mV was investigated. In the chronopotentiometry measurement, the potential behavior when the current value was kept constant at 20 mA / cm 2 in the above solution was examined.

【0082】アノ−ド分極測定結果を図8に示す。The results of the anodic polarization measurement are shown in FIG.

【0083】塩素ガスが主として発生する電位は100
0〜1300mVの領域にあるが,図8に示したとお
り,の比較例合金の場合,1000mV以前の電位領
域で既に電流値の激しい上昇が見られ,合金表面で目視
で確認できるほどの激しい酸化・溶出,つまり腐食が起
こっていることが分かる。しかし本発明により作成し
た非晶質合金および純Ptにおいては,1000mV
以前の電位領域では100μA/cm2前後の低い電流
が確認され,前述の腐食は確認されず耐食性が高い。
The potential mainly generated by chlorine gas is 100.
Although it is in the range of 0 to 1300 mV, as shown in FIG. 8, in the case of the comparative alloy as shown in FIG.・ It can be seen that elution, that is, corrosion has occurred. However, in the amorphous alloy and pure Pt made according to the present invention, 1000 mV
In the former potential region, a low current of around 100 μA / cm 2 was confirmed, and the above-mentioned corrosion was not confirmed, and the corrosion resistance was high.

【0084】アノ−ド分極測定において耐食性の高い
本発明により作成した非晶質合金および純Ptのクロ
ノポテンショメトリ−測定結果を図9に示す。Ptに
おいては初期電位1220mVから1〜2分経過時で電
位の急激な上昇が起こり,60分経過時には電位は17
40mVに達した。この電位の上昇はPt表面での酸化
が進行することにより酸化皮膜が生成し,表面抵抗が大
きくなることに起因する。これに比較し本発明により
作成した非晶質合金は初期電位1150mVから6時間
経過後も1180mVとほぼ電位が一定である。このこ
とから本発明合金は合金表面における酸化皮膜の生成が
ほぼ起こらず,耐食性の高い合金であることが分かる。
FIG. 9 shows the results of chronopotentiometry measurement of the amorphous alloy prepared according to the present invention and pure Pt having high corrosion resistance in the anodic polarization measurement. In Pt, the potential suddenly rises after 1 to 2 minutes from the initial potential of 1220 mV, and the potential increases to 17 after 60 minutes.
Reached 40 mV. This increase in potential is due to the fact that an oxide film is formed due to the progress of oxidation on the Pt surface and the surface resistance increases. In comparison, the amorphous alloy produced according to the present invention has an almost constant potential of 1180 mV even after 6 hours from the initial potential of 1150 mV. From this, it can be seen that the alloy of the present invention is a corrosion resistant alloy with almost no oxide film formed on the alloy surface.

【0085】[0085]

【発明の効果】本発明の貴金属基非晶質合金を使用する
ことにより,安定したNaCl溶液の陽極電解などを行
い,Cl2ガスなどが合金表面から発生するような,高
電位における激しい酸化環境下でも優れた耐食性を示
し,且つ非晶質構造を有したままのバルク化が容易であ
る電極材料を提供することが出来る。
EFFECTS OF THE INVENTION By using the noble metal-based amorphous alloy of the present invention, stable anodic electrolysis of NaCl solution is performed, and Cl 2 gas or the like is generated from the alloy surface. It is possible to provide an electrode material that exhibits excellent corrosion resistance even under the above conditions and that can be easily formed into a bulk while having an amorphous structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関わる装置,塩素要求量計CD−20
の概略図
FIG. 1 Equipment related to the present invention, chlorine demand meter CD-20
Schematic of

【図2】図1に示した装置の測定機構の詳細図FIG. 2 is a detailed view of a measurement mechanism of the device shown in FIG.

【図3】本発明による非晶質合金バルク材材を製造する
器具の一部断面正面図
FIG. 3 is a partial cross-sectional front view of a device for manufacturing an amorphous alloy bulk material according to the present invention.

【図4】本発明による非晶質合金のX線回折パタ−ン図FIG. 4 is an X-ray diffraction pattern diagram of an amorphous alloy according to the present invention.

【図5】本発明による非晶質合金および純Ptの塩素発
生効率の安定性を示す図
FIG. 5 is a diagram showing the stability of chlorine generation efficiency of an amorphous alloy and pure Pt according to the present invention.

【図6】本発明による非晶質合金の加熱処理前後のX線
回折パタ−ン図
FIG. 6 is an X-ray diffraction pattern diagram before and after heat treatment of an amorphous alloy according to the present invention.

【図7】本発明による非晶質合金の加熱処理前後の塩素
発生効率の安定性を示す図
FIG. 7 is a diagram showing stability of chlorine generation efficiency before and after heat treatment of an amorphous alloy according to the present invention.

【図8】本発明による非晶質合金,比較例合金および純
Ptのアノ−ド分極曲線の比較図
FIG. 8 is a comparison diagram of anodic polarization curves of an amorphous alloy according to the present invention, a comparative alloy and pure Pt.

【図9】本発明による非晶質合金および純Ptのクロノ
ポテンショメトリ−測定結果の比較図
FIG. 9 is a comparative diagram of chronopotentiometry measurement results of an amorphous alloy and pure Pt according to the present invention.

【符号の説明】[Explanation of symbols]

101・・・・Pd56Si18Cu6Pt20 102・・・・Pd77.5Si16.5Cu6 103・・・・純Pt 101 ・ ・ ・ ・ Pd56Si18Cu6Pt20 102 ・ ・ ・ ・ Pd77.5Si16.5Cu6 103 ・ ・ ・ ・ ・ ・ Pt

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591106462 茨城県 茨城県水戸市三の丸1丁目5番38号 (72)発明者 坂本 巧 茨城県水戸市元吉田町1739番地 平沼産業 株式会社内 (72)発明者 須藤 毅 茨城県水戸市元吉田町1739番地 平沼産業 株式会社内 (72)発明者 青木 崇広 茨城県水戸市元吉田町1739番地 平沼産業 株式会社内 (72)発明者 井上 明久 宮城県仙台市青葉区片平二丁目1番1号 東北大学 金属材料研究所内 (72)発明者 木村 久道 宮城県仙台市青葉区片平二丁目1番1号 東北大学 金属材料研究所内 (72)発明者 高萩 泰 茨城県東茨城郡茨城町長岡3781ー1 茨城 県工業技術センター内 (72)発明者 鴨志田 武 茨城県東茨城郡茨城町長岡3781ー1 茨城 県工業技術センター内 (72)発明者 斉藤 和哉 茨城県東茨城郡茨城町長岡3781ー1 茨城 県工業技術センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 591106462 Ibaraki Prefecture Ibaraki Prefecture Mito City Sannomaru 1-3-5 (72) Inventor Sakamoto Takumi Ibaraki Prefecture Mito City Motoyoshida Town 1739 Hiranuma Sangyo Co., Ltd. (72) Inventor Takeshi Sudo, 1739 Motoyoshida-cho, Mito-shi, Ibaraki, Hiranuma Sangyo Co., Ltd. (72) Inventor Takahiro Aoki 1739, Motoyoshida-cho, Mito-shi, Ibaraki, Hiranuma Sangyo Co., Ltd. (72) Inventor, Akihisa Inoue Sendai, Miyagi 2-1-1, Katahira, Aoba-ku, Tohoku University Institute for Materials Research (72) Hisashi Kimura 2-1-1, Katahira, 1-1, Aoba-ku, Sendai City, Miyagi Prefecture Inventor, Tohoku University (72) Yasushi Takahagi Ibaraki Prefecture 3781-1 Nagaoka, Ibaraki-cho, Higashi-Ibaraki District Ibaraki Prefectural Industrial Technology Center (72) Inventor Takeshi Kamoshida Ibaraki Prefecture 3781-1 Nagaoka, Ibaraki-cho, Higashi-Ibaraki District Ibaraki Prefecture Business technology in the center (72) inventor Kazuya Saito Ibaraki Prefecture Higashiibaraki-gun, Ibaraki-cho, Nagaoka 3781 - 1 Ibaraki Prefectural Industrial Technology Center in

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】PdとPtを必須元素として元素を原子百
分率(以下at%とする)で65から80at%含み,
且つPtを15から40at%,そして主として残余が
CuおよびSiから成り,且つCuを4から15at
%,Siを10から20at%含む組成を有し,且つ5
0K以上の過冷却液体域△Tx(△Tx=結晶化温度T
x−ガラス遷移温度Tg)を有するため非晶質構造の貴
金属基非晶質合金を用いた陽極電解電極材料。
1. Pd and Pt are essential elements, and the elements are contained at 65 to 80 at% in atomic percentage (hereinafter referred to as at%).
And Pt is 15 to 40 at% and the balance is mainly Cu and Si, and Cu is 4 to 15 at%.
%, Si having a composition of 10 to 20 at%, and 5
Supercooled liquid region over 0K ΔTx (ΔTx = crystallization temperature T
An anode electrolytic electrode material using a noble metal-based amorphous alloy having an amorphous structure because it has an x-glass transition temperature Tg).
【請求項2】PdとPtおよびNiを必須元素として元
素を原子百分率(以下at%とする)で55から80a
t%含み,且つPtを15から40at%,Niを10
から20at%,そして残余が主としてCuおよびSi
から成り,且つCuを4から15at%,Siを10か
ら20at%含む組成を有し,且つ50K以上の過冷却
液体域△Txを有するため非晶質構造の貴金属基非晶質
合金を用いた陽極電解電極材料。
2. Pd, Pt, and Ni as essential elements, and the elements are 55 to 80a in atomic percentage (hereinafter referred to as at%).
t% included, Pt 15 to 40 at%, Ni 10
To 20 at% and the balance mainly Cu and Si
A noble metal-based amorphous alloy having an amorphous structure because it has a composition of 4 to 15 at% Cu and 10 to 20 at% Si and has a supercooled liquid region ΔTx of 50 K or more. Anode electrolytic electrode material.
【請求項3】請求項1または2において,過冷却液体域
△Txが50〜70Kである貴金属基非晶質合金を使用
した陽極電解電極材料。
3. The anode electrolysis electrode material according to claim 1, which uses a noble metal-based amorphous alloy having a supercooled liquid region ΔTx of 50 to 70K.
【請求項4】少なくともPd,Ni,Si,Cu,Pt
を必須元素とし,PdとPtは,前者が(80-X)a
t%,後者がXat%(Xは15から40at%),そ
して主として残余が実質Ni,Si,Cuから成り,且
つCuを4から15at%,Siを10から20at%
含む貴金属基非晶質合金を使用した陽極電解電極材料。
4. At least Pd, Ni, Si, Cu, Pt
Is an essential element, and the former is (80-X) a for Pd and Pt.
t%, the latter is Xat% (X is 15 to 40at%), and the balance is mainly Ni, Si, and Cu, and Cu is 4 to 15at% and Si is 10 to 20at%.
Anode electrolytic electrode material using a noble metal-based amorphous alloy containing.
【請求項5】請求項1から4のいずれかの非晶質合金で
あり,加熱処理前では非晶質単相を示し,加熱処理後は
非晶質と結晶質の混在した構造の合金を使用して作成し
た陽極電解電極材料。
5. The amorphous alloy according to any one of claims 1 to 4, wherein an amorphous single phase is shown before the heat treatment, and an alloy having a structure in which amorphous and crystalline are mixed after the heat treatment. Anode electrolytic electrode material created using.
【請求項6】過冷却液体領域での粘性流動を利用し塑性
加工した請求項1から5のいずれかの貴金属基非晶質合
金を使用した陽極電解電極材料。
6. An anode electrolytic electrode material using a noble metal-based amorphous alloy according to claim 1, which is plastically processed by utilizing viscous flow in a supercooled liquid region.
JP8088425A 1996-04-10 1996-04-10 Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state Pending JPH09279318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088425A JPH09279318A (en) 1996-04-10 1996-04-10 Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8088425A JPH09279318A (en) 1996-04-10 1996-04-10 Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state

Publications (1)

Publication Number Publication Date
JPH09279318A true JPH09279318A (en) 1997-10-28

Family

ID=13942437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088425A Pending JPH09279318A (en) 1996-04-10 1996-04-10 Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state

Country Status (1)

Country Link
JP (1) JPH09279318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093113A1 (en) 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
WO2012147559A1 (en) 2011-04-28 2012-11-01 国立大学法人東北大学 Metallic glass nanowire manufacturing method, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093113A1 (en) 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
EP2479309A1 (en) 2004-03-25 2012-07-25 Topy Kogyo Kabushiki Kaisha Metallic glass laminates, production methods and applications thereof
WO2012147559A1 (en) 2011-04-28 2012-11-01 国立大学法人東北大学 Metallic glass nanowire manufacturing method, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire
US9132420B2 (en) 2011-04-28 2015-09-15 Tohoku University Method for manufacturing metallic glass nanowire, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire

Similar Documents

Publication Publication Date Title
JP4782662B2 (en) Porous metallic glass and method for producing the same
US4781803A (en) Electrolytic processes employing platinum based amorphous metal alloy oxygen anodes
US5112388A (en) Process for making nanocrystalline metallic alloy powders by high energy mechanical alloying
KR20020037772A (en) Amorphous metal/metallic glass electrodes for electrochemical processes
US20120040202A1 (en) Coated magnetic alloy material and method for the manufacture thereof
JPH1171660A (en) High strength amorphous alloy and its production
WO2005111272A1 (en) Process for producing microparticles by plasma-induced electrolysis
Hara et al. Anodic characteristics of amorphous ternary palladium-phosphorus alloys containing ruthenium, rhodium, iridium, or platinum in a hot concentrated sodium chloride solution
US4746584A (en) Novel amorphous metal alloys as electrodes for hydrogen formation and oxidation
Shalaan et al. Formation of nano-porous Pd (Ni) structure produced by dealloying Zr-Al-Ni-Pd base glassy alloys and their electrochemical properties
JPH09279318A (en) Anode electrolysis electrode material made of noble-metal-base amorphous alloy capable of forming into bulky state
EP0164200A1 (en) Improved electrolytic processes employing platinum based amorphouse metal alloy oxygen anodes
Zhang et al. U-Fe-Al metallic glasses with superior glass forming ability and corrosion resistance
JPH09279380A (en) Anode electrolysis electrode material using noble-metal-base amorphous alloy excellent in plastic workability and applicable to large-size member
Menzel et al. Hydrogen in titanium-based metallic glasses
CN109811396B (en) Porous zinc and preparation and application thereof
CN109112329A (en) A kind of graphene/magnesium alloy and preparation method thereof with excellent interfacial characteristics
JPH04157193A (en) Production of superfine metal grain
Lee Hydrogen overpotential on zinc containing small amounts of impurities in concentrated alkaline solution
SathishKumar et al. Effects of Ca, Cu concentration on degradation behavior of Zn alloys in Hank’s solution
JPH07173556A (en) High strength copper alloy
Inoue et al. Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties
US20020114725A1 (en) Palladium-boron alloys and methods for making and using such alloys
US7381368B2 (en) Palladium-boron alloys and methods for making and using such alloys
JP2020122181A (en) Porous copper and method for producing the same