JPH09269313A - Method for measuring concentration of steam by limit current type gas sensor and apparatus therefor - Google Patents

Method for measuring concentration of steam by limit current type gas sensor and apparatus therefor

Info

Publication number
JPH09269313A
JPH09269313A JP8103190A JP10319096A JPH09269313A JP H09269313 A JPH09269313 A JP H09269313A JP 8103190 A JP8103190 A JP 8103190A JP 10319096 A JP10319096 A JP 10319096A JP H09269313 A JPH09269313 A JP H09269313A
Authority
JP
Japan
Prior art keywords
water vapor
sensor
vapor concentration
concentration
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8103190A
Other languages
Japanese (ja)
Other versions
JP3421192B2 (en
Inventor
Hideaki Yagi
秀明 八木
Katsuhiko Horii
克彦 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10319096A priority Critical patent/JP3421192B2/en
Publication of JPH09269313A publication Critical patent/JPH09269313A/en
Application granted granted Critical
Publication of JP3421192B2 publication Critical patent/JP3421192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously and accurately measure the concn. of steam by using a limit current type gas sensor. SOLUTION: A sensor calculates the ratio SL1 /SL1 ' of the oxygen concn. output signal SL1 shown corresponding to definite oxygen concn. Po by the sensor and the oxygen concn. output signal SL1 ' shown corresponding to the same oxygen concn. Po thereafter by the sensor to set the same an oxygen concn. correction factor (k) and multiplies the steam concn. output signal SL2 ' shown corresponding to steam concn. PH by the oxygen concn. correction factor (k) to calculate a correction signal k*SL2 '. The concn. of steam is operated from the correction signal k*SL2 ' on reference to the corresponding relation PH=f(SL2 ) [f; function mark] with the steam concn. PH and the steam concn. output signal SL2 of the sensor before deterioration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質を用い
て、その内部を移動するイオンに基づく限界電流値から
水蒸気濃度を検出する限界電流式ガスセンサによる水蒸
気濃度測定方法及びそれを用いた測定装置に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring water vapor concentration by a limiting current type gas sensor which detects a water vapor concentration from a limiting current value based on ions moving inside a solid electrolyte, and a measuring apparatus using the same. Belong to.

【0002】[0002]

【従来の技術】従来より、図9に示すように、ジルコニ
ア等の固体電解質基板30の表面に陰陽一対の電極3
1,32を設けるとともに、外気から陰極32に通じる
気体流入口を微小な孔33とし、陰極32に向かう気体
拡散を制限することにより、その制限された気体が陰極
32表面でイオン化されて固体電解質基板30内部を移
動する際に生じる限界電流値から、ガス濃度を検出する
センサ(以下、「限界電流式ガスセンサ」という。)が
知られている。
2. Description of the Related Art Conventionally, as shown in FIG. 9, a pair of negative and positive electrodes 3 are formed on the surface of a solid electrolyte substrate 30 such as zirconia.
1 and 32 are provided, and the gas inlet port communicating from the outside air to the cathode 32 is made into a minute hole 33 to limit the gas diffusion toward the cathode 32, so that the limited gas is ionized on the surface of the cathode 32 and the solid electrolyte is formed. A sensor (hereinafter, referred to as “limit current type gas sensor”) that detects a gas concentration based on a limit current value generated when the substrate 30 moves inside is known.

【0003】この限界電流式ガスセンサは、ガス濃度に
応じて正勾配をもって線形的に変化する限界電流を出力
する。従って、水蒸気センサとして利用する場合、既知
の水蒸気濃度とその限界電流値との対応関係を予め把握
しておけば、センサを測定雰囲気においたときの限界電
流値から水蒸気濃度を検出して濃度表示装置に表示する
ことができる。
This limiting current type gas sensor outputs a limiting current that linearly changes with a positive gradient according to the gas concentration. Therefore, when used as a water vapor sensor, if the correspondence between the known water vapor concentration and its limiting current value is known in advance, the water vapor concentration is detected from the limiting current value when the sensor is placed in the measurement atmosphere and the concentration is displayed. Can be displayed on the device.

【0004】ところが、限界電流式ガスセンサを用いた
検出装置において、測定雰囲気によっては長期間使用す
ると、センサの劣化により印加電圧に対する出力が低下
して測定誤差を生じる。すなわち、測定ガスが水蒸気で
あるときは、同一水蒸気濃度に対して限界電流値が低下
することとなり、実際の水蒸気濃度よりも低濃度を表示
する。
However, in a detector using the limiting current type gas sensor, if it is used for a long time depending on the measurement atmosphere, the output with respect to the applied voltage is lowered due to the deterioration of the sensor, resulting in a measurement error. That is, when the measurement gas is water vapor, the limiting current value decreases for the same water vapor concentration, and a concentration lower than the actual water vapor concentration is displayed.

【0005】このように劣化したセンサの出力を補正す
る従来の方法は、次のようなものである。(1)センサを
湿度発生槽等の既知の水蒸気濃度の雰囲気に入れて出力
を補正する。(2)同じ限界電流式ガスセンサを用いて酸
素濃度を測定するときも、同一酸素濃度に対して限界電
流値が低下していることから、表示酸素濃度が大気中の
酸素濃度である20.8%となるようにアンプの可変抵
抗等を調整することにより出力を補正する(特開平6−
317559号段落番号0019)。
A conventional method for correcting the output of the sensor thus deteriorated is as follows. (1) Put the sensor in an atmosphere of known water vapor concentration such as a humidity generation tank to correct the output. (2) Even when measuring the oxygen concentration using the same limiting current type gas sensor, the limiting oxygen value decreases for the same oxygen concentration, so the displayed oxygen concentration is 20.8 in the atmosphere. The output is corrected by adjusting the variable resistance of the amplifier so that the ratio becomes% (Japanese Patent Laid-Open No. 6-
317559, paragraph number 0019).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記(1)の補
正方法では、湿度発生槽等の大がかりな装置が必要であ
るから、センサの取り付け場所で補正することができな
い。また、上記(2)の方法では、濃度対限界電流値の線
形関係を平行移動させることはできるが、勾配を補正す
ることはできない。
However, in the correction method of the above (1), since a large-scale device such as a humidity generation tank is required, the correction cannot be performed at the sensor mounting location. Further, in the above method (2), the linear relationship between the concentration and the limiting current value can be translated, but the slope cannot be corrected.

【0007】それ故、この発明の第1の目的は、限界電
流式ガスセンサを用いて、連続して正確に水蒸気濃度を
測定できる方法とその方法を利用した簡易な測定装置と
を提供することにある。第2の目的は、センサを特性の
異なる別のものと交換した場合でも、センサ取り付け場
所で短時間で出力を補正し継続して水蒸気濃度を測定で
きる方法とその方法を利用した水蒸気濃度測定装置を提
供することにある。
Therefore, a first object of the present invention is to provide a method capable of continuously and accurately measuring the water vapor concentration using a limiting current type gas sensor, and a simple measuring apparatus using the method. is there. A second object is a method for correcting the output in a short time and continuously measuring the water vapor concentration at the place where the sensor is attached, and a water vapor concentration measuring apparatus using the method even when the sensor is replaced with another one having different characteristics. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の限界電流式ガスセンサによる水蒸気濃度
測定方法は、酸素イオン伝導性の固体電解質基板、それ
に密着した陰陽一対の電極及び陰極への気体拡散を制限
する気体拡散制限手段を有するセンサを用い、それら電
極間に直流電圧を印加したときの出力信号に基づいて水
蒸気濃度を測定する方法において、該センサが一定の酸
素濃度PO応じて示す酸素濃度出力信号SL1とその後
にセンサが同一酸素濃度POに応じて示す酸素濃度出力
信号SL1’との比SL1/SL1’を求めてそれを酸素濃度
補正係数kとし、センサが水蒸気濃度PHに応じて示す
水蒸気濃度出力信号SL2’に酸素濃度補正係数kを乗じ
て補正信号k*SL2’を算出し、水蒸気濃度PHと劣化
前のセンサの水蒸気濃度出力信号SL2との対応関係PH
=f(SL2)[f:関数記号]を参照して補正信号k*
L2’から水蒸気濃度を演算することを特徴とする。
In order to achieve the above object, a method for measuring water vapor concentration by a limiting current type gas sensor according to the present invention is applied to an oxygen ion conductive solid electrolyte substrate, a pair of positive and negative electrodes and a cathode in close contact therewith. using a sensor having a gas diffusion limiting means for limiting the gas diffusion, a method of measuring the water vapor concentration on the basis of the output signal when a DC voltage is applied between the electrodes, the sensor is response to the constant oxygen concentration PO oxygen concentration output signal then the sensor and S L1 is it seeking 'ratio S L1 / S L1 of the' oxygen concentration output signal S L1 and the oxygen concentration correction coefficient k shown in accordance with the same oxygen concentration P O indicating Te, The correction signal k * S L2 'is calculated by multiplying the water vapor concentration output signal S L2 ' shown according to the water vapor concentration P H by the oxygen concentration correction coefficient k, and the water vapor concentration P H and the water vapor concentration of the sensor before deterioration are calculated. Correspondence P H with output signal S L2
= F (S L2 ) [f: function symbol] and the correction signal k *
It is characterized in that the water vapor concentration is calculated from S L2 '.

【0009】同じく、この発明の水蒸気濃度測定装置
は、酸素イオン伝導性の固体電解質基板、それに密着し
た陰陽一対の電極及び陰極への気体拡散を制限する気体
拡散制限手段を有するセンサと該センサが一定の酸素濃
度POに応じて示す酸素濃度出力信号SL1とその後にセ
ンサが同一酸素濃度POに応じて示す酸素濃度出力信号
L1’との比SL1/SL1’を求めてそれを酸素濃度補正
係数kとし、センサが水蒸気濃度PHに応じて示す水蒸
気濃度出力信号SL2’に酸素濃度補正係数kを乗じて補
正信号k*SL2’を算出する出力補正演算手段と、水蒸
気濃度PHと劣化前のセンサの水蒸気濃度出力信号SL2
との対応関係PH=f(SL2)[f:関数記号]を参照
して補正信号k*SL2’から水蒸気濃度を演算する出力
演算手段とを備えたことを特徴とする。
Similarly, in the water vapor concentration measuring apparatus of the present invention, the oxygen ion conductive solid electrolyte substrate, a sensor having a pair of negative and positive electrodes and a gas diffusion limiting means for limiting gas diffusion to the cathode, and the sensor are provided. The ratio S L1 / S L1 'of the oxygen concentration output signal S L1 which shows according to the constant oxygen concentration P O and the oxygen concentration output signal S L1 ' which shows afterwards the sensor shows the same oxygen concentration P O is found and calculated. was the oxygen concentration correction coefficient k, and output correction calculation means sensor to calculate the 'corrected signal k * S L2 is multiplied by the oxygen concentration correction factor k' steam concentration output signal S L2 shown in accordance with the water vapor concentration P H, Water vapor concentration P H and water vapor concentration output signal S L2 of the sensor before deterioration
And the output calculation means for calculating the water vapor concentration from the correction signal k * S L2 'with reference to the correspondence P H = f (S L2 ) [f: function symbol].

【0010】尚、酸素濃度補正係数kに代えて、該セン
サが一定の水蒸気濃度PHに応じて示す水蒸気濃度出力
信号SHとその後にセンサが同一水蒸気濃度PHに応じて
示す水蒸気濃度出力信号SH’との比SH/SH’を求め
てそれを補正係数k(この場合は水蒸気濃度補正係数と
なる)とし、センサが水蒸気濃度PHに応じて示す水蒸
気濃度出力信号SL2’に水蒸気濃度補正係数kを乗じて
補正信号k*SL2’を算出してもよいが、水蒸気濃度の
補正の度に一定の水蒸気濃度を設定することはわずらわ
しいので、kを酸素濃度補正係数として求めるのが好ま
しい。
In place of the oxygen concentration correction coefficient k, a water vapor concentration output signal S H which the sensor indicates in response to a constant water vapor concentration P H and a water vapor concentration output which the sensor subsequently indicates in response to the same water vapor concentration P H signal S seeking 'ratio S H / S H and' H to it with the correction coefficient k (this becomes water vapor concentration correction coefficient in this case), the water vapor concentration output signal S L2 indicating sensor in response to water vapor concentration P H The correction signal k * S L2 'may be calculated by multiplying' by the water vapor concentration correction coefficient k, but it is troublesome to set a constant water vapor concentration each time the water vapor concentration is corrected. Is preferably calculated as

【0011】本発明者等は、限界電流式ガスセンサの印
加電圧対限界電流値特性において、図5に示すように、
酸素濃度に対し、第1の平坦部F1に現れる第1の拡散
制限電流値IL1と水蒸気濃度に対し、第2の平坦部F2
に現れる第2の拡散制限電流値IL2は、各センサ素子毎
にまたセンサ素子の劣化の程度に応じて異なるものであ
るが、IL1/IL2比は、同一酸素濃度下で同一温度では
センサあるいはその劣化の程度が異なっても一定であ
り、水蒸気濃度に応じてのみ変化するものであることを
見出し、前記IL1/IL2比に基づいて水蒸気濃度を求め
ることを提案した(特開平4−50763号公報)。
As shown in FIG. 5, the inventors of the present invention have shown the characteristics of applied voltage versus limiting current value of the limiting current type gas sensor as shown in FIG.
With respect to the oxygen concentration, the first diffusion limiting current value I L1 appearing in the first flat portion F1 and the second flat portion F2 with respect to the water vapor concentration.
The second diffusion limiting current value I L2 appearing in the above is different for each sensor element and according to the degree of deterioration of the sensor element, but the I L1 / I L2 ratio is the same at the same oxygen concentration and at the same temperature. It has been found that the sensor or the degree of deterioration thereof is constant even if it is different, and that it changes only in accordance with the water vapor concentration, and it has been proposed to obtain the water vapor concentration based on the I L1 / I L2 ratio (Japanese Patent Laid-Open No. Hei 10-1999) 4-50763).

【0012】本発明は、IL1/IL2比が一定である原理
を利用して、さらに例えば大気中の酸素濃度が一定であ
ることを利用し、上記特徴を備えることにより水蒸気濃
度を長期的に正確に測定することを可能にする。すなわ
ち、IL1/IL2比が一定であるということは、センサの
交換あるいはセンサの劣化に伴って、第1の平坦部F1
に現れる拡散制限電流値及び第2の平坦部F2に現れる
拡散制限電流値がそれぞれIL1’及びIL2’に変化して
も、その比IL1’/IL2’は交換前又は劣化前のIL1
L2比に等しい。式に表せばIL1/IL2=IL1’/
L2’である。従ってIL1/IL1’=IL2/IL2’(=
k)も常に成り立つ。
The present invention utilizes the principle that the I L1 / I L2 ratio is constant, and further utilizes, for example, that the oxygen concentration in the atmosphere is constant. Allows to measure accurately. That is, the fact that the I L1 / I L2 ratio is constant means that the first flat portion F1 is accompanied by the replacement of the sensor or the deterioration of the sensor.
Even if the diffusion limiting current value appearing in the above and the diffusion limiting current value appearing in the second flat portion F2 change to I L1 'and I L2 ', respectively, the ratio I L1 '/ I L2 ' I L1 /
It is equal to the I L2 ratio. Expressed in the formula, I L1 / I L2 = I L1 '/
I L2 '. Therefore, I L1 / I L1 '= I L2 / I L2 ' (=
k) always holds.

【0013】さて、水蒸気濃度に応じた、劣化センサの
第2の拡散制限電流値IL2’を補正する場合、劣化する
前の第2の拡散制限電流値IL2を基準にして劣化後のI
L2’がどれだけ変化したかを比(α=IL2’/IL2)で
求め、このαの逆数を補正係数(k=1/α)として用
いることもできるが、この補正方法は劣化前のIL2を測
定したときと同じ測定雰囲気条件(同一水蒸気濃度、同
一温度及び同一酸素濃度)を必要とする。
[0013] Now, according to the water vapor concentration, when correcting the second diffusion limit current value I L2 'degradation sensor, after degradation with respect to the second diffusion limit current value I L2 before degradation I
It is also possible to find how much L2 'changes with a ratio (α = I L2 ' / I L2 ) and use the reciprocal of this α as a correction coefficient (k = 1 / α). The same measurement atmosphere conditions (the same water vapor concentration, the same temperature, and the same oxygen concentration) as in the measurement of I L2 are required.

【0014】一方、本発明においては、劣化センサのI
L2’を補正する場合、劣化前の第1の拡散制限電流値I
L1を基準にして劣化後の第1の拡散制限電流値IL1’が
この基準に対してどれだけ変化したかを比(IL1’/I
L1=1/k)で求め、このkを補正係数に用いて劣化後
の第2の拡散制限電流値IL2’又はIL2’に関連する水
蒸気濃度(後述のSL2’)等のデータを補正するもので
あり、有利な点は上述の方法に比べて、同一の水蒸気濃
度を必要としないことにある。
On the other hand, in the present invention, the deterioration sensor I
When correcting L2 ', the first diffusion limit current value I before deterioration is
The ratio (I L1 '/ I) of how much the first diffusion limiting current value I L1 ' after deterioration with respect to L1 has changed with respect to this standard.
L1 = 1 / k), and using this k as a correction coefficient, data such as water vapor concentration (S L2 'described later) related to the second diffusion limiting current value I L2 ' or I L2 'after deterioration is obtained. It is a correction and the advantage is that it does not require the same water vapor concentration compared to the method described above.

【0015】つまり、IL1は、水蒸気濃度に対して独立
したパラメータであり、大気中の酸素濃度が20.8%
と一定であることから、それを基準として水蒸気濃度を
容易且つ確実に補正することができる。
That is, I L1 is a parameter independent of the water vapor concentration, and the oxygen concentration in the atmosphere is 20.8%.
Since it is constant, the water vapor concentration can be easily and surely corrected with reference to it.

【0016】そこで、劣化前のセンサが例えば大気中の
ように既知の酸素濃度POに応じて示す第1の拡散制限
電流値IL1と、その後に交換され又は経時的に劣化した
センサが同一酸素濃度POに応じて示す第1の拡散制限
電流値IL1’との比IL1/IL1’を求めてそれを酸素濃
度補正係数kとする。ここで、酸素濃度補正係数kは、
比であって、各々の拡散制限電流値の絶対値を求めるこ
とは重要ではない。従って、拡散制限電流値の比に限ら
ず、拡散制限電流値を増幅した値の比であっても良い
し、電圧信号やデジタル信号に変換した値の比であって
も良い。よって、kを酸素濃度出力信号の比SL1
L1’とする。
Therefore, the first diffusion limiting current value I L1 which the sensor before deterioration shows according to a known oxygen concentration P O , such as in the atmosphere, and the sensor which has been replaced or deteriorated with time are the same. The ratio I L1 / I L1 'with the first diffusion limiting current value I L1 ' shown according to the oxygen concentration P O is obtained, and this is used as the oxygen concentration correction coefficient k. Here, the oxygen concentration correction coefficient k is
It is a ratio, and it is not important to obtain the absolute value of each diffusion limiting current value. Therefore, the ratio is not limited to the ratio of the diffusion limiting current value, and may be the ratio of the amplified value of the diffusion limiting current value or the ratio of the values converted into the voltage signal or the digital signal. Therefore, k is the ratio of the oxygen concentration output signal S L1 /
S L1 '

【0017】そして、交換され又は経時劣化したセンサ
が水蒸気濃度PHに応じて示す水蒸気濃度出力信号
L2’に酸素濃度補正係数kを乗じて補正信号k*
L2’を算出する。ここでも水蒸気濃度出力信号SL2
及び後述の水蒸気濃度出力信号SL2は、第2の拡散制限
電流値、その増幅値、電圧値及びそれらのデジタル化値
のいずれでもよい。次に、水蒸気濃度PHと初期のセン
サの水蒸気濃度出力信号SL2との対応関係PH=f(S
L2)[f:関数記号]を参照する。既述の通りIL1/I
L2=SL1/SL2=一定であるから、SL2/SL2’=α=
kすなわちSL2=k*SL2’となり、補正信号k*
L2’に基づいて水蒸気濃度を演算することができる。
従って、予めPH=f(SL2)を求めておけば、センサ
が交換され又は劣化して出力がSL2からSL2’に変化し
ても、SL2を出力している初期状態と同じ水蒸気濃度が
表示される。
Then, the sensor, which has been replaced or deteriorated with time, multiplies the water vapor concentration output signal S L2 'shown according to the water vapor concentration P H by the oxygen concentration correction coefficient k to obtain a correction signal k *.
Calculate S L2 '. Again, the water vapor concentration output signal S L2 '
Further, the water vapor concentration output signal S L2 described later may be any of the second diffusion limiting current value, its amplification value, voltage value and their digitized value. Next, the correspondence relationship between the water vapor concentration P H and the initial sensor water vapor concentration output signal S L2 P H = f (S
L2 ) Refer to [f: Function symbol]. As mentioned above, I L1 / I
Since L2 = S L1 / S L2 = constant, S L2 / S L2 '= α =
k, that is, S L2 = k * S L2 ', and the correction signal k *
The water vapor concentration can be calculated based on S L2 '.
Therefore, in advance if seeking P H = f (S L2) , even if the output sensor is replaced or deteriorated is changed to S L2 'from S L2, the same as the initial state of outputting S L2 The water vapor concentration is displayed.

【0018】[0018]

【発明の実施の形態】出力補正演算手段及び出力演算手
段は、通常マイコン内にデジタル回路として組まれる
が、アナログ回路でも良い。マイコン内に組むときは、
マイコンの入力側にA/Dコンバータ、出力側にD/A
コンバータを接続する。センサからの出力信号として電
圧信号を用いるときは、センサから出力される電流信号
をプリアンプにて増幅し、電圧信号に変換する。
BEST MODE FOR CARRYING OUT THE INVENTION The output correction calculating means and the output calculating means are usually incorporated in a microcomputer as a digital circuit, but may be an analog circuit. When assembled in a microcomputer,
A / D converter on the input side of the microcomputer, D / A on the output side
Connect the converter. When the voltage signal is used as the output signal from the sensor, the current signal output from the sensor is amplified by the preamplifier and converted into the voltage signal.

【0019】センサは経時的に劣化するから、劣化後の
酸素濃度出力信号SL1’及び水蒸気濃度出力信号SL2
も時間とともに変化する。従って、センサには水蒸気濃
度測定用電圧Va及び酸素濃度測定用電圧Vbのいずれ
かが自在に印加されるようにしておくとともに、センサ
作動スイッチとは別個に出力補正スタートスイッチを設
け、出力補正スタートスイッチをONする度に酸素濃度
測定電圧に基づいて酸素濃度の出力補正を行う出力補正
演算手段により酸素濃度補正係数kを更新するようにし
ておくと好ましい。こうすることで、理論的には永久に
正確な水蒸気濃度を測定することができる。また、出力
補正スタートスイッチが測定装置の作動時に自動的に作
動するように回路を構成しても良い。
Since the sensor deteriorates with time, the oxygen concentration output signal S L1 'and the water vapor concentration output signal S L2 ' after the deterioration.
Also changes over time. Therefore, either the water vapor concentration measurement voltage Va or the oxygen concentration measurement voltage Vb is freely applied to the sensor, and an output correction start switch is provided separately from the sensor operation switch to start the output correction start. It is preferable that the oxygen concentration correction coefficient k be updated by the output correction calculation means that performs output correction of the oxygen concentration based on the oxygen concentration measurement voltage each time the switch is turned on. By doing so, theoretically, it is possible to permanently and accurately measure the water vapor concentration. Further, the circuit may be configured so that the output correction start switch automatically operates when the measuring device operates.

【0020】[0020]

【実施例】この発明の限界電流式ガスセンサ(以下、単
に「センサ」という。)による水蒸気濃度測定方法及び
水蒸気濃度測定装置の実施例を図面とともに説明する。
図1は、実施例に係わる限界電流式ガスセンサを示す斜
視図、図2は、図1のAA断面図、図3は、図2の変形
例を示す断面図、図4は、図1のセンサの下部に固着さ
れるセラミックヒータを示す一部破断斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for measuring water vapor concentration and a water vapor concentration measuring apparatus using a limiting current type gas sensor (hereinafter, simply referred to as "sensor") of the present invention will be described with reference to the drawings.
1 is a perspective view showing a limiting current type gas sensor according to an embodiment, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a sectional view showing a modification of FIG. 2, and FIG. 4 is a sensor shown in FIG. FIG. 3 is a partially cutaway perspective view showing a ceramic heater fixed to the lower part of FIG.

【0021】センサ1は、板状のセラミックヒータ20
とその主面に一体的に設けられる酸素イオン伝導性を示
す固体電解質板である安定化ジルコニア板10とこの安
定化ジルコニア板10中に並べられて埋設される陽電極
3、陰電極2及びガス出口孔8とを備える。
The sensor 1 comprises a plate-shaped ceramic heater 20.
And a stabilized zirconia plate 10 that is a solid electrolyte plate that is integrally provided on the main surface thereof and exhibits oxygen ion conductivity, and a positive electrode 3, a negative electrode 2 and a gas that are arranged and embedded in the stabilized zirconia plate 10. And an outlet hole 8.

【0022】安定化ジルコニア板10は酸化ジルコニウ
ムに安定化剤として酸化イットリウムを添加固溶させた
固体電解質であり、本実施例では厚さ0.3mm、縦5
mm、横23mmの大きさで、厚さ方向に貫通した通気
口9が中央に設けられている。なお、セラミックヒータ
20と安定化ジルコニア板10とは、ガス出口孔8を除
く他は平面視同一形状で、通気口9に整合する通気口1
5がセラミックヒータ20にも設けられている。
The stabilized zirconia plate 10 is a solid electrolyte in which yttrium oxide as a stabilizer is added to zirconium oxide to form a solid solution. In this embodiment, the thickness is 0.3 mm and the length is 5 mm.
The vent hole 9 has a size of 23 mm and a width of 23 mm and penetrates in the thickness direction at the center. The ceramic heater 20 and the stabilized zirconia plate 10 have the same shape in plan view except for the gas outlet hole 8 and are aligned with the ventilation hole 9 in the ventilation hole 1.
5 is also provided in the ceramic heater 20.

【0023】陽電極3、陰電極2は多孔質の白金層(厚
さ数十μm)であり、一辺約2mmの電極部3a,2
a、長寸のリード部3b,2b及び取り出し部3c,2
cからなる。リード部2bは、その中間で白金層が分岐
して安定化ジルコニア板10の側面に導出しており、ガ
ス導入部6を形成している。そして、リード部2bのう
ち、このガス導入部6から陰電極部2aに至るまでの長
さ分がガス拡散制限部7となる。
The positive electrode 3 and the negative electrode 2 are porous platinum layers (thickness: several tens of μm), and the electrode portions 3a, 2 each having a side of about 2 mm.
a, long lead portions 3b, 2b and take-out portions 3c, 2
It consists of c. In the lead portion 2b, a platinum layer branches in the middle and leads to the side surface of the stabilized zirconia plate 10, and forms a gas introduction portion 6. The length of the lead portion 2b from the gas introducing portion 6 to the negative electrode portion 2a becomes the gas diffusion limiting portion 7.

【0024】ガス出口孔8は、陽電極部3aの位置に対
応して安定化ジルコニア板10に設けられた孔であり、
陽電極部3aと外部とを連通する。なお、ガス出口孔8
は陽電極部3aと外部とが通じていればどんな形状、大
きさであっても良い。次に、センサ1の製造方法を述べ
る。
The gas outlet hole 8 is a hole provided in the stabilized zirconia plate 10 corresponding to the position of the positive electrode portion 3a,
The positive electrode portion 3a communicates with the outside. The gas outlet hole 8
May have any shape and size as long as the positive electrode portion 3a communicates with the outside. Next, a method for manufacturing the sensor 1 will be described.

【0025】セラミックヒータ20は、焼成後に通気口
15となる孔を打ち抜いた無機成分中のアルミナ含有率
が96重量%のグリーンシートの上面に白金ペーストで
ヒータパターン12を印刷し、端部に白金端子13,1
4をのせた後、同質のアルミナグリーンシートを被せ、
これを焼成一体化して製造される(図4)。
In the ceramic heater 20, the heater pattern 12 is printed with a platinum paste on the upper surface of a green sheet having a content of alumina in the inorganic component of 96% by weight punched out to form the vent hole 15 after firing, and the end portion of the heater is covered with platinum. Terminals 13, 1
After placing 4, put the same quality alumina green sheet,
It is manufactured by firing and integrating this (FIG. 4).

【0026】一方、焼成後に通気口9となる孔をあけた
ジルコニア92モル%及びイットリア8モル%の固体電
解質を含むグリーンシート上に、焼成後に陽電極3、陰
電極2となるように白金ペーストを印刷し、端部に白金
端子4,5をのせた後、同質のグリーンシートを積層
し、約1500℃で一体焼成することにより、安定化ジ
ルコニア板10、陰陽電極2,3及び白金端子4,5か
らなるセンサ素子を製造する。2枚のグリーンシート
は、断面を観察しても図2のように一体化して見分けが
つかなくなる。
On the other hand, on the green sheet containing 92 mol% of zirconia and 8 mol% of yttria solid electrolyte, which was perforated to form the vent holes 9 after firing, the platinum paste so that the positive electrode 3 and the negative electrode 2 were formed after firing. Is printed, and the platinum terminals 4 and 5 are placed on the ends, and then the same quality green sheets are laminated and integrally fired at about 1500 ° C. to obtain the stabilized zirconia plate 10, the positive and negative electrodes 2 and 3, and the platinum terminals 4. , 5 is manufactured. The two green sheets are integrated and become indistinguishable as shown in FIG. 2 even when the cross section is observed.

【0027】なお、白金ペーストの印刷されるグリーン
シートは、酸素イオン伝導性固体電解質を主成分とする
ことが必要であるが、その上に積層されるグリーンシー
トは、それに限らず、例えばアルミナを主成分とするも
ののように同様に密封でき焼成できるものであれば良
い。その場合は、断面を観察すると、図3のように両シ
ートの境界線が残る。
The green sheet on which the platinum paste is printed needs to contain an oxygen ion conductive solid electrolyte as a main component, but the green sheet laminated thereon is not limited to this, and for example, alumina may be used. Any material that can be similarly sealed and fired, such as the one containing the main component, may be used. In that case, when the cross section is observed, the boundary line between both sheets remains as shown in FIG.

【0028】センサ素子は、封着ガラス等を用いてセラ
ミックヒータ20の表面に約800℃で固着されセンサ
1となる。次にセンサ1の動作を説明する。
The sensor element is fixed to the surface of the ceramic heater 20 at about 800 ° C. using sealing glass or the like to form the sensor 1. Next, the operation of the sensor 1 will be described.

【0029】センサ1を測定ガス中に配置し、各電極部
2a,3aが局所的に約500℃となるようにセラミッ
クヒータ20に通電した後、陽電極3と陰電極2の間に
電圧を印加する。すると、陰電極2の陰電極部2a内部
の酸素は、イオン化されて酸素イオンとなり、印加電圧
Vに応じて陰電極2から陽電極3に輸送される。この
時、安定化ジルコニア板10のうち陰電極部2aに隣接
する部分のみが局所的に加熱され、ガス拡散制限部7に
隣接する部分は酸素イオン伝導性を示す程充分に加熱さ
れていないため、ガス導入部6から導入された酸素は安
定化ジルコニア板10内を伝導することなくガス拡散制
限部7を通って陰電極部2a内に拡散する。そして、各
電極部2a,3aの付近のジルコニアは前記の通り充分
に加熱されているので、酸素イオン伝導性を示し、ガス
導入部6から陰電極部2aに拡散してきた酸素成分をイ
オン化して電極部3aに輸送し、ガス出口孔8より排出
する。従って、陽電極3−陰電極2間に流れる電流I
は、図5に示すように変化する。
After the sensor 1 is placed in the measurement gas and the ceramic heater 20 is energized so that the respective electrode portions 2a, 3a are locally heated to about 500 ° C., a voltage is applied between the positive electrode 3 and the negative electrode 2. Apply. Then, oxygen inside the negative electrode portion 2a of the negative electrode 2 is ionized into oxygen ions, which are transported from the negative electrode 2 to the positive electrode 3 according to the applied voltage V. At this time, only the portion of the stabilized zirconia plate 10 adjacent to the negative electrode portion 2a is locally heated, and the portion adjacent to the gas diffusion limiting portion 7 is not sufficiently heated to exhibit oxygen ion conductivity. The oxygen introduced from the gas introduction part 6 diffuses into the negative electrode part 2a through the gas diffusion limiting part 7 without conducting in the stabilized zirconia plate 10. Since the zirconia near the electrode portions 2a and 3a is sufficiently heated as described above, it exhibits oxygen ion conductivity and ionizes the oxygen component diffused from the gas introduction portion 6 to the negative electrode portion 2a. It is transported to the electrode portion 3a and discharged from the gas outlet hole 8. Therefore, the current I flowing between the positive electrode 3 and the negative electrode 2
Changes as shown in FIG.

【0030】印加電圧VがV1より低いときは印加電圧
Vに応じて酸素イオンが伝導するので、電流値もそれに
比例して変化するが、印加電圧Vが電圧値V1〜V2に
おいては、陰電極部2a内への酸素拡散量が陰電極2の
ガス拡散制限部7で制御され、測定ガス中の酸素濃度に
応じた値となるため、それに伴い電流値は制限されて第
1の拡散制限電流値IL1となり第1の平坦部F1として
現れる。印加電圧Vが第1の拡散制限電流値IL1が得ら
れる電圧値V2(通常1.2V)よりさらに高くなる
と、測定ガス中の水蒸気が電気分解され、その分解で生
じた酸素イオンがさらに増加し陽電極3にポンピングさ
れるため、水蒸気も陰電極2のガス導入部6から陰電極
部2a内へ拡散し、拡散量に応じて電流値が増大する。
When the applied voltage V is lower than V1, oxygen ions conduct according to the applied voltage V, so the current value changes in proportion to it, but when the applied voltage V is the voltage values V1 to V2, the negative electrode is used. The oxygen diffusion amount into the portion 2a is controlled by the gas diffusion limiting portion 7 of the negative electrode 2 and has a value according to the oxygen concentration in the measurement gas, so the current value is limited accordingly and the first diffusion limiting current is reduced. The value becomes I L1 and appears as the first flat portion F1. When the applied voltage V becomes higher than the voltage value V2 (normally 1.2 V) at which the first diffusion limiting current value I L1 is obtained, the water vapor in the measurement gas is electrolyzed and the oxygen ions generated by the decomposition further increase. Since the positive electrode 3 is pumped, the water vapor also diffuses from the gas introduction portion 6 of the negative electrode 2 into the negative electrode portion 2a, and the current value increases in accordance with the amount of diffusion.

【0031】印加電圧Vをさらに高くすると電流値は水
蒸気濃度に応じてさらに増大するが、電圧値V3〜V4
に達すると、陰電極2のガス拡散制限部7で水蒸気の拡
散量が制限され、それに伴い電流値も制限され、測定ガ
ス中の水蒸気濃度に応じた第2の拡散制限電流値IL2
なり第2の平坦部F2を示す。IL1/IL2比は、測定ガ
スの成分の量が同じであれば原理的に常に一定である。
When the applied voltage V is further increased, the current value further increases according to the water vapor concentration, but the voltage values V3 to V4.
When the temperature reaches, the diffusion amount of water vapor is limited by the gas diffusion limiting portion 7 of the negative electrode 2, and the current value is also limited accordingly, and the second diffusion limiting current value I L2 corresponding to the water vapor concentration in the measurement gas is obtained. 2 shows a flat portion F2. In principle, the I L1 / I L2 ratio is always constant if the amounts of the components of the measurement gas are the same.

【0032】この第2の拡散制限電流値IL2は酸素濃度
一定の場合(例えば大気中)、水蒸気濃度に応じて図6
のように右上がりに線形的に変化する。従って、第2の
拡散制限電流値IL2又はそれと比例関係にある出力電圧
を検出信号として取り出すことにより、水蒸気濃度を測
定することができる。
When the oxygen concentration is constant (for example, in the atmosphere), the second diffusion limiting current value I L2 depends on the water vapor concentration.
It changes linearly to the right as in. Therefore, the water vapor concentration can be measured by taking out the second diffusion limiting current value I L2 or the output voltage proportional to it as the detection signal.

【0033】このセンサを用いて図7のような回路構成
の検出装置で出力を取り出すようにする。検出装置は、
センサ1と、センサ1の電極2,3間に印加する電圧を
通常計測時に用いる水蒸気濃度測定用電圧Va(約2.
0V)又は出力補正時に用いる酸素濃度測定用電圧Vb
(約1.0V)に切り換えるセンサ電圧切り換え回路7
1と、センサ1から出力される電流信号を増幅し電圧信
号に変換するプリアンプ72と、その電圧信号をデジタ
ル化するA/Dコンバータと、デジタル化された信号を
演算するマイコン73と、マイコン73から出されたデ
ータをアナログ化するD/Aコンバータと、アナログ化
された信号を水蒸気濃度表示部74に送る出力回路75
と、水蒸気濃度表示部74を備える。
Using this sensor, an output is taken out by a detection device having a circuit configuration as shown in FIG. The detection device is
The voltage applied between the sensor 1 and the electrodes 2 and 3 of the sensor 1 is a vapor concentration measuring voltage Va (about 2.
0V) or the oxygen concentration measurement voltage Vb used for output correction
Sensor voltage switching circuit 7 for switching to (about 1.0 V)
1, a preamplifier 72 that amplifies a current signal output from the sensor 1 and converts it into a voltage signal, an A / D converter that digitizes the voltage signal, a microcomputer 73 that calculates the digitized signal, and a microcomputer 73. D / A converter for analogizing the data output from the device, and an output circuit 75 for sending an analog signal to the water vapor concentration display unit 74.
And a water vapor concentration display unit 74.

【0034】マイコン73は、CPUと、主として出力
演算部及び出力補正演算部の2つのプログラムが格納さ
れたROM、RAM等のメモリーとからなる。出力演算
部には、予め水蒸気濃度PHと製造直後のセンサ1から
水蒸気濃度に応じてプリアンプ72及びA/Dコンバー
タを通して入力された水蒸気濃度出力信号SL2との対応
関係PH=f(SL2)が記憶されており、その後に水蒸
気濃度に応じて入力される水蒸気濃度出力信号SL2’を
H=f(SL2)のSL2に代入して水蒸気濃度PHを演算
できるようになっている。
The microcomputer 73 is composed of a CPU and a memory such as a ROM and a RAM which mainly stores two programs of an output calculation unit and an output correction calculation unit. The output calculation unit, advance correspondence relationship from the sensor 1 immediately after production and steam concentration P H and steam concentration output signal S L2 inputted through the preamplifier 72 and the A / D converter in accordance with the water vapor concentration P H = f (S L2 ) is stored, and the water vapor concentration output signal S L2 'which is subsequently input according to the water vapor concentration is substituted into S L2 of P H = f (S L2 ) so that the water vapor concentration P H can be calculated. Has become.

【0035】また、出力補正演算部には予め、製造直後
のセンサ1から酸素濃度POに応じてプリアンプ72及
びA/Dコンバータを通して入力された酸素濃度出力信
号の初期値SL1が記憶されており、その後に出力補正ス
タートスイッチONの状態で同一酸素濃度POに応じて
酸素濃度出力信号SL1’が入力されたとき、(SL1/S
L1’)=kを算出し、さらに上記水蒸気濃度出力信号S
L2’に酸素濃度補正係数kを乗じて補正信号k*SL2
を算出できるようになっている。そして、酸素濃度補正
係数kが算出されたときは、それ以後にマイコンに入力
される水蒸気濃度出力信号SL2’は、一旦出力補正演算
部で常に補正信号k*SL2’に補正されてから出力演算
部に戻り、補正信号k*SL2’から水蒸気濃度が演算さ
れる。ただし、酸素濃度補正係数kを算出するプログラ
ムは、出力補正スタートスイッチをONする度に実行さ
れ、酸素濃度補正係数kが更新される。なお、出荷時は
k=1に設定されている。
Further, the output correction calculation unit stores in advance the initial value S L1 of the oxygen concentration output signal which is input from the sensor 1 immediately after manufacture through the preamplifier 72 and the A / D converter in accordance with the oxygen concentration P O. Then, when the oxygen concentration output signal S L1 'is input according to the same oxygen concentration P O while the output correction start switch is ON, (S L1 / S
L1 ') = k is calculated, and the above water vapor concentration output signal S is calculated.
The correction signal k * S L2 'is obtained by multiplying L2 ' by the oxygen concentration correction coefficient k.
Can be calculated. When the oxygen concentration correction coefficient k is calculated, the water vapor concentration output signal S L2 'after that is input to the microcomputer after being always corrected to the correction signal k * S L2 ' by the output correction calculation unit. Returning to the output calculation unit, the water vapor concentration is calculated from the correction signal k * S L2 '. However, the program for calculating the oxygen concentration correction coefficient k is executed every time the output correction start switch is turned on, and the oxygen concentration correction coefficient k is updated. Note that k = 1 is set at the time of shipment.

【0036】センサ印加電圧Vは、通常測定時には水蒸
気濃度に応じた拡散制限電流値IL2の得られるVa(=
V3〜V4)に設定される。すると、この拡散制限電流
値IL2は、プリアンプ72にて増幅され電圧信号に変換
され、続いてA/Dコンバータにてデジタル化されて水
蒸気濃度出力信号SL2としてマイコン73に送られる。
マイコン73内では入力された水蒸気濃度出力信号SL2
を対応関係PH=f(SL2)と照合して水蒸気濃度を演
算し、出力する。その出力データはD/Aコンバータに
てアナログ化され、出力回路75にて水蒸気濃度表示部
74に送られる。次に上記の水蒸気濃度測定装置におい
てセンサ1が劣化した場合に水蒸気濃度出力を補正する
方法を説明する。
The sensor applied voltage V is Va (=) at which the diffusion limiting current value I L2 corresponding to the water vapor concentration can be obtained during normal measurement.
V3 to V4). Then, the diffusion limiting current value I L2 is amplified by the preamplifier 72, converted into a voltage signal, then digitized by the A / D converter, and sent to the microcomputer 73 as a water vapor concentration output signal S L2 .
In the microcomputer 73, the input water vapor concentration output signal S L2
Is compared with the correspondence P H = f (S L2 ) to calculate and output the water vapor concentration. The output data is analogized by the D / A converter and sent to the water vapor concentration display section 74 by the output circuit 75. Next, a method of correcting the water vapor concentration output when the sensor 1 deteriorates in the above water vapor concentration measuring device will be described.

【0037】先ず、センサ1が劣化する前の初期状態す
なわち製造直後の状態でセンサ印加電圧Vを酸素濃度に
応じた第1の拡散制限電流値IL1の得られるVb(=V
1〜V2)に設定したとき、濃度表示部が測定ガス中の
酸素濃度(大気中の場合20.8%)を表示するように
調整しておく。ここで、センサ1の劣化によって、同一
酸素濃度に応じて出力する第1拡散制限電流がIL1から
L1’に変化したとする(図8(a))。そのとき、前記
の同一酸素濃度の雰囲気(例えば大気)にセンサ1を配
置し、出力補正スタートスイッチをONにする。センサ
印加電圧はVaからVbに切り替わり、IL1’に対応し
た酸素濃度出力信号SL1’がマイコン73に入力され
る。この信号SL1’と初期にマイコン73に記憶されて
いた酸素濃度出力信号SL1を基に酸素濃度補正係数kが
更新され、マイコン73に記憶される。
First, in the initial state before the sensor 1 deteriorates, that is, in the state immediately after manufacturing, the sensor applied voltage V is Vb (= V) at which the first diffusion limiting current value I L1 corresponding to the oxygen concentration is obtained.
1 to V2), the concentration display unit is adjusted so as to display the oxygen concentration in the measurement gas (20.8% in the atmosphere). Here, it is assumed that the first diffusion limiting current output according to the same oxygen concentration changes from IL1 to IL1 'due to deterioration of the sensor 1 (FIG. 8 (a)). At that time, the sensor 1 is arranged in the atmosphere having the same oxygen concentration (for example, the atmosphere), and the output correction start switch is turned on. The sensor applied voltage is switched from Va to Vb, and the oxygen concentration output signal S L1 'corresponding to I L1 ' is input to the microcomputer 73. The oxygen concentration correction coefficient k is updated based on this signal S L1 ′ and the oxygen concentration output signal S L1 initially stored in the microcomputer 73, and stored in the microcomputer 73.

【0038】出力補正スタートスイッチをOFFにし
て、センサ印加電圧VをVaに切り換え、通常の水蒸気
濃度を測定する状態に戻す。このときにセンサ1に劣化
があると、水蒸気濃度に応じて出力する第2の拡散制限
電流値がIL2からIL2’に変化する(図8(b))。
L2’に対応した水蒸気濃度出力信号SL2’がマイコン
73に入力され、酸素濃度補正係数kが乗じられて、補
正信号k*SL2’がSL2に代わってPH=f(SL2)と
照合され、水蒸気濃度が補正演算されて水蒸気濃度表示
部74に表示される。
The output correction start switch is turned off, the sensor applied voltage V is switched to Va, and the normal water vapor concentration measurement state is restored. At this time, if there is a deterioration in the sensor 1, the second diffusion limit current value to be output in accordance with the water vapor concentration is changed to I L2 'from I L2 (Figure 8 (b)).
I L2 'steam density output signal S L2 corresponding to' is inputted to the microcomputer 73, the oxygen concentration correction coefficient k is multiplied by the correction signal k * S L2 'on behalf of the S L2 P H = f (S L2 ), The water vapor concentration is corrected and calculated and displayed on the water vapor concentration display portion 74.

【0039】既述の通り、IL1/IL2=一定であるから
L1/SL2=一定である。従って、SL1/SL1’=SL2
/SL2’=kとなる。こうしてk*SL2’=SL2である
から、センサの劣化の程度に係わらず水蒸気濃度出力は
補正されて正しい値となる。
As described above, since I L1 / I L2 = constant, S L1 / S L2 = constant. Therefore, S L1 / S L1 '= S L2
/ S L2 '= k. Thus, since k * S L2 '= S L2 , the water vapor concentration output is corrected to a correct value regardless of the degree of deterioration of the sensor.

【0040】本例では、センサとして図1に示す構造の
ものを用いたが、図9や図10に示すような他の構造の
センサにも適用可能であることはいうまでもない。図9
に示すセンサは、冒頭で既に説明したが、図10に示す
センサは、陰極32を覆う箱体34自体を多孔質とし
て、これを拡散制限手段に用いるものであり、箱体34
を図9の微小な孔33に相当する気体拡散制限孔と兼ね
る構造のものである。
In this example, the sensor having the structure shown in FIG. 1 was used, but it goes without saying that the sensor can be applied to sensors having other structures as shown in FIGS. 9 and 10. FIG.
The sensor shown in FIG. 10 has already been described at the beginning, but the sensor shown in FIG. 10 uses the box body 34 itself covering the cathode 32 as a porous body and uses this as diffusion limiting means.
Is also a gas diffusion limiting hole corresponding to the minute hole 33 in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の水蒸気濃度測定装置に用いる限界電流
式ガスセンサを示す斜視図である。
FIG. 1 is a perspective view showing a limiting current type gas sensor used in a water vapor concentration measuring apparatus of an embodiment.

【図2】図1のAA断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】図2の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modified example of FIG.

【図4】図1の限界電流式ガスセンサに用いるセラミッ
クヒータを示す一部破断斜視図である。
4 is a partially cutaway perspective view showing a ceramic heater used in the limiting current type gas sensor of FIG. 1. FIG.

【図5】限界電流式ガスセンサに印加される電圧対その
センサに流れる電流の特性を示すグラフである。
FIG. 5 is a graph showing characteristics of voltage applied to a limiting current type gas sensor versus current flowing through the sensor.

【図6】限界電流式ガスセンサによる水蒸気濃度対第2
の拡散制限電流の関係を示すグラフである。
[Fig. 6] Second concentration vs. water vapor concentration by limiting current type gas sensor
4 is a graph showing the relationship of the diffusion limiting current of FIG.

【図7】実施例の水蒸気濃度測定装置の回路システムの
構成を示す図である。
FIG. 7 is a diagram showing a configuration of a circuit system of the water vapor concentration measuring apparatus according to the embodiment.

【図8】限界電流式ガスセンサに印加される電圧対その
センサに流れる電流の特性の劣化状況を示すグラフであ
る。
FIG. 8 is a graph showing deterioration of characteristics of voltage applied to a limiting current type gas sensor versus current flowing through the sensor.

【図9】この発明に適応可能な他の限界電流式ガスセン
サを示す断面図である。
FIG. 9 is a sectional view showing another limiting current type gas sensor applicable to the present invention.

【図10】この発明に適応可能な他の限界電流式ガスセ
ンサを示す断面図である。
FIG. 10 is a sectional view showing another limiting current type gas sensor applicable to the present invention.

【符号の説明】[Explanation of symbols]

1 ガスセンサ 2 陰電極 2a 陰電極部 2b リード部 2c 取り
出し部 3 陰電極 3a 陽電極部 3b リード部 3c 取り
出し部 6 ガス導入部 7 ガス拡散制限部 4,5,13,14 白金端子 8 ガス出口孔 9,15 通気孔 10 安定化ジルコニア板 20 セラミックヒータ
1 gas sensor 2 negative electrode 2a negative electrode part 2b lead part 2c lead-out part 3 negative electrode 3a positive electrode part 3b lead part 3c take-out part 6 gas introduction part 7 gas diffusion limiting part 4, 5, 13, 14 platinum terminal 8 gas outlet hole 9,15 Vent hole 10 Stabilized zirconia plate 20 Ceramic heater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性の固体電解質基板、それ
に密着した陰陽一対の電極及び陰極への気体拡散を制限
する気体拡散制限手段を有するセンサを用い、それら電
極間に直流電圧を印加したときの出力信号に基づいて水
蒸気濃度を測定する方法において、 該センサが一定の酸素濃度POに応じて示す酸素濃度出
力信号SL1とその後にセンサが同一酸素濃度POに応じ
て示す酸素濃度出力信号SL1’との比SL1/SL1’を求
めてそれを酸素濃度補正係数kとし、 センサが水蒸気濃度PHに応じて示す水蒸気濃度出力信
号SL2’に酸素濃度補正係数kを乗じて補正信号k*S
L2’を算出し、水蒸気濃度PHと劣化前のセンサの水蒸
気濃度出力信号SL2との対応関係PH=f(SL2
[f:関数記号]を参照して補正信号k*SL2’から水
蒸気濃度を演算することを特徴とする限界電流式ガスセ
ンサによる水蒸気濃度測定方法。
1. A solid electrolyte substrate having oxygen ion conductivity, a pair of Yin-Yo electrodes closely attached thereto, and a sensor having gas diffusion limiting means for limiting gas diffusion to a cathode, when a DC voltage is applied between the electrodes. In the method of measuring the water vapor concentration based on the output signal of the above, the oxygen concentration output signal S L1 indicated by the sensor according to a constant oxygen concentration P O and the oxygen concentration output indicated by the sensor thereafter according to the same oxygen concentration P O it was the oxygen concentration correction coefficient k seeking 'ratio S L1 / S L1 of the' signal S L1, the sensor multiplied by the oxygen concentration correction coefficient k in the steam concentration output signal S L2 'shown in accordance with the water vapor concentration P H Correction signal k * S
L2 'is calculated, and the correspondence relationship between the water vapor concentration P H and the water vapor concentration output signal S L2 of the sensor before deterioration P H = f (S L2 )
A method for measuring water vapor concentration using a limiting current type gas sensor, characterized in that the water vapor concentration is calculated from the correction signal k * S L2 'with reference to [f: function symbol].
【請求項2】酸素イオン伝導性の固体電解質基板、それ
に密着した陰陽一対の電極及び陰極への気体拡散を制限
する気体拡散制限手段を有するセンサと該センサが一定
の酸素濃度POに応じて示す酸素濃度出力信号SL1とそ
の後にセンサが同一酸素濃度POに応じて示す酸素濃度
出力信号SL1’との比SL1/SL1’を求めてそれを酸素
濃度補正係数kとし、センサが水蒸気濃度PHに応じて
示す水蒸気濃度出力信号SL2’に酸素濃度補正係数kを
乗じて補正信号k*SL2’を算出する出力補正演算手段
と、 水蒸気濃度PHと劣化前のセンサの水蒸気濃度出力信号
L2との対応関係PH=f(SL2)[f:関数記号]を
参照して補正信号k*SL2’から水蒸気濃度を演算する
出力演算手段とを備えたことを特徴とする限界電流式ガ
スセンサによる水蒸気濃度測定装置。
2. A sensor having a solid electrolyte substrate having oxygen ion conductivity, a pair of positive and negative electrodes in close contact therewith, and gas diffusion limiting means for limiting gas diffusion to a cathode, and the sensor according to a constant oxygen concentration P O. Thereafter the oxygen concentration output signal S L1 to the sensor it was the oxygen concentration correction coefficient k seeking 'ratio S L1 / S L1 of the' oxygen concentration output signal S L1 shown in accordance with the same oxygen concentration P O shown, sensor An output correction calculation means for calculating a correction signal k * S L2 'by multiplying the water vapor concentration output signal S L2 ' shown according to the water vapor concentration P H by the oxygen concentration correction coefficient k, and the water vapor concentration P H and the sensor before deterioration. the correspondence relationship between the water vapor density output signal S L2 P H = f (S L2): that an output calculating means for calculating a water vapor concentration of with reference to [f function symbol] correction signal k * S L2 ' With a limiting current type gas sensor characterized by The gas concentration measurement device.
【請求項3】更に、酸素濃度出力信号SL1が変動したと
きにセンサへの印加電圧を切り換える電圧切り換え手段
を備えた請求項2に記載の水蒸気濃度測定装置。
3. The water vapor concentration measuring device according to claim 2, further comprising voltage switching means for switching the voltage applied to the sensor when the oxygen concentration output signal S L1 fluctuates.
【請求項4】酸素イオン伝導性の固体電解質基板、それ
に密着した陰陽一対の電極及び陰極への気体拡散を制限
する気体拡散制限手段を有するセンサを用い、それら電
極間に直流電圧を印加したときの出力信号に基づいて水
蒸気濃度を測定する方法において、 該センサが一定の水蒸気濃度PHに応じて示す水蒸気濃
度出力信号SHとその後にセンサが同一水蒸気濃度PH
応じて示す水蒸気濃度出力信号SH’との比SH/SH
を求めてそれを水蒸気濃度補正係数kとし、 センサが水蒸気濃度PHに応じて示す水蒸気濃度出力信
号SL2’に水蒸気濃度補正係数kを乗じて補正信号k*
L2’を算出し、水蒸気濃度PHと劣化前のセンサの水
蒸気濃度出力信号SL2との対応関係PH=f(SL2
[f:関数記号]を参照して補正信号k*SL2’から水
蒸気濃度を演算することを特徴とする限界電流式ガスセ
ンサによる水蒸気濃度測定方法。
4. A solid electrolyte substrate having oxygen ion conductivity, a pair of Yin-Yo electrodes closely attached thereto, and a sensor having a gas diffusion limiting unit for limiting gas diffusion to a cathode, when a DC voltage is applied between the electrodes. In the method of measuring the water vapor concentration based on the output signal of the above, the sensor outputs a water vapor concentration output signal S H corresponding to a constant water vapor concentration P H , and thereafter a sensor outputs a water vapor concentration output corresponding to the same water vapor concentration P H. Ratio of signal S H 'S H / S H '
The seeking it as a water vapor concentration correction coefficient k, the sensor is steam concentration P H correction signal is multiplied by the water vapor concentration correction coefficient k in the steam concentration output signal S L2 'shown in accordance with k *
S L2 'is calculated and the correspondence relationship between the water vapor concentration P H and the water vapor concentration output signal S L2 of the sensor before deterioration P H = f (S L2 )
A method for measuring water vapor concentration using a limiting current type gas sensor, characterized in that the water vapor concentration is calculated from the correction signal k * S L2 'with reference to [f: function symbol].
【請求項5】酸素イオン伝導性の固体電解質基板、それ
に密着した陰陽一対の電極及び陰極への気体拡散を制限
する気体拡散制限手段を有するセンサと該センサが一定
の水蒸気濃度PHに応じて示す水蒸気濃度出力信号SH
その後にセンサが同一水蒸気濃度PHに応じて示す水蒸
気濃度出力信号SH’との比SH/SH’を求めてそれを
水蒸気濃度補正係数kとし、センサが水蒸気濃度PH
応じて示す水蒸気濃度出力信号SL2’に水蒸気濃度補正
係数kを乗じて補正信号k*SL2’を算出する出力補正
演算手段と、 水蒸気濃度PHと劣化前のセンサの水蒸気濃度出力信号
L2との対応関係PH=f(SL2)[f:関数記号]を
参照して補正信号k*SL2’から水蒸気濃度を演算する
出力演算手段とを備えたことを特徴とする限界電流式ガ
スセンサによる水蒸気濃度測定装置。
5. A sensor having a solid electrolyte substrate having oxygen ion conductivity, a pair of positive and negative electrodes closely attached thereto, and gas diffusion limiting means for limiting gas diffusion to a cathode, and the sensor according to a constant water vapor concentration P H. then the water vapor concentration output signal S H to the sensor it seeking 'ratio S H / S H of the' water vapor concentration output signal S H and the water vapor concentration correction coefficient k shown in accordance with the same water vapor concentration P H shown, sensor An output correction calculation means for calculating a correction signal k * S L2 'by multiplying a water vapor concentration output signal S L2 ' corresponding to the water vapor concentration P H by a water vapor concentration correction coefficient k, and a water vapor concentration P H and a sensor before deterioration. the correspondence relationship between the water vapor density output signal S L2 P H = f (S L2): that an output calculating means for calculating a water vapor concentration of with reference to [f function symbol] correction signal k * S L2 ' Limiting current type gas sensor characterized by Water vapor concentration measuring device according to.
JP10319096A 1996-03-29 1996-03-29 Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method Expired - Lifetime JP3421192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319096A JP3421192B2 (en) 1996-03-29 1996-03-29 Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319096A JP3421192B2 (en) 1996-03-29 1996-03-29 Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method

Publications (2)

Publication Number Publication Date
JPH09269313A true JPH09269313A (en) 1997-10-14
JP3421192B2 JP3421192B2 (en) 2003-06-30

Family

ID=14347610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319096A Expired - Lifetime JP3421192B2 (en) 1996-03-29 1996-03-29 Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method

Country Status (1)

Country Link
JP (1) JP3421192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196995A (en) * 2013-03-08 2014-10-16 ローム株式会社 Limiting current type gas sensor, method for manufacturing limiting current type gas sensor and sensor network system
JP2016194288A (en) * 2015-04-02 2016-11-17 トヨタ自動車株式会社 Abnormality diagnosis system for gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196995A (en) * 2013-03-08 2014-10-16 ローム株式会社 Limiting current type gas sensor, method for manufacturing limiting current type gas sensor and sensor network system
JP2016194288A (en) * 2015-04-02 2016-11-17 トヨタ自動車株式会社 Abnormality diagnosis system for gas sensor

Also Published As

Publication number Publication date
JP3421192B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US4595485A (en) Limiting electric current type oxygen sensor
JP3293741B2 (en) NOx sensor
JP2000321238A (en) Gas sensor
US20090242402A1 (en) NOx SENSOR
JPH09257746A (en) Method for cleaning limit current type gas sensor and gas concentration detector utilizing the same
JPH09318594A (en) Gas sensor and method for measuring quantity of specific component in gas to be measured
EP0737860B1 (en) A method of determining a zero-humidity reference current level for an electrochemical cell humidity measurement device
US6348140B1 (en) Gas sensor with a high combined resistance to lead wire resistance ratio
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
US5281314A (en) Method of measuring humidity by using an electrochemical cell
JP2004093273A (en) Limiting current oxygen sensor
JP2805811B2 (en) Combustion control sensor
JP2788640B2 (en) Gas concentration detection sensor
JP3487990B2 (en) Self-calibration type oxygen analysis method and device
JP3193185B2 (en) Water vapor sensor device
JP2813423B2 (en) Electrochemical gas sensor
JP3565520B2 (en) Oxygen concentration sensor
JP3529567B2 (en) Gas sensor
JPS60222761A (en) Humidity measurement using solid electrolytic oxygen sensor
JP3263153B2 (en) Limit current type gas sensor
JP3712541B2 (en) Air-fuel ratio sensor control apparatus and air-fuel ratio measurement method
JP2813424B2 (en) Electrochemical gas sensor device
JP3468348B2 (en) Carbon monoxide sensor and carbon monoxide concentration measuring method
JPH0234605Y2 (en)
JPS61283861A (en) Oxygen concentration measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term