JPH09279301A - Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can - Google Patents

Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can

Info

Publication number
JPH09279301A
JPH09279301A JP9130396A JP9130396A JPH09279301A JP H09279301 A JPH09279301 A JP H09279301A JP 9130396 A JP9130396 A JP 9130396A JP 9130396 A JP9130396 A JP 9130396A JP H09279301 A JPH09279301 A JP H09279301A
Authority
JP
Japan
Prior art keywords
value
point
steel
steel sheet
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9130396A
Other languages
Japanese (ja)
Inventor
Koji Manabe
晃治 真鍋
Tetsuo Takeshita
哲郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9130396A priority Critical patent/JPH09279301A/en
Publication of JPH09279301A publication Critical patent/JPH09279301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel sheet for a vessel excellent in necked-in workability in a welded can by preparing a steel having a specified componental compsn. in which the contents of Mn, P, S and sol.Al are prescribed and showing specified characteristics by aging treatment under specified conditions. SOLUTION: A steel contg., by weight, <=0.150% C, <=0.60% Mn, <=0.025% P, <=0.025% S, 0.012 to 0.120% Sol.Al, <=0.015% N and <=0.0070% O is prepd. In this steel, the value of K shown by the formula YP is the lower yield point, (r) is r value, (t) is sheet thickness and Et is (TS2 -YP1 )/(El2 -El1 ), where TS2 is true stress value at the maximum load point, El2 is true strain at the maximum load point, YP1 is true stress at the end point of the lower yield point and El1 is true strain at the end point of the lower yield point) is regulated to <=0.19 after aging treatment at 210 deg.C for 30min. In this way, the steel sheet for a vessel of <=3 T subjected to surface treatment such as nickel plating and free from the generation of neck wrinkling can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ネッキング加工性
に優れ、ニッケルメッキなどの表面処理が施された容器
用鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet for containers which has excellent necking workability and which has been subjected to surface treatment such as nickel plating.

【0002】[0002]

【従来の技術】従来、コーヒーなどの内圧のかからない
飲料缶においては、溶接缶が現在広く使用されている。
この溶接缶の胴部は、平板を円筒状に丸めた後に、板の
端部を溶接して製造される。溶接後、缶胴部の端部の口
径を小さくするネック加工が行われる。このネック加工
には、図1に示すダイネック法、図2に示すスピンネッ
ク法などがあるが、いずれも缶端の口径を小さくする一
種の口絞り加工であり、後工程で缶胴よりも径の小さい
蓋を取り付けることが特徴である。この蓋径は、製缶メ
ーカにとって、蓋コストを削減するために、より小さい
ほうが望ましい。ところが、口絞り率が大きいと、円周
方向の圧縮応力によって缶胴の溶接部近傍で材料が座屈
し、しわが発生する場合がある。
2. Description of the Related Art Conventionally, welded cans have been widely used for beverage cans such as coffee that are not subject to internal pressure.
The body of this welding can is manufactured by rolling a flat plate into a cylindrical shape and then welding the ends of the plate. After welding, necking is performed to reduce the diameter of the end of the can body. This neck processing includes the die-neck method shown in FIG. 1 and the spin-neck method shown in FIG. 2, both of which are a kind of narrowing processing to reduce the diameter of the can end, and the diameter is smaller than that of the can body in the subsequent process. The feature is that a small lid is attached. The lid diameter is preferably smaller for can makers to reduce the lid cost. However, when the expansion ratio is large, the material may buckle near the welded portion of the can body due to the compressive stress in the circumferential direction, and wrinkles may occur.

【0003】溶接部近傍でしわが発生するのは、溶接部
の板厚が非溶接部に比べ大きいこと、溶接部は高熱を受
けるため材質が変化することなどにより、溶接部近傍に
応力集中が発生するためと推定される。このしわが発生
すると、外観を害するばかりでなく、蓋を取り付けた後
の密封性を悪くし、内容物の漏れを発生させる可能性が
ある。そのため、現在では、このしわを防止するため、
ネック加工時の口絞り率を5%程度と小さくしている。
よって絞り率をさらに大きくしても、溶接部近傍にしわ
が発生しない材料を提供することが、鉄鋼メーカにとっ
て大きな課題となっている。
Wrinkles occur near the weld because the plate thickness of the weld is larger than that of the non-weld part, and the material changes due to the high heat of the weld, which causes stress concentration near the weld. It is presumed to occur. When this wrinkle occurs, not only the appearance is deteriorated, but also the sealing property after attaching the lid is deteriorated, which may cause leakage of the contents. Therefore, in order to prevent this wrinkle,
The necking ratio during neck processing is reduced to about 5%.
Therefore, it is a major issue for steel makers to provide a material that does not cause wrinkles in the vicinity of the weld even if the drawing ratio is further increased.

【0004】さて、ネックしわを抑制するためには、従
来より、経験的に軟質な鋼板が有利であることが知られ
ている。例えば、特開平5−287443号公報では、
Cが0.003以上0.01%以下でTi等を添加した
高純な鋼板は、加工硬化しにくいため、鋼板のYPは同
程度でもDI(Draw and Iron)加工後の
YPは低くなり、ネックドイン加工性に優れることが記
載されている。ところが、DI加工は相当塑性歪みでε
eq=0.4程度の強加工であるのに対し、溶接缶の場合
は、缶を曲げる時にεeq=0.02程度の小さな加工を
受けるに過ぎない。
It has been conventionally known that a steel plate that is empirically soft is advantageous for suppressing neck wrinkles. For example, in JP-A-5-287443,
Since a high-purity steel sheet having a C content of 0.003 or more and 0.01% or less and having Ti or the like hard to work harden, even if the YP of the steel sheet is about the same, the YP after DI (Draw and Iron) processing becomes low, It is described that the necked-in workability is excellent. However, DI processing is ε due to the considerable plastic strain.
Whereas eq = 0.4 is a strong work, a welded can is only subjected to a small work such as ε eq = 0.02 when the can is bent.

【0005】そのため、高純な鋼は、加工硬化が小さい
ため、製缶加工後に軟質となる。この効果は、溶接缶で
は非常に小さい。また、溶接缶用鋼板は、通常0.20
mm以下と非常に薄いため、溶接缶の強度を確保するた
めには、たとえ耐しわ性に優れていてもT−2以下には
軟質化できないという問題があった。また、溶接缶での
しわに関しては、今まで何ら明らかにされていない。
Therefore, high-purity steel has a small work hardening, so that it becomes soft after can working. This effect is very small for welded cans. The steel plate for welding cans is usually 0.20.
Since it is very thin as less than mm, there is a problem that in order to secure the strength of the welding can, even if it has excellent wrinkle resistance, it cannot be softened to T-2 or less. Also, no wrinkles on the welding can have been disclosed so far.

【0006】[0006]

【発明が解決しようとする課題】本発明は、溶接缶での
ネックキング成形性に優れており、ネックしわが発生し
ないニッケルメッキなどの表面処理が施されたT−3以
上の容器用鋼板を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a container steel sheet of T-3 or more which is excellent in necking formability in a welding can and is subjected to a surface treatment such as nickel plating which does not cause neck wrinkles. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、材質特性とネックしわの関係を検
討し、口絞り率が10%でも、溶接部近傍にしわが発生
しない容器用鋼板を製造することに成功した。すなわ
ち、本発明の要旨は下記の通りである。重量%で C ≦0.150% Mn≦0.60% P ≦0.025% S ≦0.025% sol.Al:0.012%〜0.120% N ≦0.015% T.O≦0.0070% で残部がFe及び不可避的不純物からなる鋼で、(1)
式に示すKの値が、210℃で30分時効処理した後で
0.19以上であり、溶接缶でのネックドイン加工性に
優れることを特徴とする容器用鋼板にある。 K=(4EEt ・t2 )/〔{1−(r/1+r)2 }・ ( √E+√Et 2 ・YP〕 ・・・(1) たゞし、YP:下降伏点 r :r値 t :板厚 E :ヤング率(=21000kgf/mm2 ) Et :Et =(TS2 −YP1 )/(El2 −El1 ) なお、 TS2 :最大荷重点の真応力値 El2 :最大荷重点の真歪 YP1 :下降伏点終了時の真応力 本発明者らは、板厚、Et 値(下降伏点の終了点とTS
点を結ぶ直線の傾き)、r値、YPを適切な範囲に制御
し、(1)式に示すKの値を、210℃で30分時効処
理した後で0.19以上とすることで、10%以上の口
絞り率でも溶接缶のしわが抑制できることを知見した。
In order to achieve the above-mentioned object, the present inventors have examined the relationship between material characteristics and neck wrinkles, and even when the draw ratio is 10%, wrinkles do not occur near the weld. Succeeded in manufacturing steel sheets for containers. That is, the gist of the present invention is as follows. % By weight C ≦ 0.150% Mn ≦ 0.60% P ≦ 0.025% S ≦ 0.025% sol. Al: 0.012% to 0.120% N ≤ 0.015% T.I. Steel with O ≦ 0.0070% and the balance Fe and unavoidable impurities, and (1)
The value of K shown in the formula is 0.19 or more after aging treatment at 210 ° C. for 30 minutes, and is a steel sheet for containers characterized by excellent necked-in workability in a welding can. K = (4EE t · t 2 ) / [{1- (r / 1 + r) 2 } · (√E + √E t ) 2 · YP] (1) However, YP: falling yield point r: r value t: plate thickness E: Young's modulus (= 21000kgf / mm 2) E t: E t = Note (TS 2 -YP 1) / ( El 2 -El 1), TS 2: true stress value of the maximum load point el 2: true strain YP maximum load point 1: the lower yield point at the end of the true stress inventors, thickness, end point of E t value (lower yield point and TS
By controlling the slope of the straight line connecting the points), the r value, and the YP within an appropriate range, and setting the value of K shown in the equation (1) to 0.19 or more after aging treatment at 210 ° C. for 30 minutes, It has been found that wrinkles of a welding can can be suppressed even with a narrowing ratio of 10% or more.

【0008】以下に本発明を詳細に説明する。まず、鋼
成分について述べる。C量は、これが0.15%超とな
ると、フランジ成形性が悪化するので、その上限を0.
15%に限定する。ここで、フランジ加工性とは、ネッ
ク成形後、缶胴に蓋をとりつけるために缶端の2mm程
度を直径方向に延出する加工である。Cが0.15%超
となると、鋼の延性が劣化するため、フランジ割れが発
生すると推定される。Mn,P、S、sol.Alはこ
れらの元素が増加すると鋼板の耐食性を劣化させるの
で、それぞれの元素の上限値を0.60%、0.025
%、0.025%、0.120%とした。
Hereinafter, the present invention will be described in detail. First, the steel composition will be described. If the C content exceeds 0.15%, the flange formability deteriorates, so the upper limit is set to 0.
Limited to 15%. Here, the flange processability is a process of extending about 2 mm of the can end in the diametrical direction in order to attach the lid to the can body after forming the neck. If C exceeds 0.15%, the ductility of steel deteriorates, and it is presumed that flange cracking will occur. Mn, P, S, sol. Since Al deteriorates the corrosion resistance of the steel sheet when these elements increase, the upper limit of each element is 0.60%, 0.025
%, 0.025%, and 0.120%.

【0009】sol.Alの含有量は0.012%未満
では脱酸不足のため、T.Oの含有量が高くなり、T.
Oを0.0070%以下にすることができない。従って
sol.Alの含有量の下限は0.012%とした。N
は0.015%超では、N添加のための製鋼コストが高
くなるので、上限を0.015%とした。T.Oの含有
量は、0.0070%超となると、スラブ表層付近に気
泡が発生し、メッキ原板の表面キズなどが増え、良好な
製品が得られなくなるので、0.0070%を上限とし
た。
Sol. When the content of Al is less than 0.012%, deoxidation is insufficient, so T. The content of O becomes high, and T.
O cannot be made 0.0070% or less. Therefore, sol. The lower limit of the Al content was 0.012%. N
If more than 0.015%, the steelmaking cost for adding N becomes high, so the upper limit was made 0.015%. T. If the O content exceeds 0.0070%, air bubbles are generated in the vicinity of the slab surface layer, surface scratches on the plating original plate increase, and a good product cannot be obtained, so 0.0070% was made the upper limit.

【0010】次に、溶接缶の溶接部近傍のネックしわを
抑制する材質設計指針について説明する。本発明者ら
は、ラボ実験で、熱間圧延条件、冷間圧延条件、焼鈍条
件、調質圧延条件等を変化させた鋼板を製造し、実際
に、溶接缶を製造後、口絞り率10%のネック加工試験
を行った。その結果、板厚、下降伏点の終了点とTS点
を結ぶ直線の傾き(Et )、r値、YPがしわを抑制す
る重要な因子であり、これらを用いた(1)式のK値が
0.19以上であれば、しわが発生せずにネック成形可
能であることを知見した。
Next, material design guidelines for suppressing neck wrinkles near the welded portion of the welding can will be described. The inventors of the present invention produced a steel sheet in which a hot rolling condition, a cold rolling condition, an annealing condition, a temper rolling condition, etc. were changed in a lab experiment, and after actually manufacturing a welded can, a draw ratio of 10 % Necking test was performed. As a result, the plate thickness, the slope (E t ) of the straight line connecting the end point of the falling yield point and the TS point, the r value, and the YP are important factors for suppressing wrinkling, and K of the equation (1) using It was found that when the value is 0.19 or more, neck molding can be performed without wrinkling.

【0011】では、式(1)の考え方、導入方法につい
て以下に詳細に述べる。しわはネック成形時に発生する
円周方向の圧縮応力(σθ)が、材料の座屈応力
(σCR)よりも大きくなった時に発生すると考えられ
る。よってσθを小さくし、σCRを大きくする材質特性
を備えた材料がしわが発生しにくいと考えられる。例え
ば、従来より経験的に降伏応力の低い軟質な材料がしわ
が発生しにくいことが知られている。これは、同一な変
形量の加工でも、降伏応力が低いと成形力は小さくな
り、σθが小さくなることに起因すると推定される。し
かし、溶接缶では、上述したように、T−2以下には、
軟質化することができない。そこで、次にσCRを大きく
する材質特性を検討した。では、σCRを大きくする材質
特性の考え方について詳細に説明する。
Next, the concept of equation (1) and the method of introduction will be described in detail below. It is considered that wrinkles occur when the circumferential compressive stress (σθ) generated during neck forming becomes larger than the buckling stress (σ CR ) of the material. Therefore, it is considered that wrinkles are less likely to occur in a material having material properties that reduce σθ and increase σ CR . For example, it has been conventionally empirically known that a soft material having a low yield stress is less likely to cause wrinkles. It is presumed that this is due to the fact that, even when machining with the same amount of deformation, if the yield stress is low, the forming force becomes small and σθ becomes small. However, in the welding can, as described above, below T-2,
It cannot be softened. Therefore, we next examined the material properties for increasing σ CR . Now, the concept of material properties for increasing σ CR will be described in detail.

【0012】図3に示す等布される力で一軸圧縮される
長方形板の弾性座屈応力σCRは、ティモシェンコによ
り、式(2)で与えられることが知られている。 σCR=(Kπ2 ・E・t2 )/12b2 (1−μ2 ) ・・・・・(2) たゞし、k=mb/a+a/mb)2 、t:板厚、E:
ヤング率、b:図3参照 mは図3のx方向に発生したしわ数
It is known that the elastic buckling stress σ CR of a rectangular plate that is uniaxially compressed by the uniform force shown in FIG. 3 is given by Tymoshenko by the equation (2). σ CR = (Kπ 2 · E · t 2 ) / 12b 2 (1-μ 2 ) (2) However, k = mb / a + a / mb) 2 , t: plate thickness, E:
Young's modulus, b: See FIG. 3. m is the number of wrinkles generated in the x direction of FIG.

【0013】ネック成形では、溶接部近傍に、溶接部に
平行な”縦じわ”が発生するため、ネック成形も図3と
同様な円周方向の一軸圧縮応力場であると近似した。ま
たネック成形は塑性変形であるので、その座屈は弾性座
屈ではなく、塑性座屈ではないかと考えた。そこで、E
にカルマンの式4EEt /(√E+√Et 2 を、また
Hi11の異方性降伏関数から考察し、μにはr/(1
+r)を代入して、式(3)を導いた。 σCR=(Kπ2 ・4EEt ・t2 )/〔12b2 {1−(r/1+r)2 } ・(√E+√Et 2 〕・・・・・・・(3)
In the neck forming, "longitudinal wrinkles" are generated in the vicinity of the welded portion in parallel with the welded portion. Therefore, the neck forming was approximated to be a uniaxial compressive stress field in the circumferential direction similar to FIG. Since the neck forming is plastic deformation, it was thought that the buckling was not elastic buckling but plastic buckling. So E
Kalman's equation 4EE t / (√E + √E t ) 2 is also considered from the anisotropic yield function of Hi11, and μ is r / (1
Substituting + r), the formula (3) is derived. σ CR = (Kπ 2 · 4EE t · t 2 ) / [12b 2 {1- (r / 1 + r) 2 } · (√E + √E t ) 2 ] ··· (3)

【0014】式(3)のEt は、図4に示すように変形
時の相当歪みεeqに対応する接線係数を意味する。実際
の溶接缶の成形は多段成形で、成形条件により各段の相
当歪み値は異なる。そこで、本発明では、材料の評価式
が成形条件によらず一定となるように、Et を便宜的
に、図5に示す「下降伏点の終了点とTS点を結ぶ直線
の傾き」で近似した。
E t in the equation (3) means a tangent coefficient corresponding to the equivalent strain ε eq at the time of deformation as shown in FIG. The actual welding can is formed by multi-step forming, and the equivalent strain value of each step differs depending on the forming conditions. Therefore, in the present invention, E t is expediently expressed by “the slope of the straight line connecting the end point of the falling yield point and the TS point” shown in FIG. 5 so that the evaluation formula of the material is constant regardless of the molding conditions. Approximated.

【0015】さて、上述したように、σCRが大きく、σ
θが小さい材料がしわが発生しにくいと考えられる。そ
こで、A=σCR/σθというパラメータを導入し、A値
が大きいほど、しわが発生しにくいと考えた。σθはY
Pに比例するので、σθ=C・YP(Cは定数)とし
て、A値を求めると式(4)となる。 A=(Kπ2 ・4EEt ・t2 )/〔12b2 C{1−(r/1+r)2 } ・(√E+√Et 2 ・YP〕 ・・・・・(4) ここで、Kπ2 /(12b2 ・C)は材料間で同一な定
数と考え、Kπ2 /(12b2 ・C)=1(定数)とお
いて、式(1)のK値を導いた。
As described above, σ CR is large and σ
It is considered that wrinkles are less likely to occur in a material having a small θ. Therefore, a parameter of A = σ CR / σ θ was introduced, and it was considered that wrinkles were less likely to occur as the A value was larger. σθ is Y
Since it is proportional to P, σθ = C · YP (C is a constant), and the A value is obtained, the formula (4) is obtained. A = (Kπ 2 · 4EE t · t 2 ) / [12b 2 C {1- (r / 1 + r) 2 } · (√E + √E t ) 2 · YP] (4) where: Kπ 2 / (12b 2 · C) was considered to be the same constant among the materials, and Kπ 2 / (12b 2 · C) = 1 (constant) was set, and the K value of the formula (1) was derived.

【0016】本発明は以上の考え方に基づき、材料の材
質特性を制御してK値を0.19以上とすることで、口
絞り率10%以上のネック成形を可能とするものであ
る。よってK値の下限を0.19に限定する。なお、溶
接缶の場合、ネック加工する前に塗装・印刷焼き付けが
行われる。この時に材料が受ける熱の影響を考慮し、本
実験では、各材質特性を求める前に210℃×30分の
時効処理を行っている。また、本発明鋼板に施される表
面処理は、その方法を問わない。ニッケルメッキ、錫メ
ッキ等を行う方法があるが、いかなるメッキであっても
本発明の効果は発揮される。
Based on the above concept, the present invention enables neck molding with a draw ratio of 10% or more by controlling the material properties of the material so that the K value is 0.19 or more. Therefore, the lower limit of the K value is limited to 0.19. In addition, in the case of a welding can, painting and printing baking are performed before neck processing. In consideration of the influence of heat applied to the material at this time, in this experiment, aging treatment is performed at 210 ° C. for 30 minutes before obtaining each material characteristic. The method of surface treatment applied to the steel sheet of the present invention does not matter. There is a method of performing nickel plating, tin plating, or the like, but the effect of the present invention is exhibited by any plating.

【0017】[0017]

【実施例】以下に実施例について述べる。表1記載の成
分を有する鋼を真空溶解炉で溶製し、鋼塊とした。これ
らの鋼塊を1150℃×1hr均熱後、板厚30mmに
粗圧延し、再び1150℃×1h加熱後、板厚3.0m
mに熱延した。これらの熱延板を酸洗した後、表2に示
す条件で、冷延、再結晶焼鈍した後、調質圧延、または
2CRを施し、Niメッキを行った。表2中の焼鈍条件
のパラメータは図6に示す。その後、210℃×30分
の時効処理を行った後、JIS5号の引張試験を行い、
板厚、YP(下降伏点)、Et (下降伏点の終了点とT
S点を結ぶ直線の傾き)、r値、HR30Tを測定し
た。その後、当社のラボ実験室で直径54.0mmの溶
接缶を製造し、直径48.6mmまで、2段で各50缶
成形を行った。口絞り率は(54.0−48.6)/5
4.0×10.0=10.0%である。その後、溶接部
近傍を目視観察し、しわが発生した缶数を数えた。1缶
もしわが生じなかった材料を合格、1缶でもしわが発生
した材料を不合格とした。これらの試験の結果を表3に
示す。
Embodiments will be described below. Steel having the components shown in Table 1 was melted in a vacuum melting furnace to form a steel ingot. After soaking these steel ingots at 1150 ° C. for 1 hr, they were roughly rolled to a plate thickness of 30 mm, and again heated at 1150 ° C. for 1 h, and then a plate thickness of 3.0 m.
Hot rolled to m. These hot-rolled sheets were pickled, cold-rolled, recrystallized and annealed under the conditions shown in Table 2, then temper-rolled or 2CR and Ni-plated. The parameters of the annealing conditions in Table 2 are shown in FIG. Then, after aging treatment at 210 ° C. for 30 minutes, the tensile test of JIS No. 5 is performed.
Thickness, YP (falling yield point), E t (end point of falling yielding point and T
The inclination of the straight line connecting the S points), the r value, and the HR30T were measured. After that, a welding can with a diameter of 54.0 mm was manufactured in our laboratory, and 50 cans each were molded in two stages up to a diameter of 48.6 mm. The aperture ratio is (54.0-48.6) / 5
It is 4.0 * 10.0 = 10.0%. Then, the vicinity of the welded portion was visually observed and the number of cans in which wrinkles were generated was counted. The material in which no wrinkle was generated in 1 can was passed, and the material in which wrinkle was generated in 1 can was rejected. Table 3 shows the results of these tests.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】試験No.1、2は本発明であり、試験N
o.3〜6は比較例である。本発明の1、2は50缶を
ネック成形しても、1缶もしわは発生しなかった。比較
例3〜6は表3に示す缶数でしわが発生した。従来より
低YP化がしわ抑制に有効なことが知られているので、
YPと本試験でのしわ発生率の関係を調査した結果を図
7に示す。溶接缶でのネック成形時のしわ発生率は、Y
Pとは相関がみられない。図8に本発明のK値としわ発
生率の関係を示す。しわ発生率はK値とは強い相関があ
り、K値が0.19以上であれば、しわは発生していな
い。
Test No. 1 and 2 are the present invention, and test N
o. 3 to 6 are comparative examples. In Nos. 1 and 2 of the present invention, even when 50 cans were neck-formed, no wrinkles were generated in one can. In Comparative Examples 3 to 6, wrinkles occurred in the number of cans shown in Table 3. Since it has been known that lowering YP is effective in suppressing wrinkles,
FIG. 7 shows the result of investigation on the relationship between YP and the wrinkle occurrence rate in this test. The wrinkle occurrence rate when forming a neck in a welding can is Y
There is no correlation with P. FIG. 8 shows the relationship between the K value and the wrinkle occurrence rate of the present invention. The wrinkle occurrence rate has a strong correlation with the K value, and if the K value is 0.19 or more, no wrinkle occurs.

【0022】[0022]

【発明の効果】以上述べたように、本発明により溶接缶
用EDEの縮径が可能な容器用鋼板にあり、その工業的
価値は極めて大きい。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the EDE for a welding can has a reduced diameter steel sheet for a container, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】DI缶ネック加工の1つであるダイネック法の
概念図、
FIG. 1 is a conceptual diagram of a die neck method which is one of DI can neck processing,

【図2】DI缶ネック加工の1つであるスピンネック法
の概念図、
FIG. 2 is a conceptual diagram of a spin neck method, which is one of DI can neck processing.

【図3】長方形板の弾性座屈応力を示す図、FIG. 3 is a diagram showing elastic buckling stress of a rectangular plate,

【図4】応力と変形時の相当歪みとの関係を示す図、FIG. 4 is a diagram showing the relationship between stress and equivalent strain during deformation,

【図5】応力と下降伏点終了点の真歪と最大荷重点の真
歪との関係を示す図、
FIG. 5 is a diagram showing the relationship between the stress, the true strain at the end point of the yield point, and the true strain at the maximum load point;

【図6】冷延後の鋼板の連続焼鈍における焼鈍パターン
を示す図、
FIG. 6 is a diagram showing an annealing pattern in continuous annealing of a steel sheet after cold rolling,

【図7】YPとしわ発生比率との関係を示す図、FIG. 7 is a diagram showing a relationship between YP and a wrinkle occurrence rate;

【図8】K値としわ発生比率との関係を示す図である。FIG. 8 is a diagram showing a relationship between a K value and a wrinkle generation ratio.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C ≦0.150% Mn≦0.60% P ≦0.025% S ≦0.025% sol.Al:0.012%〜0.120% N ≦0.015% T.O≦0.0070% で残部がFe及び不可避的不純物からなる鋼で、(1)
式に示すKの値が、210℃で30分時効処理した後で
0.19以上であり、溶接缶でのネックドイン加工性に
優れることを特徴とする容器用鋼板。 K=(4EEt ・t2 )/〔{1−(r/1+r)2 }・ (√E+√Et 2 ・YP〕 ・・・・(1) ただし、YP:下降伏点 r :r値 t :板厚 E :ヤング率(=21000kgf/mm2 ) Et :Et =(TS2 −YP1 )/(El2 −El1 ) なお、 TS2 :最大荷重点の真応力値 El2 :最大荷重点の真歪 YP1 :下降伏点終了点の真応力 El1 :下降伏点終了点の真歪
1. In weight%, C ≦ 0.150% Mn ≦ 0.60% P ≦ 0.025% S ≦ 0.025% sol. Al: 0.012% to 0.120% N ≤ 0.015% T.I. Steel with O ≦ 0.0070% and the balance Fe and unavoidable impurities, and (1)
A container steel sheet having a value of K shown in the formula of 0.19 or more after aging treatment at 210 ° C. for 30 minutes and having excellent necked-in workability in a welding can. K = (4EE t · t 2 ) / [{1- (r / 1 + r) 2 } · (√E + √E t ) 2 · YP] (1) where YP: falling yield point r: r the value t: plate thickness E: Young's modulus (= 21000kgf / mm 2) E t: E t = (TS 2 -YP 1) / (El 2 -El 1) Incidentally, TS 2: true stress value El of the maximum load point 2 : True strain at maximum load point YP 1 : True stress at end point of down yield point El 1 : True strain at end point of down yield point
JP9130396A 1996-04-12 1996-04-12 Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can Pending JPH09279301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130396A JPH09279301A (en) 1996-04-12 1996-04-12 Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130396A JPH09279301A (en) 1996-04-12 1996-04-12 Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can

Publications (1)

Publication Number Publication Date
JPH09279301A true JPH09279301A (en) 1997-10-28

Family

ID=14022708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130396A Pending JPH09279301A (en) 1996-04-12 1996-04-12 Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can

Country Status (1)

Country Link
JP (1) JPH09279301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667882A (en) * 2013-12-26 2014-03-26 马钢(集团)控股有限公司 High-plasticity steel hot-rolled coil for welded gas cylinder and production technology of high-plasticity steel hot-rolled coil
TWI608107B (en) * 2015-03-31 2017-12-11 Jfe Steel Corp Steel plate for can lid and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667882A (en) * 2013-12-26 2014-03-26 马钢(集团)控股有限公司 High-plasticity steel hot-rolled coil for welded gas cylinder and production technology of high-plasticity steel hot-rolled coil
TWI608107B (en) * 2015-03-31 2017-12-11 Jfe Steel Corp Steel plate for can lid and its manufacturing method

Similar Documents

Publication Publication Date Title
US7252722B2 (en) Steel sheet
WO2015129191A1 (en) Steel plate for crown cap, method for manufacturing same, and crown cap
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
WO2020129482A1 (en) Steel plate for can and method for producing same
EP2918695B1 (en) Steel sheet for three-piece can and manufacturing process therefor
JP3534960B2 (en) Steel plate for welded can body having high yield strength and method for producing the same
JP2017190469A (en) Cold rolled steel sheet for drawn can and production method therefor
JPH09279301A (en) Steel sheet for vessel having more than 3 tempering degree and excellent in necked-in workability in welded can
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
EP3604598B1 (en) Steel sheet, production method therefor, bottle cap, and drd can
JP3448380B2 (en) Manufacturing method of steel sheet for containers
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JP5900712B2 (en) Steel plate for can and manufacturing method thereof
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP6164273B2 (en) Steel plate for cans and method for producing steel plate for cans
JP3108615B2 (en) Method for producing steel sheet for welded can with excellent flanging and neck formability
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JPH01184252A (en) Steel sheet for di can excellent in stretch-flange formability
JPH08218146A (en) Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JP3873732B2 (en) Steel plate for 3-piece constricted cans
JPH042729A (en) Production of high strength cold rolled steel sheet for deep drawing having baking hardenability
JPH08127815A (en) Production of starting steel sheet for vessel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040518

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20040602

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706