JPH09268322A - Production of grain oriented silicon steel sheet with ultralow iron loss - Google Patents

Production of grain oriented silicon steel sheet with ultralow iron loss

Info

Publication number
JPH09268322A
JPH09268322A JP8340045A JP34004596A JPH09268322A JP H09268322 A JPH09268322 A JP H09268322A JP 8340045 A JP8340045 A JP 8340045A JP 34004596 A JP34004596 A JP 34004596A JP H09268322 A JPH09268322 A JP H09268322A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
iron loss
rolling
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8340045A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Tomoji Kumano
知二 熊野
Hiroyasu Fujii
浩康 藤井
Katsuro Kuroki
克郎 黒木
Osamu Tanaka
収 田中
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP8340045A priority Critical patent/JPH09268322A/en
Publication of JPH09268322A publication Critical patent/JPH09268322A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet with ultralow iron loss by forming grooves under specific conditions in the course of final cold rolling and also using Al2 O3 as a separation agent at annealing, at the time of producing a grain oriented silicon steel sheet from a slab of silicon steel with specific composition. SOLUTION: A grain oriented silicon steel sheet is produced by the conventional method from a silicon steel slab having a composition consisting of, by weight, <=0.085% C, 2.5-4.5% Si, 0.050-0.45% Mn, <=0.015% S, 0.010-0.040% acid soluble Al, <=0.010% N, 0.02-0.15% Sn, and the balance Fe with inevitable impurities. At this time, in the stage of intermediate sheet thickness at the final cold rolling, grooves, having 10-150μm width, t×1/8 to t×1/30 depth [where (t) means sheet thickness], and 1-20mm spacing in rolling direction, are formed into dotlike or linear state in the surface of the steel sheet, at 90 to 45 deg. with respect to rolling direction. Subsequently, rolling is carried out to the final sheet thickness, and, after the application of Al2 O3 as a separation agent at annealing, finish annealing and tension coating are applied to the steel sheet. By this method, the grain oriented silicon steel sheet with ultralow iron loss, free from forsterite film, can be easily obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁区制御を施した
方向性電磁鋼板に関するもので、特に歪み取り焼鈍を行
っても磁気特性の劣化しない、超低鉄損一方向性電磁鋼
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet subjected to magnetic domain control, and particularly to a method for producing an ultra-low iron loss grain-oriented electrical steel sheet in which magnetic properties do not deteriorate even when strain relief annealing is performed. It is about.

【0002】[0002]

【従来の技術】一方向性電磁鋼板において、近年エネル
ギー節約の観点から鉄損を低減することが強く要望され
ている。鉄損を低減する方法としては高磁束密度化、二
次再結晶粒の小粒化等の冶金的方法の他に、物理的方法
としてレーザー照射やプラズマ照射等による磁区制御技
術が提案されている。(特開昭57−2252号公報、
特開昭59−25928号公報)しかし、この方法では
歪取り焼鈍を必要とする巻き鉄心トランス用としては使
用できないため、積み、巻き両トランスに使用できる磁
区制御法として、製品の表面に歯型ロールで溝を形成す
る例えば特開昭61−117218号公報、最終冷延板
にエッチングにより溝を形成する例えば特公平3−69
968号公報或いは冷延板にレーザーにより溝を形成す
る例えば特開昭61−75506号公報等に開示された
技術がある。
2. Description of the Related Art Recently, it has been strongly desired to reduce iron loss in a grain-oriented electrical steel sheet from the viewpoint of energy saving. As a method for reducing iron loss, a magnetic domain control technique by laser irradiation, plasma irradiation, or the like has been proposed as a physical method, in addition to a metallurgical method such as increasing the magnetic flux density and reducing secondary recrystallized grains. (JP-A-57-2252,
However, since this method cannot be used for a wound iron core transformer that requires strain relief annealing, it is a magnetic domain control method that can be used for both stacking and winding transformers, and therefore a tooth mold on the surface of a product is used. A groove is formed by a roll, for example, JP-A-61-117218, and a groove is formed in a final cold-rolled sheet by etching.
There is a technique disclosed in Japanese Patent No. 968 or in Japanese Patent Laid-Open No. 61-75506, for example, in which grooves are formed on a cold-rolled sheet by laser.

【0003】この他の鉄損低減方法として、鋼板の表面
を電解研磨又は化学研磨により平滑(鏡面)にする方法
がある(特公昭52−24499号公報、特公昭56−
4150号公報)。最近では、この鏡面を得る方法とし
て焼鈍分離剤にAl23 等を用いる方法或いはMgO
中に塩素化合物等の添加物を添加する方法等が提案され
ている。
As another iron loss reduction method, there is a method of making the surface of a steel sheet smooth (mirror surface) by electrolytic polishing or chemical polishing (Japanese Patent Publication No. 52-24499 and Japanese Patent Publication No. 56-56).
No. 4150). Recently, as a method for obtaining this mirror surface, a method using Al 2 O 3 or the like as an annealing separator or MgO is used.
There has been proposed a method of adding an additive such as a chlorine compound therein.

【0004】特願平4−21451号公報および特開平
4−21452号公報には、この鏡面を有した鋼板に歪
取り焼鈍に耐える磁区制御をし、かつ張力コーティング
を施すことによって超低鉄損材を得る方法を提案してい
る。しかし、これまでに提案されている歪取り焼鈍に耐
える磁区制御法は、鋼板の形状不良や穿孔部のバリの生
成或いはコストの上昇等の問題を抱えており今後の改善
が待たれる。本出願人は、先に特願平07−20235
1号にて、この改善策の一つとして冷延の途中板厚段階
で溝を形成してから製品板厚に仕上げる一連の工程での
中で磁区制御処理を行う方法を提案した。
In Japanese Patent Application No. 4-214551 and Japanese Patent Application Laid-Open No. 4-215252, ultra-low iron loss is achieved by controlling the magnetic domain of a steel plate having this mirror surface to withstand strain relief annealing and applying a tension coating. We are proposing a method of obtaining lumber. However, the magnetic domain control methods that have been proposed so far to withstand the strain relief annealing have problems such as a defective shape of the steel sheet, the formation of burrs in the perforated portion, and an increase in cost, and therefore further improvement is awaited. The present applicant has previously filed Japanese Patent Application No. 07-20235.
In No. 1, as one of the improvement measures, a method of performing magnetic domain control treatment in a series of steps of forming grooves in the plate thickness stage during cold rolling and then finishing the product plate thickness was proposed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、鋼板形状の
優れた歪み取り焼鈍をしても磁区細分化効果を消失しな
い超低鉄損一方向性電磁鋼板の製造方法を提案するもの
である。
DISCLOSURE OF THE INVENTION The present invention proposes a method for producing an ultra-low iron loss unidirectional electrical steel sheet which does not lose the magnetic domain refining effect even if the steel sheet shape is subjected to strain relief annealing. .

【0006】[0006]

【課題を解決するための手段】本発明の要旨は以下のと
おりである。 (1)重量比で、Si:2.5〜4.5%、C:0.0
85%以下、Mn:0.050〜0.45%、S≦0.
015%、酸可溶性Al:0.010〜0.040%、
N:≦0.010%、Sn:0.02〜0.15%、残
部Fe及び不可避的不純物からなる電磁鋼スラブを12
80℃以下の温度で加熱した後、熱延し、熱延板焼鈍を
し、一回または中間焼鈍を介挿する二回以上の圧延でそ
の最終圧延率を80%以上とし、次いで脱炭焼鈍、窒化
処理、焼鈍分離剤を塗布し、仕上げ焼鈍をする一方向性
電磁鋼板の製造において、その最終冷延の途中板厚段階
で鋼板表面に圧延方向に対して、90°〜45°の範囲
で幅が10〜500μm、深さが板厚t×1/8〜t×
1/30、間隔が圧延方向に1〜20mmの溝を点状ある
いは線状に形成した後、最終板厚まで圧延することを特
徴とし、焼鈍分離剤としてAl23 を塗布し、仕上げ
焼鈍後、張力コーティングを施すフォルステライト皮膜
を有しない超低鉄損方向性電磁鋼板の製造方法。 (2)レーザー光により、鋼板表面に圧延方向にたいし
て90°から45°の範囲で幅が10から500μm、
深さが板厚t×1/8〜t×1/30、間隔が圧延方向
に1〜20mmの溝を点状或いは線状に形成し、次いで溝
形成後に生じた溶融付着物を機械的方法で除去した後、
最終板厚まで圧延する(1)記載のフォルステライト皮
膜を有しない超低鉄損方向性電磁鋼板の製造方法。 (3)最終板厚の冷延板を脱炭焼鈍前に軽酸洗を施す
(1)または(2)記載のフォルステライト皮膜を有し
ない超低鉄損方向性電磁鋼板の製造方法。 (4)焼鈍分離剤としてMgO:100重量部に対し、
Ca,Mg,Biの塩化物から選ばれる1種又は2種以
上を合計で2〜30重量部添加した焼鈍分離剤を塗布す
る(1),(2)または(3)記載のフォルステライト
被膜を有しない超低鉄損方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) In weight ratio, Si: 2.5-4.5%, C: 0.0
85% or less, Mn: 0.050 to 0.45%, S ≦ 0.
015%, acid-soluble Al: 0.010 to 0.040%,
N: ≦ 0.010%, Sn: 0.02 to 0.15%, 12 magnetic steel slabs consisting of balance Fe and unavoidable impurities
After heating at a temperature of 80 ° C or lower, hot rolling, hot-rolled sheet annealing, and final rolling rate of 80% or more are performed once or twice or more with intermediate annealing interposed, and then decarburization annealing. , Nitriding treatment, applying an annealing separator, and finishing annealing, in the production of a unidirectional electrical steel sheet, the range of 90 ° to 45 ° with respect to the rolling direction on the steel sheet surface in the final thickness stage of the cold rolling. Width is 10 to 500 μm, depth is plate thickness t × 1/8 to t ×
It is characterized in that after forming grooves in the form of dots or lines with a distance of 1/30 in the rolling direction of 1 to 30 mm, rolling is carried out to the final plate thickness, Al 2 O 3 is applied as an annealing separator, and finish annealing is performed. After that, a method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no forsterite film to be tension-coated. (2) With a laser beam, the width of the steel sheet surface is 10 to 500 μm in the range of 90 ° to 45 ° in the rolling direction,
Grooves having a depth of t x 1/8 to t x 1/30 and an interval of 1 to 20 mm in the rolling direction are formed in a dot shape or a linear shape, and then a molten deposit formed after the groove formation is mechanically processed. After removing with
A method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no forsterite coating according to (1), which is rolled to a final sheet thickness. (3) The method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no forsterite coating according to (1) or (2), wherein the cold-rolled sheet having the final sheet thickness is lightly pickled before decarburization annealing. (4) As an annealing separator, MgO: 100 parts by weight,
The forsterite coating described in (1), (2) or (3) is applied by applying an annealing separator containing a total of 2 to 30 parts by weight of one or more selected from chlorides of Ca, Mg and Bi. A method for manufacturing an ultra-low iron loss grain-oriented electrical steel sheet that does not have.

【0007】[0007]

【発明の実施の形態】以下、本発明を実験に基づいて説
明する。 (実験1)重量比で、C:0.055%、Si:3.5
0%、Mn:0.10%、P:0.025%、S:0.
007%、酸可溶性Al:0.030%、Sn:0.0
7%、Cr:0.12%、N:0.0075%を含む電
磁鋼熱延鋼板を1120℃に加熱後、冷却し、次いで9
00℃に短時間保定する焼鈍を施した後急冷し、酸洗し
冷延を行った。この冷延の板厚途中段階においてレーザ
ー光により深さを5段階に変えて穿孔した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on experiments. (Experiment 1) C: 0.055%, Si: 3.5 by weight ratio
0%, Mn: 0.10%, P: 0.025%, S: 0.
007%, acid-soluble Al: 0.030%, Sn: 0.0
A magnetic steel hot-rolled steel sheet containing 7%, Cr: 0.12% and N: 0.0075% is heated to 1120 ° C., then cooled, and then 9
It was annealed by holding it at 00 ° C for a short time, then rapidly cooled, pickled and cold rolled. In the middle of the plate thickness of this cold rolling, the depth was changed to 5 steps by laser light and punching was performed.

【0008】 ───────────────────────────────── レーザー照射板厚(mm) 穿孔深さ(μm) ───────────────────────────────── 0.30 7、10、30、37、43 ───────────────────────────────── 穿孔はほぼ幅100μm、間隔100μmの点列とし、
点列の方向は圧延方向に対して70°とし、点列のピッ
チは4mmとした。
───────────────────────────────── Laser irradiation plate thickness (mm) Perforation depth (μm) ─ ──────────────────────────────── 0.30 7, 10, 30, 37, 43 ────── ─────────────────────────── The perforations are approximately 100 μm wide and spaced 100 μm apart.
The direction of the dot array was 70 ° with respect to the rolling direction, and the pitch of the dot array was 4 mm.

【0009】この後最終板厚0.23mmまで冷延して仕
上げた。この後油洗し脱炭焼鈍を830℃×30秒、H
2 :75%+N2 :25%、露点40℃の雰囲気中で行
った。次いで窒化処理を750℃×30秒、H2 ,N
2 ,アンモニアの混合ガス中で行い、鋼板の窒素量を2
00ppm に調整し、焼鈍分離剤にAl23 を使用し、
仕上げ焼鈍昇温過程の雰囲気ガスをN2 :90%+H
2 :10%の混合ガスで行ない、1200℃×20時間
の純化焼鈍をH2 雰囲気ガス中で行なった。この後水洗
し、無水クロム酸、燐酸アルミニュウムを主成分とする
張力焼鈍を施した。この実験で得られた製品の磁気特性
を図1に示す。
After that, the product was finished by cold rolling to a final plate thickness of 0.23 mm. This is followed by an oil wash and decarburization annealing at 830 ° C for 30 seconds, H
It was carried out in an atmosphere of 2 : 75% + N 2 : 25% and a dew point of 40 ° C. Next, nitriding treatment is performed at 750 ° C. for 30 seconds, H 2 , N
2. Conducted in a mixed gas of ammonia and set the nitrogen content of the steel plate to 2
Adjusted to 00ppm, using Al 2 O 3 as an annealing separator,
Atmosphere gas of finish annealing temperature rising process is N 2 : 90% + H
2 : 10% mixed gas was used, and purification annealing was performed at 1200 ° C. for 20 hours in a H 2 atmosphere gas. After that, it was washed with water and subjected to tension annealing mainly containing chromic anhydride and aluminum phosphate. The magnetic properties of the product obtained in this experiment are shown in FIG.

【0010】この図1から、穿孔深さ10〜37μmの
範囲で0.75W/kg(W17/50 )を下廻る超低鉄損が
得られた。これはレーザー照射時の板厚の1/30〜1
/8である。 (実験2)実験1で使用した途中板厚段階の穿孔深さ2
0μmの冷延板を0.23mmに冷延し脱炭焼鈍板を行っ
た。この材料を用いて以下の3種類の焼鈍分離剤を用い
て磁気特性と板表面状態の検討を行った。
From FIG. 1, an ultra-low iron loss of less than 0.75 W / kg (W 17/50 ) was obtained in the range of the depth of drilling from 10 to 37 μm. This is 1/30 to 1 of the plate thickness during laser irradiation
/ 8. (Experiment 2) Perforation depth 2 in the mid-thickness stage used in Experiment 1
A 0 μm cold-rolled sheet was cold-rolled to 0.23 mm and a decarburized annealed sheet was performed. Using this material, the following three types of annealing separators were used to study the magnetic properties and plate surface state.

【0011】 MgO:100部+TiO2 :5部+
Na247 :0.3部 MgO:100部+CaCl2 :7部 MgO:100部+BiCl:2部 上記焼鈍分離剤を塗布した後、N2 :50%+H2 :5
0%の雰囲気中で1200℃×20時間の仕上げ焼鈍を
行った。この後、無水クロム酸と燐酸アルミニウムを主
成分とするコーティング液を塗布して、850℃×2分
間の焼き付け焼鈍を行った。この結果を次に示す。
MgO: 100 parts + TiO 2 : 5 parts +
Na 2 B 4 O 7 : 0.3 parts MgO: 100 parts + CaCl 2 : 7 parts MgO: 100 parts + BiCl: 2 parts After applying the above annealing separator, N 2 : 50% + H 2 : 5
Finish annealing was performed at 1200 ° C. for 20 hours in a 0% atmosphere. After that, a coating liquid containing chromic anhydride and aluminum phosphate as main components was applied, and baking and annealing was performed at 850 ° C. for 2 minutes. The results are shown below.

【0012】 ────────────────────────────────── 焼鈍分離剤 磁 気 特 性 板表面状態 B8(T) W17/50 (W/kg) ────────────────────────────────── 1.92 0.75 フォルステライト形成 1.94 0.71 フォルステライト無し 1.94 0.70 フォルステライト無し ────────────────────────────────── 上記結果から分るように、焼鈍分離剤に塩素化合物を添
加した材料で鉄損の非常に低い超低鉄損材が得られた。
────────────────────────────────── Annealing agent Magnetic property Plate surface state B8 (T ) W 17/50 (W / kg) ────────────────────────────────── 1.92 0.75 Forsterite formation 1.94 0.71 Without forsterite 1.94 0.70 Without forsterite ────────────────────────────── ───── As can be seen from the above results, an ultra-low iron loss material with a very low iron loss was obtained from a material in which a chlorine compound was added to the annealing separator.

【0013】本発明において、出発材料の成分組成の限
定理由は以下の通りである。Siは、低鉄損を得る上で
多い方が好ましいが、Siの含有量が4.5%を超える
と材料の冷間圧延時に、割れ、破断が多発し、安定した
冷延作業を不可能にする。Cは、0.085%を超える
と、脱炭焼鈍時間が長大なものとなり、生産性を損な
う。Mnは、その含有量が少なすぎると二次再結晶が不
安定となり、一方、多すぎると高い磁束密度をもつ製品
を得難くなる。適正な含有量は、0.050〜0.45
%である。Sは、周知の如くMnSを形成し、一次再結
晶粒の成長を抑制する。本発明においては二次再結晶粒
を発現させるに必要なインヒビターは脱炭焼鈍以降で造
り込むことを特徴としており、冷延以前で微細な析出物
が分散することは一次再結晶粒径を調整して高磁束密度
鋼板を得る本発明においては好ましくない。従って、S
は0.015%以下としている。好ましくは0.010
%以下が良い。
In the present invention, the reasons for limiting the component composition of the starting material are as follows. Si is preferably large in order to obtain low iron loss, but if the Si content exceeds 4.5%, cracks and fractures frequently occur during cold rolling of the material, making stable cold rolling work impossible. To If C exceeds 0.085%, the decarburization annealing time becomes long and the productivity is impaired. If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.050 to 0.45
%. S forms MnS as is well known, and suppresses the growth of primary recrystallized grains. In the present invention, the inhibitor required to develop secondary recrystallized grains is characterized in that it is built after decarburization annealing, and that fine precipitates are dispersed before cold rolling adjusts the primary recrystallized grain size. It is not preferable in the present invention to obtain a high magnetic flux density steel sheet. Therefore, S
Is set to 0.015% or less. Preferably 0.010
% Or less is good.

【0014】Alは窒素と結合してAlNを形成する
が、本発明においては、後工程、即ち一次再結晶完了に
鋼を窒化することにより、(Al,Si)Nを形成せし
めることを必須としているから、フリーのAlが一定量
以上必要である。そのため、酸可溶性Alとして、0.
010〜0.040%とする。Nは0.010%以下に
する必要がある。0.010%を超えるとブリスターと
呼ばれる鋼板表面の膨れが発生し、また一次再結晶組織
の調整が困難になる。下限は特に限定しないが0.00
2%程度が良い。
Al combines with nitrogen to form AlN. In the present invention, it is essential to form (Al, Si) N by nitriding the steel in the subsequent step, that is, the completion of primary recrystallization. Therefore, a certain amount of free Al is required. Therefore, as acid-soluble Al, 0.1.
010 to 0.040%. N needs to be 0.010% or less. If it exceeds 0.010%, blistering of the steel sheet surface called blister occurs, and it is difficult to adjust the primary recrystallization structure. The lower limit is not particularly limited, but is 0.00
About 2% is good.

【0015】Snは脱炭焼鈍後の集合組織を改善し、ひ
いては二次再結晶粒を改善し皮膜の安定化と相俟って鉄
損改善に効果が大きい。Snの適量は0.02〜0.1
5%であるが、これより少ないと鉄損改善効果が弱く、
一方、多いと窒化が困難になり二次再結晶粒が発達しに
くくなる。好ましくは0.03〜0.10%が良い。な
お、微量のCu,P,Tiを鋼中に含有せしめること
は、本発明の主旨を損なうものではない。
Sn improves the texture after decarburization annealing and, by extension, improves secondary recrystallized grains and, in combination with the stabilization of the coating, has a great effect on improving iron loss. Suitable amount of Sn is 0.02-0.1
It is 5%, but if it is less than this, the iron loss improving effect is weak,
On the other hand, if the amount is large, nitriding becomes difficult and secondary recrystallized grains are hard to develop. Preferably, 0.03 to 0.10% is good. The inclusion of trace amounts of Cu, P, and Ti in steel does not impair the gist of the present invention.

【0016】次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉或いは電気炉等の溶解炉で
鋼を溶製し、必要に応じて真空脱ガス処理し、次いで連
続鋳造によって、或いは造塊後分塊圧延することによっ
て得られ、しかる後、熱間圧延に先立つスラブ加熱がな
される。スラブ加熱温度は1280℃以下の低い温度で
行うことにより加熱エネルギーの消費量を少なくすると
ともに、鋼中のAlNを完全には固溶させず不完全固溶
状態とする。
Next, the manufacturing process of the present invention will be described. Electromagnetic steel slabs are obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting it to vacuum degassing treatment if necessary, and then by continuous casting or by slabbing after ingot making. After that, slab heating is performed prior to hot rolling. By performing the slab heating at a low temperature of 1280 ° C. or less, the consumption of the heating energy is reduced, and the AlN in the steel is not completely dissolved to form an incomplete solid solution state.

【0017】このスラブを熱延して所定の厚みの熱延板
を得、次いで、900℃〜1150℃で短時間の熱延板
焼鈍と、それに引続き冷間を行う。冷間圧延の圧延率
は、高磁束密度鋼板を得る上から80%以上必要であ
る。次に、本発明においては冷間圧延途中の最終板厚と
なる前段階で、穿孔処理を行う。
The slab is hot-rolled to obtain a hot-rolled sheet having a predetermined thickness, and then hot-rolled sheet annealing is performed at 900 ° C to 1150 ° C for a short period of time, followed by cold working. The rolling ratio of cold rolling is required to be 80% or more in order to obtain a high magnetic flux density steel plate. Next, in the present invention, a piercing process is performed before the final plate thickness during cold rolling.

【0018】以下に、穿孔処理の条件について述べる。
穿孔(溝)の幅は10〜500μmとする。500μm
を超すと磁束密度の劣化が大きくなり、鉄損低減効果が
認められない。一方、10μmより狭くすることは非常
に難しい。溝の方向は圧延方向に対して90°〜45°
とする。45°より小さくなると、磁区細分化効果が弱
くなり鉄損低減が小さい。溝の間隔は1〜20mmとす
る。1mm未満は工業的に難しく、一方、20mmを超える
と鉄損低減が小さくなる。点状の穿孔の場合、穿孔の間
隔は特に拘らないが、磁区は幅の最も広いもので2mm程
度であることから、これを超すことは好ましくない。溝
深さは溝形成時の板厚の1/30〜1/8の範囲が良
い。1/30より浅いと鉄損低減が弱く、1/8より深
いと磁束密度の劣化を招き鉄損特性も悪くなる。
The conditions for the punching process will be described below.
The width of the perforations (grooves) is 10 to 500 μm. 500 μm
If it exceeds, the deterioration of the magnetic flux density will increase and the iron loss reduction effect will not be recognized. On the other hand, it is very difficult to make it smaller than 10 μm. The groove direction is 90 ° to 45 ° with respect to the rolling direction
And When the angle is smaller than 45 °, the effect of subdividing the magnetic domain is weakened, and the iron loss reduction is small. The interval between the grooves is 1 to 20 mm. If it is less than 1 mm, it is industrially difficult, while if it exceeds 20 mm, the reduction of iron loss becomes small. In the case of point-like perforations, the interval between the perforations is not particularly limited, but the magnetic domain having the widest width is about 2 mm, so it is not preferable to exceed this. The groove depth is preferably in the range of 1/30 to 1/8 of the plate thickness at the time of forming the groove. If it is shallower than 1/30, the reduction of iron loss is weak, and if it is deeper than 1/8, the magnetic flux density is deteriorated and the iron loss characteristics are also deteriorated.

【0019】この溝形成にはレーザー光或いはプラズマ
炎を用いると効果的であるが、この他高圧水を用いても
良い。この後製品板厚まで圧延する。この圧延は溝形成
時に生じた形成不良やバリを除去すると同時に、熱影響
部の組織を改善し、磁区制御効果に加えてGoss組織
の発達を製品板厚で照射した場合に比較して更に促進す
る効果がある。この理由は定かでないが、熱影響部の組
織に圧延により歪が導入され、その歪量がGoss組織
の発達に適したものとなっていると推定される。溝形成
にレーザー光を用いる場合、溝周辺に鋼の溶融物が付着
するが、追加圧延によってこの大部分は除去されるもの
の、一部は表面の肌荒れ、或いは板厚精度の低下の原因
となり、商品価値に影響を及ぼしてくる。レーザー照射
後にこの溶融物を例えばブラシ、砥石、ワイパー、圧搾
空気、高圧水等、機械的方法で除去すると、上記欠陥が
解消され優れた製品を得ることが出来る。加えて、最終
板厚の冷延板を硝酸、硫酸、塩酸水等で軽酸洗処理を施
すことは溝内の付着物を除去するのに効果がある。
It is effective to use laser light or plasma flame for forming the groove, but high pressure water may be used in addition to this. After that, it is rolled to the product thickness. This rolling eliminates formation defects and burrs generated during groove formation, improves the structure of the heat affected zone, and further promotes the development of the Goss structure in addition to the magnetic domain control effect as compared to the case where irradiation is performed at the product thickness. Has the effect of doing Although the reason for this is not clear, it is presumed that strain is introduced into the structure of the heat-affected zone by rolling, and the amount of strain is suitable for the development of the Goss structure. When using a laser beam for groove formation, the melt of steel adheres to the periphery of the groove, but although most of this is removed by additional rolling, part of it causes rough surface or a decrease in plate thickness accuracy, It will affect the product value. When the melt is removed by a mechanical method such as a brush, a grindstone, a wiper, compressed air, or high-pressure water after the laser irradiation, the above defects can be eliminated and an excellent product can be obtained. In addition, light pickling of the cold-rolled plate having the final plate thickness with nitric acid, sulfuric acid, hydrochloric acid water or the like is effective in removing the deposits in the groove.

【0020】上述の処理に引続き、脱炭焼鈍と窒化処理
を行う。脱炭焼鈍は公知の方法で行うことが可能であ
り、窒化処理は例えば特開平2−77525号公報に示
されるような、水素、窒素、アンモニアの混合ガス中で
ストリップを走行して行う。焼鈍分離剤にはフォルステ
ライト皮膜を形成させないものを使用する必要がある。
このためにAl23 の使用或いはMgOにCa,M
g,Biの塩化物から選ばれる1種又は2種以上を合計
で2〜30重量部添加した焼鈍分離剤を塗布する必要が
ある。
Subsequent to the above treatment, decarburization annealing and nitriding treatment are performed. The decarburization annealing can be performed by a known method, and the nitriding treatment is performed by running the strip in a mixed gas of hydrogen, nitrogen and ammonia as shown in JP-A-2-77525. It is necessary to use an annealing separator that does not form a forsterite film.
For this purpose, use of Al 2 O 3 or Ca, M in MgO
It is necessary to apply an annealing separator containing 2 to 30 parts by weight in total of one or more selected from chlorides of g and Bi.

【0021】この塩化物の添加は2重量部より少ないと
フォルステライト皮膜が形成され、一方、30重量部を
超えても効果は変わらない。仕上げ焼鈍は公知の方法で
行う。この後、張力皮膜を形成させるが、張力皮膜とし
ては、例えば特開昭48−39338号公報によるコロ
イド状シリカと燐酸アルミニウムを主体とするコーティ
ング液、特開昭50−79442号公報によるコロイド
状シリカと燐酸マグネシウムを主体とするコーティング
液、または特願平4−222849号公報によるアルミ
ナ・ゾルとほう酸を主成分とするコーティング液を焼き
付ける方法等を採用すればよい。
If the amount of this chloride added is less than 2 parts by weight, a forsterite film is formed, while if it exceeds 30 parts by weight, the effect remains unchanged. The finish annealing is performed by a known method. After that, a tension film is formed. Examples of the tension film include colloidal silica disclosed in JP-A-48-39338 and a coating liquid mainly containing aluminum phosphate, and colloidal silica disclosed in JP-A-50-79442. And a coating solution containing magnesium phosphate as a main component, or a method of baking a coating liquid containing alumina sol and boric acid as main components according to Japanese Patent Application No. 4-222849 may be employed.

【0022】[0022]

【実施例】【Example】

<実施例1>重量比で、C:0.053%、Si:3.
25%、Mn:0.10%、P:0.020%、S:
0.007%、酸可溶性Al:0.028%、Sn:
0.05%、Cr:0.12%、N:0.0078%を
含む電磁鋼熱延鋼板を1120℃に加熱後冷却し、次い
で900℃に短時間保定する焼鈍を施した後急冷し、酸
洗し冷延を行った。この冷延の板厚途中段階においてレ
ーザー光により4段階に深さを変えて穿孔した。
<Example 1> C: 0.053%, Si: 3.
25%, Mn: 0.10%, P: 0.020%, S:
0.007%, acid-soluble Al: 0.028%, Sn:
An electromagnetic steel hot-rolled steel sheet containing 0.05%, Cr: 0.12% and N: 0.0078% was heated to 1120 ° C., then cooled, then annealed at 900 ° C. for a short time, and then rapidly cooled, It was pickled and cold rolled. In the middle of the plate thickness of this cold rolling, the depth was changed in four steps by laser light for perforation.

【0023】 ──────────────────────────────── レーザー照射板厚(mm) 穿孔深さ(μm) ──────────────────────────────── 0.34 照射なし、8、30、44 ──────────────────────────────── 穿孔(溝)の幅はほぼ70μm、間隔100μmの点列
とし、点列の方向は圧延方向に対して70°とし、点列
のピッチは4mmとした。
──────────────────────────────── Laser irradiation plate thickness (mm) Perforation depth (μm) ── ────────────────────────────── 0.34 No irradiation, 8, 30, 44 ────────── ─────────────────────── The width of the perforations (grooves) is approximately 70 μm and the spacing is 100 μm. The pitch was 70 ° and the pitch of the dot train was 4 mm.

【0024】この後最終板厚0.27mmまで冷延して仕
上げた。この後油洗し脱炭焼鈍を830℃×30秒、H
2 :75%+N2 :25%、露点40℃の雰囲気中で行
った。次いで窒化処理を750℃×30秒、H2 、N
2 、アンモニアの混合ガス中で行い、鋼板の窒素量を2
00ppm に調整し、焼鈍分離剤にAl23 を使用し、
1200℃×20時間の仕上げ焼鈍を昇温過程は窒素雰
囲気中で、均熱時は水素雰囲気中で行った。この後水洗
し、無水クロム酸、燐酸アルミニュウムを主成分とする
張力コーテングを施した。得られた磁気特性を次に示
す。
After this, the product was finished by cold rolling to a final plate thickness of 0.27 mm. After this, wash with oil and decarburize annealing at 830 ° C for 30 seconds
It was carried out in an atmosphere of 2 : 75% + N 2 : 25% and a dew point of 40 ° C. Next, nitriding treatment is performed at 750 ° C. for 30 seconds, H 2 , N
2. Conducted in a mixed gas of ammonia and set the nitrogen content of the steel plate to 2
Adjusted to 00ppm, using Al 2 O 3 as an annealing separator,
Final annealing at 1200 ° C. for 20 hours was performed in a nitrogen atmosphere during the temperature rising process and in a hydrogen atmosphere during soaking. After that, it was washed with water and subjected to tension coating containing chromic anhydride and aluminum phosphate as main components. The magnetic properties obtained are shown below.

【0025】 ──────────────────────────────── 試料(溝深さμm) B8(T) W17/50 (W/kg) ──────────────────────────────── 照射なし 1.95 0.90 8 1.94 0.87 20 1.94 0.78 44 1.92 0.86 ──────────────────────────────── 上記結果から分るように本発明の範囲で低超鉄損が得ら
れた。 <実施例2>重量比で、C:0.056%,Si:3.
3%,Mn:0.10%,P:0.025%,S:0.
007%,酸可溶性Al:0.027%,Sn:0.0
5%,Cr:0.08%,N:0.0080%を含む電
磁鋼スラブを熱延し、板厚2.3mmとした。次いでこの
熱延板を1120℃で加熱後、冷却し900℃で短時間
保定する焼鈍を施した後急冷し、酸洗し、冷延をおこな
った。この冷延途中板厚段階の0.30mmでレーザー光
により溝を圧延方向と90°方向に形成した。溝の幅は
ほぼ100μm、深さ約18μm、圧延方向の溝のピッ
チは4mmとした。この後、1つはこのままの状態で、他
の1つは溝部の溶融付着物をサンドベルトで除去した後
いずれも0.23mmまで冷延した。この後油洗し、脱炭
焼鈍を830℃で行った後窒化処理を750℃x30
秒、H2 ,N2 、アンモニアの混合ガス中で行い、窒素
量をほぼ200ppm に調整した。この後焼鈍分離剤にA
2 3 を塗布し、1200℃x20時間の仕上焼鈍を
行った。この焼鈍の昇温過程の雰囲気ガスはH2 :10
%+N2 :90%の混合ガスとし、純化はH2 ガスとし
た。この後水洗し、無水クロム酸、リン酸アルミニュウ
ムを主成分とする張力コーティングを施した。得られた
特性を表1に示す。
──────────────────────────────── Sample (groove depth μm) B8 (T) W 17/50 (W / kg) ──────────────────────────────── No irradiation 1.95 0.90 8 1.940 .87 20 1.94 0.78 44 1.92 0.86 ──────────────────────────────── Above results As can be seen from the above, low super-iron loss was obtained within the range of the present invention. <Example 2> C: 0.056%, Si: 3.
3%, Mn: 0.10%, P: 0.025%, S: 0.
007%, acid-soluble Al: 0.027%, Sn: 0.0
An electromagnetic steel slab containing 5%, Cr: 0.08%, N: 0.0080% was hot-rolled to a plate thickness of 2.3 mm. Next, this hot-rolled sheet was heated at 1120 ° C., cooled, annealed at 900 ° C. for a short time, then rapidly cooled, pickled, and cold-rolled. Grooves were formed in the 90 ° direction with the rolling direction by laser light at a plate thickness of 0.30 mm during the cold rolling. The groove width was about 100 μm, the depth was about 18 μm, and the groove pitch in the rolling direction was 4 mm. After this, one was left as it was, and the other was cold-rolled to 0.23 mm after removing the molten deposits in the grooves with a sand belt. After that, it was washed with oil, decarburized and annealed at 830 ° C., and then nitrided at 750 ° C. × 30.
Second, in a mixed gas of H 2 , N 2 and ammonia, the nitrogen amount was adjusted to about 200 ppm. After this, the annealing separator was
l 2 O 3 was applied and finish annealing was performed at 1200 ° C. for 20 hours. The atmosphere gas in the temperature rising process of this annealing is H 2 : 10.
% + N 2 : A mixed gas of 90% was used, and H 2 gas was used for purification. After that, it was washed with water and subjected to tension coating mainly containing chromic anhydride and aluminum phosphate. The obtained characteristics are shown in Table 1.

【表1】 このように、溝部の研磨を行うと鉄損、板厚精度とも改
善されることが分かる。 <実施例3>重量比で、C:0.052%,Si:3.
25%,Mn:0.10%,P:0.025%,S:
0.007%,酸可溶性Al:0.026%,Sn:
0.07%,Cr:0.12%,N:0.0078%を
含む電磁鋼スラブを1150℃で熱延し、板厚1.8mm
とし、次いで1120℃で加熱後、冷却し900℃で短
時間保定する焼鈍を施した後急冷し、酸洗し、冷延をお
こなった。この冷延の板厚途中段階の0.25mmでレー
ザー光により溝を圧延方向と75°方向に形成した。溝
の幅は、ほぼ100μm、深さ約15μm、圧延方向の
溝のピッチは4mmとした。更に、溝部の溶融付着物をサ
ンドベルトで除去した後、0.17mmまで冷延した。こ
の後、30%硝酸水で短時間酸洗し、脱炭焼鈍を830
℃で行った後、窒化処理を750℃x30秒、H2 ,N
2 、アンモニアの混合ガス中で行い、窒素量を200pp
m に調整した。この後、焼鈍分離剤に次の条件のものを
使用した。 MgO+CaCl2 (7%) MgO+BiCl3 (3%) MgO+MgCl2 (7%) MgOのみ(比較) この後、1200℃x20時間の仕上焼鈍を行った。こ
の焼鈍の昇温過程の雰囲気ガスはH2 :25%+N2
75%の混合ガスとし、純化はH2 ガスとした。この後
水洗し、無水クロム酸、リンサンアルミニュウムを主成
分とする張力焼鈍を施した。得られた特性を表2に示
す。
[Table 1] As described above, it is understood that the iron loss and the plate thickness accuracy are improved by polishing the groove portion. <Example 3> C: 0.052%, Si: 3.
25%, Mn: 0.10%, P: 0.025%, S:
0.007%, acid-soluble Al: 0.026%, Sn:
Electromagnetic steel slab containing 0.07%, Cr: 0.12%, N: 0.0078% is hot-rolled at 1150 ° C to obtain a plate thickness of 1.8 mm.
Then, it was heated at 1120 ° C., cooled and annealed at 900 ° C. for a short time, then rapidly cooled, pickled, and cold rolled. Grooves were formed in a direction of 75 ° with the rolling direction by laser light at 0.25 mm in the middle of the cold rolling. The groove width was about 100 μm, the depth was about 15 μm, and the groove pitch in the rolling direction was 4 mm. Further, the molten deposit in the groove was removed by a sand belt and then cold rolled to 0.17 mm. After this, pickling with a 30% nitric acid solution for a short time and decarburization annealing for 830
After nitriding at 750 ° C for 30 seconds, H 2 , N
2. Performed in a mixed gas of ammonia and nitrogen amount of 200 pp
Adjusted to m. Then, the annealing separator was used under the following conditions. MgO + CaCl 2 (7%) MgO + BiCl 3 (3%) MgO + MgCl 2 (7%) MgO only (comparison) After that, finish annealing was performed at 1200 ° C. for 20 hours. The atmosphere gas in the temperature rising process of this annealing is H 2 : 25% + N 2 :
A 75% mixed gas was used and H 2 gas was used for purification. After that, it was washed with water and subjected to tension annealing mainly containing chromic anhydride and phosphorus phosphorus aluminum. Table 2 shows the obtained characteristics.

【表2】 このように、焼鈍分離剤にCaCl2,BiCl3,Mg
Cl2を添加することにより超低鉄損材が得られた。
[Table 2] As described above, the annealing separator is not limited to CaCl 2 , BiCl 3 , Mg.
An ultra low iron loss material was obtained by adding Cl 2 .

【0026】[0026]

【発明の効果】以上説明したように、本発明は最終冷延
の途中板厚段階で鋼板表面にレーザー光などにより人為
的に圧延方向に対し特定の角度で微小の溝を点状ないし
線状に付与し、最終板まで冷延後、Al23 またはM
gOにCa,Mg,Biの塩化物を添加した焼鈍分離剤
を塗布することで0.80W/kg(W17/50 )以下とい
う超低鉄損を有する方向性電磁鋼板を容易に製造するこ
とができるものである。
As described above, according to the present invention, minute grooves are artificially formed on the surface of a steel sheet at a specific angle with respect to the rolling direction at a specific angle with respect to the rolling direction during the final cold rolling in a sheet thickness step. Al 2 O 3 or M after cold rolling to the final plate
To easily manufacture a grain- oriented electrical steel sheet having an ultra-low iron loss of 0.80 W / kg (W 17/50 ) or less by applying an annealing separator containing gO containing chlorides of Ca, Mg and Bi. Is something that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】穿孔深さと鉄損との関係を示す図。FIG. 1 is a diagram showing the relationship between perforation depth and iron loss.

フロントページの続き (72)発明者 藤井 浩康 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 (72)発明者 田中 収 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 (72)発明者 岩永 功 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内(72) Inventor Hiroyasu Fujii 1-1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Katsuro Kuroki 46, Nakahara, Tobata-ku, Kitakyushu, Fukuoka 59 Nittetsu Plant Design Co., Ltd. (72) Inventor Osamu Tanaka At 59 Nittetsu Plant Design Co., Ltd. at 46 Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture (72) Inventor Isao Iwanaga Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka 1-1 Nippon Steel Corporation Yawata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、Si:2.5〜4.5%、
C:0.085%以下、Mn:0.050〜0.45
%、S≦0.015%、酸可溶性Al:0.010〜
0.040%、N:≦0.010%、Sn:0.02〜
0.15%、残部Fe及び不可避的不純物からなる電磁
鋼スラブを1280℃以下の温度で加熱した後、熱延
し、熱延板焼鈍をし、一回または中間焼鈍を介挿する二
回以上の圧延でその最終圧延率を80%以上とし、次い
で脱炭焼鈍、窒化処理、焼鈍分離剤を塗布し、仕上げ焼
鈍をする一方向性電磁鋼板の製造において、その最終冷
延の途中板厚段階で鋼板表面に圧延方向に対して、90
°〜45°の範囲で幅が10〜500μm、深さが板厚
t×1/8〜t×1/30、間隔が圧延方向に1〜20
mmの溝を点状あるいは線状に形成した後、最終板厚まで
圧延後焼鈍分離剤としてAl23 を塗布し、仕上げ焼
鈍、張力コーティングを施すことを特徴とするフォルス
テライト皮膜を有しない超低鉄損方向性電磁鋼板の製造
方法。
Claims: 1. A weight ratio of Si: 2.5 to 4.5%,
C: 0.085% or less, Mn: 0.050 to 0.45
%, S ≦ 0.015%, acid-soluble Al: 0.010
0.040%, N: ≦ 0.010%, Sn: 0.02
An electromagnetic steel slab consisting of 0.15% and the balance Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or lower, and then hot-rolled, hot-rolled sheet annealed once or twice or more with intermediate annealing interposed. In the production of the unidirectional electrical steel sheet in which the final rolling rate is 80% or more by rolling, decarburization annealing, nitriding treatment, and annealing separator are applied, and finish annealing is performed, the final cold rolling intermediate sheet thickness step 90 ° to the steel plate surface in the rolling direction
The width is 10 to 500 μm, the depth is plate thickness t × 1/8 to t × 1/30, and the interval is 1 to 20 in the rolling direction in the range of ° to 45 °.
After forming a groove of mm in a dot shape or a linear shape, after rolling to the final plate thickness, Al 2 O 3 is applied as an annealing separating agent, and finish annealing and tension coating are applied, which does not have a forsterite film. Ultra low iron loss grain oriented electrical steel sheet manufacturing method.
【請求項2】 レーザー光により、鋼板表面に圧延方向
に対して90°から45°の範囲で幅が10から500
μm、深さが板厚t×1/8〜t×1/30、間隔が圧
延方向に1〜20mmの溝を点状或いは線状に形成し、次
いで溝形成後に生じた溶融付着物を機械的方法で除去し
た後、最終板厚まで圧延することを特徴とする請求項1
記載のフォルステライト皮膜を有しない超低鉄損方向性
電磁鋼板の製造方法。
2. The width of the steel sheet surface is 10 to 500 in the range of 90 ° to 45 ° with respect to the rolling direction by laser light.
μm, depth t × 1/8 to t × 1/30, and interval of 1 to 20 mm in the rolling direction are formed into dots or lines, and then the molten deposits generated after the grooves are machined. After removing it by a mechanical method, it is rolled to the final plate thickness.
A method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no forsterite coating as described in the above.
【請求項3】 最終板厚の冷延板を脱炭焼鈍前に軽酸洗
を施すことを特徴とする請求項1または2記載のフォル
ステライト皮膜を有しない超低鉄損方向性電磁鋼板の製
造方法。
3. The ultra-low iron loss grain-oriented electrical steel sheet having no forsterite coating according to claim 1 or 2, wherein the cold-rolled sheet having the final sheet thickness is lightly pickled before decarburization annealing. Production method.
【請求項4】 焼鈍分離剤としてMgO:100重量部
に対し、Ca,Mg,Biの塩化物から選ばれる1種又
は2種以上を合計で2〜30重量部添加した焼鈍分離剤
を塗布することを特徴とする請求項1,2または3記載
のフォルステライト被膜を有しない超低鉄損方向性電磁
鋼板の製造方法。
4. An annealing separator, which is obtained by adding 2 to 30 parts by weight in total of one or two or more kinds selected from chlorides of Ca, Mg, and Bi to 100 parts by weight of MgO as an annealing separator. The method for producing an ultra-low iron loss grain-oriented electrical steel sheet having no forsterite coating according to claim 1, 2 or 3.
JP8340045A 1996-02-02 1996-12-19 Production of grain oriented silicon steel sheet with ultralow iron loss Withdrawn JPH09268322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340045A JPH09268322A (en) 1996-02-02 1996-12-19 Production of grain oriented silicon steel sheet with ultralow iron loss

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1737196 1996-02-02
JP8-17371 1996-02-02
JP8340045A JPH09268322A (en) 1996-02-02 1996-12-19 Production of grain oriented silicon steel sheet with ultralow iron loss

Publications (1)

Publication Number Publication Date
JPH09268322A true JPH09268322A (en) 1997-10-14

Family

ID=26353881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340045A Withdrawn JPH09268322A (en) 1996-02-02 1996-12-19 Production of grain oriented silicon steel sheet with ultralow iron loss

Country Status (1)

Country Link
JP (1) JPH09268322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956533B1 (en) * 2001-07-24 2010-05-07 제이에프이 스틸 가부시키가이샤 A method of manufacturing grain-oriented electrical steel sheets
WO2012033197A1 (en) 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
CN105463172A (en) * 2015-12-14 2016-04-06 武汉钢铁(集团)公司 Method for improving magnetic performance of silicon steel sheet through laser indented oriented silicon steel cold-rolled sheet
CN108138291A (en) * 2015-10-26 2018-06-08 新日铁住金株式会社 Grain-oriented magnetic steel sheet and the decarburization steel plate for its manufacture
KR20210110864A (en) * 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956533B1 (en) * 2001-07-24 2010-05-07 제이에프이 스틸 가부시키가이샤 A method of manufacturing grain-oriented electrical steel sheets
WO2012033197A1 (en) 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
US8657968B2 (en) 2010-09-09 2014-02-25 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
CN108138291A (en) * 2015-10-26 2018-06-08 新日铁住金株式会社 Grain-oriented magnetic steel sheet and the decarburization steel plate for its manufacture
EP3369834A4 (en) * 2015-10-26 2019-07-10 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same
US10907234B2 (en) 2015-10-26 2021-02-02 Nippon Steel Corporation Grain-oriented electrical steel sheet and decarburized steel sheet used for manufacturing the same
CN105463172A (en) * 2015-12-14 2016-04-06 武汉钢铁(集团)公司 Method for improving magnetic performance of silicon steel sheet through laser indented oriented silicon steel cold-rolled sheet
KR20210110864A (en) * 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
EP3913092A4 (en) * 2019-01-16 2022-12-14 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR960010811B1 (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP2022060749A (en) Production method of directional electromagnetic steel sheet
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2691828B2 (en) Ultra low iron loss grain oriented electrical steel sheet with extremely high magnetic flux density.
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH10183251A (en) Production of low core loss grain oriented silicon steel sheet
JPH1046252A (en) Production of superlow core loss grain oriented magnetic steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05214445A (en) Production of grain-oriented silicon steel sheet having extremely high magnetic flux density
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties
WO2024096082A9 (en) Grain-oriented electromagnetic steel sheet
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP3456869B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302