JPH09268293A - Catalytic cracker for synthetic polymer and production of oily material using the same - Google Patents

Catalytic cracker for synthetic polymer and production of oily material using the same

Info

Publication number
JPH09268293A
JPH09268293A JP10426096A JP10426096A JPH09268293A JP H09268293 A JPH09268293 A JP H09268293A JP 10426096 A JP10426096 A JP 10426096A JP 10426096 A JP10426096 A JP 10426096A JP H09268293 A JPH09268293 A JP H09268293A
Authority
JP
Japan
Prior art keywords
tubular
cracking
catalyst
preheater
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10426096A
Other languages
Japanese (ja)
Other versions
JP3585637B2 (en
Inventor
Shigeru Isayama
山 滋 諫
Takashi Yamanaka
中 隆 志 山
Shunyo Uesugi
杉 春 洋 上
Shizuo Yanagii
井 志津男 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP10426096A priority Critical patent/JP3585637B2/en
Publication of JPH09268293A publication Critical patent/JPH09268293A/en
Application granted granted Critical
Publication of JP3585637B2 publication Critical patent/JP3585637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a catalytic cracker capable of adding a cracking promoting catalyst to a waste plastic contained in a municipal refuse or an industrial waste, etc., as a main object and catalytically cracking the waste plastic and a method for converting a synthetic polymer into an oil by continuously melting and catalytically cracking the waste plastic in the catalytic cracker and thereby producing and recovering a cracked oil in high yield. SOLUTION: This catalytic cracker for a synthetic polymer comprises an extruder 1 →a tubular preheater 2 → a tubular cracking furnace 3 → a receiver 4 as a main line. The extruder 1 is equipped with a full-flighted screw and the tubular preheater 2 is provided with a heater 23 and a static mixer. The tubular cracking furnace 3 is equipped with a heater 33 and a scraper and a screw 31 and both the tubular preheater 2 and the tubular cracking furnace 3 are in a tilted arrangement with an outlet located at a high level. The polymer which is a cracking raw material is melt kneaded in the extruder 1, heated up with the tubular preheater 2 under stirring and then catalytically cracked in the coexistence of an amorphous silica-alumina catalyst at 300-470 deg.C for 15min overall residence time in the tubular cracking furnace 3. The oil recovery ratio for an oily material is 80% based on the weight of the charged raw material plastic and the viscosity of the produced oily material is <=120cSt (at 80 deg.C) by continuously cracking a mixture of 85 pts.wt. polypropylene(PP) with 5 pts.wt. polyethylene(PE) and 10 pts.wt. polystyrene(PS) at 440 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成重合体の油状化方法
に関し、特に、都市ゴミ又は産業廃棄物等の中に含有さ
れる廃棄プラスチックを主な対象とし、これに分解促進
触媒を添加して接触分解装置で連続的に溶融及び接触分
解することによって高収率で分解油を製造回収する合成
重合体の油状化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for making synthetic polymers oily, and particularly to waste plastic contained in municipal waste or industrial waste, to which a decomposition accelerating catalyst is added. The present invention relates to a method for oiling a synthetic polymer, which produces and recovers cracked oil in high yield by continuously melting and catalytically cracking in a catalytic cracking apparatus.

【0002】[0002]

【従来の技術】使用済みのプラスチックは従来、その大
部分が廃棄処理されている。しかし、プラスチックは地
中に埋設されても、大気中又は水中等に放置されても、
腐ったり分解することが殆ど無いことから、廃プラスチ
ックの量は増加する一方で今や地球的規模でその処理法
又は再利用法等が問題となっている。
2. Description of the Related Art Most of used plastics are conventionally disposed of as waste. However, even if the plastic is buried underground, or left in the air or water,
Since it hardly rots or decomposes, the amount of waste plastics has increased, but nowadays there is a problem in its treatment method or recycling method on a global scale.

【0003】廃プラスチックの処理方法としては、焼却
又は埋立等の外に、廃プラスチックを有効利用する為の
方法も既に種々試みられている。この有効利用法は廃プ
ラスチックを樹脂に再生する方法と、熱分解して油状化
する方法とに大別される。
As a method for treating waste plastic, various methods have been already tried in addition to incineration, landfilling, etc., as well as methods for effectively utilizing the waste plastic. This effective utilization method is roughly classified into a method of regenerating waste plastic into a resin and a method of thermally decomposing it into an oil.

【0004】これらの内で、前者の方法は廃プラスチッ
クの素性が明確な場合には有効であるが、廃プラスチッ
クの常として種々雑多なプラスチックが混ざり有った混
合系には適用し難い。困ったことに、現在社会的に回収
される廃棄プラスチックの殆どは雑多な種類の混合物で
あるから、後者の油状化する方法が有効な利用法になり
始めている。
Of these, the former method is effective when the identity of the waste plastic is clear, but it is difficult to apply it to a mixed system in which various kinds of plastics are usually mixed as waste plastics. Unfortunately, most of the waste plastics that are now socially recovered are a mixture of various types, so the latter method of oiling is beginning to be an effective use.

【0005】従来提案されている廃プラスチックの油状
化方法には、廃プラスチックを槽型反応器に直接供給す
るか、又は別の溶融槽で溶解した後に槽型反応器に供給
し、この反応器内で熱分解してガス化し、生成したガス
を凝縮器で液化して生成物を油状で得る方法がある。
[0005] In the conventionally proposed method for oiling waste plastics, the waste plastics are directly supplied to a tank reactor or are melted in another melting tank and then supplied to the tank reactor. There is a method in which the product is obtained as an oil by thermally decomposing it into gas and liquefying the produced gas in a condenser.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
方法には次の様な問題が伴う。即ち、槽型の反応器を用
いる処理方法によれば処理時間の経過に伴って、反応器
の内面に樹脂の一部がカーボンのスケールとなって析出
する問題、更には樹脂に付着した異物がスケールを形成
する。分解に伴って形成されるスケールの割合は供給さ
れるプラスチックの種類又は異物の混合率、加熱温度等
に応じて一定ではないが、通常10重量%以上、甚だし
くは30重量%にも達することがある。
However, the above-mentioned method has the following problems. That is, according to the treatment method using the tank reactor, a problem that a part of the resin is deposited as carbon scale on the inner surface of the reactor with the lapse of treatment time, and further, the foreign matter attached to the resin Form a scale. The proportion of scale formed by decomposition is not constant depending on the type of plastics supplied, the mixing ratio of foreign substances, the heating temperature, etc., but it usually reaches 10% by weight or more, and even reaches 30% by weight. is there.

【0007】こうしたスケールは分解装置の熱効率を著
しく低下させると共に、その処理能力をも低下させる。
その結果、定期的に又は随時に、運転を停止して反応器
を冷却し、内部に析出したスケール層を除去する必要に
迫られる。従って、槽型反応器はメンテナンスに手間が
かかるばかりでなく、作業効率にも劣る結果として、回
収分解油の収率を低下させる。
[0007] Such scales significantly reduce the thermal efficiency of the cracker and also reduce its throughput.
As a result, it is necessary to stop the operation to cool the reactor at regular intervals or at any time to remove the scale layer deposited inside. Therefore, the tank reactor is not only troublesome to maintain, but also inferior in work efficiency, resulting in a decrease in the yield of recovered cracked oil.

【0008】また、廃プラスチックの分解には多量の熱
を必要とする。管型分解炉を用いる場合には、限られた
管径の管型分解炉で少しでも大きな処理能力を発揮する
ことを要し、その為には、処理温度を高める外は無い。
しかし、処理温度を高くすると、熱分解物に含有される
ガス成分量及び/又は炭化水素分量が多くなる結果、管
内でフラッディング現象が生じ易くなる。このフラッデ
ィング現象が起きると、溶融プラスチックが未分解の侭
で流出したり、その有効滞留時間が短くなるという問題
が生じる。また、管型分解炉内面にスケールが同様に生
成し、上記と同様の問題を伴う。
Further, a large amount of heat is required to decompose the waste plastic. When a tubular cracking furnace is used, it is necessary to exert a large processing capacity even in a tubular cracking furnace having a limited tube diameter, and for that purpose, there is no choice but to raise the processing temperature.
However, when the treatment temperature is raised, the amount of gas components and / or the amount of hydrocarbons contained in the pyrolyzate increases, and as a result, the flooding phenomenon easily occurs in the pipe. When this flooding phenomenon occurs, there arises a problem that the molten plastic flows out due to the undecomposed metal and the effective retention time becomes short. In addition, a scale is similarly generated on the inner surface of the tubular cracking furnace, which causes the same problem as above.

【0009】[0009]

【課題を解決するための手段】本発明は先ず、溶融及び
移送用のスクリュー式押出機の下流側に管型分解炉を装
着するか、好適態様としてスクリュー型押出機の下流側
で管型分解炉との間に管型予熱器を装着することによっ
て、溶融プラスチックへ熱量を十分に供給する。その結
果、特に管型予熱器が介在する態様においては、管型分
解炉内の急激な温度上昇を避けることに成功して、前述
のフラッディングによるトラブルを解消した。
According to the present invention, first, a tube-type decomposition furnace is installed on the downstream side of a screw-type extruder for melting and transfer, or, as a preferred embodiment, a tube-type decomposition apparatus is provided on the downstream side of the screw-type extruder. By installing a tubular preheater between the furnace and the furnace, a sufficient amount of heat is supplied to the molten plastic. As a result, particularly in the mode in which the tubular preheater is interposed, it succeeded in avoiding a rapid temperature rise in the tubular cracking furnace, and solved the above-mentioned troubles due to flooding.

【0010】管型分解炉を使用する方法においても、管
型分解炉内面にスケールが同様に生成する問題は好適に
は、分解炉にスクレーパー兼用のスクリューを内蔵した
ものを用いて解消することができる。すなわち、析出し
たスケールをスクリューによって掻き取りながら、掻き
取られたスケールを搬送して除去する。
Even in the method using a tubular cracking furnace, the problem that scales are similarly generated on the inner surface of the tubular cracking furnace can be solved preferably by using a cracking furnace having a screw also serving as a scraper. it can. That is, while scraping the deposited scale with a screw, the scraped scale is conveyed and removed.

【0011】本発明はそれに加えて、熱分解反応に効果
的な触媒を共存させることによって加熱温度を不必要に
高めずに、低温で分解を行なう方法を提供するものであ
る。即ち、低温で反応を行なうことによって、管型分解
炉内でのスケール生成を著しく抑制することができ、そ
の結果として熱分解油を高収率で効率的にかつ長期間に
わたって得ることができる。
The present invention additionally provides a method of carrying out decomposition at a low temperature without unnecessarily raising the heating temperature by coexisting a catalyst effective in the thermal decomposition reaction. That is, by carrying out the reaction at a low temperature, it is possible to remarkably suppress the generation of scale in the tubular cracking furnace, and as a result, it is possible to efficiently obtain the pyrolyzed oil in a high yield over a long period of time.

【0012】本発明は合成重合体を分解促進用の触媒の
共存下に接触分解させて油状物を製造する接触分解装置
であって、前記分解装置が反応混合物を溶融混練すると
共にそれを定量的に移送するスクリュー型押出機と該移
送手段の下流側に出口高の傾斜状態で連結された管型分
解炉からなるか、又はスクリュー型押出機とその下流側
に出口高の傾斜状体で連結された管型予熱器及びその下
流側に出口高の傾斜状態で連結された管型分解炉を一連
に設置し、生成した液状分解物を下流側で受ける受け器
(受器)と、生成したガス状分解物を冷却して油状物と
して回収する気体回収系と、から構成されたものである
ことを特徴とする合成重合体の接触分解装置に関する。
The present invention is a catalytic cracking apparatus for producing an oily substance by catalytically cracking a synthetic polymer in the presence of a catalyst for accelerating decomposition. The catalytic cracking apparatus melt-kneads the reaction mixture and quantitatively analyzes it. Or a tube type decomposition furnace connected to the downstream side of the transfer means in an inclined state of the outlet height, or connected to the screw type extruder and its downstream side with an inclined body of the outlet height. The pipe type preheater and the pipe type cracking furnaces connected to the downstream side in a sloped state of the outlet height are installed in series, and a receiver (receiver) for receiving the produced liquid decomposed product on the downstream side is formed. The present invention relates to a catalytic cracking device for synthetic polymers, which comprises a gas recovery system that cools a gaseous decomposition product and recovers it as an oily substance.

【0013】また、本発明装置においては、押出機、管
型予熱器又は管型分解炉の1以上に触媒を装入すること
ができる。従って、本発明によれば、後述するように分
解の対象となる合成重合体の種類及び/又は用いられる
触媒の種類等に応じて触媒の装入位置を適宜に選択する
ことができる。
Further, in the apparatus of the present invention, the catalyst can be charged into one or more of the extruder, the tubular preheater or the tubular cracking furnace. Therefore, according to the present invention, the charging position of the catalyst can be appropriately selected according to the type of the synthetic polymer to be decomposed and / or the type of the catalyst used, as described below.

【0014】[0014]

【発明の実施の形態】本発明が分解対象とする合成重合
体は都市ゴミ及び産業廃棄物等の通常の熱可塑性プラス
チック、例えばポリエチレン(PE)、ポリプロピレン
(PP)等のポリオレフィン(PO)、ポリスチレン(P
S)、耐衝撃性ポリスチレン(HIPS)、スチレン−ア
クリロニトリル−ブタジエン共重合樹脂(ABS)、エチ
レン−酢酸ビニル共重合体(EVA)、ポリ塩化ビニル樹
脂(PVC)等を主成分とした合成重合体を例示できる。
また、上記の熱可塑性樹脂にポリカーボネート(PC)、
ポリエチレンテレフタレート樹脂(PET)、ポリブチレ
ンテレフタレート(PBT)又はポリエチレンナフトエー
ト(PEN)等が混入していてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The synthetic polymer to be decomposed by the present invention is an ordinary thermoplastic such as municipal waste and industrial waste, such as polyethylene (PE), polypropylene.
Polyolefin (PO) such as (PP), polystyrene (P
S), high impact polystyrene (HIPS), styrene-acrylonitrile-butadiene copolymer resin (ABS), ethylene-vinyl acetate copolymer (EVA), polyvinyl chloride resin (PVC), etc. Can be illustrated.
In addition, polycarbonate (PC),
Polyethylene terephthalate resin (PET), polybutylene terephthalate (PBT), polyethylene naphthoate (PEN), etc. may be mixed.

【0015】本発明で分解原料の混練及び定量送り出し
に用いられるスクリュー型押出機及び管型予熱器は合成
重合体の粉砕フレークを効率的に溶融及び混練する機能
を有し、触媒を添加する反応にあっては更に触媒を均一
に分散させる機能を有していれば、如何なる構造を有し
ていてもよい。とはいえ、非溶融物を排除して溶融した
プラスチックのみを連続して熱分解炉に供給できる構造
を備えた押出機が望ましい。
The screw type extruder and the tube type preheater used for kneading and quantitatively feeding the decomposition raw material in the present invention have a function of efficiently melting and kneading the pulverized flakes of the synthetic polymer, and a reaction for adding a catalyst. In this case, it may have any structure as long as it has a function of uniformly dispersing the catalyst. However, an extruder having a structure capable of continuously supplying only the melted plastics to the pyrolysis furnace while excluding the non-melted material is desirable.

【0016】溶融及び混練用の押出機には、発生した分
解ガスを抜き出す為のガス抜きライン(排気管路)を設け
ることができる。この排気管路は管型予熱器及び押出機
等の構成単位に個々に設けておくことがそれぞれを最適
に制御する為には好ましい。それに加えて、この個別排
気方式は何れかの構成単位の排気管路に閉塞等を生じた
場合にも他の構成単位への影響を最小限に留める上で有
用である。
The extruder for melting and kneading can be provided with a degassing line (exhaust pipe line) for drawing out the generated decomposition gas. It is preferable that the exhaust pipe lines are individually provided in the structural units such as the tubular preheater and the extruder in order to optimally control the respective units. In addition to this, this individual exhaust system is useful in minimizing the influence on other constituent units even when the exhaust pipe line of any constituent unit is blocked.

【0017】本発明の分解装置における管型分解炉は合
成重合体の溶融物を所定の温度に所定時間保持しながら
連続的に熱分解できる構造であれば、如何なる構造のも
のであってもよい。
The tubular cracking furnace in the cracking apparatus of the present invention may have any structure as long as it is capable of continuously thermally decomposing the melt of the synthetic polymer at a predetermined temperature for a predetermined time. .

【0018】分解炉に付設されるスケール除去手段とし
ては、例えばマイクロ波によるスケールの熱分解方法を
採用することもできるが、好ましくはスケールを掻き取
ると共に、掻き取られたスケールの搬送手段も兼ね得る
点で、スクリュー型スクレーパーが多用される。本発明
の分解装置における構成単位であってその内部でスケー
ルが発生及び堆積するものにおいては、スクレーパーと
兼用できる点でスクリューを装着することが好ましい。
As the scale removing means attached to the decomposition furnace, for example, a method of thermally decomposing the scale by microwaves can be adopted, but it is preferable that the scale is scraped and also serves as a means for conveying the scraped scale. From the point of obtaining, screw type scrapers are often used. In the constitutional unit of the decomposition apparatus of the present invention, in which scale is generated and accumulated, it is preferable to install a screw because it can be used also as a scraper.

【0019】<図面による説明>図1は本発明の分解装
置の一例を示す系統図で、分解対象の合成重合体を溶融
混練する為の押出機1の下流側に管路で接続された管型
予熱器2が位置し、その下流側に管型分解炉3が位置
し、最後に得られた油状物を収容する為の受け器4が位
置する。
<Description of Drawings> FIG. 1 is a system diagram showing an example of a decomposition apparatus of the present invention. A pipe connected to a downstream side of an extruder 1 for melting and kneading a synthetic polymer to be decomposed by a pipe line. The mold preheater 2 is located, the tubular cracking furnace 3 is located downstream thereof, and the receiver 4 for containing the finally obtained oily product is located.

【0020】図2は図1の系統図における管型予熱器2
及び管型分解炉3を主体とし、その近辺部分に位置する
系統の模式的縦断面図である。図1及び図2において、
押出機1のホッパー11には合成重合体と場合に応じて
触媒とが一定の割合で装入され、押出機1の内部で触媒
と溶融混練される。この触媒は触媒ドラムCDから管路
C1及びC4を経由してホッパー11に送られる。ホッパ
ー11には必要に応じて窒素又は他の不活性ガスを送り
込んで酸素濃度を低下させることによって爆発の危険を
防ぐことができる。窒素又は他の不活性ガスによって置
換された空気は不活性ガスと共に大気中へ放出される。
FIG. 2 is a tubular preheater 2 in the system diagram of FIG.
FIG. 3 is a schematic vertical cross-sectional view of a system mainly including the tube-type decomposition furnace 3 and located in the vicinity thereof. 1 and 2,
The hopper 11 of the extruder 1 is charged with a synthetic polymer and a catalyst as the case may be, in a fixed ratio, and melt-kneaded with the catalyst inside the extruder 1. This catalyst is sent from the catalyst drum CD to the hopper 11 via the conduits C1 and C4. The risk of explosion can be prevented by feeding nitrogen or other inert gas into the hopper 11 as necessary to reduce the oxygen concentration. Air displaced by nitrogen or other inert gas is released into the atmosphere along with the inert gas.

【0021】図1及び図2において、溶融混練用の押出
機1は通常は一軸押出機(L/D=20〜50)であっ
て、ホッパー11から供給された分解原料の粉砕フレー
クをそのバレル中で通常200〜350℃、好ましくは
200〜250℃で加熱下に溶融しながら場合によって
添加される触媒と共に混錬し、混練物を定量的にかつ連
続的に溶融混練重合体の供給管路17へ送り出し、更に
それを管型予熱器2に供給する役割を果たす。
In FIG. 1 and FIG. 2, the extruder 1 for melt-kneading is usually a single-screw extruder (L / D = 20 to 50), and the crushed flakes of the decomposition raw material supplied from the hopper 11 are used in its barrel. In general, the kneaded product is quantitatively and continuously kneaded with a catalyst optionally added while being melted under heating at 200 to 350 ° C., preferably 200 to 250 ° C. quantitatively and continuously. It plays the role of feeding it to 17 and then feeding it to the tubular preheater 2.

【0022】この押出機1のバレルの頂上部には、分解
原料の重合体の溶融に伴って低温で分解して発生するガ
ス状物をバレル外に排出する為のガス状成分排出口(ベ
ント)13が設けられている。ガス状成分排出口13か
ら減圧管路14を通じて吸引装置15によって抜き出さ
れたガス状物はpHメーター16に導入されてその水素イ
オン濃度が測定され、必要に応じて適宜、中和・洗浄等
の処理が施されながら、無害化されて排出される。
At the top of the barrel of the extruder 1, a gaseous component discharge port (vent) for discharging a gaseous substance generated by decomposition at a low temperature along with melting of a polymer as a decomposition raw material to the outside of the barrel. ) 13 are provided. The gaseous substance extracted from the gaseous component discharge port 13 through the decompression pipe 14 by the suction device 15 is introduced into the pH meter 16 to measure the hydrogen ion concentration thereof, and the neutralization / washing etc. are appropriately performed as necessary. While being treated, it is detoxified and discharged.

【0023】図1及び図2において、供給管路17経由
で出口高に設置された管型予熱器2の入口から装入され
た溶融混練物は管型予熱器2の内部を縦貫するスクリュ
ー型コンベアー21によって下流側(上方)へ搬送され
ながら管型予熱器2の内部に設置されたスタティックミ
キサー(不図示)によって攪拌されると共にヒーター2
3によって接触分解に適した温度まで予備加熱される。
In FIGS. 1 and 2, the melt-kneaded material charged from the inlet of the tubular preheater 2 installed at the outlet height via the supply pipeline 17 is a screw type which penetrates the inside of the tubular preheater 2 vertically. The heater 2 is stirred by a static mixer (not shown) installed inside the tubular preheater 2 while being conveyed to the downstream side (upper side) by the conveyor 21.
3 preheats to a temperature suitable for catalytic cracking.

【0024】この管型予熱器2はその入口側が低位で出
口高の傾斜状態[水平軸に対する傾斜角(β)10〜90
度、好ましくは20〜80度]に配置されている。分解
原料の溶融プラスチックは多くの場合に触媒と混合又は
混練されたものである。しかし、触媒が前もって混合さ
れていない場合には、触媒が触媒ドラムCDから管路C
1及びC2経由で管型予熱器2の入口付近に装入される。
The tubular preheater 2 has a low inlet side and an inclined outlet height [inclination angle (β) 10 to 90 with respect to the horizontal axis].
Degrees, preferably 20-80 degrees]. The molten plastic as a decomposition raw material is often mixed or kneaded with a catalyst. However, if the catalyst has not been premixed, it will pass from the catalyst drum CD to line C.
It is charged near the inlet of the tubular preheater 2 via 1 and C2.

【0025】その予熱温度は供給される合成重合体の組
成、その性状及び混練用押出機1の出口温度等に応じて
適宜選択することができるが、通常は300〜450
℃、好ましくは350〜410℃に予熱して、次工程の
管型分解炉3内での接触分解を速やかにかつ高率良く進
行させる機能を有する。
The preheating temperature can be appropriately selected depending on the composition of the synthetic polymer to be supplied, the properties thereof, the outlet temperature of the kneading extruder 1, and the like, but is usually 300 to 450.
It has a function of preheating to ℃, preferably 350 to 410 ℃, and to promote the catalytic cracking in the tubular cracking furnace 3 in the next step promptly and highly efficiently.

【0026】管型予熱器2の下流端には、その長軸と交
差しながら略上下方向へ伸びる排気管兼管型分解炉3へ
の連絡管25が接続されて、その頭部25uから予熱に
伴う低温分解によって発生するガス状物を必要に応じて
器外へ排出する。この管型予熱器2内のスクリュー21
はスケール掻き取り用のスクレーパーを兼ねることが好
ましく、通常はモーター24によって駆動されている。
At the downstream end of the tubular preheater 2, a connecting pipe 25 to the exhaust pipe / tubular cracking furnace 3 extending substantially vertically while intersecting the major axis of the tubular preheater 2 is connected. If necessary, the gaseous substances generated by the low temperature decomposition due to are discharged out of the vessel. The screw 21 in this tubular preheater 2
Preferably serves also as a scraper for scraping the scale, and is usually driven by a motor 24.

【0027】生じた分解ガスは連絡管25の頭部25u
に設けられた出口から管路26を通じてパーシャルコン
デンサー81へ送られ、そこで液化された部分はガス状
部分と共に管路82を通じて受器である受け器8に供給
されて回収される。他方、液化されなかったガス状部分
は受け器8の上部から出る管路85を通じて第1冷却器
90へ導入され、ガス状部分の一部分がそこで更に液化
されて分離貯留される。
The decomposed gas produced is the head 25u of the connecting pipe 25.
From the outlet provided in the above, it is sent to the partial condenser 81 through the pipe line 26, and the liquefied portion is supplied to the receiver 8 which is the receiver through the pipe line 82 together with the gaseous portion, and is recovered. On the other hand, the unliquefied gaseous portion is introduced into the first cooler 90 through the conduit 85 exiting from the upper portion of the receiver 8, and a part of the gaseous portion is further liquefied and separated and stored therein.

【0028】依然として回収されなかったガス状部分は
管路91経由で第2冷却器5へ送られて更に含有された
留分の一部分が液化されて除害ドラム6に貯留される
が、回収不能の成分はは焼却等の適切な処置を施す。
The unrecovered gaseous portion is sent to the second cooler 5 via the pipe 91, and a part of the contained fraction is liquefied and stored in the detoxification drum 6, but cannot be recovered. Appropriate measures such as incineration shall be applied to the components.

【0029】図1及び図2において、管型予熱器2から
その下流端に設けられた連絡管25の下半部25dを通
じて管型分解炉3へ予熱重合体を装入する。装入された
予熱重合体は管型分解炉3を縦貫するスクリュー兼スク
レーパー31で出口側へ搬送される。このスクリュー兼
スクレーパー31は通常、モーター34によって駆動さ
れる。
In FIGS. 1 and 2, the preheated polymer is charged from the tubular preheater 2 into the tubular cracking furnace 3 through the lower half portion 25d of the connecting pipe 25 provided at the downstream end thereof. The charged preheated polymer is conveyed to the outlet side by a screw / scraper 31 that extends vertically through the tubular cracking furnace 3. The screw / scraper 31 is usually driven by a motor 34.

【0030】この管型分解炉3においてもその内部に装
着されたスタティックミキサー(不図示)によって分解
温度まで予熱された分解対象の溶融重合体が触媒の存在
下に接触分解される。この触媒は触媒ドラムCDから連
絡管C3経由で上記の連絡管25の下半部25dの側壁に
設けられた触媒導入口へ供給される。
Also in the tubular cracking furnace 3, the molten polymer to be cracked, which has been preheated to the cracking temperature by the static mixer (not shown) mounted therein, is catalytically cracked in the presence of the catalyst. This catalyst is supplied from the catalyst drum CD via the connecting pipe C3 to the catalyst introducing port provided on the side wall of the lower half portion 25d of the connecting pipe 25.

【0031】管型分解炉3はその入口側を低位にした出
口高の斜状態[水平軸に対する傾斜角(α)5〜60度、
好ましくは10〜30度]に設置されている。管型予熱
器2から送られてきた分解原料である合成重合体等は管
型分解炉3の中で触媒共存下に混錬されながら所定分解
温度である350〜500℃、好ましくは400〜45
0℃で総括滞留時間5〜120min、好ましくは15〜
30min加熱されて接触分解される。
In the tubular cracking furnace 3, the outlet side is inclined at a low position on the inlet side [inclination angle (α) 5 to 60 degrees with respect to the horizontal axis,
It is preferably 10 to 30 degrees]. The synthetic polymer or the like which is a cracking raw material sent from the tubular preheater 2 is kneaded in the tubular cracking furnace 3 in the presence of a catalyst and has a predetermined cracking temperature of 350 to 500 ° C., preferably 400 to 45.
Total residence time at 0 ° C: 5-120 min, preferably 15-
It is heated for 30 minutes and catalytically decomposed.

【0032】また、管型分解炉3の内壁に析出するスケ
ールは好ましくはスクレーパーを兼ねるスクリュー31
によって掻き取られた後にこの管型分解炉3の出口側
(下流端)へ搬送され、その下流端に長軸と交差する様
に接続された略直立の連絡管35の頭部35uに設けら
れた出口から、気化した成分が管路36を経由してパー
シャルコンデンサー41内で部分的に液化されて管路3
7経由で、受け器4内に排出されて貯留される。液化さ
れなかった部分は受け器4の上半部を兼ねる第3冷却器
44によって更に冷却されて部分的に液化され、受け器
4へ流下する。依然として液化されなかった部分は第3
冷却器の頂部に接続されたガス排出管路45によって前
記の管路91に合流し、前記と同様に処理される。
The scale deposited on the inner wall of the tubular cracking furnace 3 is preferably a screw 31 which also serves as a scraper.
After being scraped off by the pipe-type decomposition furnace 3, it is conveyed to the outlet side (downstream end) of the tubular cracking furnace 3 and provided at the head portion 35u of a substantially upright communication pipe 35 connected to the downstream end so as to intersect the long axis. From the outlet, the vaporized component is partially liquefied in the partial condenser 41 via the line 36,
It is discharged and stored in the receiver 4 via 7. The non-liquefied portion is further cooled by the third cooler 44 which also serves as the upper half of the receiver 4 to be partially liquefied and flow down to the receiver 4. The third part that is not yet liquefied
A gas discharge line 45 connected to the top of the cooler joins the line 91 and is treated as before.

【0033】他方、受け器4内に貯留された液状体の一
部分は受け器4の底から管路42経由で抜き出され、循
環ポンプ等によって管路43経由で再びパーシャルコン
デンサー41へ送給されて洗浄液となり、液化されにく
い成分をスクラッビング作用で捕集する。
On the other hand, a part of the liquid material stored in the receiver 4 is extracted from the bottom of the receiver 4 via the pipe 42, and is again fed to the partial condenser 41 via the pipe 43 by a circulation pump or the like. It becomes a cleaning liquid and collects the components that are difficult to liquefy by the scrubbing action.

【0034】なお、分解によって生じたガス状物は管型
分解炉3の入口側(上流端)へは逆流せずに、出口端の
みから排出される。それには管型分解炉3の下半部に充
満した溶融プラスチックがシールとしての機能を果たす
ことに負っている。
The gaseous substance generated by the decomposition does not flow backward to the inlet side (upstream end) of the tubular cracking furnace 3 and is discharged only from the outlet end. It lies in that the molten plastic filling the lower half of the tubular cracking furnace 3 functions as a seal.

【0035】図1及び図2において、管型予熱器2から
排出されたガス状物が凝縮して捕集された液状物が貯留
された受け器8のジャケットは冷却水で冷却される。こ
れによって、管型予熱器2から排出されて管路26経由
で受け器8に移送された分解ガス及び分解液が更に冷却
される。
1 and 2, the jacket of the receiver 8 in which the gaseous substance discharged from the tubular preheater 2 is condensed and the collected liquid substance is stored is cooled by cooling water. As a result, the decomposed gas and the decomposed liquid discharged from the tubular preheater 2 and transferred to the receiver 8 via the pipeline 26 are further cooled.

【0036】分解液の一部分は受け器8の器底から管路
83経由で取り出され、循環ポンプによって循環管路8
4経由でパーシャルコンデンサー81へ供給されて洗浄
液として、液化されにくい成分をスクラッビング作用で
捕集する。
A part of the decomposed liquid is taken out from the bottom of the receiver 8 via a pipe 83 and is circulated by the circulation pump.
4 is supplied to the partial condenser 81 via 4 and serves as a cleaning liquid to collect components that are difficult to liquefy by a scrubbing action.

【0037】受け器4に貯留された生成油状物は逐次、
受け器4の下部に設けられたフィルター(不図示)へ送
られてそこでスケール残渣等の固形物が除去された後
に、製品取出し口46から回収される。
The produced oily substances stored in the receiver 4 are successively
After being sent to a filter (not shown) provided in the lower portion of the receiver 4 to remove solid matters such as scale residue, the product is collected from the product outlet 46.

【0038】<触媒の供給方式>後述の触媒は触媒ドラ
ムCDから供給管路C1〜C4の何れかを経由して通常、
押出機1、管型予熱器2および管型分解炉3から選ばれ
る1以上に供給され得る。触媒を押出機1又は管型予熱
器2に供給する場合には、押出機1内又は管型予熱器2
内で触媒と合成重合体とが混練されることにより、触媒
を溶融プラスチック中に均一に分散させることが可能と
なる。特に、触媒の供給を押出機1のホッパー11から
行なう場合には、押出機1の内部及び管型予熱器2の内
部で一貫して触媒を溶融プラスチック中に均一に分散さ
せることが可能になる。
<Catalyst Supply System> The catalyst described later is usually supplied from the catalyst drum CD via any of the supply pipes C1 to C4.
It can be supplied to one or more selected from the extruder 1, the tubular preheater 2 and the tubular cracking furnace 3. When the catalyst is supplied to the extruder 1 or the tubular preheater 2, the inside of the extruder 1 or the tubular preheater 2 is used.
By kneading the catalyst and the synthetic polymer therein, the catalyst can be uniformly dispersed in the molten plastic. In particular, when the catalyst is supplied from the hopper 11 of the extruder 1, it becomes possible to consistently disperse the catalyst in the molten plastic uniformly inside the extruder 1 and inside the tubular preheater 2. .

【0039】一方、低温においてラジカルを生じ易い触
媒を使用する場合には、押出機1又は管型予熱器2に供
給するよりは、管型分解炉3の導入部に触媒を別途供給
することによって、触媒の熱履歴による劣化(触媒の分
解又は失活)を軽減することができる。その結果、供給
された触媒の全量が合成重合体の分解温度領域で有効に
分解活性を発揮できる環境を実現することが可能にな
る。
On the other hand, when a catalyst which easily generates radicals at a low temperature is used, the catalyst is separately supplied to the introduction part of the tubular cracking furnace 3 rather than being fed to the extruder 1 or the tubular preheater 2. , Deterioration due to thermal history of the catalyst (decomposition or deactivation of the catalyst) can be reduced. As a result, it becomes possible to realize an environment in which the total amount of the supplied catalyst can effectively exhibit the decomposition activity in the decomposition temperature region of the synthetic polymer.

【0040】<分解促進触媒(触媒)>本発明の接触分
解装置で用いられる触媒としては、酸性又は塩基性の無
機物並びに150〜600℃の温度範囲及び大気圧でラ
ジカル(遊離基)を発生して分解炉内の合成重合体の分
解を促進するものが好ましい。プラスチックの分解触媒
の具体例としては、無機の酸性化合物(酸性無機化合
物)、無機の塩基性化合物(塩基性無機化合物)、ラジ
カル発生が可能な有機化合物及び金属化合物が挙げられ
る。
<Decomposition acceleration catalyst (catalyst)> The catalyst used in the catalytic cracking apparatus of the present invention generates acidic or basic inorganic substances and radicals (free radicals) in the temperature range of 150 to 600 ° C. and atmospheric pressure. What accelerates the decomposition of the synthetic polymer in the decomposition furnace is preferable. Specific examples of the decomposition catalyst for plastics include inorganic acidic compounds (acidic inorganic compounds), inorganic basic compounds (basic inorganic compounds), radical-generating organic compounds and metal compounds.

【0041】<<酸性無機化合物>>酸性無機化合物の
触媒例としては、下記のものを例示できる: ◆結晶性シリカ−アルミナ、無定型シリカ−アルミナ、
酸化アルミニウム(アルミナ)、酸化珪素(シリカ); ◆シリカ−マグネシア、酸化亜鉛、ボーキサイト; ◆天然土(酸性白土、活性白土、鹿沼土軽石、今市軽
石、七本桜軽石、赤玉土、火山灰、真岡軽石、棆木軽
石); ◆ポリリン酸、HF(フッ化水素)、HCl又はAlCl
3(塩化アルミニウム)等を挙げることができる。
<< Acidic Inorganic Compound >> Examples of catalysts for acidic inorganic compounds include the following: Crystalline silica-alumina, amorphous silica-alumina,
Aluminum oxide (alumina), silicon oxide (silica); ◆ Silica-magnesia, zinc oxide, bauxite; ◆ Natural soil (acid clay, activated clay, Kanuma soil pumice stone, Imaichi pumice stone, seven cherry pumice stone, Akadama soil, volcanic ash, Moka pumice, Kitsuki pumice); ◆ Polyphosphoric acid, HF (hydrogen fluoride), HCl or AlCl
3 (aluminum chloride) and the like.

【0042】<<塩基性無機化合物>>塩基性無機化合
物の触媒例としては、下記のものを例示できる: ◆アルカリ金属酸化物例えば、K2O,Na2O等; ◆アルカリ土類金属の酸化物例えば、CaO(酸化カル
シウム)、MgO(マグネシア)、BaO等; ◆アルカリ金属水酸化物例えば、KOH及びNaOH等
を挙げることができる。
<< Basic Inorganic Compound >> Examples of the catalyst for the basic inorganic compound include the following: ◆ Alkali metal oxides such as K 2 O and Na 2 O; ◆ Alkaline earth metal Oxides such as CaO (calcium oxide), MgO (magnesia) and BaO; ◆ Alkali metal hydroxides such as KOH and NaOH.

【0043】<<ラジカル発生可能な有機化合物>>ラ
ジカルを発生させ得る有機化合物の触媒例としては、下
記のものを例示できる: ◆硫黄含有化合物:メルカプタン系、チオエーテル系、
チオ尿素系、チアゾール系等; ◆窒素含有化合物:N-アリール-N-アルキルグアニジ
ン、N,N-ジアリールグアニジン等; ◆炭化水素化合物:2,3-ジフェニルブタン、2,3-ジトリ
ルブタン、2,2-ジキシリルブタン、2,3-ジメチル-2,3−
ジフェニルブタン(商品名:ノフマーBC等)、2,3-ジ
メチル-2,3−ジトリルブタン、2,3-ジエチル-2,3−ジフ
ェニルブタン(3,4-ジメチル-3,4-ジフェニルヘキサ
ン)等。 ◆有機過酸化物:ジ-t-ブチルパーオキシド、ビス(t-
ブチルパーオキシ)ヘキサン、ビス(t-ブチルパーオキ
シ)ヘキセン、ビス(t-ブチルパーオキシ)ヘキシン、
2,5-ビス(t-ブチルパーオキシ)ベンゼン等。
<< Organic compounds capable of generating radicals >> Examples of catalysts of organic compounds capable of generating radicals include the following: ◆ Sulfur-containing compounds: mercaptan type, thioether type,
Thiourea-based compounds, thiazole-based compounds, etc .; Nitrogen-containing compounds: N-aryl-N-alkylguanidines, N, N-diarylguanidines, etc .; Hydrocarbon compounds: 2,3-diphenylbutane, 2,3-ditolylbutane, 2, 2-dixylyl butane, 2,3-dimethyl-2,3-
Diphenylbutane (trade name: Nofmer BC, etc.), 2,3-dimethyl-2,3-ditolylbutane, 2,3-diethyl-2,3-diphenylbutane (3,4-dimethyl-3,4-diphenylhexane), etc. . ◆ Organic peroxides: di-t-butyl peroxide, bis (t-
Butylperoxy) hexane, bis (t-butylperoxy) hexene, bis (t-butylperoxy) hexine,
2,5-bis (t-butylperoxy) benzene etc.

【0044】<<金属化合物>>本発明の分解装置に装
入される金属化合物触媒としては下記のものを例示でき
る: ◆重金属酸化物例えば、酸化鉄、酸化銅、酸化ニッケ
ル、酸化モリブデン等; ◆重金属塩化物例えば、塩化鉄、塩化銅、塩化ニッケ
ル、塩化モリブデン等; ◆有機金属化合物の重金属塩又は錯塩例えば、酢酸鉄、
酢酸銅、酢酸ニッケル、酢酸モリブデン、鉄アセチルア
セトナート、銅アセチルアセトナート等。
<< Metal Compound >> Examples of the metal compound catalyst charged in the decomposition apparatus of the present invention include the following: ◆ Heavy metal oxides such as iron oxide, copper oxide, nickel oxide and molybdenum oxide; ◆ Heavy metal chlorides such as iron chloride, copper chloride, nickel chloride, molybdenum chloride, etc. ◆ Heavy metal salts or complex salts of organometallic compounds such as iron acetate,
Copper acetate, nickel acetate, molybdenum acetate, iron acetylacetonate, copper acetylacetonate, etc.

【0045】<<触媒の添加量>>上述のような触媒の
添加量は(廃)プラスチックの重量に対して0.000
1〜10重量%、好ましくは、0.001〜5重量%に
設定すれば殆どの場合に目的を達成することができる。
<< Amount of Catalyst Added >> The amount of catalyst added as described above is 0.000 relative to the weight of the (waste) plastic.
If it is set to 1 to 10% by weight, preferably 0.001 to 5% by weight, the object can be achieved in most cases.

【0046】[0046]

【発明の効果】本発明の接触分解装置を用いて本発明の
接触分解法を実行することによって下記の各種効果を奏
することができる: (1)管型予熱器及び管型分解炉の内壁面を伝熱面として
効果的に活用できる; (2)管型分解炉の内壁面に生じ得るスケールをスクレー
パー兼用スクリューによって効果的に削除することによ
って、伝熱効率低下を防止すると共に、分解炉の閉塞を
も防止し得る; (3)低粘度の油状物を高回収率で取得できる。 (4)特に、廃プラスチック中にスチレン系重合体又はポ
リアミド樹脂等の窒素含有重合体が含有されている場合
には、管型予熱器までの段階では触媒不存在で重合体を
或程度分解させ、次にこれを管型分解炉へ移送すると共
に、触媒ドラムから管型予熱器と管型分解炉との間に触
媒を供給して、管型分解炉中でこの触媒の存在下に残余
の重合体を分解(接触分解)させる方法を用いることが
できる。
By carrying out the catalytic cracking method of the present invention using the catalytic cracking apparatus of the present invention, the following various effects can be achieved: (1) Inner wall surface of tubular preheater and tubular cracking furnace Can effectively be used as a heat transfer surface; (2) The scale that may occur on the inner wall surface of the tubular cracking furnace is effectively removed by the screw that also serves as a scraper, thereby preventing a decrease in heat transfer efficiency and blocking the cracking furnace. (3) A low-viscosity oily substance can be obtained with a high recovery rate. (4) In particular, when the waste plastic contains a nitrogen-containing polymer such as a styrene polymer or a polyamide resin, the polymer is decomposed to some extent in the absence of a catalyst in the stage up to the tubular preheater. Then, while transferring this to the tubular cracking furnace, the catalyst is supplied from the catalyst drum between the tubular preheater and the tubular cracking furnace so that the residual catalyst is left in the tubular cracking furnace in the presence of this catalyst. A method of decomposing the polymer (catalytic decomposition) can be used.

【0047】本発明のこの接触分解装置を用いる方式に
よれば、スチレン系重合体等に起因する触媒の失活を抑
制又は回避することができる。
According to the method of using the catalytic cracking apparatus of the present invention, the deactivation of the catalyst due to the styrene polymer or the like can be suppressed or avoided.

【0048】[0048]

【実施例】以下、本発明を実施例及び有用な比較例に基
づいて具体的に説明する。しかし、本発明はこれによっ
て限定されるものではない。
EXAMPLES The present invention will be specifically described below based on examples and useful comparative examples. However, the present invention is not limited to this.

【0049】[0049]

【実施例1】押出機1(スクリュー径39mm、シリンダ
ー径40mm)を用いて分解原料プラスチックを溶融及び
混練した。その際の押出機1の加熱温度を200〜30
0℃に、押出し速度を5kg/hに設定した。管型予熱器2
はその内径50mm×長さ1000mmでスタティックミキ
サー22及びスクリュー21を備え、その加熱温度を3
50〜400℃に設定した。管型分解炉3はその内部に
フルフライト型のスクリュー31をスクレーパー兼用と
して備えた内径50mm×長さ1000mmのもので、その
加熱温度を400〜470℃及びスクリュー回転数を8
rpmに設定した。また、押出機1からの押出速度を7kg
/hに、管型分解炉3へ到るまでの総括滞留時間を15m
inに設定した。
Example 1 An extruder 1 (screw diameter 39 mm, cylinder diameter 40 mm) was used to melt and knead a decomposition raw material plastic. The heating temperature of the extruder 1 at that time is 200 to 30
At 0 ° C., the extrusion rate was set to 5 kg / h. Tube type preheater 2
Is equipped with a static mixer 22 and a screw 21 with an inner diameter of 50 mm and a length of 1,000 mm, and the heating temperature is 3
The temperature was set to 50 to 400 ° C. The tubular cracking furnace 3 has a full-flight type screw 31 also serving as a scraper inside and has an inner diameter of 50 mm and a length of 1000 mm, and the heating temperature is 400 to 470 ° C. and the screw rotation speed is 8
set to rpm. Moreover, the extrusion speed from the extruder 1 is 7 kg.
/ H, the total residence time to reach the tubular cracking furnace 3 is 15 m
set to in.

【0050】図1に示された分解装置を用い、装置の系
内圧力を大気圧に保ちながらホッパー11にポリエチレ
ン100重量部と触媒として無定型シリカ−アルミナ1
重量部との割合で装入した。
Using the decomposition apparatus shown in FIG. 1, 100 parts by weight of polyethylene and amorphous silica-alumina 1 as a catalyst were placed in the hopper 11 while maintaining the internal system pressure of the apparatus at atmospheric pressure.
It was charged in a proportion of parts by weight.

【0051】次に、上記の接触分解装置において上記の
条件で、上記量の触媒を含有する上記の分解原料樹脂を
押出機1中で溶融混練し、次に管型予熱器2で予熱後に
管型分解炉3へ定量供給して分解を行なった結果、油状
物を得た。得られた分解油はその粘度(50℃)120cS
t以下であり、その回収率は装入原料プラスチックの重
量に対して80%に達した。
Next, in the above-mentioned catalytic cracking apparatus, under the above-mentioned conditions, the above-mentioned cracking raw material resin containing the above-mentioned amount of catalyst is melt-kneaded in the extruder 1, and then after being preheated by the tubular preheater 2, the tube is heated. As a result of quantitatively supplying to the mold decomposition furnace 3 and performing decomposition, an oily substance was obtained. The cracked oil obtained has a viscosity (50 ° C) of 120 cS.
The recovery rate was 80% or less based on the weight of the raw material plastic.

【0052】[0052]

【比較例1】実施例1における接触分解装置を用い、実
施例1の設定条件において、触媒無しにポリエチレンの
熱分解を行なった。得られたものは30℃で固体であっ
て、その回収率は装入原料プラスチックの重量に対して
90%であったが、油状物は得られなかった。
Comparative Example 1 Using the catalytic cracking apparatus in Example 1, polyethylene was thermally decomposed without a catalyst under the set conditions of Example 1. The obtained product was a solid at 30 ° C., and its recovery rate was 90% based on the weight of the raw plastic material charged, but no oily product was obtained.

【0053】[0053]

【実施例2】触媒として今市軽石を粉砕したものを分解
原料用プラスチック100重量に対して3重量部の割合
で添加した分解原料を用いる以外には実施例1で用いら
れた接触分解装置を用いて実施例1におけると同一条件
でプラスチック原料の分解を行なった。その結果、得ら
れた分解油はその粘度(30℃)120cSt以下であり、
その回収率は装入原料プラスチックの重量に対して90
%に達した。
[Example 2] The catalytic cracking apparatus used in Example 1 was used except that a cracking raw material prepared by crushing Imaichi pumice was added as a catalyst at a ratio of 3 parts by weight relative to 100 parts by weight of the plastic for cracking raw material. The plastic raw material was decomposed under the same conditions as in Example 1. As a result, the obtained cracked oil has a viscosity (30 ° C.) of 120 cSt or less,
The recovery rate is 90 based on the weight of the raw material plastic.
% Has been reached.

【0054】[0054]

【実施例3】触媒として七本松桜軽石を粉砕したものを
分解原料用プラスチック100重量に対して3重量部の
割合で添加した分解原料を用いる以外には、実施例1で
用いられたと同一の接触分解装置を用いて実施例1にお
けると同一条件でプラスチック原料の分解を行なった。
その結果、得られた分解油はその粘度(30℃)300cS
t以下であり、その回収率は装入原料プラスチックの重
量に対して90%に達した。
Example 3 The same as used in Example 1 except that a crushed raw material obtained by crushing Nanabonmatsu cherry pumice was added as a catalyst in an amount of 3 parts by weight with respect to 100 parts by weight of the plastic for decomposition raw material. The plastic raw material was decomposed under the same conditions as in Example 1 using the catalytic cracking apparatus of No. 1.
As a result, the obtained cracked oil has a viscosity (30 ° C) of 300 cS.
The recovery rate was 90% or less based on the weight of the raw material plastic.

【0055】[0055]

【実施例4】分解原料用プラスチックとして、ポリプロ
ピレン(PP)85重量部、ポリエチレン(PE)5重量部
及びポリスチレン(PS)10重量部で形成された混合物
を実施例1で用いられたと同一の接触分解装置の粉砕機
1へ装入した以外には実施例1におけると同一条件で分
解反応を行なった。その結果、得られた分解油はその粘
度(30℃)120cSt以下であり、その回収率は装入原
料プラスチックの重量に対して80%に達した。
Example 4 As a plastic for decomposing raw materials, a mixture formed of 85 parts by weight of polypropylene (PP), 5 parts by weight of polyethylene (PE) and 10 parts by weight of polystyrene (PS) was used in the same contact as used in Example 1. The decomposition reaction was carried out under the same conditions as in Example 1 except that the crusher 1 of the decomposition apparatus was charged. As a result, the obtained cracked oil had a viscosity (30 ° C.) of 120 cSt or less, and the recovery rate thereof reached 80% with respect to the weight of the raw material plastic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接触分解装置の概略系統を示す模式的
縦断面図である。
FIG. 1 is a schematic vertical sectional view showing a schematic system of a catalytic cracking device of the present invention.

【図2】本発明の接触分解装置を構成する管型予熱器を
経て更に下流側に位置する管型分解炉までの主要部を示
す模式的部分縦断面図である。
FIG. 2 is a schematic partial vertical cross-sectional view showing a main part up to a tubular cracking furnace located further downstream through a tubular preheater which constitutes the catalytic cracking apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 押出機 2 管型予熱器 3 管型分解炉 4 管型分解炉から発生した液状分解物の受け器 5 第2冷却器 6 除害ドラム 11 押出機のホッパー 12 押出機のスクリュー駆動用のモーター 13 押出機からのガス状成分排出口(ベント) 14 ベントからの減圧管路 15 真空ポンプ 16 pHメーター 17 溶融混練重合体の供給管路 21 管型予熱器内を縦貫するスクリュー兼スクレー
パー 22 欠番 23 管型予熱器内に装着されたヒーター 24 管型予熱器内のスクリュー駆動用のモーター 25 管型予熱器の下流端に交差して略直立する様に
設けられた連絡管 26 管型予熱器に装着された連絡管に接続された連
絡管路 31 管型分解炉内を縦貫するスクリュー兼スクレー
パー 32 欠番 33 管型分解炉内に装着されたヒーター 34 管型分解炉内のスクリュー駆動用のモーター 35 管型分解炉の下流端に交差して略直立する様に
設けられた連絡管 36 管型分解炉に装着された連絡管に接続された連
絡管路 37 連絡管末端のパーシャルコンデンサーから受け
器への連絡管 41 管型分解炉からの連絡管路末端のパーシャルコ
ンデンサー 42 受け器の器底からの液状物抜き出し管 43 抜き出された液状物をパーシャルコンデンサー
へ供給する供給管路 44 第3冷却器 45 第3冷却器の頂部からのガス状物の排出管路 81 管型予熱器からの連絡管路末端のパーシャルコ
ンデンサー 82 パーシャルコンデンサーから受け器への連絡管 83 受け器の器底からの液状物抜き出し管 84 抜き出された液状物をパーシャルコンデンサー
へ供給する供給管路 85 受け器頂部からのガス状成分を第1冷却器へ供
給する供給管路 90 第1冷却器 91 第1冷却器からのガス状成分を第2冷却器へ供
給する供給管路 C1 触媒ドラムからの触媒供給管路 C2 触媒流を管型予熱器の入口へ供給する供給管 C3 触媒流を管型分解炉の入口へ供給する供給管路 C4 触媒流を押出機のホッパーへ供給する供給管路 UD 触媒ドラム
1 Extruder 2 Tubular Preheater 3 Tubular Decomposition Furnace 4 Receptor of Liquid Decomposition Generated from Tubular Decomposition Furnace 5 Second Cooler 6 Detoxification Drum 11 Extruder Hopper 12 Extruder Screw Driving Motor 13 Exhaust Port (Vent) from Extruder 14 Decompression Pipeline from Vent 15 Vacuum Pump 16 pH Meter 17 Supply Pipeline for Melt-Kneading Polymer 21 Screw and Scraper Vertically Penetrating Inside Pipe Preheater 22 Missing Number 23 Heater mounted in the tubular preheater 24 Motor for driving screw in the tubular preheater 25 Communication pipe provided to cross the downstream end of the tubular preheater and substantially upright 26 In the tubular preheater Connecting pipe connected to the attached connecting pipe 31 Screw and scraper vertically passing through the tube-type decomposition furnace 32 Missing number 33 Heater mounted in the tube-type decomposition furnace 34 Tube-type decomposition Screw driving motor in the pipe 35 connecting pipe installed to cross the downstream end of the tubular cracking furnace and standing substantially upright 36 connecting pipe connected to the connecting pipe mounted in the tubular cracking furnace 37 connecting pipe Connection pipe from the partial condenser at the end to the receiver 41 Connection pipe from the tube-type decomposition furnace 42 Partial condenser at the end of the pipe 42 Liquid extraction pipe from the bottom of the receiver 43 Supplying the extracted liquid to the partial condenser Supply line 44 Third cooler 45 Discharge line for gaseous substances from the top of the third cooler 81 Communication line from tubular preheater Partial condenser at end of line 82 Communication line from partial condenser to receiver 83 Receive Liquid extraction pipe from bottom of container 84 Supply pipe for supplying extracted liquid to partial condenser 85 Gas from top of receiver Supply line for supplying the amount to the first cooler 90 First cooler 91 Supply line for supplying the gaseous component from the first cooler to the second cooler C1 Catalyst supply line from the catalyst drum C2 Catalyst flow Supply pipe for supplying C3 to the inlet of the tubular preheater Supply line for supplying C3 catalyst flow to the inlet of the tubular cracking furnace Supply pipe for supplying C4 catalyst flow to the hopper of the extruder UD Catalyst drum

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楊 井 志津男 山口県玖珂郡和木町和木六丁目1番2号 三井石油化学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yangi Shizuo 6-1-2 Waki, Waki-cho, Kuga-gun, Yamaguchi Mitsui Petrochemical Industry Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 合成重合体を分解促進用の触媒の共存下
に接触分解させて油状物を製造する接触分解装置であっ
て、前記分解装置が反応混合物を溶融混練すると共にそ
れを定量的に移送するスクリュー型押出機と該移送手段
の下流側に出口高の傾斜状態で連結された管型予熱器及
びその下流側に出口高の傾斜状態で連結された管型分解
炉を一連に設置し、生成した液状分解物を下流側で受け
る受け器とガス状分解物を冷却して油状物として回収す
る気体回収系とから構成されたものであることを特徴と
する合成重合体の接触分解装置。
1. A catalytic cracking apparatus for producing an oily substance by catalytically cracking a synthetic polymer in the coexistence of a catalyst for promoting decomposition, wherein the cracking apparatus melt-kneads the reaction mixture and quantitatively A screw type extruder to be transferred, a tubular preheater connected to the downstream side of the transfer means in an inclined state of the outlet height, and a tubular cracking furnace connected to the downstream side of the extruder in an inclined state of the outlet height were installed in series. A catalytic cracking device for synthetic polymer, comprising a receiver for receiving the generated liquid decomposed product on the downstream side and a gas recovery system for cooling the gaseous decomposed product and recovering it as an oily substance. .
【請求項2】 管型予熱器の長軸を水平軸に対して出口
高になる様にその傾斜角(β)を10〜90度に設定する
ことを特徴とする請求項1に記載の合成重合体の接触分
解装置。
2. The synthesis according to claim 1, wherein the inclination angle (β) is set to 10 to 90 degrees so that the major axis of the tubular preheater has an outlet height with respect to the horizontal axis. Catalytic cracking equipment for polymers.
【請求項3】 管型分解炉内にスクレーパー兼用スクリ
ューが設置されていることを特徴とする請求項1又は2
に記載の合成重合体の接触分解装置。
3. The scraper-combined screw is installed in the tubular cracking furnace.
The catalytic cracking apparatus for synthetic polymers according to 1.
【請求項4】 管型分解炉の長軸を水平軸に対して出口
高になる様にその傾斜角(α)を5〜60度に設定するこ
とを特徴とする請求項1〜3の何れかに記載の合成重合
体の接触分解装置。
4. The inclination angle (α) is set to 5 to 60 degrees so that the major axis of the tubular cracking furnace has an outlet height with respect to the horizontal axis, and the inclination angle (α) is set to 5 to 60 degrees. A catalytic cracking apparatus for synthetic polymers according to 1.
【請求項5】 管型予熱器内にスタティックミキサーを
設置することを特徴とする請求項1〜4の何れか記載の
合成重合体の接触分解装置。
5. The catalytic cracking apparatus for synthetic polymer according to claim 1, wherein a static mixer is installed in the tubular preheater.
【請求項6】 低温で分解発生するガスを接触分解装置
の構成単位外に抜き出す為のガス排出管路をスクリュー
型押出機頂部及び管型予熱器の頂部から選ばれる1以上
に設けることを特徴とする請求項1〜5の何れかに記載
の合成重合体の接触分解装置。
6. A gas discharge pipe line for extracting the gas decomposed and generated at a low temperature to the outside of the constitutional unit of the catalytic cracking device is provided at one or more selected from the top of the screw type extruder and the top of the tubular preheater. The catalytic decomposition device for a synthetic polymer according to any one of claims 1 to 5.
【請求項7】 受け器に接続されたガス状分解物の管路
に固形物付着防止用の洗浄装置が設置されていることを
特徴とする請求項1〜6の何れかに記載の合成重合体の
接触分解装置。
7. The synthetic heavy weight according to claim 1, wherein a cleaning device for preventing solids from adhering is installed in the pipeline of the gaseous decomposition product connected to the receiver. Combined catalytic cracking device.
【請求項8】 スクリュー型押出機、管型予熱器及び管
型分解炉から選ばれる1以上に触媒を供給する手段を備
えている請求項1〜7の何れかに記載の合成重合体の接
触分解装置。
8. The contact of the synthetic polymer according to claim 1, further comprising means for supplying a catalyst to at least one selected from a screw type extruder, a tubular preheater and a tubular cracking furnace. Decomposing device.
【請求項9】 合成重合体をスクリュー押出機で溶融混
練し、管型予熱器で300〜450℃に昇温して加熱処
理の後にこれを管型分解炉に供給される触媒の共存下に
350〜500℃、総括滞留時間5〜120minで接触
分解する油状物の製造方法。
9. The synthetic polymer is melted and kneaded by a screw extruder, heated to 300 to 450 ° C. by a tubular preheater, and after heat treatment, this is coexisted with a catalyst supplied to a tubular cracking furnace. A method for producing an oily substance which is catalytically decomposed at 350 to 500 ° C. and a total residence time of 5 to 120 min.
【請求項10】 触媒を管型予熱器および管型分解炉か
ら選ばれる1以上に供給することを特徴とする請求項9
に記載の油状物の製造方法。
10. The catalyst is supplied to at least one selected from a tubular preheater and a tubular cracking furnace.
The method for producing an oily product according to 1.
JP10426096A 1996-03-29 1996-03-29 Catalytic cracking apparatus for synthetic polymer and method for producing oil using the same Expired - Fee Related JP3585637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10426096A JP3585637B2 (en) 1996-03-29 1996-03-29 Catalytic cracking apparatus for synthetic polymer and method for producing oil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10426096A JP3585637B2 (en) 1996-03-29 1996-03-29 Catalytic cracking apparatus for synthetic polymer and method for producing oil using the same

Publications (2)

Publication Number Publication Date
JPH09268293A true JPH09268293A (en) 1997-10-14
JP3585637B2 JP3585637B2 (en) 2004-11-04

Family

ID=14375970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10426096A Expired - Fee Related JP3585637B2 (en) 1996-03-29 1996-03-29 Catalytic cracking apparatus for synthetic polymer and method for producing oil using the same

Country Status (1)

Country Link
JP (1) JP3585637B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126907A (en) * 1998-06-17 2000-10-03 Wada; Youichi Thermal decomposition apparatus of reversed temperature gradient type for polymer waste
EP1108774A1 (en) * 1999-12-16 2001-06-20 Wada Research Laboratories K.K. Thermal decompostion apparatus of reversed temperature gradient type for polymer waste
KR20030010364A (en) * 2001-07-26 2003-02-05 김동춘 Sulfuration apparatus by cracking reaction of atalyzer-down type and fabrication method for volatile-oil·whale-oil thereby
KR100375569B1 (en) * 2000-05-29 2003-03-15 주식회사 영엔지니어링 Pyrolysis apparatus for polymeric wastes
KR100516015B1 (en) * 2002-10-22 2005-09-20 오재천 Disposed plastics and disposed rubber thermal dissolution apparatus
KR100517898B1 (en) * 2001-07-31 2005-09-30 김범진 Downflow type catalytic cracking reaction apparatus and method for producing gasoline and light oil using waste synthetic resins using the same
JP2010013657A (en) * 2006-01-26 2010-01-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for catalytically cracking waste plastic and apparatus for catalytically cracking waste plastic
ITMI20090455A1 (en) * 2009-03-24 2010-09-25 Paolo Rebai METHOD AND CHEMICAL REACTOR FOR THE PRODUCTION OF GASEOUS HYDROCARBONS DERIVING FROM PLASTIC MATERIALS.
US8168839B2 (en) * 2006-04-07 2012-05-01 Bin Niu Continuously cracking technology of waste rubber or plastics and its equipment
JP2014139323A (en) * 2005-04-29 2014-07-31 Scf Technologies As Method and apparatus for converting organic material
US20160040074A1 (en) * 2013-04-04 2016-02-11 Achim Methling Joesef Ranftl GbR Method for the Degrading of Synthetic Polymers and Device for Carrying Out Said Method
WO2019004462A1 (en) * 2017-06-29 2019-01-03 エム・クリエイト株式会社 Waste plastic oilification and reduction device
KR102355501B1 (en) * 2021-03-15 2022-02-08 이정율 Wastesynthetic resin emulsifier equipped with a sloping melting pot

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126907A (en) * 1998-06-17 2000-10-03 Wada; Youichi Thermal decomposition apparatus of reversed temperature gradient type for polymer waste
EP1108774A1 (en) * 1999-12-16 2001-06-20 Wada Research Laboratories K.K. Thermal decompostion apparatus of reversed temperature gradient type for polymer waste
KR100375569B1 (en) * 2000-05-29 2003-03-15 주식회사 영엔지니어링 Pyrolysis apparatus for polymeric wastes
KR20030010364A (en) * 2001-07-26 2003-02-05 김동춘 Sulfuration apparatus by cracking reaction of atalyzer-down type and fabrication method for volatile-oil·whale-oil thereby
KR100517898B1 (en) * 2001-07-31 2005-09-30 김범진 Downflow type catalytic cracking reaction apparatus and method for producing gasoline and light oil using waste synthetic resins using the same
KR100516015B1 (en) * 2002-10-22 2005-09-20 오재천 Disposed plastics and disposed rubber thermal dissolution apparatus
JP2014139323A (en) * 2005-04-29 2014-07-31 Scf Technologies As Method and apparatus for converting organic material
JP2010013657A (en) * 2006-01-26 2010-01-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for catalytically cracking waste plastic and apparatus for catalytically cracking waste plastic
US8168839B2 (en) * 2006-04-07 2012-05-01 Bin Niu Continuously cracking technology of waste rubber or plastics and its equipment
EP2233547A1 (en) * 2009-03-24 2010-09-29 Paolo Rebai Method and chemical reactor for producing gaseous hydrocarbons derived from plastic materials
ITMI20090455A1 (en) * 2009-03-24 2010-09-25 Paolo Rebai METHOD AND CHEMICAL REACTOR FOR THE PRODUCTION OF GASEOUS HYDROCARBONS DERIVING FROM PLASTIC MATERIALS.
US20160040074A1 (en) * 2013-04-04 2016-02-11 Achim Methling Joesef Ranftl GbR Method for the Degrading of Synthetic Polymers and Device for Carrying Out Said Method
JP2016523986A (en) * 2013-04-04 2016-08-12 アーヒム・メトリング・ヨゼフ・ランフトゥル・ゲーベーエルACHIM METHLING JOESEF RANFTL GbR Method for decomposing synthetic polymer and apparatus for carrying out the method
US10494572B2 (en) 2013-04-04 2019-12-03 Achim Methling Joesef Ranftl GbR Method for the degrading of synthetic polymers and device for carrying out said method
WO2019004462A1 (en) * 2017-06-29 2019-01-03 エム・クリエイト株式会社 Waste plastic oilification and reduction device
JP2019011410A (en) * 2017-06-29 2019-01-24 エム・クリエイト株式会社 Waste plastic liquifaction reduction apparatus
KR102355501B1 (en) * 2021-03-15 2022-02-08 이정율 Wastesynthetic resin emulsifier equipped with a sloping melting pot

Also Published As

Publication number Publication date
JP3585637B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5305400B2 (en) Waste plastic catalytic cracking method and waste plastic catalytic cracking apparatus
US10731081B2 (en) Zone-delineated pyrolysis apparatus for conversion of polymer waste
JPH09268293A (en) Catalytic cracker for synthetic polymer and production of oily material using the same
WO2023223932A1 (en) Continuous organic matter pyrolysis device and continuous organic matter pyrolysis method
CN113195685A (en) Process for treating carbonaceous material and apparatus therefor
CN113122300A (en) Process method and device for preparing oil by pyrolyzing high-molecular polymerization waste
JP4768920B2 (en) Thermal decomposition of waste plastic
JP4008105B2 (en) Production equipment for dechlorinated fuel
HUT77197A (en) Process for recovering synthetic raw materials and fuel components from used or waste plastics
US5504267A (en) Resource recovery by catalytic conversion of polymers
JP2004035851A (en) Liquefaction apparatus
JP2002060757A (en) Regeneration system for waste plastic
CN116064064A (en) Method and system for recycling waste plastics through pyrolysis
JPH1190387A (en) Method and apparatus for dechloriantion of waste plastic
JP3351294B2 (en) Method and apparatus for treating chlorine-containing synthetic resin
JP2013103998A (en) Waste plastic catalytic cracking liquefaction apparatus and catalytic cracking liquefaction method
JP2005306974A (en) Apparatus and method for converting plastic into oil
KR20040062793A (en) Degassing system on the screw reactor for the removal of chlorine from mixed waste plastics including PVC
JP2005154517A (en) Method for chemical recycling of waste plastic and apparatus therefor
JPH09279157A (en) Liquefaction of plastic and apparatus therefor
KR102318389B1 (en) Waste material heat dissolution system
JPH10195451A (en) Melting and pyrolysis of waste plastic, its melting and pyrolizing tank and liquefaction of melted and pyrolized plastic
JPH0967581A (en) Method for removing hydrogen chloride from waste plastics containing vinyl chloride
JPH1119622A (en) Treatment of chlorine-containing synthetic resin by pyrolysis and apparatus therefor
JPH0841465A (en) Production of low-boiling hydrocarbon oil and apparatus for production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees