JPH09270260A - Lithium nickelate as positive electrode active material of lithium secondary battery and manufacture thereof - Google Patents

Lithium nickelate as positive electrode active material of lithium secondary battery and manufacture thereof

Info

Publication number
JPH09270260A
JPH09270260A JP8206090A JP20609096A JPH09270260A JP H09270260 A JPH09270260 A JP H09270260A JP 8206090 A JP8206090 A JP 8206090A JP 20609096 A JP20609096 A JP 20609096A JP H09270260 A JPH09270260 A JP H09270260A
Authority
JP
Japan
Prior art keywords
lithium
compound
mixture
nickel
lithium nickelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8206090A
Other languages
Japanese (ja)
Other versions
JP3671531B2 (en
Inventor
Yasushi Matsui
靖 松井
Masatoshi Shirao
雅年 白尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20609096A priority Critical patent/JP3671531B2/en
Publication of JPH09270260A publication Critical patent/JPH09270260A/en
Application granted granted Critical
Publication of JP3671531B2 publication Critical patent/JP3671531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium secondary battery with excellent cycle characteristics by specifying the physical property constant of lithium nickelate and specifying the initial discharging capacity of a battery using this lithium nickelate. SOLUTION: When peak intensities as determined by powder X-way diffraction of (006), (012), (101), (003), and (104) planes of lithium nickelate are represented by I006 , I012 , I101 , I003 , and I104 respectively, (I006 +I012 )/I101 =P, I003 /I104 =R, and P/R<=0.41, and the atomic ratio of Li/Ni is 0.98-1.01. A lithium secondary battery is manufactured by using the lithium nickelate for a positive electrode as the positive electrode active material, metallic lithium in a negative electrode, and a solution prepared by dissolving LiPF6 in a mixture of propylene carbonate and ethylene carbonate as an electrolyte, and the initial discharging capacity in a charging/discharging test of the lithium secondary battery at 20 deg.C is 180mAh/g or more in the voltage range of 2.5-4.2V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極活物質及びその製造方法に関し、より詳しくは金属
リチウムあるいはリチウム−炭素(リチウム−グラファ
イト)インターカレーション化合物などを負極活物質と
するリチウム二次電池において、正極活物質として使用
した場合高容量電池とすることができるニッケル酸リチ
ウム及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium secondary battery and a method for producing the same, and more particularly to lithium having a negative electrode active material such as metallic lithium or a lithium-carbon (lithium-graphite) intercalation compound. TECHNICAL FIELD The present invention relates to lithium nickel oxide that can be used as a high capacity battery when used as a positive electrode active material in a secondary battery, and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。非水電解質二
次電池の正極活物質としては、コバルト酸リチウム、ニ
ッケル酸リチウム、マンガン酸リチウムなどのリチウム
と他の金属との複合酸化物、二酸化マンガン、二硫化チ
タン、二硫化モリブデン、五酸化バナジウム、五酸化ニ
オブなどの金属酸化物やカルコゲンなどが広く知られて
いる。これらの酸化物や化合物は層状またはトンネル状
の結晶構造を有し、充放電によりリチウムイオンの可逆
的放出、吸蔵を繰り返すことが可能である。特に、コバ
ルト酸リチウム、ニッケル酸リチウム、マンガン酸リチ
ウムは4ボルト(V)級非水電解質リチウム二次電池用
正極活物質として精力的に研究が行われている。すでに
比較的製造が容易なコバルト酸リチウムが実用に供せら
れている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted. Examples of positive electrode active materials for non-aqueous electrolyte secondary batteries include complex oxides of lithium and other metals such as lithium cobalt oxide, lithium nickel oxide, lithium manganate, manganese dioxide, titanium disulfide, molybdenum disulfide, and pentaoxide. Metal oxides such as vanadium and niobium pentoxide and chalcogens are widely known. These oxides and compounds have a layered or tunnel-shaped crystal structure, and can repeatedly reversibly release and store lithium ions by charging and discharging. In particular, lithium cobalt oxide, lithium nickel oxide, and lithium manganate have been vigorously studied as positive electrode active materials for 4-volt (V) class nonaqueous electrolyte lithium secondary batteries. Lithium cobalt oxide, which is relatively easy to manufacture, has already been put to practical use.

【0003】しかしコバルトは非常に高価な金属であ
り、また戦略物質でもあり、産地が特定地域に偏在して
いるため、政治情勢の変化による供給不安や価格高騰な
どの問題がある。一方、ニッケル、マンガンは比較的安
価な金属であり、かつ安定した供給が可能である。マン
ガン酸リチウムはコバルト酸リチウムやニッケル酸リチ
ウムに比べて容量が小さく、サイクル特性にも問題があ
る。ニッケル酸リチウムはコバルト酸リチウムと同様な
構造であり、リチウム二次電池の電圧はコバルト酸リチ
ウムの場合より0.2V低いが高容量であることから、
高容量リチウム二次電池の正極活物質として大いに期待
され、注目されている。
However, cobalt is a very expensive metal and also a strategic substance, and since the production areas are unevenly distributed in a specific area, there are problems such as supply uncertainties and soaring prices due to changes in political conditions. On the other hand, nickel and manganese are relatively inexpensive metals and can be stably supplied. Lithium manganate has a smaller capacity than lithium cobaltate and lithium nickelate and has a problem in cycle characteristics. Lithium nickel oxide has the same structure as lithium cobalt oxide, and the voltage of the lithium secondary battery is 0.2 V lower than that of lithium cobalt oxide, but has a high capacity.
As a positive electrode active material for a high-capacity lithium secondary battery, it is highly expected and attracts attention.

【0004】しかしながら、ニッケル酸リチウムはコバ
ルト酸リチウムに比べ製造が難しい難点がある。LiNiO2
は1954年にDyerらにより初めて合成された(J.
Am.Chem. Soc., 76, 1499 (1954))。彼らは水酸化リチ
ウムと金属ニッケルを酸素雰囲気下800℃で加熱して
合成した。その後リチウム二次電池用正極活物質に適し
たニッケル酸リチウムの合成方法が種々検討されてい
る。
However, lithium nickel oxide has a drawback that it is more difficult to manufacture than lithium cobalt oxide. LiNiO 2
Was first synthesized by Dyer et al. In 1954 (J.
Am. Chem. Soc., 76, 1499 (1954)). They synthesized lithium hydroxide and metallic nickel by heating at 800 ° C in an oxygen atmosphere. After that, various methods for synthesizing lithium nickelate suitable as a positive electrode active material for lithium secondary batteries have been studied.

【0005】例えば、LiOH・H20 とNiO を混合し、空気
雰囲気下700℃で1時間加熱後再粉砕し、700℃で
4時間加熱する方法(特開平2−40861)、塩基性
ニッケル塩とアルカリ性水溶性リチウム化合物とを水媒
体中で反応させ、得られたスラリーを乾燥後、酸化性雰
囲気下で500℃以上で焼成する方法(WO94/22
767)、3価のニッケル水酸化物または酸化物をリチ
ウム塩と混合後空気中650〜900℃で焼成する方法
(特開平6−310145)、硝酸ニッケルと水酸化リ
チウムを用いて調製した塩基性硝酸ニッケルと硝酸リチ
ウムの混合物を空気中800℃で熱分解し、合成する方
法(T. Ohzuku et al., Chemistry Express, 6, 161-164
(1991))、ニッケルの多価アルコラートとリチウムアル
コラートの混合物を400℃で有機物を燃焼後粉砕し、
酸素雰囲気下800℃で焼成する方法(特開平6−20
3834)が知られている。
For example, a method in which LiOH.H 2 0 and NiO are mixed, heated in an air atmosphere at 700 ° C. for 1 hour, re-ground, and then heated at 700 ° C. for 4 hours (JP-A-2-40861), basic nickel salt And an alkaline water-soluble lithium compound are reacted in an aqueous medium, the resulting slurry is dried, and then baked at 500 ° C. or higher in an oxidizing atmosphere (WO94 / 22).
767) A method in which trivalent nickel hydroxide or oxide is mixed with a lithium salt and then fired in air at 650 to 900 ° C. (JP-A-6-310145), basic prepared using nickel nitrate and lithium hydroxide. A method for synthesizing a mixture of nickel nitrate and lithium nitrate by thermal decomposition at 800 ° C in air (T. Ohzuku et al., Chemistry Express, 6, 161-164
(1991)), a mixture of nickel polyvalent alcoholate and lithium alcoholate is burned at 400 ° C. after crushing organic matter,
A method of firing at 800 ° C. in an oxygen atmosphere (JP-A-6-20
3834) is known.

【0006】しかしながら、これら従来の方法では合成
手順が非常に複雑で工業生産には不向きである。また、
得られるニッケル酸リチウムを二次電池正極活物質とし
て使用した場合、放電容量も十分ではなく、クーロン効
率あるいはサイクル特性も実用化には不十分なレベルで
あった。
However, these conventional methods have a very complicated synthetic procedure and are not suitable for industrial production. Also,
When the obtained lithium nickel oxide was used as a positive electrode active material for a secondary battery, the discharge capacity was not sufficient, and the Coulombic efficiency or cycle characteristics were at a level insufficient for practical use.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、放電
容量が大きく、サイクル特性の良い、工業生産に適した
リチウム二次電池用正極活物質として使用可能なニッケ
ル酸リチウム及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide lithium nickel oxide having a large discharge capacity and good cycle characteristics, which can be used as a positive electrode active material for a lithium secondary battery suitable for industrial production, and a method for producing the same. To provide.

【0008】[0008]

【課題を解決するための手段】LiNiO2の結晶系はRhombo
hedralでCsCl2I型構造に属する。結晶内の原子配置は Ni: (1a) (000 ) Li: (1b) (1/2 1/2 1/2 ) O : (1c) ±(uuu ) u=0.265 である。以下の結晶学的定数、物理定数等を用いてX線
回折(CuKα線)における(003 )面のピーク強度(I
003)と(104 )面のピーク強度(I104)との比I00 3 /I
104 及び(018 )面のピークと(110 )面のピークの分
離[ Δ2 θ((110) -(018))] を計算した。 酸素配置 u0 :W.Li etal., Phy
s. Rev., B46,3236(1992). 電気陰性度(XLi,XNi,XO ) :修正 Paulingの値 部分的イオン結合性の算出 :Pauling の方法 原子散乱因子(fLi,fNi,fO ):International Ta
bles of X-RayCrystallography, III.
[Means for Solving the Problems] The crystal system of LiNiO 2 is Rhombo
It belongs to the CsCl 2 I type structure in the cathedral. The atomic arrangement in the crystal is Ni: (1a) (000) Li: (1b) (1/2 1/2 1/2) O: (1c) ± (uuu) u = 0.265. Using the following crystallographic and physical constants, the peak intensity (I) of the (003) plane in X-ray diffraction (CuKα ray)
The ratio of the peak intensity (I 104 ) of the ( 003 ) and (104) planes I 00 3 / I
The separation of peaks on the 104 and (018) planes and the peaks on the (110) plane [Δ2θ ( (110) -(018) )] was calculated. Oxygen configuration u 0 : W.Li et al., Phy
s. Rev., B46,3236 (1992). Electronegativity (X Li , X Ni , X O ): Modified Pauling value Calculation of partial ionic bondability: Pauling method Atomic scattering factors (f Li , f Ni , F O ): International Ta
bles of X-Ray Crystallography, III.

【0009】その結果、理想的LiNiO2の(003 )面のピ
ーク強度(I003)と(104 )面のピーク強度(I104)との比
003 /I104 (以下I003 /I104 =Rとする。)は
1.50であり、(018 )面ピークと(110 )面ピークとの
分離Δ2 θ((110)-(018))は0.34°であった。また、J.
R. Dahn 等の研究(Solid State Ionics, 44, 87-97 (1
990))によると理想的LiNiO2の(006 )面のピーク強度
(I006)と(012 )面のピーク強度(I01 2)の合計と(101
)面のピーク強度(I101)との比(I006 +I012 )/
101 (以下(I006 +I012 )/I101 =Pとす
る。)は0.5 である。
[0009] As a result, ideal LiNiO peak intensity of 2 (003) plane (I 003) and (104) peak intensity of the face (I 104) The ratio of the I 003 / I 104 (hereinafter I 003 / I 104 = R))
It was 1.50, and the separation Δ2 θ ( (110)-(018) ) of the (018) plane peak and the (110) plane peak was 0.34 °. Also, J.
R. Dahn et al. (Solid State Ionics, 44, 87-97 (1
990)) according to the ideal peak intensity of the (006) plane of LiNiO 2.
The sum of the peak intensity (I 01 2 ) of the (I 006 ) and (012) planes and (101
) Plane peak intensity (I 101 ) / ratio (I 006 + I 012 ) /
I 101 (hereinafter (I 006 + I 012 ) / I 101 = P) is 0.5.

【0010】リチウム化合物は700 〜800 ℃で数mmH
gの蒸気圧を持つため反応中に一部気化逸散(以下「気
散」という。)する。そのためLi/Ni の原子比を1.0
より大きくしてリチウム化合物とニッケル化合物の反応
を行い、反応終了後水洗して過剰のリチウム化合物を取
り除く方法が提案されている(特開平6-111822; Solid
State Ionics, 44, 87(1990))。しかしながら、LiNiO2
を水洗して過剰のリチウム塩を除去するとX線回折的に
は非常にきれいな結晶が得られるが、電池特性は非常に
悪い物であり、それはT. Ohzuku 等によっても報告され
ている(T.Ohzuku, A. Ueda and M. Nagayama, J. Elec
tochem. Soc., 140, 1862 (1993))。この原因としては
水洗によりOH基或いはH+ が結晶に取り込まれ、これ
が水洗後の熱処理(真空乾燥)で容易に取り除かれない
ことが考えられる。
Lithium compound is several mmH at 700-800 ° C
Since it has a vapor pressure of g, it is partially vaporized and dissipated during the reaction (hereinafter referred to as "vaporization"). Therefore, the atomic ratio of Li / Ni is 1.0
A method has been proposed in which a lithium compound is reacted with a nickel compound at a larger size and the excess lithium compound is removed by washing with water after completion of the reaction (JP-A-6-111822; Solid
State Ionics, 44, 87 (1990)). However, LiNiO 2
Although the crystals are washed with water to remove excess lithium salt, very clean crystals can be obtained by X-ray diffraction, but the battery characteristics are very poor, and it has been reported by T. Ohzuku et al. (T. Ohzuku, A. Ueda and M. Nagayama, J. Elec
tochem. Soc., 140, 1862 (1993)). It is considered that this is because OH groups or H + are taken into the crystal by washing with water and are not easily removed by heat treatment (vacuum drying) after washing with water.

【0011】発明者らは上記に述べたような理想的なLi
NiO2の合成法について種々検討を行った結果、リチウム
化合物とニッケル化合物の混合物においてLi/Ni の原子
比を1.05以下、より望ましくは1.0 未満にし、その混合
物を酸化性雰囲気下で加熱焼成する際に、例えば、焼成
系内に前記混合物固体と直接接触しないように、焼成系
内において開放系である容器に入れたリチウム化合物を
共存させるなど、焼成系内に存在する前記混合物と気相
を通じてのみ接触するような状態でリチウム化合物を共
存させ、気相を通じて混合物と共存させながら加熱焼成
を行い、焼成後共存リチウム化合物を取り除くことによ
り、理想的なLiNiO2が合成できることを見いだし本発明
を完成させた。また、この検討過程において粉末X線回
折におけるニッケル酸リチウムのP/Rとこのニッケル
酸リチウムを正極活物質として用いた非水電解質リチウ
ム二次電池の初期放電容量との間に非常によい相関関係
があることを見いだした(図3)。
The inventors have found the ideal Li as described above.
As a result of various studies on the synthesis method of NiO 2 , when the Li / Ni atomic ratio in the mixture of the lithium compound and the nickel compound was set to 1.05 or less, more preferably less than 1.0, the mixture was heated and baked in an oxidizing atmosphere. In addition, for example, in order to avoid direct contact with the mixture solid in the firing system, coexistence of a lithium compound placed in a container that is an open system in the firing system, for example, only through the gas phase with the mixture present in the firing system. The present invention was completed by finding that an ideal LiNiO 2 can be synthesized by allowing a lithium compound to coexist in a state of contacting, heating and firing while coexisting with a mixture through a gas phase, and removing the coexisting lithium compound after firing. It was Also, in this examination process, the P / R of lithium nickel oxide in powder X-ray diffraction and the initial discharge capacity of the non-aqueous electrolyte lithium secondary battery using this lithium nickel oxide as the positive electrode active material have a very good correlation. I found that there is (Fig. 3).

【0012】すなわち本発明は以下のものを提供するも
のである。 (1)粉末X線回折における(006 )面のピーク強度(I
006)、(012 )面のピーク強度(I012)、(101 )面のピーク
強度(I101)、(003 )面のピーク強度(I003)、(104)面の
ピーク強度(I104)において、(I006 +I012 )/I
101 =P、I003 /I104 =Rとしたとき、P/R≦0.
41で且つLi/Ni原子比が0.98〜1.01であるニッケル
酸リチウムであり、正極にこのニッケル酸リチウムを正
極活物質として用い、金属リチウムを負極とし、LIPF6
のプロピレンカーボネート/エチレンカーボネート(容
量比1/1)溶液(1M)を電解質液とする非水電解質
リチウム二次電池の20℃での充放電試験における初期
放電容量(1サイクル目)が2.5 〜4.2Vの電圧範囲で18
0mAh/g以上であるニッケル酸リチウム。 (2)粉末X線回折における前記P及びRの値がP/R
≦0.39であり、且つLi/Ni原子比が0.98〜1.01であ
るニッケル酸リチウムで、正極にこのニッケル酸リチウ
ムを正極活物質として用い、金属リチウムを負極とし、
LiPF6 のプロピレンカーボネート/エチレンカーボネー
ト(容量比1/1)溶液(1M)を電解質液とする非水
電解質リチウム二次電池の20℃での充放電試験におけ
る初期放電容量(1サイクル目)が2.5 〜 4.2V の電圧
範囲で190mAh/g以上であるニッケル酸リチウム。 (3)粉末X線回折における前記P及びRの値がP/R
≦0.37であり、且つLi/Ni原子比が0.98〜1.01であ
るニッケル酸リチウムで、正極にこのニッケル酸リチウ
ムを正極活物質として用い、金属リチウムを負極とし、
LiPF6 のプロピレンカーボネート/エチレンカーボネー
ト(容量比1/1)溶液(1M)を電解質液とする非水
電解質リチウム二次電池の20℃での充放電試験におけ
る初期放電容量(1サイクル目)が2.5 〜4.2Vの電圧範
囲で210mAh/g以上であるニッケル酸リチウム。
That is, the present invention provides the following. (1) Peak intensity of (006) plane in powder X-ray diffraction (I
006 ), (012) plane peak intensity (I 012 ), (101) plane peak intensity (I 101 ), (003) plane peak intensity (I 003 ), (104) plane peak intensity (I 104 ). Where , (I 006 + I 012 ) / I
When 101 = P and I 003 / I 104 = R, P / R≤0.
And Li / Ni atomic ratio 41 is lithium nickelate is 0.98 to 1.01, with the lithium nickelate for the positive electrode as a positive electrode active material, metal lithium as a negative electrode, LIPF 6
The initial discharge capacity (1st cycle) in the charge / discharge test at 20 ° C of the non-aqueous electrolyte lithium secondary battery using the propylene carbonate / ethylene carbonate (volume ratio 1/1) solution (1M) as an electrolyte solution is 2.5 to 4.2. 18 in the voltage range of V
Lithium nickelate that is 0 mAh / g or more. (2) The values of P and R in powder X-ray diffraction are P / R
Lithium nickelate having a Li / Ni atomic ratio of 0.98 to 1.01 with ≦ 0.39, using this lithium nickelate as a positive electrode active material in a positive electrode, and using metallic lithium as a negative electrode,
The initial discharge capacity (1st cycle) of the non-aqueous electrolyte lithium secondary battery using LiPF 6 propylene carbonate / ethylene carbonate (capacity ratio 1/1) solution (1M) as an electrolyte solution was 20 ° C in the charge / discharge test. Lithium nickelate that is more than 190mAh / g in the voltage range of ~ 4.2V. (3) The values of P and R in powder X-ray diffraction are P / R
Lithium nickelate having a Li / Ni atomic ratio of 0.98 to 1.01 with ≦ 0.37, using this lithium nickelate as a positive electrode active material for a positive electrode, and using lithium metal as a negative electrode,
The initial discharge capacity (1st cycle) of the non-aqueous electrolyte lithium secondary battery using LiPF 6 propylene carbonate / ethylene carbonate (capacity ratio 1/1) solution (1M) as an electrolyte solution was 20 ° C in the charge / discharge test. Lithium nickelate which is more than 210mAh / g in the voltage range of ~ 4.2V.

【0013】(4)粉末X線回折における(018 )面のピ
ーク位置と(110 )面のピーク位置との分離△2 θ(
(110)-(018))が0.32〜0.34゜である前記(1) 〜(3) の
いずれかに記載のニッケル酸リチウム。 (5)リチウム化合物とニッケル化合物との混合物を酸
化性雰囲気下で加熱焼成する際に、焼成系内に存在する
前記混合物と気相を通じてのみ接触するような状態でも
う1つのリチウム化合物を共存させることを特徴とする
製造方法により得られる前記(1)〜(4)のいずれか
に記載のニッケル酸リチウム。 (6)リチウム化合物とニッケル化合物との混合物を酸
化性雰囲気下で加熱焼成してニッケル酸リチウムを製造
する方法において、焼成系内に存在する前記混合物と気
相を通じてのみ接触するような状態でもう1つのリチウ
ム化合物を共存させ、焼成後残存する前記共存リチウム
化合物を取り除くことを特徴とするニッケル酸リチウム
の製造方法。
(4) Separation of peak position of (018) plane and peak position of (110) plane in powder X-ray diffraction Δ 2 θ (
(110)-(018) ) is 0.32 to 0.34 °, wherein the lithium nickelate is any one of the above (1) to (3). (5) When a mixture of a lithium compound and a nickel compound is heated and fired in an oxidizing atmosphere, another lithium compound is allowed to coexist with the mixture present in the firing system so as to be in contact only with the gas phase. The lithium nickelate according to any one of (1) to (4) above, which is obtained by a production method characterized by the above. (6) In a method for producing lithium nickel oxide by heating and firing a mixture of a lithium compound and a nickel compound in an oxidizing atmosphere, the method is such that the mixture present in the firing system is in contact only through the gas phase. A method for producing lithium nickelate, which comprises allowing one lithium compound to coexist and removing the coexisting lithium compound remaining after firing.

【0014】(7)混合物中のLi/Ni 原子比が0.95以上
1.05以下である前記(6)記載のニッケル酸リチウムの
製造方法。 (8)リチウム化合物として水酸化リチウム、その水和
物、硝酸リチウムおよび酸化リチウムからなる群から選
ばれる少なくとも一種を用いる前記(6)または(7)
記載のニッケル酸リチウムの製造方法。 (9)ニッケル化合物として2価のニッケルの酸化物ま
たは水酸化物系化合物を用いる前記(6)〜(8)のい
ずれかに記載のニッケル酸リチウムの製造方法。
(7) Li / Ni atomic ratio in the mixture is 0.95 or more
The method for producing lithium nickelate according to (6) above, which is 1.05 or less. (8) The above (6) or (7), wherein at least one selected from the group consisting of lithium hydroxide, a hydrate thereof, lithium nitrate and lithium oxide is used as the lithium compound.
A method for producing the lithium nickelate described above. (9) The method for producing lithium nickelate according to any of (6) to (8), wherein a divalent nickel oxide or hydroxide compound is used as the nickel compound.

【0015】(10)ニッケル化合物として水酸化ニッ
ケル、酸化ニッケル、塩基性炭酸ニッケルもしくはその
水和物からなる群から選ばれる少なくとも一種を用いる
前記(6)〜(8)のいずれかに記載のニッケル酸リチ
ウムの製造方法。 (11)混合物が硝酸リチウムと塩基性炭酸ニッケルの
混合物である前記(6)または(7)記載のニッケル酸
リチウムの製造方法。 以下本発明について詳細に説明する。
(10) The nickel according to any one of (6) to (8) above, wherein at least one selected from the group consisting of nickel hydroxide, nickel oxide, basic nickel carbonate or a hydrate thereof is used as the nickel compound. Method for producing lithium oxide. (11) The method for producing lithium nickel oxide according to the above (6) or (7), wherein the mixture is a mixture of lithium nitrate and basic nickel carbonate. Hereinafter, the present invention will be described in detail.

【0016】本発明のニッケル酸リチウムの製造方法は
リチウム化合物とニッケル化合物との混合物を酸化性雰
囲気下で加熱焼成する際に、焼成系内に存在する前記混
合物と気相を通じてのみ接触するような状態でもう1つ
のリチウム化合物を共存させながら加熱焼成すること、
あるいは更に焼成後残存する前記共存リチウム化合物を
取り除くことを特徴とするが、ニッケル化合物と混合さ
せるリチウム化合物としては、水酸化リチウムもしくは
その水和物(例えばLiOH・H2O) が適しており、ニッケル
化合物としては、酸化ニッケル(II)、あるいは水酸化ニ
ッケル(II)、塩基性炭酸ニッケル(II)もしくはその水和
物(NiCO3・Ni(OH)2・4H2O、NiCO3・2Ni(OH)2・nH2O (nは1
〜4 の正の値を示す。)、2NiCO3・3Ni(OH)2・4H20など)
のような、2価のニッケルの水酸化物系化合物が適して
いる。上記のリチウム化合物及びニッケル化合物は、そ
れぞれ上記物質を単独で用いても、2種以上を混合して
用いても良い。また、ニッケル化合物としては、上記の
いずれかの化合物以外にも、炭酸ニッケル(II)、硝酸ニ
ッケル(II)などのように加熱脱水を行う際に酸化ニッケ
ルとなるような化合物あるいは少なくとも1つの水酸基
を有するニッケル化合物となるような化合物を単独ある
いは上記のニッケル化合物と併用して用いてもよい。
According to the method for producing lithium nickelate of the present invention, when a mixture of a lithium compound and a nickel compound is heated and fired in an oxidizing atmosphere, the lithium nickelate is brought into contact with the mixture present in the firing system only through the gas phase. Heating and firing while coexisting with another lithium compound in the state,
Or it is further characterized by removing the coexisting lithium compound remaining after firing, as the lithium compound to be mixed with the nickel compound, and lithium or a hydrate thereof hydroxide (e.g. LiOH · H 2 O) is suitable, As the nickel compound, nickel oxide (II), nickel hydroxide (II), basic nickel carbonate (II) or a hydrate thereof (NiCO 3 Ni (OH) 2 4H 2 O, NiCO 3 2Ni ( OH) 2・ nH 2 O (n is 1
Indicates a positive value of ~ 4. ), 2NiCO 3 , 3Ni (OH) 2 , 4H 20, etc.)
Suitable are hydroxide compounds of divalent nickel, such as The above lithium compounds and nickel compounds may be used alone or as a mixture of two or more kinds. As the nickel compound, in addition to any of the above compounds, a compound such as nickel (II) carbonate or nickel (II) nitrate which becomes nickel oxide when dehydrated by heating or at least one hydroxyl group A compound that becomes a nickel compound having a may be used alone or in combination with the above nickel compound.

【0017】本発明の製造方法は、混合物として焼成系
に入れるリチウム化合物とニッケル化合物の混合比率が
Li/Ni 原子比として1.05以下の系に好ましく用いられ、
0.9以上1.0 未満の系により好ましく用いられ、0.95以
上1.0 未満の系に対し特に好ましく用いられる。尚、酸
化性雰囲気気流中で加熱焼成する際に焼成条件によって
は、混合物中の未反応リチウム化合物が気散して混合物
中のLi/Ni 原子比が仕込み比より低下することがあり、
従って、混合物中の仕込みLi/Ni 原子比が1.0以上であ
っても、前記共存リチウム化合物を共存させなければ加
熱焼成中に実質的にその比が1.0 未満になってしまうよ
うな加熱焼成条件であるために、かかるリチウム化合物
を共存させて製造が行われる場合も本発明の製造方法に
含まれる。すなわち前記混合物中のLi/Ni 原子比が1 以
上であっても、リチウム化合物を共存させなければ得ら
れるニッケル酸リチウムのLi/Ni 原子比が1 より低下す
る場合には、本発明の製造方法を好ましく用いることが
できる。焼成系内に存在する前記混合物と気相を通じて
のみ接触するような状態で共存させるリチウム化合物と
しては、水酸化リチウムもしくはその水和物(例えばLi
OH・H2O) 、または酸化リチウムが適しており、あるいは
これらの2〜3種の混合物でもよい。共存させるリチウ
ム化合物の量としては、焼成系内に入れる混合物中のリ
チウム化合物と共存させるリチウム化合物合計の総リチ
ウム量とニッケル量の原子比Li/Ni として1.0 より大き
ければよく、焼成後の生成物(焼成物)のLi/Ni 原子比
が1あるいはほぼ1であって、I003 /I104 比(R)
が1.2 以上、望ましくは1.4 以上であり且つ(I006
012 )/I101 比(P)が0.6 以下であるようなLiNi
O2を与えるような量であれば特に限定されない。
In the production method of the present invention, the mixing ratio of the lithium compound and the nickel compound to be added to the firing system as a mixture is
It is preferably used in a system with a Li / Ni atomic ratio of 1.05 or less,
It is more preferably used in a system of 0.9 or more and less than 1.0, and particularly preferably used in a system of 0.95 or more and less than 1.0. Incidentally, depending on the firing conditions when heating and firing in an oxidizing atmosphere air flow, the unreacted lithium compound in the mixture may be dispersed and the Li / Ni atomic ratio in the mixture may be lower than the charging ratio.
Therefore, even if the charged Li / Ni atomic ratio in the mixture is 1.0 or more, under the heating and firing conditions such that the ratio becomes substantially less than 1.0 during heating and firing unless the coexisting lithium compound is present. Therefore, the case where the production is carried out in the presence of such a lithium compound is also included in the production method of the present invention. That is, even if the Li / Ni atomic ratio in the mixture is 1 or more, if the Li / Ni atomic ratio of lithium nickel oxide obtained without coexisting a lithium compound is lower than 1, the production method of the present invention Can be preferably used. Examples of the lithium compound that is allowed to coexist with the mixture existing in the firing system only through the gas phase include lithium hydroxide or its hydrate (for example, Li
OH.H 2 O) or lithium oxide is suitable, or a mixture of two or three of these may be used. The amount of the lithium compound to be coexisted is such that the atomic ratio Li / Ni of the total lithium amount and the nickel amount of the total lithium compounds to be coexisted with the lithium compound in the mixture to be put in the firing system is larger than 1.0, and the product after firing The (calcined product) has an Li / Ni atomic ratio of 1 or almost 1, and an I 003 / I 104 ratio (R)
Is 1.2 or more, preferably 1.4 or more, and (I 006 +
LiNi having an I 012 ) / I 101 ratio (P) of 0.6 or less
The amount is not particularly limited as long as it gives O 2 .

【0018】本発明のリチウム二次電池用正極活物質と
して使用可能なニッケル酸リチウムの製造方法におい
て、前記リチウム化合物とニッケル化合物からなる混合
物を酸化性雰囲気下で加熱焼成する際に用いる酸化性雰
囲気としては、酸素ガス、脱水及び脱炭酸ガス処理した
空気、または酸素ガスを窒素ガスもしくはヘリウムガス
などの不活性ガスと混合したガスが適している。かかる
加熱焼成に用いられる酸化性ガスの量は、被酸化物が十
分目的の酸化物となる量の酸化性ガス量であればよく特
に限定されないが、通常、被酸化物に対して過剰量であ
ることが好ましい。また、かかる酸化性雰囲気ガスは発
生する水分を焼成系から取り除くため、通常、適度の気
流として加熱焼成系に供給されることが望ましい。その
供給速度は、発生する水分が焼成系から取り除かれ、か
つ共存させるリチウム化合物の気散物が焼成系外に過度
に放出されない速度であればよく、特に限定されない
が、例えば、焼成炉容積に対する空間速度として0.01/
分〜2/分の範囲内であればよく、0.02/ 分〜1/分の範囲
であることが望ましく、0.1/分〜0.5/分の範囲であるこ
とが更に望ましい。加熱温度としては、620 〜830 ℃の
範囲の温度であればよく、650 〜800 ℃の範囲がより望
ましい。酸化温度が850 ℃以上ではLiNiO2の立方晶が生
成するようになり、得られる結晶の強度比I003 /I104
(R)が急激に1.0 程度まで小さくなり、電池容量が極
端に低下するなど電池特性も悪くなる。
In the method for producing lithium nickelate that can be used as the positive electrode active material for a lithium secondary battery of the present invention, an oxidizing atmosphere used when heating and firing the mixture of the lithium compound and the nickel compound under an oxidizing atmosphere. Suitable are oxygen gas, air subjected to dehydration and decarbonation, or gas in which oxygen gas is mixed with an inert gas such as nitrogen gas or helium gas. The amount of the oxidizing gas used for such heating and firing is not particularly limited as long as the amount of the oxidizing gas is a sufficient amount of the oxide to be the target oxide, but is usually an excess amount with respect to the oxide. Preferably there is. Further, since such an oxidizing atmosphere gas removes generated water from the firing system, it is usually desirable to supply it to the heating and firing system as an appropriate air flow. The supply rate is not particularly limited, as long as the generated water is removed from the firing system, and the vaporized substance of the lithium compound to be coexistent is not excessively released to the outside of the firing system, for example, with respect to the firing furnace volume. Space velocity 0.01 /
It may be in the range of minutes to 2 / minute, preferably in the range of 0.02 / minute to 1 / minute, and more preferably in the range of 0.1 / minute to 0.5 / minute. The heating temperature may be in the range of 620 to 830 ° C, more preferably 650 to 800 ° C. When the oxidation temperature is 850 ° C. or higher, a cubic crystal of LiNiO 2 is formed, and the strength ratio of the obtained crystal I 003 / I 104
The (R) sharply decreases to about 1.0, and the battery capacity deteriorates drastically, resulting in poor battery characteristics.

【0019】上記加熱焼成後、加熱焼成時に前記混合物
と気相を通じてのみ接触するような状態で共存させ焼成
後残存しているリチウム化合物を任意の方法で取り除
く。例えば、加熱焼成炉内に第1の容器に前記混合物を
入れ、共存させるリチウム化合物を第2の容器に入れて
その焼成炉内に入れて上記の加熱焼成を行った後、第2
の容器を焼成炉から取り除く方法が1つの典型的方法と
して挙げられる。
After the above-mentioned heating and calcination, the lithium compound remaining after the calcination is coexisted in such a state that it is in contact with the above mixture only through the gas phase during the heating and calcination, by an arbitrary method. For example, the mixture is put in a first container in a heating and firing furnace, and a lithium compound to be coexisted is put in a second container and put in the firing furnace to perform the above heating and firing, and then the second mixture.
One of the typical methods is to remove the container from the firing furnace.

【0020】本発明の製造方法により、R≧1.2 、特に
R≧1.4 、P≦0.6 、ピーク分離Δ2 θ((110)-(018)
が0.32〜0.34°の、ほぼ理想的結晶のLiNiO 2 を得るこ
とができる。また、本発明のニッケル酸リチウムを正極
活物質として用いたニッケル二次電池特性も非常に良
く、初期放電容量(1サイクル目)は180mAh/g以上であ
り、更に条件によっては190mAh/g以上であり、特に好ま
しい条件下で製造したものでは210mAh/g以上であった。
また10サイクル目の容量維持率は90% 以上であり、特に
好ましい条件下で製造したものでは95% 以上でありサイ
クル特性に優れていた。以下実施例によって本発明をさ
らに具体的に説明するが、本発明はこれらにより何ら制
限されるものではない。なお、以下に示す実施例におけ
る電池の作製はアルゴン雰囲気下のドライボックス中で
行った。
According to the production method of the present invention, R ≧ 1.2, particularly R ≧ 1.4, P ≦ 0.6, peak separation Δ2 θ ( (110)-(018) )
It is possible to obtain a nearly ideal crystal of LiNiO 2 having a temperature of 0.32 to 0.34 °. Further, the characteristics of the nickel secondary battery using the lithium nickel oxide of the present invention as the positive electrode active material are also very good, and the initial discharge capacity (first cycle) is 180 mAh / g or more, and 190 mAh / g or more depending on the conditions. And 210 mAh / g or more in the case of the product manufactured under particularly preferable conditions.
In addition, the capacity retention rate at the 10th cycle was 90% or more, and the capacity retention rate under the particularly preferable conditions was 95% or more, which was excellent in cycle characteristics. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. The batteries in the examples described below were manufactured in a dry box under an argon atmosphere.

【0021】[0021]

【実施例】【Example】

(実施例1)水酸化リチウム(無水)23.5g(0.98モ
ル)と水酸化ニッケル92.7g(1.00モル)とを混合し(L
i/Ni原子比で0.98) 、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g) を第1の磁製ボートに入
れ、また第2の磁製ボートに水酸化リチウム(無水)5.
00g(0.20モル)を入れ、両ボートを内容積2.8 リット
ルの電気管状炉内にセットし、酸素気流(1000 ml/分)
中750 ℃で7 時間加熱焼成した。その後、室温まで温度
を下げてから残存リチウム化合物の入った第2の磁製ボ
ートを取り除いた。第1ボート中の生成物(33g)であ
るニッケル酸リチウムの粉末X線回折(CuKα線)を
測定した結果、I003 /I104 (=R)=1.49、(I
006 +I012 )/I101 (=P)=0.52、およびΔ2 θ
((110)-(018))=0.34°であり、ほぼ理想的なLiNiO2
晶であった。また前記生成物中のLiを炎光光度法によ
り、Niを電位差滴定法により定量分析した結果Li/
Ni原子比は0.99であった。
(Example 1) 23.5 g (0.98 mol) of lithium hydroxide (anhydrous) and 92.7 g (1.00 mol) of nickel hydroxide were mixed (L
The i / Ni atomic ratio was 0.98), and the mixture was stirred and mixed in a ball mill for 24 hours. A portion (40 g) of this mixture was placed in the first porcelain boat and lithium hydroxide (anhydrous) in the second porcelain boat 5.
Insert 00 g (0.20 mol), set both boats in an electric tubular furnace with an internal volume of 2.8 liters, and oxygen flow (1000 ml / min)
The mixture was heated and calcined at 750 ° C for 7 hours. Then, after lowering the temperature to room temperature, the second porcelain boat containing the residual lithium compound was removed. As a result of measuring powder X-ray diffraction (CuKα ray) of lithium nickelate which is the product (33 g) in the first boat, I 003 / I 104 (= R) = 1.49, (I
006 + I 012 ) / I 101 (= P) = 0.52, and Δ2θ
( (110)-(018) ) = 0.34 °, which was an almost ideal LiNiO 2 crystal. Further, as a result of quantitative analysis of Li in the product by flame photometry and Ni by potentiometric titration, Li /
The Ni atomic ratio was 0.99.

【0022】このものを正極活物質として正極の作製を
行った。すなわち、活物質と導電剤であるケッチェンブ
ラックと結着剤としてのポリフッ化エチレン樹脂を重量
比で8:1:1となるように混合し(総重量1.25g)、
トルエン(3.00g)を加え樹脂を膨潤させながら十分に
混練した。さらにトルエンを蒸発させながら混練を続け
た。混練物をステンレス鋼製エキスパンドメッシュ(厚
さ100 ミクロン)上に圧着成形し、シートに成形した。
圧着は数回脱気を繰り返しながら90℃、200kg/cm2 で行
った。このシート(厚さ310 ミクロン)から直径9mm
の円盤を打ち抜き、15時間90℃で真空脱気を行い正極と
した。
A positive electrode was prepared using this as a positive electrode active material. That is, an active material, Ketjen black as a conductive agent, and polyfluorinated ethylene resin as a binder were mixed in a weight ratio of 8: 1: 1 (total weight 1.25 g),
Toluene (3.00 g) was added and the resin was swollen and sufficiently kneaded. Kneading was continued while further evaporating toluene. The kneaded product was pressure-molded on a stainless steel expanded mesh (thickness 100 μm) to form a sheet.
The pressure bonding was performed at 90 ° C. and 200 kg / cm 2 while repeating deaeration several times. 9mm diameter from this sheet (thickness 310 microns)
The disc was punched out and vacuum deaeration was performed at 90 ° C. for 15 hours to obtain a positive electrode.

【0023】電池は、ガラスセル内に20mm×20mm
(内径11mm、深さ15mm)のテフロン円筒(内部にネ
ジを切ってある。)を置き、テフロン円筒の中に、あら
かじめステンレス鋼製リード線を連結したステンレス鋼
製エキスパンドメッシュ集電体(厚さ100 ミクロン)を
入れ、上記作製のメッシュ付き正極のメッシュ側を集電
体に重ねて置き、更に、厚さ100 ミクロンのポリプロピ
レン製不織布、厚さ25ミクロンの多孔質ポリプロピレン
製セパレーター、負極(厚さ500 ミクロン;直径9mmリ
チウム箔)、あらかじめステンレス鋼製リード線を連結
した負極集電体(厚さ100 ミクロン)を順に重ねて入
れ、電解質液を十分しみ込ませてから上からテフロン棒
をねじ込み作製した。なお、ガラスセル内はアルゴン雰
囲気にして密栓してある。電解質液としては、LiPF6
プロピレンカーボネート(PC)とエチレンカーボネート(E
C)の1:1(容量ベース)混合溶媒中に溶解した1M溶
液を使用した。
The battery has a glass cell of 20 mm x 20 mm.
Place a Teflon cylinder (internal diameter: 11 mm, depth: 15 mm) (thread is cut inside), and inside the Teflon cylinder, a stainless steel expanded mesh current collector (thickness) with stainless steel lead wires connected in advance. 100 micron), put the mesh side of the positive electrode with the mesh prepared above on the current collector, and further put 100 micron thick polypropylene non-woven fabric, 25 micron thick porous polypropylene separator, negative electrode (thickness) 500 micron; diameter 9 mm lithium foil), a negative electrode current collector (thickness 100 micron) with stainless steel lead wires connected in advance, were placed in that order, fully impregnated with an electrolyte solution, and then a Teflon rod was screwed in from above. . The inside of the glass cell was sealed with an argon atmosphere. As the electrolyte solution, LiPF 6 was used as propylene carbonate (PC) and ethylene carbonate (E
A 1M solution of C) in 1: 1 (volume basis) mixed solvent was used.

【0024】この電池について、0.5mA/cm2 の充放電電
流密度で2.5 V〜4.2 Vの電圧規制充放電試験を20℃で
行った。サイクルによる容量維持率(放電容量値を1サ
イクル目の放電容量値(初期放電容量)で割った値
(%))、クーロン効率(放電容量を充電容量で割った
値(%))などを求めた。1サイクル目のクーロン効率
は電池がうまく馴染んでいないためか、94%と少し悪い
が、2サイクル目以降は97〜100 %と非常によいクーロ
ン効率を示した。結果を表1に示す。また図2に電池の
組立図を示す。
This battery was subjected to a voltage regulation charge / discharge test of 2.5 V to 4.2 V at a charge / discharge current density of 0.5 mA / cm 2 at 20 ° C. Obtain the capacity retention rate (value (%) obtained by dividing the discharge capacity value by the first cycle discharge capacity value (initial discharge capacity)), Coulomb efficiency (value obtained by dividing the discharge capacity by the charge capacity (%)), etc. It was The coulombic efficiency at the first cycle is a little bad at 94%, probably because the battery is not well-adapted, but at the second and subsequent cycles, it showed a very good coulombic efficiency of 97 to 100%. The results are shown in Table 1. Further, FIG. 2 shows an assembly drawing of the battery.

【0025】(実施例2)水酸化リチウム一水和物42.0
g(1.00モル)と水酸化ニッケル92.7g(1.00モル)と
を混合し(Li/Ni原子比で1.00) 、遊星ミルで5時間撹拌
混合した。この混合物の一部(40g)を第1の磁製ボー
トに入れ、また第2の磁製ボートに酸化リチウム1.00g
(0.034 モル)を入れ、両ボートを内容積2.8 リットル
の電気管状炉内にセットし、酸素気流(700ml/分)中 8
00℃で7 時間加熱焼成した。その後、室温まで温度を下
げてから残存酸化リチウムの入った第2の磁製ボートを
取り除いた。第1ボート中の生成物(28g)であるニッ
ケル酸リチウムについて粉末X線回折(CuKα線)を
測定するとともに、実施例1と同様にして電池評価を行
った。結果を表1に示す。なお生成物のLi/Ni原子
比は1.00であった。
(Example 2) Lithium hydroxide monohydrate 42.0
g (1.00 mol) and nickel hydroxide (92.7 g, 1.00 mol) were mixed (Li / Ni atomic ratio: 1.00), and the mixture was stirred and mixed in a planetary mill for 5 hours. A portion (40g) of this mixture was placed in the first porcelain boat and 1.00g of lithium oxide in the second porcelain boat.
(0.034 mol), put both boats in an electric tubular furnace with an internal volume of 2.8 liters, and place in an oxygen stream (700 ml / min).
It was baked by heating at 00 ° C for 7 hours. Then, after lowering the temperature to room temperature, the second porcelain boat containing the residual lithium oxide was removed. The powder X-ray diffraction (CuKα ray) was measured for the product (28 g) in the first boat, that is, lithium nickel oxide, and the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1. The Li / Ni atomic ratio of the product was 1.00.

【0026】(実施例3)硝酸リチウム65.5g(0.95モ
ル)と塩基性炭酸ニッケル(NiCO3・2Ni(OH)2・4H2O)12
5.4 g(0.333 モル)とを混合し(Li/Ni原子比で0.95)
、ボールミルで24時間撹拌混合した。この混合物の一
部(40g)を第1の磁製ボートに入れ、また第2の磁製
ボートに水酸化リチウム1.00g(0.042 モル)を入れ、
両ボートを内容積2.8 リットルの電気管状炉内にセット
し、酸素気流(500ml/分)中、750 ℃で7 時間加熱焼成
した。その後、室温まで温度を下げてから残存リチウム
化合物の入った第2の磁製ボートを取り除いた。第1ボ
ート中の生成物(20g)であるニッケル酸リチウムにつ
いて粉末X線回折(CuKα線)を測定するとともに、
実施例1と同様にして電池評価を行った。結果を表1に
示す。なお生成物のLi/Ni原子比は0.99であった。
[0026] (Example 3) Lithium nitrate 65.5 g (0.95 mol) and basic nickel carbonate (NiCO 3 · 2Ni (OH) 2 · 4H 2 O) 12
Mix with 5.4 g (0.333 mol) (Li / Ni atomic ratio 0.95)
The mixture was stirred and mixed with a ball mill for 24 hours. A portion (40 g) of this mixture was placed in the first porcelain boat and 1.00 g (0.042 mol) of lithium hydroxide was placed in the second porcelain boat.
Both boats were set in an electric tubular furnace with an internal volume of 2.8 liters, and heated and baked at 750 ° C for 7 hours in an oxygen stream (500 ml / min). Then, after lowering the temperature to room temperature, the second porcelain boat containing the residual lithium compound was removed. The powder X-ray diffraction (CuKα ray) was measured for lithium nickelate, which is the product (20 g) in the first boat, and
Battery evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. The Li / Ni atomic ratio of the product was 0.99.

【0027】(実施例4)水酸化リチウム25.1g(1.05
モル)と水酸化ニッケル92.7g(1.00モル)とを混合し
(Li/Ni原子比で1.05) 、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g)を第1の磁製ボートに入
れ、また第2の磁製ボートに水酸化リチウム1.00g(0.
042 モル)を入れ、両ボートを内容積2.8 リットルの電
気管状炉内にセットし、酸素気流(1000ml/ 分)中 750
℃で7 時間加熱焼成した。その後、残存リチウム化合物
の入った第2のボート及び第1のボートを炉から取り出
し急冷した。第1ボート中の生成物(33g)であるニッ
ケル酸リチウムについて粉末X線回折(CuKα線)を
測定するとともに、実施例1と同様にして電池評価を行
った。結果を表1に示す。なお生成物のLi/Ni原子
比は1.00であった。
(Example 4) 25.1 g (1.05) of lithium hydroxide
Mole) and 92.7 g (1.00 mole) of nickel hydroxide.
(Li / Ni atomic ratio 1.05), and the mixture was stirred and mixed in a ball mill for 24 hours. A portion (40 g) of this mixture was placed in the first porcelain boat and 1.00 g (0.
042 mol), both boats were set in an electric tubular furnace with an internal volume of 2.8 liters, and 750 in oxygen flow (1000 ml / min)
The mixture was heated and baked at ℃ for 7 hours. Then, the second boat and the first boat containing the residual lithium compound were taken out of the furnace and rapidly cooled. The powder X-ray diffraction (CuKα ray) was measured for lithium nickelate, which is the product (33 g) in the first boat, and the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1. The Li / Ni atomic ratio of the product was 1.00.

【0028】(実施例5)水酸化リチウム24.7g(1.03モ
ル) と水酸化ニッケル92.7g(1.00モル) とを混合し(Li
/Ni 原子比で1.03)、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g )を第1の磁製ボートに入
れ、また第2の磁製ボートに水酸化リチウム1.00g (0.0
42モル) を入れ、両ボートを内容積2.8 リットルの電気
管状炉内にセットし、酸素気流(1000ml/ 分)中 700℃
で20時間加熱焼成した。その後、室温まで温度を下げて
から第1ボート中の生成物(33g) であるニッケル酸リチ
ウムについて粉末X線回折(Cu Kα線)を測定するとと
もに、元素分析を行い、また実施例1と同様にして電池
評価を行った。結果を表1に示す。なお生成物のLi/
Ni原子比は1.01であった。
Example 5 Lithium hydroxide 24.7 g (1.03 mol) and nickel hydroxide 92.7 g (1.00 mol) were mixed (Li
/ Ni atomic ratio was 1.03), and the mixture was stirred and mixed in a ball mill for 24 hours. A portion (40 g) of this mixture was placed in the first porcelain boat and 1.00 g (0.0
42 mol), both boats were set in an electric tubular furnace with an internal volume of 2.8 liters, and the temperature was 700 ° C in an oxygen stream (1000 ml / min).
It was heated and baked for 20 hours. Then, after the temperature was lowered to room temperature, powder X-ray diffraction (Cu Kα ray) was measured for the product (33 g) in the first boat, lithium nickelate, and elemental analysis was performed, and the same as in Example 1. Then, the battery was evaluated. The results are shown in Table 1. The product Li /
The Ni atomic ratio was 1.01.

【0029】(実施例6)実施例5の混合物の一部(40
g) を第1の磁製ボートに入れ、また第2の磁製ボート
に水酸化リチウム2.00g (0.084モル) を入れ、両ボート
を内容積2.8 リットルの電気管状炉内にセットし、酸素
気流(2000ml/ 分)中 710℃で24時間加熱焼成した。そ
の後、室温まで温度を下げてから第1ボート中の生成物
(33g) であるニッケル酸リチウムについて粉末X線回折
(Cu Kα線)を測定するとともに、元素分析を行い、ま
た実施例1と同様にして電池評価を行った。結果を表1
に示す。なお生成物のLi/Ni原子比は1.01であっ
た。
Example 6 Part of the mixture of Example 5 (40
g) in the first porcelain boat, 2.00 g (0.084 mol) of lithium hydroxide in the second porcelain boat, and both boats were set in an electric tubular furnace with an internal volume of 2.8 liters and the oxygen flow was (2000ml / min) in 710 ℃ was heated and calcined for 24 hours. After that, the product in the first boat is cooled down to room temperature.
The powder X-ray diffraction (Cu Kα ray) of lithium nickelate (33 g) was measured, elemental analysis was performed, and battery evaluation was performed in the same manner as in Example 1. Table 1 shows the results
Shown in The Li / Ni atomic ratio of the product was 1.01.

【0030】(実施例7)水酸化リチウム23.7g(0.99モ
ル) と水酸化ニッケル92.7g(1.00モル) とを混合し(Li
/Ni 原子比で0.99)、ボールミルで24時間撹拌混合し
た。この混合物の一部(20g )を第1の磁製ボートに入
れ、また第2の磁製ボートに水酸化リチウム1.00g (0.0
42モル) を入れ、両ボートを内容積2.8 リットルの電気
管状炉内にセットし、酸素気流(2000ml/ 分)中 700℃
で20時間加熱焼成した。その後、室温まで冷却し、第1
ボート中の生成物(16.7g) であるニッケル酸リチウムの
粉末X線回折(Cu Kα線)を測定するとともに、実施例
1と同様にして電池評価を行った。結果を表1に示す。
なお生成物のLi/Ni原子比は0.99であった。
(Embodiment 7) 23.7 g (0.99 mol) of lithium hydroxide and 92.7 g (1.00 mol) of nickel hydroxide were mixed (Li
/ Ni atomic ratio was 0.99), and the mixture was stirred and mixed in a ball mill for 24 hours. A portion (20 g) of this mixture was placed in the first porcelain boat and 1.00 g (0.0
42 mol), both boats were set in an electric tubular furnace with an internal volume of 2.8 liters, and the temperature was 700 ° C in an oxygen stream (2000 ml / min).
It was heated and baked for 20 hours. Then cool to room temperature and
The powder X-ray diffraction (Cu Kα ray) of lithium nickelate, which is the product (16.7 g) in the boat, was measured, and the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
The Li / Ni atomic ratio of the product was 0.99.

【0031】(実施例8)水酸化リチウム24g(1.00モ
ル) と水酸化ニッケル92.7g(1.00モル) とを混合し(Li
/Ni 原子比で1.00)、ボールミルで24時間撹拌混合し
た。この混合物の一部(20g )を第1の磁製ボートに入
れ、また第2の磁製ボートに水酸化リチウム1.00g (0.0
42モル) を入れ、両ボートを内容積2.8 リットルの電気
管状炉内にセットし、酸素気流(2000ml/ 分)中 700℃
で24時間加熱焼成した。その後、室温まで冷却し、第1
ボート中の生成物(16.7g) であるニッケル酸リチウムの
粉末X線回折(Cu Kα線)を測定するとともに、実施例
1と同様にして電池評価を行った。結果を表1に示す。
なお生成物のLi/Ni原子比は1.00であった。
Example 8 24 g (1.00 mol) of lithium hydroxide and 92.7 g (1.00 mol) of nickel hydroxide were mixed (Li
/ Ni atomic ratio was 1.00), and the mixture was stirred and mixed with a ball mill for 24 hours. A portion (20 g) of this mixture was placed in the first porcelain boat and 1.00 g (0.0
42 mol), both boats were set in an electric tubular furnace with an internal volume of 2.8 liters, and the temperature was 700 ° C in an oxygen stream (2000 ml / min).
It was baked for 24 hours. Then cool to room temperature and
The powder X-ray diffraction (Cu Kα ray) of lithium nickelate, which is the product (16.7 g) in the boat, was measured, and the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
The Li / Ni atomic ratio of the product was 1.00.

【0032】(実施例9)実施例8の混合物の一部(40
g )を第1の磁製ボートに入れ、また第2の磁製ボート
に水酸化リチウム1.00g (0.042モル) を入れ、両ボート
を内容積2.8 リットルの電気管状炉内にセットし、乾燥
脱炭酸ガスした空気(1000ml/ 分)中 750℃で10時間加
熱焼成した。その後、室温まで冷却し、第1ボート中の
生成物(33g) であるニッケル酸リチウムについて粉末X
線回折(Cu Kα線)を測定するとともに、実施例1と同
様にして電池評価を行った。結果を表1に示す。なお生
成物のLi/Ni原子比は0.98であった。
(Example 9) A part of the mixture of Example 8 (40
g) into the first porcelain boat, and into the second porcelain boat, 1.00 g (0.042 mol) of lithium hydroxide. Both boats were placed in an electric tubular furnace with an internal volume of 2.8 liters and dried. The mixture was heated and calcined at 750 ° C. for 10 hours in carbon dioxide gas (1000 ml / min). Then, the mixture was cooled to room temperature, and the product (33 g) in the first boat, lithium nickel oxide, was powdered X.
The battery was evaluated in the same manner as in Example 1 while measuring the line diffraction (Cu Kα line). The results are shown in Table 1. The Li / Ni atomic ratio of the product was 0.98.

【0033】(比較例1)水酸化リチウム28.7g(1.20
モル)と水酸化ニッケル92.7g(1.00モル)とを混合し
(Li/Ni原子比で1.20) 、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g)を磁製ボートに入れ、内
容積2.8 リットルの電気管状炉内にセットし、酸素気流
(700ml/分)中750 ℃で7 時間加熱焼成した。その後室
温まで温度を下げ、生成物を取り出し、温水で十分洗浄
し、未反応のリチウム塩を除去した。その後、100 ℃で
15時間真空乾燥を行った。生成物(31g)は粉末X線回
折(CuKα線)を測定すると共に、実施例1と同様に
して電池評価を行った。結果を表1に示す。尚、実施例
1と同様にして測定した生成物のLi/Ni原子比は1.
00であった。
Comparative Example 1 Lithium hydroxide 28.7 g (1.20
Mole) and 92.7 g (1.00 mole) of nickel hydroxide.
(Li / Ni atomic ratio 1.20), and the mixture was stirred and mixed in a ball mill for 24 hours. A part (40 g) of this mixture was placed in a porcelain boat, set in an electric tubular furnace having an internal volume of 2.8 liters, and heated and baked at 750 ° C. for 7 hours in an oxygen stream (700 ml / min). After that, the temperature was lowered to room temperature, the product was taken out, and sufficiently washed with warm water to remove unreacted lithium salt. Then at 100 ° C
Vacuum drying was performed for 15 hours. The product (31 g) was subjected to powder X-ray diffraction (CuKα ray) measurement and battery evaluation in the same manner as in Example 1. The results are shown in Table 1. The Li / Ni atomic ratio of the product measured in the same manner as in Example 1 was 1.
00.

【0034】(比較例2)水酸化リチウム24.0g(1.00
モル)と水酸化ニッケル92.7g(1.00モル)とを混合し
(Li/Ni原子比で1.00) 、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g)を磁製ボートに入れ、内
容積2.8 リットルの電気管状炉内にセットし、酸素気流
(700ml/分)中750 ℃で7 時間加熱焼成した。その後室
温まで温度を下げ、生成物(33g)を取り出し、粉末X
線回折(CuKα線)を測定すると共に、実施例1と同
様にして電池評価を行った。結果を表1に示す。尚、生
成物のLi/Ni原子比は0.97であった。
Comparative Example 2 Lithium hydroxide 24.0 g (1.00
Mole) and 92.7 g (1.00 mole) of nickel hydroxide.
(Li / Ni atomic ratio was 1.00) and the mixture was stirred and mixed in a ball mill for 24 hours. A part (40 g) of this mixture was placed in a porcelain boat, set in an electric tubular furnace having an internal volume of 2.8 liters, and heated and baked at 750 ° C. for 7 hours in an oxygen stream (700 ml / min). After that, the temperature was lowered to room temperature, the product (33 g) was taken out, and powder X
The battery was evaluated in the same manner as in Example 1 while measuring the line diffraction (CuKα ray). The results are shown in Table 1. The Li / Ni atomic ratio of the product was 0.97.

【0035】(比較例3)水酸化リチウム25.1g(1.05
モル)と水酸化ニッケル92.7g(1.00モル)とを混合し
(Li/Ni原子比1.05) 、ボールミルで24時間撹拌混合し
た。この混合物の一部(40g)を磁製ボートに入れ、内
容積2.8 リットルの電気管状炉内にセットし、酸素気流
(1000 ml/分)中750 ℃で7 時間加熱焼成した。その
後、室温まで温度を下げ、生成物(33g)を取り出し、
粉末X線回折(CuKα線)を測定すると共に、実施例
1と同様にして電池評価を行った。結果を表1に示す。
尚、生成物のLi/Ni原子比は1.03であった。
(Comparative Example 3) 25.1 g of lithium hydroxide (1.05
Mole) and 92.7 g (1.00 mole) of nickel hydroxide.
(Li / Ni atomic ratio 1.05) and the mixture was stirred and mixed in a ball mill for 24 hours. A part (40 g) of this mixture was put in a porcelain boat, set in an electric tubular furnace having an internal volume of 2.8 liters, and heated and baked in an oxygen stream (1000 ml / min) at 750 ° C. for 7 hours. After that, the temperature was lowered to room temperature, the product (33 g) was taken out,
The powder X-ray diffraction (CuKα ray) was measured, and the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
The Li / Ni atomic ratio of the product was 1.03.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上述べたように、本発明のニッケル酸
リチウムの製造方法により製造したニッケル酸リチウム
をリチウム二次電池用正極活物質として用いることによ
り、初期放電容量(1サイクル目)が大きく、クーロン
効率と容量維持率が高く、サイクル特性の良い電池が得
られる。また、本発明のニッケル酸リチウムの製造方法
はリチウム/ニッケル原子比を容易に制御しつつ、高品
質のニッケル酸リチウムを安定して製造することができ
る。更に本発明のニッケル酸リチウムの製造方法を用い
ることによりリチウム二次電池用正極活物質の大量工業
生産が可能となる。
As described above, by using the lithium nickelate produced by the method for producing lithium nickelate of the present invention as the positive electrode active material for the lithium secondary battery, the initial discharge capacity (first cycle) is increased. , Coulomb efficiency and capacity retention rate are high, and batteries with good cycle characteristics can be obtained. In addition, the method for producing lithium nickelate of the present invention can stably produce high-quality lithium nickelate while easily controlling the lithium / nickel atomic ratio. Further, by using the method for producing lithium nickel oxide of the present invention, it becomes possible to mass-produce industrially a positive electrode active material for a lithium secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により製造されたニッケル酸リチ
ウムのX線回折図である。
FIG. 1 is an X-ray diffraction pattern of lithium nickelate produced by the method of the present invention.

【図2】非水電解質二次電池の特性測定用電池セルの断
面図である。
FIG. 2 is a cross-sectional view of a battery cell for measuring characteristics of a non-aqueous electrolyte secondary battery.

【図3】P/Rと初期放電容量の関係を示す図である。FIG. 3 is a diagram showing a relationship between P / R and initial discharge capacity.

【符号の説明】[Explanation of symbols]

1 負極用リード線 2 負極集電体 3 負極 4 セパレーター 5 不織布 6 正極 7 正極集電体 8 正極リード線 9 テフロン製容器及びテフロン棒 1 Negative electrode lead wire 2 Negative electrode current collector 3 Negative electrode 4 Separator 5 Nonwoven fabric 6 Positive electrode 7 Positive electrode current collector 8 Positive electrode lead wire 9 Teflon container and Teflon rod

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 粉末X線回折における(006 )面のピーク
強度(I006)、(012 )面のピーク強度(I012)、(101 )面の
ピーク強度(I101)、 (003 ) 面のピーク強度(I003)、(1
04 )面のピーク強度(I104)において、(I006 +I
012 )/I101 =P、I003 /I104 =Rとしたとき、
P/R≦0.41で且つLi/Ni原子比が0.98〜1.01であ
るニッケル酸リチウムであり、正極にこのニッケル酸リ
チウムを正極活物質として用い、金属リチウムを負極と
し、LiPF6 のプロピレンカーボネート/エチレンカーボ
ネート(容量比1/1)溶液(1M)を電解質液とする
非水電解質リチウム二次電池の20℃での充放電試験に
おける初期放電容量(1サイクル目)が 2.5〜4.2Vの電
圧範囲で180mAh/g以上であるニッケル酸リチウム。
1. A powder X-ray diffraction peak intensity of (006) plane (I 006 ), peak intensity of (012) plane (I 012 ), peak intensity of (101) plane (I 101 ), (003) plane Peak intensity (I 003 ), (1
In the peak intensity (I 104 ) of the (04) plane, (I 006 + I
012 ) / I 101 = P, I 003 / I 104 = R,
Lithium nickelate having P / R ≦ 0.41 and Li / Ni atomic ratio of 0.98 to 1.01, using this lithium nickelate as a positive electrode active material in the positive electrode, using metallic lithium as the negative electrode, and propylene carbonate / ethylene of LiPF 6. The initial discharge capacity (first cycle) in the charge / discharge test at 20 ° C of the non-aqueous electrolyte lithium secondary battery using the carbonate (capacity ratio 1/1) solution (1M) as the electrolyte solution is in the voltage range of 2.5 to 4.2V. Lithium nickelate that is 180mAh / g or more.
【請求項2】 P/R≦0.39であり、且つ前記初期放電
容量(1サイクル目)が2.5 〜4.2Vの電圧範囲で190mAh
/g以上である請求項1記載のニッケル酸リチウム。
2. P / R ≦ 0.39, and 190 mAh in the voltage range of the initial discharge capacity (first cycle) of 2.5 to 4.2 V.
The lithium nickelate according to claim 1, which is not less than / g.
【請求項3】 P/R≦0.37であり、且つ前記初期放電
容量(1サイクル目)が2.5 〜4.2Vの電圧範囲で210mAh
/g以上である請求項1記載のニッケル酸リチウム。
3. P / R ≦ 0.37, and said initial discharge capacity (first cycle) is 210 mAh in the voltage range of 2.5 to 4.2V.
The lithium nickelate according to claim 1, which is not less than / g.
【請求項4】 粉末X線回折における(018 )面のピーク
位置と(110 )面のピーク位置との分離△2 θ(
(110)-(018))が0.32〜0.34゜である請求項1〜3のい
ずれかに記載のニッケル酸リチウム。
4. Separation of the peak position of the (018) plane and the peak position of the (110) plane in powder X-ray diffraction from Δ 2 θ (
The lithium nickelate according to any one of claims 1 to 3, wherein (110)-(018) ) is 0.32 to 0.34 °.
【請求項5】 リチウム化合物とニッケル化合物との混
合物を酸化性雰囲気下で加熱焼成する際に、焼成系内に
存在する前記混合物と気相を通じてのみ接触するような
状態でもう1つのリチウム化合物を共存させることを特
徴とする製造方法により得られる請求項1〜4のいずれ
かに記載のニッケル酸リチウム。
5. When a mixture of a lithium compound and a nickel compound is heated and fired in an oxidizing atmosphere, another lithium compound is mixed with the mixture present in the firing system only in the vapor phase. The lithium nickelate according to any one of claims 1 to 4, which is obtained by a production method characterized by being coexistent.
【請求項6】 リチウム化合物とニッケル化合物との混
合物を酸化性雰囲気下で加熱焼成してニッケル酸リチウ
ムを製造する方法において、焼成系内に存在する前記混
合物と気相を通じてのみ接触するような状態でもう1つ
のリチウム化合物を共存させ、焼成後残存する前記共存
リチウム化合物を取り除くことを特徴とするニッケル酸
リチウムの製造方法。
6. A method for producing lithium nickel oxide by heating and firing a mixture of a lithium compound and a nickel compound in an oxidizing atmosphere, wherein the mixture present in the firing system is in contact only through the gas phase. In the method for producing lithium nickelate, another lithium compound is allowed to coexist with, and the coexisting lithium compound remaining after firing is removed.
【請求項7】 混合物中のLi/Ni原子比が0.95
以上1.05以下である請求項6記載のニッケル酸リチ
ウムの製造方法。
7. The Li / Ni atomic ratio in the mixture is 0.95.
The method for producing lithium nickelate according to claim 6, which is not less than 1.05 and not more than 1.05.
【請求項8】 リチウム化合物として水酸化リチウム、
その水和物、硝酸リチウムおよび酸化リチウムからなる
群から選ばれる少なくとも一種を用いる請求項6または
7記載のニッケル酸リチウムの製造方法。
8. Lithium hydroxide as a lithium compound,
The method for producing lithium nickelate according to claim 6 or 7, wherein at least one selected from the group consisting of the hydrate, lithium nitrate and lithium oxide is used.
【請求項9】 ニッケル化合物として2価のニッケルの
酸化物または水酸化物系化合物を用いる請求項6〜8の
いずれかに記載のニッケル酸リチウムの製造方法。
9. The method for producing lithium nickelate according to claim 6, wherein a divalent nickel oxide or hydroxide compound is used as the nickel compound.
【請求項10】 ニッケル化合物として水酸化ニッケ
ル、酸化ニッケル、塩基性炭酸ニッケルもしくはその水
和物からなる群から選ばれる少なくとも一種を用いる請
求項6〜8のいずれかに記載のニッケル酸リチウムの製
造方法。
10. The production of lithium nickelate according to claim 6, wherein at least one selected from the group consisting of nickel hydroxide, nickel oxide, basic nickel carbonate or a hydrate thereof is used as the nickel compound. Method.
【請求項11】 混合物が硝酸リチウムと塩基性炭酸ニ
ッケルの混合物である請求項6または7記載のニッケル
酸リチウムの製造方法。
11. The method for producing lithium nickelate according to claim 6, wherein the mixture is a mixture of lithium nitrate and basic nickel carbonate.
JP20609096A 1996-01-30 1996-08-05 Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same Expired - Fee Related JP3671531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20609096A JP3671531B2 (en) 1996-01-30 1996-08-05 Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-14220 1996-01-30
JP1422096 1996-01-30
JP20609096A JP3671531B2 (en) 1996-01-30 1996-08-05 Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005016816A Division JP2005187326A (en) 1996-01-30 2005-01-25 Method for producing lithium nickelate

Publications (2)

Publication Number Publication Date
JPH09270260A true JPH09270260A (en) 1997-10-14
JP3671531B2 JP3671531B2 (en) 2005-07-13

Family

ID=26350129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20609096A Expired - Fee Related JP3671531B2 (en) 1996-01-30 1996-08-05 Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3671531B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
JP2012234814A (en) * 2011-05-02 2012-11-29 Samsung Corning Precision Materials Co Ltd Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material produced thereby, and lithium ion secondary battery including the same
JP2013112531A (en) * 2011-11-25 2013-06-10 Tanaka Chemical Corp Lithium metal composite oxide and method for producing the same
WO2017082083A1 (en) * 2015-11-10 2017-05-18 Necエナジーデバイス株式会社 Lithium ion secondary battery and method for manufacturing same
CN112151789A (en) * 2019-06-28 2020-12-29 宁德时代新能源科技股份有限公司 Positive electrode material and preparation method and application thereof
CN114914440A (en) * 2022-06-10 2022-08-16 蜂巢能源科技股份有限公司 Ultrahigh-nickel polycrystalline nickel aluminum magnesium lithium zirconate positive electrode material and preparation method and application thereof
JP2022159119A (en) * 2021-03-31 2022-10-17 エコプロ ビーエム カンパニー リミテッド Positive electrode active material and lithium secondary battery using the same
WO2024012605A1 (en) * 2022-07-12 2024-01-18 宁波致良新能源有限公司 Lithium nickelate positive electrode material and preparation method therefor, and application

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
JP2012234814A (en) * 2011-05-02 2012-11-29 Samsung Corning Precision Materials Co Ltd Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material produced thereby, and lithium ion secondary battery including the same
US9325006B2 (en) 2011-05-02 2016-04-26 Samsung Sdi Co., Ltd. Method for preparing positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
JP2013112531A (en) * 2011-11-25 2013-06-10 Tanaka Chemical Corp Lithium metal composite oxide and method for producing the same
WO2017082083A1 (en) * 2015-11-10 2017-05-18 Necエナジーデバイス株式会社 Lithium ion secondary battery and method for manufacturing same
JPWO2017082083A1 (en) * 2015-11-10 2018-08-23 Necエナジーデバイス株式会社 Lithium ion secondary battery and manufacturing method thereof
CN112151789A (en) * 2019-06-28 2020-12-29 宁德时代新能源科技股份有限公司 Positive electrode material and preparation method and application thereof
CN112151789B (en) * 2019-06-28 2021-10-01 宁德时代新能源科技股份有限公司 Positive electrode material and preparation method and application thereof
US11955633B2 (en) 2019-06-28 2024-04-09 Contemporary Amperex Technology Co., Limited Positive electrode material and preparation method and usage thereof
JP2022159119A (en) * 2021-03-31 2022-10-17 エコプロ ビーエム カンパニー リミテッド Positive electrode active material and lithium secondary battery using the same
CN114914440A (en) * 2022-06-10 2022-08-16 蜂巢能源科技股份有限公司 Ultrahigh-nickel polycrystalline nickel aluminum magnesium lithium zirconate positive electrode material and preparation method and application thereof
CN114914440B (en) * 2022-06-10 2024-03-29 蜂巢能源科技股份有限公司 Ultrahigh nickel polycrystal nickel aluminum magnesium lithium zirconate anode material and preparation method and application thereof
WO2024012605A1 (en) * 2022-07-12 2024-01-18 宁波致良新能源有限公司 Lithium nickelate positive electrode material and preparation method therefor, and application

Also Published As

Publication number Publication date
JP3671531B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP6382649B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte battery, battery pack, and vehicle
Hong et al. Structural evolution of layered Li 1.2 Ni 0.2 Mn 0.6 O 2 upon electrochemical cycling in a Li rechargeable battery
JP3846601B2 (en) Positive electrode active material for lithium battery, method for producing the same, and battery comprising the active material
JP4326041B2 (en) Doped intercalation compound and method for producing the same
JP4106186B2 (en) Layered lithium metal oxide free of localized cubic spinel-like structural phase and method for producing the same
EP2214234B1 (en) Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
EP2128915A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
Nageswaran et al. Morphology controlled Si-modified LiNi0. 5Mn1. 5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries
CA2672072A1 (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2001043860A (en) Positive-electrode active material for lithium secondary battery and its manufacture
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
JP2001192210A (en) Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
EP3657581A1 (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2000149942A (en) Lithium-manganese composite oxide and lithium secondary battery using it as positive electrode active material
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JPH09270260A (en) Lithium nickelate as positive electrode active material of lithium secondary battery and manufacture thereof
JPH10106566A (en) Manufacture of positive electrode active material for lithium secondary battery
Cressent et al. Electrochemical performance comparison between β-type mixed nickel cobalt hydroxides prepared by various synthesis routes
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP4246283B2 (en) Lithium-containing composite metal oxide, its production method and use
JP2005187326A (en) Method for producing lithium nickelate
JP2002151079A (en) Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
JP2005522832A (en) Manufacturing process of cathode material for lithium battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees