JPH09273442A - Driving circuit for fuel injection valve for cylinder direct injection type internal combustion engine - Google Patents

Driving circuit for fuel injection valve for cylinder direct injection type internal combustion engine

Info

Publication number
JPH09273442A
JPH09273442A JP8084021A JP8402196A JPH09273442A JP H09273442 A JPH09273442 A JP H09273442A JP 8084021 A JP8084021 A JP 8084021A JP 8402196 A JP8402196 A JP 8402196A JP H09273442 A JPH09273442 A JP H09273442A
Authority
JP
Japan
Prior art keywords
valve
solenoid
fuel injection
voltage power
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8084021A
Other languages
Japanese (ja)
Other versions
JP3562125B2 (en
Inventor
茂樹 ▲吉▼岡
Shigeki Yoshioka
Koichiro Yonekura
光一郎 米倉
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP08402196A priority Critical patent/JP3562125B2/en
Publication of JPH09273442A publication Critical patent/JPH09273442A/en
Application granted granted Critical
Publication of JP3562125B2 publication Critical patent/JP3562125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep electric current flowing in a solenoid of an injection valve constant while a valve closing command is given and to supply sufficient high voltage to the solenoid even in a high rotation area. SOLUTION: After an injection valve is opened by means of electric current flowing in a solenoid 4 of the injection valve from a high voltage electric source 1, switching elements Q1, Q3 are turned off before the injection pulse with a minimum width is finished, so that solenoid current is forcibly dropped to a valve opening maintaining electric current level, and as a result, electric current when the solenoid current is turned off in a valve closing time is kept constant. When the switching elements Q1, Q3 are turned off, magnetic energy remaining in the solenoid is converted into electric current so as to be regenerated in a capacitor 8 inside the high voltage power source 1 via a diode D6, so that a charging time for the capacitor 8 can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内直噴式内燃機
関用燃料噴射弁の駆動回路に関し、特に燃料噴射時間の
制御技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for a fuel injection valve for a direct injection type internal combustion engine, and more particularly to a technique for controlling fuel injection time.

【0002】[0002]

【従来の技術】筒内直噴式内燃機関は、燃料噴射弁の噴
射口が直接筒内に臨んでおり、基本的に吸気行程の短い
時間内に燃料を噴射しなければならない。また、アイド
ル回転時に噴射量をほぼ最小とするためには、 0.2〜
0.4msの極めて短い噴射時間にしなければならず、非常
に応答性の高い針弁の開閉が必要とされる。
2. Description of the Related Art In a cylinder direct injection type internal combustion engine, the injection port of a fuel injection valve directly faces the cylinder, and basically, fuel must be injected within a short time of an intake stroke. In addition, in order to minimize the injection amount during idle rotation, 0.2 ~
A very short injection time of 0.4 ms must be achieved, and a very responsive opening / closing of the needle valve is required.

【0003】この点、日本機械学会[No930-42]機械力学
・計測制御講演論文集 (Vol.B) ['93.7.21〜23・東
京〕「729. 高速電磁弁の高速化に関する研究」には、
開弁時にソレノイドが針弁を吸引するときには50〜 200
Vの高電圧を印加して電流を速く立ち上げ、吸引力発生
の応答をよくして針弁を速く開弁させる一方、閉弁時に
ばね力で針弁を着座させるときには、ソレノイドに逆方
向の高電圧を印加してソレノイドの磁束を急速に減少さ
せ、吸引力消滅の応答をよくして針弁を速く閉弁させる
技術が記載されている。
In this respect, the Japan Society of Mechanical Engineers [No930-42] Proc. Of Mechanical Dynamics and Measurement Control (Vol.B) ['93 .7.21-23, Tokyo] "729. Research on high-speed operation of high-speed solenoid valve" Is
50 to 200 when the solenoid sucks the needle valve when opening
When a high voltage of V is applied to quickly raise the current to improve the response of the suction force generation to open the needle valve quickly, and when the needle valve is seated by the spring force when the valve is closed, the solenoid valve moves in the opposite direction. A technique is described in which a high voltage is applied to rapidly reduce the magnetic flux of the solenoid, improve the response to the disappearance of the suction force, and quickly close the needle valve.

【0004】また、特開平6−299890号、特開昭
59−85434号等には、開弁時にDC−DCコンバ
ータを用いてコンデンサにチャージした高電圧を印加す
る方式が開示されている。これらは閉弁時には逆方向の
高電圧を印加していないが、コイルの電圧印加端子を逆
にすればよいので、モータ等で正逆転させるためにコイ
ル電流を双方向に流す手段として一般的に知られている
スイッチング素子のHブリッジ構成を用いればよい。
Further, JP-A-6-299890 and JP-A-59-85434 disclose a method of applying a high voltage charged in a capacitor using a DC-DC converter when the valve is opened. These do not apply a high voltage in the reverse direction when the valve is closed, but since the voltage application terminal of the coil can be reversed, it is generally used as a means to flow the coil current in both directions in order to rotate the motor forward or backward. A known switching element H-bridge configuration may be used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の筒内直接噴射式内燃機関用燃料噴射弁の駆動
回路では、コンデンサの放電による噴射弁のソレノイド
電流が開弁状態を保持するための所定の保持電流に減衰
するまでの時間が、最小噴射期間のパルス幅よりも大き
くなっていた。このため、噴射パルス幅の長さによって
閉弁指令時の電流値が異なり、磁束が消滅するまでの時
間に差が生じるので、閉弁作動時間が変化してしまい、
噴射パルス幅と実際の噴射量とが比例しなくなるという
問題点があった。
However, in such a conventional drive circuit for a fuel injection valve for a direct injection type internal combustion engine, the solenoid current of the injection valve due to discharge of the capacitor maintains the open state. The time until it decayed to the predetermined holding current was longer than the pulse width of the minimum injection period. Therefore, the current value at the time of the valve closing command differs depending on the length of the injection pulse width, and there is a difference in the time until the magnetic flux disappears, so the valve closing operation time changes.
There has been a problem that the injection pulse width and the actual injection amount are no longer proportional.

【0006】この点に関し、図8に例を示して具体的に
説明する。噴射パルス信号P2のようにパルス幅が大き
い場合には、コンデンサの放電による噴射弁のソレノイ
ド電流が所定の保持電流(電流i2)にまで減衰した後
にソレノイド電流をオフにするので、噴射弁が閉弁する
までの時間は短い(T2)。一方、噴射パルス信号P1
のようにパルス幅が小さいときにはコンデンサの放電に
よるソレノイド電流が減衰中で、まだ保持電流よりも大
きい(電流i1)ときにソレノイド電流をオフにするの
で、噴射弁が閉弁するまでの時間が長くなってしまう
(T1)。このように、噴射パルス幅によって閉弁に要
する時間が変化してしまうので、噴射パルス幅と噴射量
との比例関係が成立せず、正確な噴射量制御が困難にな
っていた。
This point will be specifically described with reference to an example in FIG. When the pulse width is large as in the injection pulse signal P2, the solenoid current of the injection valve due to the discharge of the capacitor is attenuated to a predetermined holding current (current i2) and then the solenoid current is turned off. Therefore, the injection valve is closed. The time to valve is short (T2). On the other hand, the injection pulse signal P1
When the pulse width is small, the solenoid current due to discharge of the capacitor is decaying, and when it is still larger than the holding current (current i1), the solenoid current is turned off. Therefore, it takes a long time to close the injection valve. Will end up (T1). As described above, the time required to close the valve changes depending on the injection pulse width, so that the proportional relationship between the injection pulse width and the injection amount is not established, and accurate injection amount control becomes difficult.

【0007】また、開弁時にソレノイドに高電圧を印加
してコンデンサが放電した後、次の噴射弁駆動時までに
再充電しなければならないが、機関の回転数が高い場合
には充電時間が短すぎて十分な充電がなされず高電圧を
得られないため、噴射弁の動作が不安定になるおそれが
あった。本発明はこのような従来の問題点に鑑み、噴射
パルス幅の大小に係わらず、閉弁に必要な時間を常に一
定にして正確な噴射量制御をするとともに、高電圧電源
の迅速な電圧回復により機関の高回転領域でも安定した
動作が可能な筒内直接噴射式内燃機関用燃料噴射弁駆動
回路を提供することを目的とする。
Further, after a high voltage is applied to the solenoid when the valve is opened to discharge the capacitor, the capacitor must be recharged before the next injection valve is driven. However, when the engine speed is high, the charging time Since it is too short and sufficient charging is not performed and a high voltage cannot be obtained, the operation of the injection valve may become unstable. In view of such conventional problems, the present invention controls the injection amount accurately by keeping the time required for valve closing constant regardless of the size of the injection pulse width, and quickly recovers the voltage of the high-voltage power supply. Accordingly, it is an object of the present invention to provide a fuel injection valve drive circuit for a direct injection type internal combustion engine, which can perform stable operation even in a high engine speed region.

【0008】[0008]

【課題を解決するための手段】このため、請求項1に係
る発明では、電磁駆動式燃料噴射弁によって機関燃焼室
内に直接燃料を噴射する筒内直噴式内燃機関における前
記燃料噴射弁の駆動回路であって、高電圧電源および低
電圧電源と、前記燃料噴射弁の開弁指令時に前記高電圧
電源と前記燃料噴射弁の駆動用ソレノイドとを接続し
て、該ソレノイドに前記燃料噴射弁の開弁力が作用する
方向の高電圧を印加する開弁スイッチング手段と、前記
開弁指令時から最小噴射期間経過以前の時刻に、前記高
電圧電源と前記ソレノイドとの接続を遮断して高電圧の
印加を停止するとともに、前記ソレノイドに流れる電流
を前記燃料噴射弁の開弁状態を保持しうる所定の電流値
に低下するまで急速に放電させる急速放電手段と、該急
速放電手段による急速放電後、前記低電圧電源と前記ソ
レノイドとの接続および遮断を制御して前記ソレノイド
を流れる電流を前記所定の値に保持する電流保持手段と
を有する構成として、閉弁時にソレノイド電流をオフに
するときにソレノイドを流れている電流が常に一定にな
るようにする。
Therefore, in the invention according to claim 1, the drive circuit of the fuel injection valve in the direct injection type internal combustion engine in which the fuel is directly injected into the engine combustion chamber by the electromagnetically driven fuel injection valve. A high-voltage power source and a low-voltage power source are connected to the high-voltage power source and a solenoid for driving the fuel injection valve at the time of opening the fuel injection valve, and the solenoid is used to open the fuel injection valve. Valve opening switching means for applying a high voltage in the direction in which the valve force acts, and at a time before the minimum injection period elapses from the valve opening command time, the high voltage power supply and the solenoid are disconnected to shut off the high voltage The rapid discharge means for stopping the application and rapidly discharging the current flowing through the solenoid until it falls to a predetermined current value capable of maintaining the valve open state of the fuel injection valve, and the rapid discharge means by the rapid discharge means. After discharge, the solenoid current is turned off when the valve is closed, with a configuration including current holding means for controlling connection and disconnection between the low-voltage power source and the solenoid to hold the current flowing through the solenoid at the predetermined value. Sometimes the current flowing through the solenoid is always constant.

【0009】そして、高電圧電源の電圧回復を早めるた
めに、請求項2に係る発明では、前記急速放電手段は、
放電電流を前記高電圧電源に回生する。また、請求項3
に係る発明では、前記燃料噴射弁の閉弁指令時に前記高
電圧電源と前記ソレノイドとを、該ソレノイドに前記燃
料噴射弁の閉弁力が作用する方向に接続する閉弁スイッ
チング手段を含んで構成することにより、閉弁時に、開
弁時および開弁保持状態とは逆向きの電流をソレノイド
に流す。
In order to speed up the voltage recovery of the high voltage power source, in the invention according to claim 2, the rapid discharge means comprises:
The discharge current is regenerated to the high voltage power supply. Claim 3
According to another aspect of the present invention, the high-voltage power source and the solenoid are connected to each other in a direction in which the valve closing force of the fuel injection valve acts on the solenoid when the fuel injection valve is closed. As a result, when the valve is closed, a current is applied to the solenoid in the opposite direction to the state when the valve is open and when the valve is held open.

【0010】また、請求項4に係る発明では、前記開弁
スイッチング手段による前記燃料噴射弁の開弁時に前記
高電圧電源から前記ソレノイドに電圧が印加される方向
にダイオードを含んで構成することで、電流の逆流を防
止する。また、請求項5に係る発明では、前記急速放電
手段は、前記燃料噴射弁の開弁時と同一の通電方向に前
記ソレノイドを流れる電流を、前記高電圧電源を充電さ
せる方向に流すダイオードを含んで構成し、放電電流を
前記高電圧電源に回生させる。
In the invention according to claim 4, a diode is included in a direction in which a voltage is applied from the high voltage power source to the solenoid when the fuel injection valve is opened by the valve opening switching means. , Prevent the reverse flow of current. Further, in the invention according to claim 5, the rapid discharge means includes a diode that causes a current flowing through the solenoid in the same energizing direction as when the fuel injection valve is opened to flow in a direction in which the high voltage power source is charged. And the discharge current is regenerated by the high-voltage power supply.

【0011】具体的には、例えば請求項6に係る発明の
ように、前記高電圧電源と前記ソレノイドの一端との間
に設けられた開弁用ハイサイド側スイッチング素子と、
前記ソレノイドの他端と接地との間に設けられた開弁用
ローサイド側スイッチング素子とを含んで構成される前
記開弁スイッチング手段と、前記高電圧電源と前記ソレ
ノイドの他端との間に設けられた閉弁用ハイサイド側ス
イッチング素子と、前記ソレノイドの一端と接地との間
に設けられた閉弁用ローサイド側スイッチング素子とを
含んで構成される閉弁スイッチング手段と、前記閉弁用
ローサイド側スイッチング素子と並列に、接地側から前
記ソレノイド側へ電流が流れる向きに設けたダイオード
を含んで構成される前記急速放電手段とを有し、開弁時
には前記開弁用スイッチング手段がオンで前記閉弁用ス
イッチング手段がオフ、閉弁時には前記開弁手段がオフ
で前記閉弁手段がオンになるように切り換えられる構成
とする。
Specifically, for example, as in the invention according to claim 6, a high side switching element for valve opening provided between the high voltage power source and one end of the solenoid,
Provided between the high voltage power supply and the other end of the solenoid, and the valve opening switching means including a low side switching element for valve opening provided between the other end of the solenoid and ground. Closing means for switching, including a high-side switching element for valve closing, and a low-side switching element for valve closing provided between one end of the solenoid and ground, and the low-side valve for closing A switching device for switching the valve-opening switch on when the valve is opened. The valve closing switching means is switched off, and when the valve is closed, the valve opening means is switched off and the valve closing means is switched on.

【0012】これにより、開弁指令時に接続された開弁
スイッチング手段を、それから最小噴射期間経過以前の
時刻に遮断して前記ソレノイドへの高電圧の印加を停止
すると共に、ソレノイドに残留する磁気エネルギーを電
流として閉弁用ローサイド側スイッチング素子と並列に
設けた前記ダイオードを介した回路を通じて放電させる
ことにより、ソレノイドを流れる電流を燃料噴射弁の開
弁状態を保持できるレベルにまで急速に低下させる。
As a result, the valve opening switching means connected at the time of opening the valve is shut off at a time before the minimum injection period elapses, the application of the high voltage to the solenoid is stopped, and the magnetic energy remaining in the solenoid is reduced. Is discharged as a current through a circuit through the diode provided in parallel with the valve closing low-side switching element, so that the current flowing through the solenoid is rapidly reduced to a level at which the open state of the fuel injection valve can be maintained.

【0013】また、請求項7に係る発明のように、前記
急速放電手段は、前記ソレノイドの他端と前記高電圧電
源の蓄電用コンデンサの一端との間に前者から後者への
通電を許容するように設けられたダイオードと、前記コ
ンデンサの他端と接地との間に設けられたスイッチング
素子とを含んで構成することで、放電電流を前記コンデ
ンサに回生させる。
Further, as in the invention according to claim 7, the rapid discharge means allows the former to the latter to be energized between the other end of the solenoid and one end of the storage capacitor of the high-voltage power supply. The discharge current is regenerated in the capacitor by including the diode thus provided and the switching element provided between the other end of the capacitor and the ground.

【0014】[0014]

【発明の効果】請求項1に係る発明によれば、最小幅の
噴射パルスが終了する前に、噴射弁のソレノイド電流を
強制的に短時間で開弁状態を保持する電流のレベルに落
とすことによって、閉弁時にソレノイド電流をオフにす
る時点でソレノイドを流れている電流が常に一定にな
り、閉弁時間が常に一定となるため、噴射パルス幅に対
する噴射量の関係が比例となり、正確な噴射量制御がで
きるという効果がある。また、噴射弁のソレノイドを流
れる平均電流を小さくできるので、噴射弁の消費電力が
小さくなり、噴射弁の発熱を抑制することができるとい
う効果もある。
According to the first aspect of the invention, before the end of the injection pulse having the minimum width, the solenoid current of the injection valve is forcibly reduced to a current level for maintaining the valve open state in a short time. As a result, the current flowing through the solenoid is always constant when the solenoid current is turned off when the valve is closed, and the valve closing time is always constant. The effect is that the quantity can be controlled. Further, since the average current flowing through the solenoid of the injection valve can be reduced, the power consumption of the injection valve can be reduced and the heat generation of the injection valve can be suppressed.

【0015】また、請求項2に係る発明によれば、高電
圧電源と噴射弁のソレノイドとを遮断して、ソレノイド
電流を強制的に短時間で開弁状態を保持する電流値に落
とすときにソレノイドに残存する磁気エネルギーを電流
として高電圧電源(例えば該電源内のDC−DCコンバ
ータのコンデンサ)に回生することによって、高電圧電
源の立ち上げ時間(コンデンサ充電時間)を短縮でき、
機関の高回転領域においても噴射弁のソレノイドに高電
圧を供給し続けることができるという効果がある。ま
た、高電圧電源(DC−DCコンバータ)の効率が向上
するので、その容量を小さくすることができるという効
果もある。
According to the second aspect of the invention, when the high voltage power supply and the solenoid of the injection valve are shut off, the solenoid current is forcibly reduced to a current value that maintains the valve open state in a short time. By regenerating the magnetic energy remaining in the solenoid as a current to a high-voltage power supply (for example, a capacitor of a DC-DC converter in the power supply), the startup time (capacitor charging time) of the high-voltage power supply can be shortened,
There is an effect that the high voltage can be continuously supplied to the solenoid of the injection valve even in the high rotation region of the engine. Further, since the efficiency of the high voltage power supply (DC-DC converter) is improved, there is also an effect that the capacity can be reduced.

【0016】また、請求項3に係る発明によれば、請求
項1の効果に加え、閉弁時に、開弁時とは逆向きの電流
をソレノイドに流すことで、開弁状態のソレノイドの磁
束を急速に減少させて迅速に閉弁させ、より正確な噴射
弁の制御を実現できるという効果がある。また、請求項
4に係る発明によれば、開弁時に高電圧電源からソレノ
イドに電圧が印加される方向に電流の逆流を防止するダ
イオードを含んで構成することで、制御回路の共振を抑
制して安定した動作を維持できるという効果がある。
According to the invention of claim 3, in addition to the effect of claim 1, the magnetic flux of the solenoid in the valve open state is caused by flowing a current in the direction opposite to that in the time of opening the valve when the valve is closed. There is an effect that it is possible to realize a more accurate control of the injection valve by rapidly reducing the amount of V and closing the valve promptly. Further, according to the invention of claim 4, when the valve is opened, the diode for preventing the reverse flow of the current in the direction in which the voltage is applied from the high voltage power source to the solenoid is included, thereby suppressing the resonance of the control circuit. The effect is that stable and stable operation can be maintained.

【0017】また、請求項5に係る発明によれば、高電
圧電源と噴射弁のソレノイドとを遮断してソレノイド電
流を急速に減少させるときにソレノイドに残存するエネ
ルギーを、相対的に電位の高い状態にある高電圧電源
(DC−DCコンバータのコンデンサ)にも回生するこ
とができ、有効に充電ができるという効果がある。ま
た、請求項6に係る発明によれば、閉弁用ローサイド側
スイッチング素子と並列にダイオードを設けるという簡
便な構成で、高電圧電源からの遮断でソレノイドに残存
するエネルギーを電流として放出でき、容易かつ安価に
実施できるという効果がある。
According to the invention of claim 5, when the high voltage power source and the solenoid of the injection valve are shut off to rapidly reduce the solenoid current, the energy remaining in the solenoid has a relatively high potential. The high voltage power supply (capacitor of the DC-DC converter) in the state can be regenerated and effective charging can be achieved. According to the invention of claim 6, with a simple configuration in which a diode is provided in parallel with the valve closing low-side switching element, the energy remaining in the solenoid can be released as a current when shutting off from the high voltage power source, which is easy. And there is an effect that it can be implemented at low cost.

【0018】また、請求項7に係る発明によれば、ソレ
ノイドと開弁用高電圧電源のコンデンサとをダイオード
を介して接続し、コンデンサと接地との間にスイッチン
グ素子を介装するという簡便な構成で、高電圧電源から
の遮断でソレノイドに残存するエネルギーを高電圧電源
(DC−DCコンバータ)のコンデンサに回生でき、容
易かつ安価に実施できるという効果がある。また、コン
デンサと接地との間に設けられたスイッチング素子を閉
弁時に遮断することにより、閉弁時にソレノイドの逆方
向に流れる電流が、開弁用高電圧電源のコンデンサ側に
漏れ出ることを防止できるという効果もある。
According to the invention of claim 7, the solenoid and the capacitor of the high-voltage power supply for opening the valve are connected via a diode, and a switching element is interposed between the capacitor and the ground. With the configuration, the energy remaining in the solenoid due to the cutoff from the high voltage power source can be regenerated to the capacitor of the high voltage power source (DC-DC converter), and there is an effect that the energy can be easily and inexpensively implemented. Also, by blocking the switching element provided between the capacitor and ground when the valve is closed, the current flowing in the reverse direction of the solenoid at the time of valve closing can be prevented from leaking to the capacitor side of the high voltage power supply for valve opening. There is also an effect that you can.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施の形態とし
て、燃料噴射弁1気筒分の駆動回路の一実施例につい
て、図面に基づいて説明する。図1は、本発明の一実施
例を示す駆動回路の回路構成図である。開弁用高電圧電
源1はDC−DCコンバータを含み、燃料噴射弁開弁用
の高電圧を発生する。バッテリー2は、DC12Vの低電
圧電源である。また、閉弁用高電圧電源3は開弁用高電
圧電源1と同様DC−DCコンバータを含み、燃料噴射
弁閉弁用の高電圧を発生する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a drive circuit for one cylinder of a fuel injection valve will be described below as an embodiment of the present invention with reference to the drawings. FIG. 1 is a circuit configuration diagram of a drive circuit showing an embodiment of the present invention. The high-voltage power supply 1 for opening the valve includes a DC-DC converter, and generates a high voltage for opening the fuel injection valve. The battery 2 is a low voltage power supply of DC12V. Further, the valve closing high voltage power supply 3 includes a DC-DC converter like the valve opening high voltage power supply 1 and generates a high voltage for closing the fuel injection valve.

【0020】トランジスタ等のスイッチング素子Q1〜
Q5は、各電源1〜3から燃料噴射弁のソレノイド4へ
の通電を制御するため、それぞれ以下のように設けられ
ている。開弁用ハイサイド側スイッチング素子Q1は、
高電圧電源1とソレノイド4の一端との間に設けられて
いる。
Switching elements Q1 to Q1 such as transistors
Q5 is provided as follows in order to control the energization of the solenoids 4 of the fuel injection valve from each of the power sources 1 to 3. The high side switching element Q1 for opening the valve is
It is provided between the high-voltage power supply 1 and one end of the solenoid 4.

【0021】保持用ハイサイド側スイッチング素子Q2
は、低電圧電源2とソレノイド4の一端との間に設けら
れている。開弁および保持用ローサイド側スイッチング
素子Q3は、ソレノイド4の他端側に設けられており、
電流検出抵抗5を介して接地されている。閉弁用ハイサ
イド側スイッチング素子Q4は、閉弁時用高電圧電源3
とソレノイド4の他端との間に設けられている。
High side switching element Q2 for holding
Is provided between the low-voltage power supply 2 and one end of the solenoid 4. The valve opening / holding low-side switching element Q3 is provided on the other end side of the solenoid 4,
It is grounded through the current detection resistor 5. The high-side switching element Q4 for closing the valve is the high-voltage power supply 3 for closing the valve.
And the other end of the solenoid 4.

【0022】閉弁用ローサイド側スイッチング素子Q5
は、ソレノイド4の一端と接地との間に設けられてい
る。このように、各スイッチング素子Q1およびQ3〜
Q5はソレノイド4を中心にしてHブリッジを構成して
いる。D1〜D3は逆流防止用のダイオードである。ま
た、ダイオードD4は、接地からスイッチング素子Q2
とソレノイド4との接続点に向って電流が流れる方向
に、スイッチング素子Q5と並列に設けてある。
Low side switching element Q5 for valve closing
Is provided between one end of the solenoid 4 and the ground. In this way, the switching elements Q1 and Q3 ...
Q5 forms an H bridge with the solenoid 4 as the center. D1 to D3 are backflow preventing diodes. The diode D4 is connected from the ground to the switching element Q2.
Is provided in parallel with the switching element Q5 in the direction in which the current flows toward the connection point between the solenoid 4 and the solenoid 4.

【0023】次に高電圧電源1について説明する。一端
が低電圧電源6に接続されたコイル7の他端は、スイッ
チング素子Q6を介して接地される一方、逆流防止用の
ダイオードD5を介して高圧発生用コンデンサ8の一端
にも接続されている。このコンデンサ8の他端はスイッ
チング素子Q7を介して接地される一方、ソレノイド4
の他端と逆流防止用のダイオードD6を介して接続され
ている。また、コンデンサ8の一端側の電圧と設定電圧
との差を出力する差動アンプ9と、三角波発生器10と
は、それぞれの出力端が比較器11の入力端に接続されて
いる。そして、この比較器11の出力端からの信号により
スイッチング素子Q6がオン/オフされる構成となって
いる。
Next, the high voltage power source 1 will be described. The other end of the coil 7, one end of which is connected to the low-voltage power supply 6, is grounded through the switching element Q6, and is also connected to one end of the high-voltage generating capacitor 8 through the backflow prevention diode D5. . The other end of this capacitor 8 is grounded via a switching element Q7, while the solenoid 4
Is connected to the other end via a backflow preventing diode D6. Further, the differential amplifier 9 for outputting the difference between the voltage on the one end side of the capacitor 8 and the set voltage, and the triangular wave generator 10 are connected at their output terminals to the input terminal of the comparator 11. The switching element Q6 is turned on / off by a signal from the output terminal of the comparator 11.

【0024】すなわち、差動アンプ9は、コンデンサ8
の電圧と設定電圧との差に応じた値を比較器11に出力
し、比較器11は、三角波発信器10の出力と前記差動アン
プ9の出力との比較に基づいてスイッチング素子Q6を
オン/オフ制御する。スイッチング素子Q6がオンの状
態でコイル7に低電圧電源6からの電流が流れていると
きに、スイッチング素子Q6がオフに切り替わると、コ
イル7に残存する磁気エネルギーが電流としてダイオー
ドD5を介して流れ、コンデンサ8に充電される。この
ようにして、コンデンサ8が所定の電圧に充電されるま
でスイッチング素子Q6のオン/オフが数KHz 〜数十KH
z の周波数で繰り返される。
That is, the differential amplifier 9 includes the capacitor 8
To the comparator 11, and the comparator 11 turns on the switching element Q6 based on the comparison between the output of the triangular wave oscillator 10 and the output of the differential amplifier 9. Turn on / off. When the switching element Q6 is switched off while the switching element Q6 is on and the current from the low voltage power source 6 is flowing through the coil 7, the magnetic energy remaining in the coil 7 flows as a current through the diode D5. , The capacitor 8 is charged. In this way, the ON / OFF of the switching element Q6 is several KHz to several tens KH until the capacitor 8 is charged to a predetermined voltage.
Repeated at the frequency of z.

【0025】閉弁時用高電圧電源3もDC−DCコンバ
ータであり、高電圧発生用コンデンサ12のみを図示す
る。コンデンサ12の一端はスイッチング素子Q4に接続
されており、他端は接地されている。このような構成で
は、スイッチング素子Q1およびQ3が開弁スイッチン
グ手段に相当し、スイッチング素子Q4およびQ5が閉
弁スイッチング手段に相当する。また、スイッチング素
子Q1、Q3およびQ7と、ダイオードD4およびD6
とが急速放電手段に相当し、スイッチング手段Q2が電
流保持手段に相当する。
The valve closing high-voltage power supply 3 is also a DC-DC converter, and only the high-voltage generating capacitor 12 is shown. One end of the capacitor 12 is connected to the switching element Q4, and the other end is grounded. In such a configuration, the switching elements Q1 and Q3 correspond to valve opening switching means, and the switching elements Q4 and Q5 correspond to valve closing switching means. In addition, switching elements Q1, Q3 and Q7 and diodes D4 and D6
And correspond to the rapid discharge means, and the switching means Q2 corresponds to the current holding means.

【0026】次に、図2〜図5の本発明駆動回路の電流
の流れを示す図と、図6および図7のタイミングチャー
トとを同時に参照し、本発明の回路の動作を説明する。
まず最初に、図示しない外部信号源から開弁指令として
噴射パルスが送出されたとき(時刻t1)、スイッチン
グ素子Q7をオン状態でスイッチング素子Q1とQ3と
を同時にオンにすると、高電圧電源1内のコンデンサ7
から高電圧の電荷が図2のA矢印のように放電されて、
ソレノイド4の電流が急速に立ち上がる。
Next, the operation of the circuit of the present invention will be described with reference to the figures showing the current flow of the driving circuit of the present invention of FIGS. 2 to 5 and the timing charts of FIGS. 6 and 7 at the same time.
First, when an injection pulse is sent as a valve opening command from an external signal source (not shown) (time t1), the switching element Q7 is turned on and the switching elements Q1 and Q3 are turned on at the same time. Capacitor 7
A high-voltage charge is discharged from the
The current of the solenoid 4 rises rapidly.

【0027】電流はピークに達した後、徐々に減衰する
が、最小噴射期間のパルス幅Timini よりも所定時間だ
け前の時刻t2において、ソレノイド4の電流を強制的
に短時間で開弁状態を保持するレベルに落とすために、
スイッチング素子Q1およびQ3をオフにする。このと
き、高電圧印加から開放されたソレノイド4に残存して
いた磁気エネルギーが電流に変換され、図3のB矢印の
ように、電流がダイオードD4およびD6を含む回路
で、瞬時にコンデンサ8に回生されて、ソレノイド電流
は急速に減少する。このとき同時にコンデンサ8の充電
電圧は急激に上昇するので、充電時間が短くなるととも
に、DC−DCコンバータの効率が向上する。
After reaching the peak, the current gradually attenuates, but at time t2, which is a predetermined time before the pulse width Timini of the minimum injection period, the current of the solenoid 4 is forcibly opened in a short time. To drop to the level you hold
The switching elements Q1 and Q3 are turned off. At this time, the magnetic energy remaining in the solenoid 4 released from the application of the high voltage is converted into a current, and the current is instantaneously applied to the capacitor 8 in the circuit including the diodes D4 and D6 as shown by the arrow B in FIG. When regenerated, the solenoid current decreases rapidly. At this time, the charging voltage of the capacitor 8 rapidly increases at the same time, so that the charging time is shortened and the efficiency of the DC-DC converter is improved.

【0028】次に、コイル電流が所定の保持電流i0ま
で低下したことが電流検出抵抗5から検出されたとき
(時刻t3)、スイッチング素子Q2およびQ3をオン
にすると、図4のC矢印のように、バッテリー2からの
電圧が印加されてソレノイド4に保持電流が流れる。保
持電流を所定のi0に制御するため、電流検出抵抗5か
ら検出した電流値に基づいて、図示しない電流制御回路
が、スイッチング素子Q2のオン/オフを指令し、PW
M(Pulse Width Modulation: パルス幅変調) 制御によ
りコイル電流が保持電流i0に制御される。
Next, when it is detected from the current detection resistor 5 that the coil current has dropped to the predetermined holding current i0 (time t3), the switching elements Q2 and Q3 are turned on, as shown by the arrow C in FIG. Then, the voltage from the battery 2 is applied and the holding current flows through the solenoid 4. In order to control the holding current to a predetermined i0, a current control circuit (not shown) commands ON / OFF of the switching element Q2 based on the current value detected by the current detection resistor 5, and PW
The coil current is controlled to the holding current i0 by M (Pulse Width Modulation) control.

【0029】最後に、外部信号源からの噴射パルスの終
了による閉弁時、スイッチング素子Q2、Q3およびQ
7をオフにし、スイッチング素子Q4およびQ5をオン
にすると、高電圧電源3内DC−DCコンバータのコン
デンサ12から高電圧の電荷が放電され、図5のD矢印の
ように、逆方向に電流が流れ、急速に噴射弁ソレノイド
4の磁束を消滅させることができ、迅速に閉弁すること
ができる。
Finally, when the valve is closed due to the end of the injection pulse from the external signal source, the switching elements Q2, Q3 and Q
When 7 is turned off and the switching elements Q4 and Q5 are turned on, the high-voltage electric charge is discharged from the capacitor 12 of the DC-DC converter in the high-voltage power supply 3, and the current flows in the opposite direction as indicated by the arrow D in FIG. The magnetic flux of the injection valve solenoid 4 can be rapidly extinguished by flowing, and the valve can be closed quickly.

【0030】このとき、噴射パルス幅が大きく、従来の
駆動回路でも開弁保持状態の電流値にまでソレノイド電
流が低下している場合(図6の時刻t4)には、閉弁に
必要とされる時間は、本発明の駆動回路も同様である。
しかし、噴射パルス幅が小さい場合は、従来の駆動回路
ではソレノイド電流がまだ高い状態(図7の時刻t
4’)から閉弁動作が開始されるのに対し、本発明の駆
動回路では既に保持電流i0にまで下げられたところか
ら閉弁動作が開始されるので、速やかに閉弁が行われ
る。その結果、図6と図7との比較から明らかなよう
に、従来の駆動回路では、噴射パルスが終了してから閉
弁されるまでの時間が噴射パルス幅によって異なるのに
対し、本発明の駆動回路では常に一定の時間で迅速に閉
弁される。
At this time, if the injection pulse width is large and the solenoid current has fallen to the current value in the valve open state even in the conventional drive circuit (time t4 in FIG. 6), it is necessary to close the valve. The driving time of the driving circuit of the present invention is the same.
However, when the injection pulse width is small, in the conventional drive circuit, the solenoid current is still high (time t in FIG. 7).
4 ') starts the valve closing operation, whereas the drive circuit of the present invention starts the valve closing operation from the point where the holding current i0 has already been lowered, so that the valve closing is promptly performed. As a result, as is clear from the comparison between FIG. 6 and FIG. 7, in the conventional drive circuit, the time from the end of the injection pulse to the valve closing differs depending on the injection pulse width, but In the drive circuit, the valve is always closed quickly within a fixed time.

【0031】また、閉弁時にスイッチング素子Q7をオ
フにするのは、E矢印のような漏れ電流が流れてソレノ
イド電流が減少してしまうのを防止するためである。
尚、上述した駆動回路の例では、開弁時の高電圧電源と
閉弁時の高電圧電源とを別個に設けたため各電源の立ち
上げに余裕があるが、簡易のため1つの高電圧電源で開
弁時・閉弁時の電流供給を賄うように構成してもよい。
The reason why the switching element Q7 is turned off when the valve is closed is to prevent the leakage current as shown by the arrow E from flowing and the solenoid current from decreasing.
In the example of the drive circuit described above, since the high-voltage power source for opening the valve and the high-voltage power source for closing the valve are separately provided, there is a margin to start up each power source, but one high-voltage power source for simplification. May be configured to cover the current supply when the valve is opened and closed.

【0032】以上説明してきたように、最小の噴射パル
ス幅が終了する前に、噴射弁のソレノイド電流を強制的
に短時間で開弁を保持する電流のレベルまで落とし、閉
弁時に噴射弁電流をオフにするときの電流が常に一定に
なるようにする。これにより閉弁時間が常に一定とな
り、噴射パルス幅に対して噴射量が比例するようにでき
る。また、噴射弁に流れる電流の平均値を小さくできる
ので、噴射弁の消費電力が小さくなるとともに、噴射弁
の発熱を抑制することができる。
As described above, before the end of the minimum injection pulse width, the solenoid current of the injection valve is forcibly reduced to the level of the current for holding the valve open in a short time, and the valve current of the injection valve is closed when the valve is closed. Make sure that the current when turning off is always constant. As a result, the valve closing time is always constant, and the injection amount can be made proportional to the injection pulse width. Moreover, since the average value of the current flowing through the injection valve can be reduced, the power consumption of the injection valve can be reduced and the heat generation of the injection valve can be suppressed.

【0033】また、噴射弁のソレノイド電流を強制的に
保持電流レベルに落とすときの不要なエネルギーを高電
圧電源1内DC−DCコンバータのコンデンサ8に回生
することによってコンデンサ8の充電時間を短縮できる
ので、機関の高回転領域においてもソレノイド4に十分
な高電圧を印加することができる。また、DC−DCコ
ンバータの効率が向上するので、容量を小さくすること
ができる。
Further, the charging time of the capacitor 8 can be shortened by regenerating unnecessary energy for forcibly reducing the solenoid current of the injection valve to the holding current level to the capacitor 8 of the DC-DC converter in the high voltage power source 1. Therefore, a sufficiently high voltage can be applied to the solenoid 4 even in the high rotation region of the engine. Further, since the efficiency of the DC-DC converter is improved, the capacity can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す駆動回路の回路構成
FIG. 1 is a circuit configuration diagram of a drive circuit showing an embodiment of the present invention.

【図2】 同上の駆動回路の開弁時の電流の流れ方向を
示す図
FIG. 2 is a diagram showing a flow direction of a current when the drive circuit of the same as above is opened.

【図3】 同上の駆動回路の高電圧電源とソレノイドと
の接続を遮断したときの電流の流れ方向を示す図
FIG. 3 is a diagram showing the direction of current flow when the connection between the high-voltage power supply and the solenoid of the drive circuit of the same is cut off.

【図4】 同上の駆動回路の開弁保持状態での電流の流
れ方向を示す図
FIG. 4 is a diagram showing a current flow direction in a state where the drive circuit of the above-mentioned drive circuit is open.

【図5】 同上の駆動回路の閉弁時の電流の流れ方向を
示す図
FIG. 5 is a diagram showing the direction of current flow when the drive circuit of the same is closed.

【図6】 同上の駆動回路の噴射パルス幅が大きいとき
のタイミングチャート
FIG. 6 is a timing chart when the ejection pulse width of the drive circuit in the above is large.

【図7】 同上の駆動回路の噴射パルス幅が小さいとき
のタイミングチャート
FIG. 7 is a timing chart when the ejection pulse width of the drive circuit of the above is small.

【図8】 従来の駆動回路のタイミングチャートFIG. 8 is a timing chart of a conventional drive circuit.

【符号の説明】[Explanation of symbols]

1 開弁用高電圧電源 2 バッテリ 3 閉弁用高電圧電源 4 ソレノイド 5 電流検出抵抗 6 バッテリ 7 コイル 8 コンデンサ 9 差動アンプ 10 三角波発生器 11 比較器 12 コンデンサ D1〜D6 ダイオード Q1〜Q7 スイッチング素子 1 High-voltage power supply for valve opening 2 Battery 3 High-voltage power supply for valve closing 4 Solenoid 5 Current detection resistance 6 Battery 7 Coil 8 Capacitor 9 Differential amplifier 10 Triangular wave generator 11 Comparator 12 Capacitor D1 to D6 Diodes Q1 to Q7 Switching element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】電磁駆動式燃料噴射弁によって機関燃焼室
内に直接燃料を噴射する筒内直噴式内燃機関における前
記燃料噴射弁の駆動回路であって、 高電圧電源および低電圧電源と、 前記燃料噴射弁の開弁指令時に前記高電圧電源と前記燃
料噴射弁の駆動用ソレノイドとを接続して、該ソレノイ
ドに前記燃料噴射弁の開弁力が作用する方向の高電圧を
印加する開弁スイッチング手段と、 前記開弁指令時から最小噴射期間経過以前の時刻に、前
記高電圧電源と前記ソレノイドとの接続を遮断して高電
圧の印加を停止するとともに、前記ソレノイドに流れる
電流を前記燃料噴射弁の開弁状態を保持しうる所定の電
流値に低下するまで急速に放電させる急速放電手段と、 該急速放電手段による急速放電後、前記低電圧電源と前
記ソレノイドとの接続および遮断を制御して前記ソレノ
イドを流れる電流を前記所定の値に保持する電流保持手
段と、 を有することを特徴とする筒内直噴式内燃機関用燃料噴
射弁の駆動回路。
1. A drive circuit for a fuel injection valve in an in-cylinder direct injection internal combustion engine in which fuel is directly injected into an engine combustion chamber by an electromagnetically driven fuel injection valve, the high voltage power source and the low voltage power source, and the fuel. Valve opening switching for connecting the high-voltage power supply and a solenoid for driving the fuel injection valve at the time of instructing the valve opening of the injection valve, and applying a high voltage in the direction in which the valve opening force of the fuel injection valve acts on the solenoid. And disconnecting the connection between the high-voltage power supply and the solenoid to stop the application of the high voltage at a time before the minimum injection period has elapsed since the valve opening command was issued, and the current flowing through the solenoid was applied to the fuel injection. A rapid discharge means for rapidly discharging until the current value drops to a predetermined current value capable of holding the valve open state, and a connection between the low voltage power source and the solenoid after rapid discharge by the rapid discharge means And a current holding means for controlling shutoff to hold the current flowing through the solenoid at the predetermined value, and a drive circuit for a fuel injection valve for a direct injection type internal combustion engine.
【請求項2】前記急速放電手段は、放電電流を前記高電
圧電源に回生させることを特徴とする請求項1記載の筒
内直噴式内燃機関用燃料噴射弁の駆動回路。
2. The drive circuit for a fuel injection valve for a direct injection type internal combustion engine according to claim 1, wherein the rapid discharge means regenerates a discharge current to the high voltage power source.
【請求項3】前記燃料噴射弁の閉弁指令時に前記高電圧
電源と前記ソレノイドとを、該ソレノイドに前記燃料噴
射弁の閉弁力が作用する方向に接続する閉弁スイッチン
グ手段を含んで構成されることを特徴とする請求項1ま
たは請求項2記載の筒内直噴式内燃機関用燃料噴射弁の
駆動回路。
3. A valve closing means for connecting the high-voltage power supply and the solenoid in a direction in which a valve closing force of the fuel injection valve acts on the solenoid when a command to close the fuel injection valve is given. A drive circuit for a fuel injection valve for a direct injection type internal combustion engine, according to claim 1 or 2, wherein:
【請求項4】前記開弁スイッチング手段による前記燃料
噴射弁の開弁時に前記高電圧電源から前記ソレノイドに
電圧が印加される方向にダイオードを含んで構成される
ことを特徴とする請求項1〜請求項3のいずれか1つに
記載の筒内直噴式内燃機関用燃料噴射弁の駆動回路。
4. A diode is included in a direction in which a voltage is applied to the solenoid from the high voltage power source when the fuel injection valve is opened by the valve opening switching means. A drive circuit for a fuel injection valve for an in-cylinder direct injection internal combustion engine according to claim 3.
【請求項5】前記急速放電手段は、前記燃料噴射弁の開
弁時と同一の通電方向に前記ソレノイドを流れる電流
を、前記高電圧電源を充電させる方向に流すダイオード
を含んで構成されることを特徴とする請求項1〜請求項
4のいずれか1つに記載の筒内直噴式内燃機関用燃料噴
射弁の駆動回路。
5. The rapid discharge means includes a diode that causes a current flowing through the solenoid to flow in the same energization direction as when the fuel injection valve is opened, in a direction to charge the high-voltage power supply. A drive circuit for a fuel injection valve for an in-cylinder direct injection internal combustion engine according to any one of claims 1 to 4.
【請求項6】前記高電圧電源と前記ソレノイドの一端と
の間に設けられた開弁用ハイサイド側スイッチング素子
と、前記ソレノイドの他端と接地との間に設けられた開
弁用ローサイド側スイッチング素子と、を含んで構成さ
れる前記開弁スイッチング手段と、 前記高電圧電源と前記ソレノイドの他端との間に設けら
れた閉弁用ハイサイド側スイッチング素子と、前記ソレ
ノイドの一端と接地との間に設けられた閉弁用ローサイ
ド側スイッチング素子とを含んで構成される閉弁スイッ
チング手段と、 前記閉弁用ローサイド側スイッチング素子と並列に、接
地側から前記ソレノイド側へ電流が流れる向きに設けた
ダイオードを含んで構成される前記急速放電手段と、 を有し、開弁時には前記開弁用スイッチング手段がオン
で前記閉弁用スイッチング手段がオフ、閉弁時には前記
開弁手段がオフで前記閉弁手段がオンになるように切り
換えられることを特徴とする請求項1記載の筒内直噴式
内燃機関用燃料噴射弁の駆動回路。
6. A valve opening high side switching element provided between the high voltage power supply and one end of the solenoid, and a valve opening low side provided between the other end of the solenoid and ground. A switching element including a switching element; a valve closing high side switching element provided between the high voltage power supply and the other end of the solenoid; and one end of the solenoid and ground. And a valve closing switching means configured to include a valve closing low side switching element, and a direction in which a current flows from the ground side to the solenoid side in parallel with the valve closing low side switching element. And a rapid discharge means including a diode provided in the switch, the switching means for opening the valve being turned on when the valve is opened, and the switch for closing the valve. 2. A drive circuit for a fuel injection valve for a direct injection type internal combustion engine, according to claim 1, wherein the valve opening means is switched off and the valve closing means is switched on when the valve means is closed. .
【請求項7】前記急速放電手段は、前記ソレノイドの他
端と前記高電圧電源の蓄電用コンデンサの一端との間に
前者から後者への通電を許容するように設けられたダイ
オードと、前記コンデンサの他端と接地との間に設けら
れたスイッチング素子と、を含んで構成され、放電電流
を前記コンデンサに回生させることを特徴とする請求項
6記載の筒内直噴式内燃機関用燃料噴射弁の駆動回路。
7. A diode provided between the other end of the solenoid and one end of a storage capacitor of the high-voltage power supply to allow the energization from the former to the latter, and the rapid discharge means, and the capacitor. 7. A fuel injection valve for a direct injection internal combustion engine, according to claim 6, further comprising: a switching element provided between the other end of the internal combustion engine and the ground, and regenerating a discharge current in the capacitor. Drive circuit.
JP08402196A 1996-04-05 1996-04-05 Drive circuit for fuel injection valve for in-cylinder direct injection internal combustion engine Expired - Lifetime JP3562125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08402196A JP3562125B2 (en) 1996-04-05 1996-04-05 Drive circuit for fuel injection valve for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08402196A JP3562125B2 (en) 1996-04-05 1996-04-05 Drive circuit for fuel injection valve for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09273442A true JPH09273442A (en) 1997-10-21
JP3562125B2 JP3562125B2 (en) 2004-09-08

Family

ID=13818921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08402196A Expired - Lifetime JP3562125B2 (en) 1996-04-05 1996-04-05 Drive circuit for fuel injection valve for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3562125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205437A (en) * 1999-01-19 2000-07-25 Nippon Soken Inc Solenoid valve drive circuit
JP2008190345A (en) * 2007-02-01 2008-08-21 Nikki Co Ltd Injector control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053868B2 (en) 2008-01-07 2012-10-24 日立オートモティブシステムズ株式会社 Fuel injection control device
JP4917556B2 (en) * 2008-01-07 2012-04-18 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine
JP5058239B2 (en) 2009-10-30 2012-10-24 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine
US11795887B1 (en) 2022-07-19 2023-10-24 Caterpillar Inc. Fuel injector variability reduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
JPH09144622A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Injector driving circuit
JPH09209807A (en) * 1996-02-06 1997-08-12 Mitsubishi Electric Corp Controller for fuel injecting injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
JPH09144622A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Injector driving circuit
JPH09209807A (en) * 1996-02-06 1997-08-12 Mitsubishi Electric Corp Controller for fuel injecting injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205437A (en) * 1999-01-19 2000-07-25 Nippon Soken Inc Solenoid valve drive circuit
JP2008190345A (en) * 2007-02-01 2008-08-21 Nikki Co Ltd Injector control device

Also Published As

Publication number Publication date
JP3562125B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US5574617A (en) Fuel injection valve drive control apparatus
US5717562A (en) Solenoid injector driver circuit
JP3613885B2 (en) Drive control method and drive control apparatus for injector for internal combustion engine
JP4110751B2 (en) Injector drive control device
US5825216A (en) Method of operating a drive circuit for a solenoid
KR20150119872A (en) Method for controlling an injection process of a magnetic injector
KR20010051000A (en) Fuel injection system
US5937828A (en) Fuel injection injector controller
JPH09273442A (en) Driving circuit for fuel injection valve for cylinder direct injection type internal combustion engine
JPH0778715A (en) Driving circuit of electromagnetic device
JP2800442B2 (en) Method and device for driving electromagnetic fuel injection valve
JP2002364768A (en) Solenoid valve driving device
JP2003222061A (en) Control system of fuel injection valve
JPH1018888A (en) Fuel injection valve drive circuit
JPH09209807A (en) Controller for fuel injecting injector
JP3268245B2 (en) Solenoid valve drive circuit
JP3458730B2 (en) Method and apparatus for driving injector for internal combustion engine
JPH0688545A (en) Method and device for driving electromagnetic load
JPH11153245A (en) Method for driving solenoid valve
JP3460258B2 (en) Solenoid valve drive circuit
JPH11141381A (en) Solenoid valve drive circuit
JP2004116522A (en) Circuit for pulse width modulation driving electromagnetic purge valve for venting tank of automobile
JP2000205437A (en) Solenoid valve drive circuit
JP3167930B2 (en) Electromagnetic actuator drive control circuit
JPH1162677A (en) Solenoid valve driving device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

EXPY Cancellation because of completion of term