JPH09275212A - Voltage-driven semiconductor device - Google Patents

Voltage-driven semiconductor device

Info

Publication number
JPH09275212A
JPH09275212A JP8082331A JP8233196A JPH09275212A JP H09275212 A JPH09275212 A JP H09275212A JP 8082331 A JP8082331 A JP 8082331A JP 8233196 A JP8233196 A JP 8233196A JP H09275212 A JPH09275212 A JP H09275212A
Authority
JP
Japan
Prior art keywords
trench
semiconductor region
semiconductor
region
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8082331A
Other languages
Japanese (ja)
Other versions
JP3257394B2 (en
Inventor
Yasuhiro Nemoto
康宏 根本
Naoki Sakurai
直樹 櫻井
Mutsuhiro Mori
森  睦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08233196A priority Critical patent/JP3257394B2/en
Publication of JPH09275212A publication Critical patent/JPH09275212A/en
Application granted granted Critical
Publication of JP3257394B2 publication Critical patent/JP3257394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a device resistant to breakdown due to concentration of current on the periphery of a trench adjacent to the termination section of a semiconductor chip, by connecting an insulating gate electrode, formed inside the trench, to a second main electrode. SOLUTION: Only an outermost gate insulating film 9A and an outermost gate electrode 10A (hereafter generically referred to as outermost trench) are electrically connected with an emitter electrode 12. The gate electrode 10A is electrically separated from the other gate electrodes. Since the gate electrode 10A in the outermost trench, where the shape and surface condition of the trench are most unstable, is electrically separated from the other gate electrodes, it is not brought into MOS operation and does not concern switching of the device. This ensures uniform operation of the device and evades breakdown of the device due to increase in the on-voltage of the device resulting from increase in the threshold voltage on the periphery of the trench or concentration of current on the periphery of the trench resulting from threshold voltage drop.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はトレンチ型の絶縁ゲ
ートを有する半導体装置に係り、特にパワーMOSFETやI
GBTなどに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a trench type insulated gate, and more particularly to a power MOSFET and an I / O device.
It relates to GBT.

【0002】[0002]

【従来の技術】図8(a),(b)に従来のトレンチ型の
絶縁ゲートを有するIGBT(Insulated Gate Bipolar
Transistor)の断面模式図及び平面模式図を示す(以
下、この素子をトレンチIGBTと呼ぶ)。なお、断面
模式図(a)は平面模式図(b)のX−Yに対応してい
る。トレンチIGBTはp+ 基板1上にn+ バッファ層
20が形成され、さらにその上にn- ドリフト層2が形
成される。n- ドリフト層2の表面にpベース層3が形
成され、さらに、pベース層3を貫通して、選択的にか
つ連続的にトレンチが形成され、トレンチ表面には、ゲ
ート絶縁膜9及びゲート電極10が形成される。ゲート
絶縁膜9及びゲート電極10に隣接するpベース層3の
表面に選択的にn+ エミッタ層4が形成される。さら
に、p+ 基板1の裏面上にコレクタ電極11が形成さ
れ、n- ドリフト層2上に選択的にエミッタ電極12が
形成される。
2. Description of the Related Art An IGBT (Insulated Gate Bipolar) having a conventional trench type insulated gate is shown in FIGS.
Transistor) shows a schematic sectional view and a schematic plan view (hereinafter, this element is referred to as a trench IGBT). The schematic sectional view (a) corresponds to XY in the schematic plan view (b). In trench IGBT, n @ + buffer layer 20 is formed on p @ + substrate 1, and n @-drift layer 2 is further formed thereon. A p base layer 3 is formed on the surface of the n − drift layer 2, and a trench is selectively and continuously formed through the p base layer 3, and a gate insulating film 9 and a gate are formed on the trench surface. The electrode 10 is formed. An n + emitter layer 4 is selectively formed on the surface of the p base layer 3 adjacent to the gate insulating film 9 and the gate electrode 10. Further, collector electrode 11 is formed on the back surface of p @ + substrate 1, and emitter electrode 12 is selectively formed on n @-drift layer 2.

【0003】動作原理は以下の通りである。まず、エミ
ッタ電極12を接地し、コレクタ電極11にある一定の
正電圧を印加する。この状態で、ゲート電極10にしき
い値電圧以上の電圧を加えることにより、ゲート電極1
0に沿って、縦方向にチャネルが形成され、コレクタ電
極11,エミッタ電極12間に電流が流れ、トレンチI
GBTはオン状態となる。
The operating principle is as follows. First, the emitter electrode 12 is grounded and a certain positive voltage is applied to the collector electrode 11. In this state, by applying a voltage higher than the threshold voltage to the gate electrode 10, the gate electrode 1
A channel is formed in the vertical direction along 0, a current flows between the collector electrode 11 and the emitter electrode 12, and the trench I
The GBT is turned on.

【0004】プレーナ型のIGBTに比べ、JFET効
果による抵抗成分が存在せず、さらに、微細化が可能で
あることから、オン電圧が低減できることが特徴であ
る。
Compared with the planar type IGBT, there is no resistance component due to the JFET effect, and further, miniaturization is possible, and therefore, the on-voltage can be reduced.

【0005】また、図9(a),(b)に従来のトレンチ
型の絶縁ゲートを有するパワーMOSFET(Metal-Oxide-Sem
iconductor Feild Effect Transistor)の断面模式図及
び平面模式図を示す(以下、この素子をトレンチMOS
と呼ぶ)。トレンチIGBTと異なるのは、p+ 基板1の代
わりにn+ 基板1aが使用される点である。
Further, a power MOSFET (Metal-Oxide-Sem) having a conventional trench type insulated gate is shown in FIGS. 9 (a) and 9 (b).
A schematic cross-sectional view and a schematic plan view of an insulator Feild Effect Transistor are shown below (hereinafter, this element will be referred to as a trench MOS
). The difference from the trench IGBT is that an n + substrate 1a is used instead of the p + substrate 1.

【0006】[0006]

【発明が解決しようとする課題】トレンチ型の絶縁ゲー
トを有する半導体装置はその特徴であるゲート電極を形
成するために、一般的に、ドライエッチング技術を利用
して、シリコン基板にトレンチを形成する。この時、ト
レンチの形状や表面状態等は、チップ内エッチング領域
の外周部が最も不安定となる。これはエッチング領域の
疎密によりサイドエッチ量が異なるためである。チップ
の内側は導通領域を形成するために、トレンチ領域が密
に形成されている。それに対し、チップの外側は耐圧を
確保する領域(ターミネーション領域)であり、トレン
チは形成しない。このため、チップの内側と外側でエッ
チング領域に疎密が生じる。エッチング領域が疎な領域
では脱ガスが少なく、従って側壁保護のポリマーが薄
く、このため、サイドエッチが入り易くなり、密な領域
とは形状や表面状態等が異なってしまう。
In order to form a gate electrode, which is a characteristic of a semiconductor device having a trench type insulated gate, a dry etching technique is generally used to form a trench in a silicon substrate. . At this time, the shape and surface condition of the trench are the most unstable in the outer peripheral portion of the in-chip etching region. This is because the side etch amount differs depending on the density of the etching region. Trench regions are densely formed inside the chip to form a conductive region. On the other hand, the outside of the chip is a region (termination region) where the breakdown voltage is secured, and the trench is not formed. Therefore, sparseness and denseness occur in the etching region inside and outside the chip. In a region where the etching region is sparse, outgassing is small, and therefore, the polymer for protecting the side wall is thin, so that side etching is likely to occur, and the shape and surface state are different from those in the dense region.

【0007】したがって、ゲート電圧印加時に、チップ
内エッチング領域の外周部、即ち、ゲート電極の外周部
において、ゲート形状の変化によるしきい値電圧の不均
一が生じ、素子の均一動作が妨げられる。なお、外周部
のしきい値電圧が高い場合は、素子のオン電圧低減効果
が低下し、低い場合は、電流集中による素子破壊が生じ
やすくなる。
Therefore, when the gate voltage is applied, the threshold voltage becomes non-uniform due to the change of the gate shape in the outer peripheral portion of the in-chip etching region, that is, the outer peripheral portion of the gate electrode, and the uniform operation of the element is hindered. When the threshold voltage of the outer peripheral portion is high, the effect of reducing the on-voltage of the element is lowered, and when it is low, element breakdown due to current concentration tends to occur.

【0008】本発明の目的は、トレンチ型の絶縁ゲート
を有する半導体装置において、前記従来技術の問題点を
解決することにある。すなわち、ゲート電圧印加時にチ
ップ内で均一動作を確実にすることにより、トレンチ外
周部でのしきい値電圧の上昇によるオン電圧の上昇、あ
るいは、しきい値電圧の低下によるトレンチ外周部での
電流集中による破壊の生じにくい素子を提供することで
ある。
An object of the present invention is to solve the above-mentioned problems of the prior art in a semiconductor device having a trench type insulated gate. That is, by ensuring uniform operation within the chip when the gate voltage is applied, the on-voltage rises due to the rise of the threshold voltage in the trench outer periphery, or the current in the trench periphery rises due to the decrease of the threshold voltage. An object is to provide an element that is less likely to be destroyed by concentration.

【0009】[0009]

【課題を解決するための手段】前記目的は、ゲート電圧
印加時に、チップ内のターミネーション領域に隣接する
トレンチがMOS動作しない構造にする。即ち、このト
レンチをダミーゲートとして使うことによって達成され
る。
The object is to provide a structure in which a trench adjacent to a termination region in a chip does not operate as a MOS when a gate voltage is applied. That is, it is achieved by using this trench as a dummy gate.

【0010】具体的には、ターミネーション領域に隣接
するトレンチをエミッタ電極に電気的に接続する、ある
いは、零電位になる構造にする。また、ターミネーショ
ン領域に隣接するトレンチに隣接するn+ エミッタ層を
形成しない構造にする。
Specifically, the trench adjacent to the termination region is electrically connected to the emitter electrode or has a structure in which the potential is zero. Further, the n + emitter layer adjacent to the trench adjacent to the termination region is not formed.

【0011】あるいは、ターミネーション領域に隣接す
るトレンチのチャネル領域にpウェル層よりも不純物濃
度の高いp層が接触する構造にする。
Alternatively, the p-layer having a higher impurity concentration than the p-well layer contacts the channel region of the trench adjacent to the termination region.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例であるIGBTを
示す図であり、(a)は断面模式図、(b)は平面模式
図である。
1A and 1B are views showing an IGBT according to an embodiment of the present invention. FIG. 1A is a schematic sectional view and FIG. 1B is a schematic plan view.

【0014】p+ 基板1上にn- ドリフト層2が形成さ
れる。そして、n- ドリフト層2の表面にpベース層3
が形成され、さらに、ドライエッチング技術を使って、
pベース層3を貫通して、選択的にかつ連続的にトレン
チが形成され、トレンチ表面にゲート絶縁膜9及びゲー
ト電極10が形成される。そして、ゲート絶縁膜9及び
ゲート電極10に隣接するpベース層3の表面に選択的
にn+ エミッタ層4が形成される。そして、p+ 基板1
の裏面上にコレクタ電極11が形成され、n-ドリフト
層2上にpベース層3及びn+ エミッタ層4に接するよ
うに選択的にエミッタ電極12が形成される。
An n @-drift layer 2 is formed on p @ + substrate 1. Then, the p base layer 3 is formed on the surface of the n − drift layer 2.
Is formed, and using dry etching technology,
A trench is selectively and continuously formed penetrating the p base layer 3, and a gate insulating film 9 and a gate electrode 10 are formed on the trench surface. Then, the n @ + emitter layer 4 is selectively formed on the surface of the p base layer 3 adjacent to the gate insulating film 9 and the gate electrode 10. And p + substrate 1
A collector electrode 11 is formed on the back surface of the n-drift layer 2, and an emitter electrode 12 is selectively formed on the n − drift layer 2 so as to be in contact with the p base layer 3 and the n + emitter layer 4.

【0015】最外周のゲート絶縁膜9A及びゲート電極
10A(以下、これらをまとめて最外トレンチと呼ぶ)
のみが、エミッタ電極12と電気的に接続されている。
ゲート電極10Aは他のゲート電極と電気的に分離され
ている。
Outermost gate insulating film 9A and gate electrode 10A (hereinafter collectively referred to as outermost trench)
Only the emitter electrode 12 is electrically connected.
The gate electrode 10A is electrically separated from other gate electrodes.

【0016】動作原理は以下の通りである。まず、エミ
ッタ電極12を接地し、コレクタ電極11にある一定の
正電圧を印加する。この状態で、ゲート電極10にしき
い値電圧以上の電圧を加えることにより、ゲート電極1
0に沿って、縦方向にチャネルが形成され、コレクタ電
極11,エミッタ電極12間に電流が流れ、素子はオン
状態となる。この際、トレンチの形状や表面状態等が最
も不安定となる最外トレンチ内のゲート電極は他のゲー
ト電極と電気的に分離されているため、MOS動作せ
ず、素子のスイッチングには関与しない。従って、素子
の均一動作が確実となり、トレンチ外周部におけるしき
い値電圧の上昇による素子のオン電圧の上昇、あるい
は、しきい値電圧の低下によるトレンチ外周部での電流
集中による素子の破壊が生じにくくなる。
The operating principle is as follows. First, the emitter electrode 12 is grounded and a certain positive voltage is applied to the collector electrode 11. In this state, by applying a voltage higher than the threshold voltage to the gate electrode 10, the gate electrode 1
A channel is formed in the vertical direction along 0, a current flows between the collector electrode 11 and the emitter electrode 12, and the element is turned on. At this time, since the gate electrode in the outermost trench where the shape and surface state of the trench are most unstable is electrically separated from other gate electrodes, MOS operation does not occur and it does not participate in element switching. . Therefore, the uniform operation of the element is ensured, and the on-voltage of the element is increased due to the increase of the threshold voltage in the outer periphery of the trench, or the element is broken due to the current concentration in the outer periphery of the trench due to the decrease of the threshold voltage. It gets harder.

【0017】また、最外トレンチを零電位にした場合
も、同様の効果が得られる。しかし、エミッタ電極12
と電気的に接続した方が、ゲート電極の電位が固定され
るため、安定したスイッチング動作が得られる。
The same effect can be obtained when the outermost trench is set to zero potential. However, the emitter electrode 12
Since the potential of the gate electrode is fixed when electrically connected to, stable switching operation can be obtained.

【0018】図2は本発明の一実施例を示す図であり、
(a)は断面模式図、(b)は平面模式図である。図1
に示した実施例と異なる点は、最外トレンチがゲート電
極10に電気的に接続され、さらに、最外トレンチに隣
接するn+ エミッタ層4が形成されていないことにあ
る。すなわち、最外トレンチの側面にはpベース層3の
みが接している。
FIG. 2 shows an embodiment of the present invention.
(A) is a schematic cross-sectional view, and (b) is a schematic plan view. FIG.
The embodiment is different from the embodiment shown in FIG. 1 in that the outermost trench is electrically connected to the gate electrode 10 and that the n + emitter layer 4 adjacent to the outermost trench is not formed. That is, only the p base layer 3 is in contact with the side surface of the outermost trench.

【0019】これにより、素子がオン状態では、トレン
チの形状や表面状態等が最も不安定な最外トレンチはn
+ エミッタ層4が形成されていないため、チャネルは形
成されず、電流は流れない。従って、素子の均一動作が
確実となり、トレンチ外周部におけるしきい値電圧の上
昇による素子のオン電圧の上昇、あるいは、しきい値電
圧の低下によるトレンチ外周部での電流集中による素子
の破壊が生じにくくなる。
As a result, when the element is in the ON state, the outermost trench whose trench shape and surface state are the most unstable is n.
Since the + emitter layer 4 is not formed, no channel is formed and no current flows. Therefore, the uniform operation of the element is ensured, and the on-voltage of the element is increased due to the increase of the threshold voltage in the outer periphery of the trench, or the element is broken due to the current concentration in the outer periphery of the trench due to the decrease of the threshold voltage. It gets harder.

【0020】さらに、素子がオン状態からオフ状態に移
行する際には、キャリア(この場合は正孔)が最も集中
しやすいゲート電極の外周部にn+ エミッタ層4が存在
しないため、従来構造よりもキャリア(この場合は正
孔)の出口が広くなり、高速かつ破壊耐量の大きな素子
を得ることができる。
Further, when the device shifts from the ON state to the OFF state, the n + emitter layer 4 does not exist on the outer peripheral portion of the gate electrode where carriers (holes in this case) are most likely to concentrate, so that the conventional structure is used. The exit of carriers (holes in this case) is wider than that, and a device having a high speed and a large breakdown resistance can be obtained.

【0021】図3は本発明の一実施例を示す図であり、
(a)は断面模式図、(b)は平面模式図である。図1
に示した実施例と異なる点は、最外トレンチがゲート電
極10に電気的に接続され、さらに、少なくとも最外ト
レンチに接し、しかも、所定のゲート電圧(例えば15
V程度)を印加しても電流が流れないように、pベース
層3よりも不純物濃度の高いpウェル層6が形成されて
いることにある。最外トレンチの側面に接するn+ エミ
ッタ層はpウェル層6に包囲されるように同ウェル層内
に設けられる。
FIG. 3 is a diagram showing an embodiment of the present invention.
(A) is a schematic cross-sectional view, and (b) is a schematic plan view. FIG.
The embodiment is different from the embodiment shown in FIG. 1 in that the outermost trench is electrically connected to the gate electrode 10 and is in contact with at least the outermost trench and has a predetermined gate voltage (eg, 15
The p well layer 6 having a higher impurity concentration than the p base layer 3 is formed so that the current does not flow even when a voltage of about V) is applied. The n + emitter layer in contact with the side surface of the outermost trench is provided in the well layer so as to be surrounded by the p well layer 6.

【0022】これにより、素子がオン状態では、トレン
チの形状や表面状態等が最も不安定となる最外トレンチ
は、MOS動作せず、素子のスイッチングには関与しな
い。従って、素子の均一動作が確実となり、トレンチ外
周部におけるしきい値電圧の上昇による素子のオン電圧
の上昇、あるいは、しきい値電圧の低下によるトレンチ
外周部での電流集中による素子の破壊が生じにくくな
る。
As a result, when the element is in the ON state, the outermost trench where the shape and surface state of the trench are the most unstable does not operate as a MOS and does not participate in the switching of the element. Therefore, the uniform operation of the element is ensured, and the on-voltage of the element is increased due to the increase of the threshold voltage in the outer periphery of the trench, or the element is broken due to the current concentration in the outer periphery of the trench due to the decrease of the threshold voltage. It gets harder.

【0023】また、素子がオン状態からオフ状態に移行
する際には、キャリア(この場合は正孔)が最も集中し
やすいゲート電極外周部のpウェル層6の不純物濃度が
高いため、従来構造よりもキャリア(この場合は正孔)
をスムーズに引き抜くことができるので、高速かつ短絡
耐量の大きな素子を得ることができる。さらに、pウェ
ル層6の接合深さを深くすることで、キャリアをよりス
ムーズに引き抜くことができるので、その効果は大きく
なる。
Further, when the device shifts from the on state to the off state, the impurity concentration of the p well layer 6 in the peripheral portion of the gate electrode where the carriers (holes in this case) are most likely to concentrate is high, so that the conventional structure is used. Than carriers (holes in this case)
Can be pulled out smoothly, so that it is possible to obtain an element having a high speed and a large short circuit resistance. Further, by making the junction depth of the p-well layer 6 deeper, the carriers can be extracted more smoothly, so that the effect is enhanced.

【0024】図4は本発明の一実施例を示す図であり、
(a)は断面模式図、(b)は平面模式図である。図1
に示した実施例と異なる点は、最外トレンチを囲んでp
ベース層3よりも不純物濃度の高いpウェル層7がpベ
ース層3よりも深く形成され、しかも、最外トレンチに
隣接するn+ エミッタ層4が形成されていないことにあ
る。
FIG. 4 is a diagram showing an embodiment of the present invention.
(A) is a schematic cross-sectional view, and (b) is a schematic plan view. FIG.
The difference from the embodiment shown in FIG.
This is because the p well layer 7 having an impurity concentration higher than that of the base layer 3 is formed deeper than the p base layer 3 and the n + emitter layer 4 adjacent to the outermost trench is not formed.

【0025】これにより、素子がオン状態では、トレン
チの形状や表面状態等が最も不安定となる最外トレンチ
はpウェル層7で囲まれているため、MOS動作せず、
素子のスイッチングには関与しない。従って、素子の均
一動作が確実となり、トレンチ外周部におけるしきい値
電圧の上昇による素子のオン電圧の上昇、あるいは、し
きい値電圧の低下によるトレンチ外周部での電流集中に
よる素子の破壊が生じにくくなる。
As a result, when the element is in the ON state, the outermost trench, in which the shape and surface state of the trench are most unstable, is surrounded by the p-well layer 7, so that MOS operation does not occur,
It does not participate in device switching. Therefore, the uniform operation of the element is ensured, and the on-voltage of the element is increased due to the increase of the threshold voltage in the outer periphery of the trench, or the element is broken due to the current concentration in the outer periphery of the trench due to the decrease of the threshold voltage. It gets harder.

【0026】さらに、素子がオン状態からオフ状態に移
行する際には、キャリア(この場合は正孔)が最も集中
しやすいゲート電極の外周部にn+ エミッタ層4が存在
しないため、従来構造よりもキャリア(この場合は正
孔)の出口が広くなり、高速かつ破壊耐量の大きな素子
を得ることができる。しかも、図2の実施例に比べ、接
合深さが深く、かつ、不純物濃度の高いpウェル層7を
形成しているため、チップ周辺のキャリア(この場合は
正孔)をよりスムーズに引き抜くことができるので、さ
らに、高速かつ破壊耐量の大きな素子を得ることができ
る。そして、オフ状態においては、最も電界の集中しや
すい最外トレンチの底部がpウェル層7で囲まれている
ため、電界が緩和され、従来構造に比べ、素子耐圧も向
上する。
Further, when the device shifts from the ON state to the OFF state, the n + emitter layer 4 does not exist on the outer peripheral portion of the gate electrode where carriers (holes in this case) are most likely to concentrate, so that the conventional structure is used. The exit of carriers (holes in this case) is wider than that, and a device having a high speed and a large breakdown resistance can be obtained. Moreover, since the p-well layer 7 having a deeper junction depth and a higher impurity concentration is formed as compared with the embodiment of FIG. 2, carriers (holes in this case) around the chip can be extracted more smoothly. Therefore, it is possible to obtain an element having a high speed and a large breakdown resistance. In the off state, the bottom of the outermost trench where the electric field is most likely to be concentrated is surrounded by the p-well layer 7, so that the electric field is relaxed and the breakdown voltage of the device is improved as compared with the conventional structure.

【0027】なお、図5は、このようなMOS動作をし
ないダミーゲートを2個形成した場合の模式図である。
(a)は断面模式図、(b)は平面模式図である。この
ように、ダミーゲートを2個(10A,10B)、ある
いは3個,4個などと複数個形成することにより、上記
の効果はさらに大きくなる。しかしながら、その数をあ
まり多くしすぎると、アクティブ領域が狭くなり、オン
電圧低減効果が低減してしまうので、注意が必要であ
る。
FIG. 5 is a schematic view of a case in which two dummy gates which do not operate as described above are formed.
(A) is a schematic cross-sectional view, and (b) is a schematic plan view. As described above, by forming a plurality of dummy gates such as two (10A, 10B) or three or four dummy gates, the above effect is further enhanced. However, if the number is too large, the active area becomes narrow and the effect of reducing the on-voltage decreases, so caution is required.

【0028】図6は図4を用いて説明した実施例の異な
る断面における一実施例であり、(a),(b)は断面
模式図、(c)は平面模式図である。p+ 基板1上にn
-ドリフト層2が形成される。そして、n- ドリフト層
2の表面にpベース層3が形成され、さらに、ドライエ
ッチング技術を使って、pベース層3を貫通して、トレ
ンチが形成され、トレンチ表面にゲート絶縁膜9及びゲ
ート電極10が形成される。さらに、トレンチに隣接
し、トレンチ端部よりも内側にn+ エミッタ層4が形成
される。さらに、トレンチ端部を囲み、トレンチよりも
形成深さの深いpウェル層5が形成される。そして、p
+ 基板1の裏面上にコレクタ電極11が形成され、n-
ドリフト層2上にpベース層3及びn+ エミッタ層4に
接するようにエミッタ電極12が形成される。
FIG. 6 shows an embodiment in a different cross section of the embodiment described with reference to FIG. 4, where (a) and (b) are schematic sectional views and (c) are schematic plan views. n on p + substrate 1
-Drift layer 2 is formed. Then, a p base layer 3 is formed on the surface of the n − drift layer 2, and a trench is formed through the p base layer 3 by using a dry etching technique, and a gate insulating film 9 and a gate are formed on the trench surface. The electrode 10 is formed. Further, an n + emitter layer 4 is formed adjacent to the trench and inside the end of the trench. Further, a p-well layer 5 that surrounds the trench end and is deeper than the trench is formed. And p
+ The collector electrode 11 is formed on the back surface of the substrate 1, and n−
An emitter electrode 12 is formed on drift layer 2 so as to contact p base layer 3 and n + emitter layer 4.

【0029】トレンチの形状や表面状態等が最も不安定
なトレンチ端部にはn+ エミッタ層4が形成されていな
いため、チャネルは形成されず、電流は流れない。さら
に、トレンチ端部は深いpウェル層で覆われているた
め、素子の均一動作がより確実となり、トレンチ外周部
におけるしきい値電圧の上昇による素子のオン電圧の上
昇、あるいは、しきい値電圧の低下によるトレンチ外周
部での電流集中による素子の破壊が生じにくくなる。
Since the n + emitter layer 4 is not formed at the end of the trench where the shape and surface condition of the trench are the most unstable, no channel is formed and no current flows. Further, since the trench end is covered with the deep p-well layer, uniform operation of the device is more reliable, and the on-voltage of the device is increased due to the increase of the threshold voltage in the outer periphery of the trench, or the threshold voltage is increased. The breakdown of the element due to the current concentration in the outer peripheral portion of the trench due to the decrease of the resistance is less likely to occur.

【0030】さらに、素子がオン状態からオフ状態に移
行する際には、キャリア(この場合は正孔)が最も集中
しやすいゲート電極の外周部にn+ エミッタ層4が存在
しないため、従来構造よりもキャリア(この場合は正
孔)の出口が広くなり、高速かつ破壊耐量の大きな素子
を得ることができる。しかも、接合深さの深いpウェル
層5を形成しているため、チップ周辺のキャリア(この
場合は正孔)をよりスムーズに引き抜くことができるの
で、さらに、高速かつ破壊耐量の大きな素子を得ること
ができる。また、pウェル層5の不純物濃度を高くする
ことにより、この効果はより顕著となる。そして、オフ
状態においては、最も電界の集中しやすいトレンチ端部
がpウェル層5で囲まれているため、電界が緩和され、
従来構造に比べ、素子耐圧も向上する。
Further, when the device shifts from the ON state to the OFF state, the n + emitter layer 4 does not exist on the outer peripheral portion of the gate electrode where carriers (holes in this case) are most likely to be concentrated. The exit of carriers (holes in this case) is wider than that, and a device having a high speed and a large breakdown resistance can be obtained. Moreover, since the p-well layer 5 having a deep junction depth is formed, carriers (holes in this case) around the chip can be extracted more smoothly, and thus an element having a high speed and a large breakdown resistance can be obtained. be able to. Further, this effect becomes more remarkable by increasing the impurity concentration of the p well layer 5. In the off state, the trench well where the electric field is most likely to be concentrated is surrounded by the p-well layer 5, so that the electric field is relaxed.
The breakdown voltage of the device is also improved as compared with the conventional structure.

【0031】図7は本発明のトレンチIGBTを使って
構成したモータ駆動用インバータ回路の例である。トレ
ンチIGBT100 には逆並列にダイオード101が接続され
ており、トレンチIGBTが2個直列に接続され、1相
が形成されている。トレンチIGBTが接続された中点
から出力され、モータ106と接続されている。上アー
ム側のトレンチIGBT100a,b,cのコレクタは共通であ
り、整流回路の高電位側と接続されている。また、下ア
ーム側のトレンチIGBT100d,e,fのエミッタは共通であ
り、整流回路のアース側と接続されている。整流回路1
03は、交流電源102を直流に変換する。トレンチIG
BT100 は、この直流を受電し、再度交流に変換してモー
タを駆動する。上下の駆動回路104,105は、トレ
ンチIGBTのゲートに駆動信号を伝え、所定の周期でトレ
ンチIGBTをオン・オフさせる。本実施例では、トレ
ンチIGBTにダミーゲートを使用することにより、オ
ン電圧が低下し、さらに、破壊耐量及び素子耐圧が向上
するため、従来のトレンチIGBTを使用した場合より
も、低損失で、信頼性の高いインバータを提供できる。
FIG. 7 shows an example of a motor driving inverter circuit constructed by using the trench IGBT of the present invention. A diode 101 is connected to the trench IGBT 100 in anti-parallel, and two trench IGBTs are connected in series to form one phase. The signal is output from the middle point where the trench IGBT is connected, and is connected to the motor 106. The collectors of the trench IGBTs 100a, b, c on the upper arm side are common and are connected to the high potential side of the rectifier circuit. In addition, the emitters of the trench IGBTs 100d, e, f on the lower arm side are common and are connected to the ground side of the rectifier circuit. Rectifier circuit 1
03 converts the AC power supply 102 into DC. Trench IG
The BT100 receives this direct current, converts it to alternating current, and drives the motor. The upper and lower drive circuits 104 and 105 transmit a drive signal to the gate of the trench IGBT to turn on / off the trench IGBT at a predetermined cycle. In the present embodiment, the use of the dummy gate in the trench IGBT lowers the on-voltage, and further improves the breakdown resistance and the device breakdown voltage. A highly reliable inverter can be provided.

【0032】なお、実施例では、半導体素子の例として
IGBTのみについて述べたが、絶縁ゲートを持つ他の
素子、例えば、トレンチ型のパワーMOSFET及びMOSサ
イリスタなどでも同様の効果があるのは明らかである。
パワーMOSFETの場合、上記実施例のp+ 基板1がn+ 基
板に置き替わる。また従来のIGBTと同様に図8にお
けるn+ バッファ層20を形成してもよい。
In the embodiment, only the IGBT is described as an example of the semiconductor element, but it is obvious that other elements having an insulated gate, such as a trench type power MOSFET and a MOS thyristor, have the same effect. is there.
In the case of a power MOSFET, the p + substrate 1 in the above embodiment is replaced with an n + substrate. Further, n + buffer layer 20 in FIG. 8 may be formed similarly to the conventional IGBT.

【0033】[0033]

【発明の効果】以上説明したように、本発明によるトレ
ンチ型の絶縁ゲートを有する半導体装置の場合、少なく
とも最外周のトレンチをダミーゲートとすることによ
り、トレンチ外周部におけるしきい値電圧の上昇による
素子のオン電圧の上昇、あるいは、しきい値電圧の低下
によるトレンチ外周部での電流集中による素子の破壊が
生じにくくなる。
As described above, in the case of the semiconductor device having the trench type insulated gate according to the present invention, at least the outermost trench is used as the dummy gate, so that the threshold voltage in the outer periphery of the trench increases. The breakdown of the device due to current concentration in the outer peripheral portion of the trench due to increase in the on-voltage of the device or decrease in the threshold voltage is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例を説明する断面模式図及
び平面模式図である。
FIG. 1 is a schematic sectional view and a schematic plan view illustrating an embodiment according to the present invention.

【図2】本発明による一実施例を説明する断面模式図及
び平面模式図である。
2A and 2B are a schematic sectional view and a schematic plan view for explaining an embodiment according to the present invention.

【図3】本発明による一実施例を説明する断面模式図及
び平面模式図である。
FIG. 3 is a schematic sectional view and a schematic plan view for explaining an embodiment according to the present invention.

【図4】本発明による一実施例を説明する断面模式図及
び平面模式図である。
FIG. 4 is a schematic sectional view and a schematic plan view for explaining an embodiment according to the present invention.

【図5】本発明による一実施例を説明する断面模式図及
び平面模式図である。
5A and 5B are a schematic sectional view and a schematic plan view illustrating an embodiment according to the present invention.

【図6】本発明による一実施例を説明する断面模式図及
び平面模式図である。
6A and 6B are a schematic sectional view and a schematic plan view illustrating an embodiment according to the present invention.

【図7】本発明の電圧駆動型半導体装置を使用したイン
バータ装置の一実施例を説明する回路図である。
FIG. 7 is a circuit diagram illustrating an embodiment of an inverter device using the voltage-driven semiconductor device of the present invention.

【図8】従来のトレンチ型の絶縁ゲートを有するIGB
Tの断面模式図及び平面模式図である。
FIG. 8 shows a conventional IGB having a trench-type insulated gate.
It is a cross-sectional schematic diagram and plane schematic diagram of T.

【図9】従来のトレンチ型の絶縁ゲートを有するMOSFET
の断面模式図及び平面模式図である。
FIG. 9 is a conventional MOSFET having a trench type insulated gate.
FIG. 3 is a schematic sectional view and a schematic plan view of FIG.

【符号の説明】[Explanation of symbols]

1…p+ 基板、2…n- ドリフト層、3…pベース層、
4…n+ エミッタ層、5,6,7…pウェル層、9…ゲ
ート絶縁膜、10…ゲート電極、11…コレクタ電極、
12…エミッタ電極、20…n+ バッファ層、100…
トレンチIGBT、101…ダイオード、102…交流電
源、103…整流回路、104…上アーム駆動回路、1
05…下ア−ム駆動回路、106…モータ。
1 ... p + substrate, 2 ... n- drift layer, 3 ... p base layer,
4 ... n + emitter layer, 5,6,7 ... p well layer, 9 ... gate insulating film, 10 ... gate electrode, 11 ... collector electrode,
12 ... Emitter electrode, 20 ... N + buffer layer, 100 ...
Trench IGBT, 101 ... Diode, 102 ... AC power supply, 103 ... Rectifier circuit, 104 ... Upper arm drive circuit, 1
05 ... lower arm drive circuit, 106 ... motor.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1半導体領域と、 第1半導体領域に隣接する第1導電型の第2半導体領域
と、 第2半導体領域に隣接する第2導電型の第3半導体領域
と、 第3半導体領域内に設けられる第1導電型の第4半導体
領域と、を有する半導体チップを備え、 第1半導体領域に接触する第1主電極と、 第4半導体領域に接触する第2主電極と、 第3半導体領域を貫通する複数のトレンチ内に設けられ
る絶縁ゲート電極と、を具備し、 半導体チップのターミネーション部に隣接するトレンチ
内に設けられる絶縁ゲート電極が第2主電極に接続され
ることを特徴とする電圧駆動型半導体装置。
1. A first semiconductor region, a second semiconductor region of a first conductivity type adjacent to the first semiconductor region, a third semiconductor region of a second conductivity type adjacent to the second semiconductor region, and a third semiconductor. A semiconductor chip having a fourth semiconductor region of a first conductivity type provided in the region, a first main electrode in contact with the first semiconductor region, a second main electrode in contact with the fourth semiconductor region, And an insulated gate electrode provided in a plurality of trenches penetrating the semiconductor region, wherein the insulated gate electrode provided in the trench adjacent to the termination portion of the semiconductor chip is connected to the second main electrode. Voltage drive type semiconductor device.
【請求項2】第1半導体領域と、 第1半導体領域に隣接する第1導電型の第2半導体領域
と、 第2半導体領域に隣接する第2導電型の第3半導体領域
と、 第3半導体領域内に設けられる第1導電型の第4半導体
領域と、を有する半導体チップを備え、 第1半導体領域に接触する第1主電極と、 第4半導体領域に接触する第2主電極と、 第3半導体領域を貫通する複数のトレンチ内に設けられ
る絶縁ゲート電極と、を具備し、 半導体チップのターミネーション部に隣接するトレンチ
の側面には第3半導体領域のみが接することを特徴とす
る電圧駆動型半導体装置。
2. A first semiconductor region, a second semiconductor region of the first conductivity type adjacent to the first semiconductor region, a third semiconductor region of the second conductivity type adjacent to the second semiconductor region, and a third semiconductor. A semiconductor chip having a fourth semiconductor region of a first conductivity type provided in the region, a first main electrode in contact with the first semiconductor region, a second main electrode in contact with the fourth semiconductor region, And a insulated gate electrode provided in a plurality of trenches penetrating the three semiconductor regions, wherein only the third semiconductor region is in contact with the side surface of the trench adjacent to the termination portion of the semiconductor chip. Semiconductor device.
【請求項3】第1半導体領域と、 第1半導体領域に隣接する第1導電型の第2半導体領域
と、 第2半導体領域に隣接する第2導電型の第3半導体領域
と、 第3半導体領域内に設けられる第1導電型の第4半導体
領域と、を有する半導体チップを備え、 第1半導体領域に接触する第1主電極と、 第4半導体領域に接触する第2主電極と、 第3半導体領域を貫通する複数のトレンチ内に設けられ
る絶縁ゲート電極と、を具備し、 半導体チップのターミネーション部に隣接するトレンチ
側面に接する第4半導体領域を包囲するように、第3半
導体領域よりも不純物濃度が高い第2導電型の第5半導
体領域が設けられることを特徴とする電圧駆動型半導体
装置。
3. A first semiconductor region, a second semiconductor region of a first conductivity type adjacent to the first semiconductor region, a third semiconductor region of a second conductivity type adjacent to the second semiconductor region, and a third semiconductor. A semiconductor chip having a fourth semiconductor region of a first conductivity type provided in the region, a first main electrode in contact with the first semiconductor region, a second main electrode in contact with the fourth semiconductor region, An insulated gate electrode provided in a plurality of trenches penetrating the third semiconductor region, and surrounding the fourth semiconductor region in contact with the side surface of the trench adjacent to the termination portion of the semiconductor chip. A voltage-driven semiconductor device comprising a fifth semiconductor region of the second conductivity type having a high impurity concentration.
【請求項4】第1半導体領域と、 第1半導体領域に隣接する第1導電型の第2半導体領域
と、 第2半導体領域に隣接する第2導電型の第3半導体領域
と、 第3半導体領域内に設けられる第1導電型の第4半導体
領域と、を有する半導体チップを備え、 第1半導体領域に接触する第1主電極と、 第4半導体領域に接触する第2主電極と、 第3半導体領域を貫通する複数のトレンチ内に設けられ
る絶縁ゲート電極と、を具備し、 半導体チップのターミネーション部に隣接するトレンチ
を包囲するように、第3半導体領域よりも深い第2導電
型の第5半導体領域が設けられることを特徴とする電圧
駆動型半導体装置。
4. A first semiconductor region, a second semiconductor region of the first conductivity type adjacent to the first semiconductor region, a third semiconductor region of the second conductivity type adjacent to the second semiconductor region, and a third semiconductor. A semiconductor chip having a fourth semiconductor region of a first conductivity type provided in the region, a first main electrode in contact with the first semiconductor region, a second main electrode in contact with the fourth semiconductor region, An insulated gate electrode provided in a plurality of trenches penetrating the third semiconductor region, and a second conductivity type deeper than the third semiconductor region so as to surround the trench adjacent to the termination portion of the semiconductor chip. 5. A voltage drive type semiconductor device, wherein 5 semiconductor regions are provided.
【請求項5】請求項1乃至4項のいずれか1項に記載の
電圧駆動型半導体装置において、第1半導体領域が第1
導電型であることを特徴とする電圧駆動型半導体装置。
5. The voltage-driven semiconductor device according to claim 1, wherein the first semiconductor region is the first semiconductor region.
A voltage-driven semiconductor device, which is of a conductive type.
【請求項6】請求項1乃至4項のいずれか1項に記載の
電圧駆動型半導体装置において、第1半導体領域が第2
導電型であることを特徴とする電圧駆動型半導体装置。
6. The voltage-driven semiconductor device according to claim 1, wherein the first semiconductor region is a second semiconductor region.
A voltage-driven semiconductor device, which is of a conductive type.
JP08233196A 1996-04-04 1996-04-04 Voltage driven semiconductor device Expired - Lifetime JP3257394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08233196A JP3257394B2 (en) 1996-04-04 1996-04-04 Voltage driven semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08233196A JP3257394B2 (en) 1996-04-04 1996-04-04 Voltage driven semiconductor device

Publications (2)

Publication Number Publication Date
JPH09275212A true JPH09275212A (en) 1997-10-21
JP3257394B2 JP3257394B2 (en) 2002-02-18

Family

ID=13771586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08233196A Expired - Lifetime JP3257394B2 (en) 1996-04-04 1996-04-04 Voltage driven semiconductor device

Country Status (1)

Country Link
JP (1) JP3257394B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058160A1 (en) 2001-01-19 2002-07-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2003529209A (en) * 2000-02-29 2003-09-30 ゼネラル セミコンダクター,インク. Trench double diffused metal oxide semiconductor transistor structure
JP2005019558A (en) * 2003-06-24 2005-01-20 Seiko Instruments Inc Vertical mos transistor
JP2006196545A (en) * 2005-01-11 2006-07-27 Toshiba Corp Method of manufacturing semiconductor device
WO2006082618A1 (en) * 2005-01-31 2006-08-10 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
JP2006303145A (en) * 2005-04-20 2006-11-02 Toyota Motor Corp Semiconductor device
JP2007294556A (en) * 2006-04-24 2007-11-08 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2007299990A (en) * 2006-05-01 2007-11-15 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2017098344A (en) * 2015-11-19 2017-06-01 トヨタ自動車株式会社 Semiconductor device
JPWO2016067374A1 (en) * 2014-10-29 2017-08-17 株式会社日立製作所 Semiconductor device, power module, and power conversion device
WO2022024812A1 (en) * 2020-07-31 2022-02-03 ローム株式会社 SiC SEMICONDUCTOR DEVICE
WO2024024307A1 (en) * 2022-07-26 2024-02-01 株式会社ノベルクリスタルテクノロジー Fin-type field effect transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529209A (en) * 2000-02-29 2003-09-30 ゼネラル セミコンダクター,インク. Trench double diffused metal oxide semiconductor transistor structure
EP1353385A4 (en) * 2001-01-19 2007-12-26 Mitsubishi Electric Corp Semiconductor device
JPWO2002058160A1 (en) * 2001-01-19 2004-05-27 三菱電機株式会社 Semiconductor device
JP4785334B2 (en) * 2001-01-19 2011-10-05 三菱電機株式会社 Semiconductor device
WO2002058160A1 (en) 2001-01-19 2002-07-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6953968B2 (en) 2001-01-19 2005-10-11 Mitsubishi Denki Kabushiki Kaisha High voltage withstanding semiconductor device
EP1353385A1 (en) * 2001-01-19 2003-10-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7115944B2 (en) 2001-01-19 2006-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2005019558A (en) * 2003-06-24 2005-01-20 Seiko Instruments Inc Vertical mos transistor
JP2006196545A (en) * 2005-01-11 2006-07-27 Toshiba Corp Method of manufacturing semiconductor device
WO2006082618A1 (en) * 2005-01-31 2006-08-10 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
JP4794546B2 (en) * 2005-01-31 2011-10-19 新電元工業株式会社 Semiconductor device and manufacturing method thereof
JP2006303145A (en) * 2005-04-20 2006-11-02 Toyota Motor Corp Semiconductor device
JP2007294556A (en) * 2006-04-24 2007-11-08 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2007299990A (en) * 2006-05-01 2007-11-15 Fuji Electric Device Technology Co Ltd Semiconductor device
JPWO2016067374A1 (en) * 2014-10-29 2017-08-17 株式会社日立製作所 Semiconductor device, power module, and power conversion device
JP2017098344A (en) * 2015-11-19 2017-06-01 トヨタ自動車株式会社 Semiconductor device
WO2022024812A1 (en) * 2020-07-31 2022-02-03 ローム株式会社 SiC SEMICONDUCTOR DEVICE
WO2024024307A1 (en) * 2022-07-26 2024-02-01 株式会社ノベルクリスタルテクノロジー Fin-type field effect transistor

Also Published As

Publication number Publication date
JP3257394B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
US6936893B2 (en) Power semiconductor device
US5731603A (en) Lateral IGBT
JP3382172B2 (en) Horizontal insulated gate bipolar transistor
US6667515B2 (en) High breakdown voltage semiconductor device
JP4930894B2 (en) Semiconductor device
US6362505B1 (en) MOS field-effect transistor with auxiliary electrode
US8344448B2 (en) Semiconductor device having an edge termination structure and method of manufacture thereof
US6133607A (en) Semiconductor device
JPH04146674A (en) Semiconductor device and manufacture thereof
JPH10178176A (en) Trench gate type insulated-gate bipolar transistor having trench gate structure
JPH09283754A (en) High withstand voltage semiconductor device
JP2002016252A (en) Insulation gate type semiconductor element
CN109075199A (en) Semiconductor device
EP0494597A1 (en) Trench-gate power semiconductor device
JP2002353452A (en) Power semiconductor element
US8067797B2 (en) Variable threshold trench IGBT with offset emitter contacts
JP3257394B2 (en) Voltage driven semiconductor device
US10553710B2 (en) Semiconductor device
JP3525637B2 (en) Semiconductor device
JP2633145B2 (en) Semiconductor laterally insulated gate bipolar transistor device
JPH03194974A (en) Mos type semiconductor device
KR20020080547A (en) High voltage semiconductor device having a high breakdown voltage isolation region
JP3924829B2 (en) Voltage-driven semiconductor device and manufacturing method thereof
JPH09116152A (en) Power semiconductor element
US10103256B2 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term