JPH09267170A - Gas shielded metal arc welding method - Google Patents

Gas shielded metal arc welding method

Info

Publication number
JPH09267170A
JPH09267170A JP7575796A JP7575796A JPH09267170A JP H09267170 A JPH09267170 A JP H09267170A JP 7575796 A JP7575796 A JP 7575796A JP 7575796 A JP7575796 A JP 7575796A JP H09267170 A JPH09267170 A JP H09267170A
Authority
JP
Japan
Prior art keywords
welding
short
short circuit
circuit
latest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7575796A
Other languages
Japanese (ja)
Inventor
Yuji Hara
裕司 原
Ryuichi Nakamura
隆一 中村
Shinya Suezawa
伸也 末澤
Mitsuji Kimura
充志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7575796A priority Critical patent/JPH09267170A/en
Publication of JPH09267170A publication Critical patent/JPH09267170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the occurrence of defective welding by making a control to change the normal short circuit current waveform into the pulse waveform when the short circuit period becomes long to control generation of spatter, and to keep the smooth welding work. SOLUTION: In this gas shielded metal arc welding, the mean short circuit period is obtained for each short circuit between the latest short circuit and the past short circuit by a welding control means provided with a welding source. When the time interval from the latest short circuit to the next short circuit is longer than the mean short circuit period, the welding current I having the pulse waveform P is forcibly added between a welding wire and a base metal in the next short circuit. That means, the timing of the short circuit is not controlled but the control is realized so that the rise of the welding current I in the short circuit becomes rapid. Thus, the short circuit period (t) cousing the increase of spatters can be suppressed from being extremely prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶接ワイヤーから
母材への溶融金属の移行が、短絡移行により行われるガ
スシールドアーク溶接法に関し、特に、溶接電流波形を
制御する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas shield arc welding method in which a molten metal is transferred from a welding wire to a base material by a short circuit transfer, and more particularly to a method for controlling a welding current waveform.

【0002】[0002]

【従来の技術】通常、ガスシールドアーク溶接を行う際
には、スパッタの発生を低減させる必要がある。つま
り、スパッタの発生量が多くなれば、それだけ母材に定
着する溶融金属量が減少することとなり、また、スパッ
タの発生は、ガスシールド用のノズルを汚し、シールド
不良を招いて溶接欠陥を誘発することにもなるからであ
る。従来のガスシールドアーク溶接においては、上記不
都合を回避すべく、例えば、溶接電流波形を制御したシ
ョートアーク方式が用いられていた。この方式では、溶
接電流の立上がりが急になるように制御したパルス電流
を加えて、電磁的ピンチ効果によって溶接ワイヤー先端
の溶融金属を強制的に分離させる。このため、母材側へ
の一回の溶滴移行量が制限されるから、溶接ワイヤーと
母材との短絡回数が多くなるのが普通である。
2. Description of the Related Art Normally, when performing gas shielded arc welding, it is necessary to reduce the generation of spatter. In other words, the greater the amount of spatter generated, the smaller the amount of molten metal settled on the base metal, and the generation of spatter pollutes the gas shield nozzle, causing shielding failure and causing welding defects. Because it will be done. In the conventional gas shielded arc welding, in order to avoid the above-mentioned inconvenience, for example, a short arc method in which a welding current waveform is controlled has been used. In this method, a pulse current that is controlled so that the rising of the welding current is steep is applied to forcibly separate the molten metal at the tip of the welding wire by the electromagnetic pinch effect. For this reason, since the amount of droplets transferred to the base metal side once is limited, the number of short circuits between the welding wire and the base metal is usually large.

【0003】[0003]

【発明が解決しようとする課題】しかし、このようなシ
ョートアークを用いた溶接では、短絡回数が増大する結
果、短絡時の溶接電流値が小さくなる傾向があり、母材
への溶込み深さが小さくなるという不都合がある。ま
た、短絡回数が過多になれば、短絡状態が長く維持され
てアークが発生し難い状況となり、正常なアーク溶接が
行えない場合も生じる。 一方、このようなショートア
ーク方式の溶接は、横向き溶接や上向き溶接の場合、あ
るいは、薄板の溶接に適している。つまり、スパッタの
発生量が少ないことの他に、一回の短絡による入熱量が
小さく、溶滴移行した溶着金属が早く凝固するからであ
る。逆の観点からみれば、板厚の厚い溶接を行う場合、
あるいは、下向き溶接で大きな溶込み深さを確保したい
場合には、必ずしもショートアーク方式が必要であると
はいえない。特に、溶接姿勢等の溶接条件が頻繁に変化
する場合には、特定の溶接方式に限定されることは、む
しろ溶接作業の円滑性を損ねることになる。
However, in welding using such a short arc, the number of short circuits increases, and as a result, the welding current value at the time of short circuit tends to decrease. Has the disadvantage of becoming smaller. Further, if the number of short circuits is excessive, the short circuit state is maintained for a long time, and it becomes difficult for an arc to occur, and normal arc welding may not be performed. On the other hand, such short arc welding is suitable for sideways welding, upward welding, or welding of thin plates. That is, in addition to the small amount of spatter generation, the amount of heat input by one short circuit is small, and the deposited metal that has transferred to the droplets solidifies quickly. From the opposite point of view, when welding thick plates,
Alternatively, when it is desired to secure a large penetration depth in downward welding, the short arc method is not always necessary. In particular, when the welding conditions such as the welding posture change frequently, the limitation to a specific welding method rather impairs the smoothness of the welding operation.

【0004】本発明の目的は、このような従来技術の欠
点を解消し、溶接姿勢等の溶接条件が変化した場合に
も、スパッタ発生量が少なく、良好な溶接部を得ること
ができるガスシールドアーク溶接法を提供することにあ
る。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to reduce the amount of spatter and to obtain a good welded portion even when the welding conditions such as the welding position are changed. It is to provide an arc welding method.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明の特徴手段を、図3に示した例を参考に説明す
る。 (構成1)本発明の特徴手段は、請求項1に記載したご
とく、溶接電源に備えた溶接制御手段によって、最新の
短絡と、当該最新の短絡から所定回数遡った過去の短絡
との間の夫々の短絡について、連続する短絡どうしの平
均短絡周期を求め、前記最新の短絡から次回の短絡まで
の周期tが前記平均短絡周期より長くなった場合には、
前記次回の短絡時に、前記溶接ワイヤーWと前記母材B
との間に強制的にパルス波形Pを有する溶接電流Iを付
加する点に特徴を有する。 (作用・効果)本溶接方法においては、短絡周期が長期
化した場合に、短絡電流の波形をパルス波形に変更する
制御を行う。例えば、溶接電源に備えた溶接制御手段に
よって、最新の短絡と、当該最新の短絡から所定回数遡
った過去の短絡との間の夫々の短絡について、連続する
短絡どうしの周期の平均を求め、前記最新の短絡から次
回の短絡までの周期が平均短絡周期より長くなった場合
には、前記次回の短絡時に、前記溶接ワイヤーと前記母
材との間に強制的にパルス電流を付加する。つまり、短
絡のタイミングは制御せず、短絡時の溶接電流の立ち上
がりが急になるように制御する。このように、短絡時の
溶接電流値の立上がり程度が大きいパルス電流を付加す
ることにより、溶接ワイヤーと母材とが短絡した後、溶
融している部分を電磁ピンチ力により早期に切断して、
溶滴が過大にならない前に強制的に母材へ移行させるこ
とができる。よって、溶滴移行が安定化し、スパッタの
発生が抑制され、また、溶滴がノズル内部へ落下するの
を阻止できるから、ノズルの清浄状態が長時間維持でき
て、シールドガスのシールド効果が損なわれるのを防止
できる。さらに、外気中の酸素・水素等が溶接部に混入
するのを有効に防止でき、ブローホールなどの溶接欠陥
の発生が抑制できる。
The characteristic means of the present invention for achieving this object will be described with reference to the example shown in FIG. (Structure 1) The characteristic means of the present invention is, as described in claim 1, between the latest short circuit and the past short circuit which is traced a predetermined number of times from the latest short circuit by the welding control means provided in the welding power source. For each short circuit, the average short circuit period of successive short circuits is calculated, and when the period t from the latest short circuit to the next short circuit is longer than the average short circuit period,
At the time of the next short circuit, the welding wire W and the base metal B
It is characterized in that a welding current I having a pulse waveform P is forcibly added between and. (Operation / Effect) In the present welding method, control is performed to change the waveform of the short-circuit current to a pulse waveform when the short-circuit cycle becomes long. For example, by the welding control means provided in the welding power source, the latest short-circuit, for each short-circuit between the latest short-circuit and the past short-circuit back a predetermined number of times, the average of the cycles of successive short-circuits, When the cycle from the latest short circuit to the next short circuit is longer than the average short circuit cycle, a pulse current is forcibly added between the welding wire and the base metal at the time of the next short circuit. That is, the timing of the short circuit is not controlled, but the rising of the welding current at the time of the short circuit is controlled to be rapid. In this way, by adding a pulse current with a large rise degree of the welding current value at the time of short circuit, after the welding wire and the base material are short-circuited, the molten portion is cut early by the electromagnetic pinch force,
The droplets can be forcibly transferred to the base material before they become excessive. Therefore, droplet transfer is stabilized, spatter generation is suppressed, and since droplets can be prevented from falling inside the nozzle, the nozzle can be maintained in a clean state for a long time and the shielding effect of shield gas is impaired. Can be prevented. Further, it is possible to effectively prevent oxygen, hydrogen, etc. in the outside air from entering the welded portion, and suppress the occurrence of welding defects such as blowholes.

【0006】(構成2)本発明の特徴手段は、請求項2
に記載したごとく、溶接電源に備えた溶接制御手段によ
って、最新の短絡と、当該最新の短絡から所定回数遡っ
た過去の短絡との間の夫々の短絡について、連続する短
絡どうしの平均短絡周期を求め、前記最新の短絡から次
回の短絡までの周期tが、前記溶接制御手段が前記平均
短絡周期に基づいて算出した所定の周期よりも長い場合
には、前記最新の短絡から前記算出した所定の周期が経
過したときに、前記溶接ワイヤーWと前記母材Bとの間
に強制的にパルス波形Pを有する溶接電流Iを付加する
こととすることもできる。 (作用・効果)本手段のガスシールドアーク溶接法は、
溶接電流の波形を制御することは勿論、パルス電流を発
生させるタイミングをも制御してスパッタの発生を抑制
しようとするものである。例えば、短絡周期が長期化す
る場合には、その長期化する周期幅を、過去複数回の平
均短絡周期に基づいて一定範囲内に留めるべく、演算し
た予定短絡開始時に強制的にパルス電流を印加するもの
である。本方法によれば、溶接ワイヤー先端部で溶融し
た金属量が過多となる前に、前記パルス電流が当該溶融
金属を強制移行させるから、スパッタの増加を抑制する
ことができ、円滑な溶接作業を維持できると共に、溶接
欠陥等の発生を最小限に抑えることができる。
(Structure 2) The characteristic means of the present invention is claim 2.
As described above, by the welding control means provided in the welding power source, the latest short-circuit and each short-circuit between the latest short-circuit and the past short-circuit traced a predetermined number of times, the average short-circuit cycle of successive short-circuits is calculated. If the cycle t from the latest short circuit to the next short circuit is longer than the predetermined cycle calculated by the welding control means based on the average short circuit cycle, the predetermined short circuit calculated from the latest short circuit is obtained. It is also possible to forcibly add the welding current I having the pulse waveform P between the welding wire W and the base metal B when the cycle has elapsed. (Operation / effect) The gas shield arc welding method of this means is
In addition to controlling the waveform of the welding current, the timing of generating the pulse current is also controlled to suppress the generation of spatter. For example, when the short-circuit period is prolonged, a pulse current is forcibly applied at the start of the calculated scheduled short-circuit in order to keep the lengthened period width within a certain range based on the past average short-circuit periods. To do. According to this method, since the pulsed current forcibly transfers the molten metal before the amount of molten metal at the tip of the welding wire becomes excessive, an increase in spatter can be suppressed and a smooth welding operation can be performed. It can be maintained, and the occurrence of welding defects can be minimized.

【0007】(構成3)本発明の特徴手段は、請求項3
に記載したごとく、前記溶接制御手段が、最新の短絡
と、当該最新の短絡から五回分遡った過去の短絡との間
の夫々の短絡について前記平均短絡周期を求めるものと
することができる。 (作用・効果)本手段のごとく、最新の短絡から過去複
数回の短絡に亘る平均短絡周期を求めることで、瞬間的
な外乱による短絡周期の変動の影響を排除することがで
き、溶接電流波形の制御をより正確に行うことができ
る。
(Structure 3) The characteristic means of the present invention is claim 3.
As described above, the welding control means may obtain the average short-circuit cycle for each short circuit between the latest short circuit and a past short circuit that is five times back from the latest short circuit. (Operation / Effect) As in this means, by obtaining the average short-circuit cycle from the latest short-circuit to the past multiple short-circuits, it is possible to eliminate the influence of fluctuations in the short-circuit cycle due to momentary disturbances, and the welding current waveform Can be controlled more accurately.

【0008】(構成4)本発明の特徴手段としては、請
求項4に記載したごとく、前記平均短絡周期に定数αを
乗じて次の短絡予定時期を求めるものとすることができ
る。 (作用・効果)一般に、一つの溶接電源を使用する場合
には、溶接ワイヤーの直径を各種選択することができ
る。この場合には、常用する溶接電流域・電圧域も変化
するから、パルス電流の印加時期も変化させる必要があ
ると予測できる。本手段のごとく、前記平均短絡時間に
定数を乗じてパルス電流の印加時期を決定する方式にし
ておけば、溶接条件が異なる場合にもスパッタ発生が最
小となるようにパルス電流印加の時期を設定することが
容易となる。
(Structure 4) As a characteristic means of the present invention, as described in claim 4, the next short-circuit scheduled time can be obtained by multiplying the average short-circuit period by a constant α. (Operation / Effect) Generally, when using one welding power source, various diameters of the welding wire can be selected. In this case, since the welding current region / voltage region that is normally used also changes, it can be predicted that the application timing of the pulse current also needs to be changed. As in this means, if a method is used in which the average short-circuit time is multiplied by a constant to determine the pulse current application timing, the pulse current application timing is set so that spatter generation is minimized even under different welding conditions. It becomes easy to do.

【0009】尚、上記課題を解決するための手段の項
に、図面との対照を便利にするために符号を記すが、当
該記入により本発明は添付図面の構成に限定されるもの
ではない。
In the meantime, in the section of the means for solving the above problems, reference numerals are written for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【発明の実施の形態】以下に本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】先ず、図1および図2に、通常の溶接電源
を用いた場合であって、パルス電流を発生させるもので
はない場合の溶接電流波形と、当該波形の各段階におけ
る溶接現象とを模式的に示す。図1は、一般的な下向き
溶接の場合であり、図2は、上向き溶接の場合である。
溶接電流波形の模式図においては、横軸は時間Tであ
り、縦軸は溶接電流値Iである。図1および図2を比較
すると、短絡周期t、即ち、特定の短絡開始時からその
次の短絡開始時までの所要時間が、図2の上向き溶接の
方が長い点で異なっている。例えば、大径管の内面溶接
を行う場合のように、溶接姿勢が通常の下向き溶接から
上向き溶接に変化する場合には、溶接電流波形および溶
接現象は、図1の状態から図2の状態に移行する。つま
り、溶接電流波形および溶接現象は、共に、通常の短絡
移行状態から、短絡周期tの長い状態に移行する。これ
は、例えば、前記溶接ワイヤーWの先端に生じた溶融部
分の移行形態の差異に基づく。つまり、図1の場合は下
向き溶接であるから、前記溶接ワイヤーW先端部で溶融
した金属Mは重力の影響で下方に落下する傾向にあるか
ら、前記溶接ワイヤーWの先端部は前記母材Bに対して
積極的に近付こうとする。しかし、図2の場合は上向き
溶接であるから、前記溶接ワイヤーW先端部で溶融した
金属Mは、逆に、重力の影響で前記母材Bから遠ざかる
方向に流れようとする。通常のガスシールドアーク溶接
では、前記溶接ワイヤーWが定速送給される溶接電源を
用いるから、上向き溶接の場合には、上記の理由で前記
溶接ワイヤーWと前記母材Bとの短絡周期tが長くな
る。短絡周期tが長くなれば、それだけ前記溶接ワイヤ
ーW先端部の抵抗発熱が助長されて、前記溶接ワイヤー
Wの溶融量が増加する。この結果、実際に短絡した瞬間
に前記溶接ワイヤーWの先端部から分離される溶融金属
量が多くなって、その分スパッタSとして飛散する金属
量も増加することとなる。本発明のガスシールドアーク
溶接方法においては、上記の不都合を解消すべく、特に
短絡周期tが長期化した場合にパルス波形Pを有する溶
接電流Iを加え、前記溶接ワイヤーWの先端部において
溶融金属量が増加する前に溶滴を強制移行させるもので
ある。
First, FIGS. 1 and 2 schematically show a welding current waveform when a normal welding power source is used and a pulse current is not generated, and a welding phenomenon at each stage of the waveform. To indicate. FIG. 1 shows a general case of downward welding, and FIG. 2 shows a case of upward welding.
In the schematic diagram of the welding current waveform, the horizontal axis represents the time T and the vertical axis represents the welding current value I. Comparing FIG. 1 and FIG. 2, the short circuit period t, that is, the time required from the start of a specific short circuit to the start of the next short circuit is different in that the upward welding of FIG. 2 is longer. For example, when the welding posture changes from normal downward welding to upward welding, such as when performing internal welding of a large diameter pipe, the welding current waveform and the welding phenomenon change from the state of FIG. 1 to the state of FIG. Transition. That is, both the welding current waveform and the welding phenomenon shift from the normal short-circuit transition state to a state where the short-circuit period t is long. This is based on, for example, the difference in the transition form of the molten portion generated at the tip of the welding wire W. That is, since the case of FIG. 1 is downward welding, the metal M melted at the tip of the welding wire W tends to drop downward due to the influence of gravity. Try to get closer to. However, since the case of FIG. 2 is upward welding, the metal M melted at the tip of the welding wire W, on the contrary, tends to flow away from the base metal B due to the influence of gravity. In normal gas shielded arc welding, since the welding power source in which the welding wire W is fed at a constant speed is used, in the case of upward welding, the short-circuit cycle t between the welding wire W and the base metal B is caused for the above reason. Becomes longer. The longer the short-circuit period t, the more the resistance heat generation of the tip portion of the welding wire W is promoted, and the melting amount of the welding wire W increases. As a result, the amount of molten metal separated from the tip of the welding wire W increases at the moment when the short circuit is actually made, and the amount of metal scattered as the spatter S also increases accordingly. In the gas shielded arc welding method of the present invention, in order to eliminate the above-mentioned inconvenience, a welding current I having a pulse waveform P is applied particularly when the short circuit period t is prolonged, and molten metal is applied at the tip of the welding wire W. The droplets are forcibly transferred before the volume increases.

【0011】本発明のガスシールドアーク溶接法では、
溶融した前記溶接ワイヤーWを前記母材B側に移行させ
るのに、通常の短絡移行と、パルス電流を発生させるこ
とによるいわば強制移行とを適宜選択して実行する。例
えば、溶接姿勢が下向き溶接から横向き溶接あるいは上
向き溶接に変化した場合など、短絡周期tが長期化した
ことを認識して、通常の短絡移行溶接から強制移行溶接
に自動的に切換えることができる。
In the gas shielded arc welding method of the present invention,
In order to transfer the melted welding wire W to the base metal B side, a normal short-circuit transfer and a so-called forced transfer by generating a pulse current are appropriately selected and executed. For example, when the welding posture is changed from downward welding to horizontal welding or upward welding, it is possible to automatically switch from normal short-circuit transfer welding to forced transfer welding by recognizing that the short-circuit cycle t has become longer.

【0012】その一例を図3に基づいて説明する。本発
明の溶接方法においては、短絡周期tが長期化した場合
に、通常の短絡電流波形Nをパルス波形Pに変更する制
御を行う。具体的には、図示は省略するが、溶接電源に
備えた溶接制御手段によって、最新の短絡と、当該最新
の短絡から所定回数遡った過去の短絡との間の夫々の短
絡について平均短絡周期を求める。そして、前記最新の
短絡から次回の短絡までの時間間隔が前記平均短絡周期
より長くなった場合には、前記次回の短絡時に、前記溶
接ワイヤーWと前記母材Bとの間に強制的にパルス波形
Pを有する溶接電流Iを付加する。つまり、短絡のタイ
ミングは制御せず、短絡時の溶接電流Iの立ち上がりが
急になるように制御する。前記溶接制御手段が、短絡周
期tの長期化を認識する手法としては、例えば、最新の
短絡と、当該最新の短絡から五回分遡った過去の短絡と
の間の夫々の短絡について求めた平均短絡周期を用い
る。この場合の溶接状況の判断手法および制御手法を図
3を基に説明する。図3は、横軸に経過時間Tを、縦軸
に溶接電流Iの値を示している。ti (t1 ,t2 ,…
…… )は、短絡周期tを示す。ここで、t1 からt5
までは短絡周期が一定であり、t6 で短絡周期が長期化
したものとする。つまり、溶接制御装置は、短絡周期t
An example thereof will be described with reference to FIG. In the welding method of the present invention, when the short circuit period t becomes long, control is performed to change the normal short circuit current waveform N to the pulse waveform P. Specifically, although not shown, the welding control means provided in the welding power source determines the average short-circuit cycle for each of the latest short-circuits and each of the past short-circuits that trace back a predetermined number of times from the latest short-circuit. Ask. Then, when the time interval from the latest short circuit to the next short circuit is longer than the average short circuit period, a pulse is forcibly applied between the welding wire W and the base metal B at the next short circuit. A welding current I having a waveform P is added. That is, the timing of the short circuit is not controlled, but the rising of the welding current I at the time of the short circuit is controlled to be rapid. As a method in which the welding control means recognizes that the short-circuit cycle t has become longer, for example, an average short-circuit obtained for each short-circuit between the latest short-circuit and a past short-circuit traced five times from the latest short-circuit. Use the cycle. The method of determining the welding condition and the control method in this case will be described with reference to FIG. In FIG. 3, the horizontal axis shows the elapsed time T and the vertical axis shows the value of the welding current I. t i (t 1 , t 2 , ...
......) indicates a short circuit period t. Where t 1 to t 5
It is assumed that the short-circuit cycle is constant up to and the short-circuit cycle is extended at t 6 . That is, the welding control device determines that the short circuit period t
But

【0013】[0013]

【数1】 [Equation 1]

【0014】なる状態に変化したことを演算により算出
・認識し、この結果に基づいてt6 が経過した後の溶接
電流Iの波形をパルス波形Pとして発生させる。さらに
次の短絡周期t7 においても、
The change in the above state is calculated and recognized by calculation, and based on this result, the waveform of the welding current I after t 6 has elapsed is generated as the pulse waveform P. Furthermore, in the next short circuit period t 7 ,

【0015】[0015]

【数2】 [Equation 2]

【0016】なる関係が成立することを前記制御装置が
認識した場合には、t7 が経過した後に同じくパルス波
形Pを印加する。ただし、次のt8 が、
When the control device recognizes that the following relationship is established, the pulse waveform P is similarly applied after t 7 has elapsed. However, the next t 8 is

【0017】[0017]

【数3】 (Equation 3)

【0018】なる関係であると前記制御装置が認識した
場合には、パルス波形Pは印加されず、通常の短絡波形
Nを有する溶接電流Iが流れることとなる。尚、前記溶
接ワイヤーWと前記母材Bとが短絡した瞬間を判断する
には、溶接電流値の上昇時点を直接検出してもよいし、
短絡したことにより前記溶接ワイヤーWと前記母材Bと
の電位差が解消されることによる溶接電圧の低下時点を
検出してもよい。上記演算手法を採用することにより、
単に外乱によって短絡周期tが長期化している場合を除
外し、真に短絡周期tが長期化している場合のみを正確
に検出することができる。以上のごとく、短絡時の溶接
電流値の立上がり程度が大きいパルス電流を付加するこ
とにより、前記溶接ワイヤーWと前記母材Bとが短絡し
た後、溶融している部分を電磁ピンチ力により早期に切
断して、溶滴が過大にならない前に強制的に前記母材B
へ移行させることができる。よって、溶滴移行が安定化
し、スパッタSの発生が抑制され、また、溶滴が溶接ノ
ズル内部へ落下するのを阻止できるから、溶接ノズルの
清浄状態が長時間維持できて、シールドガスのシールド
効果が損なわれるのを防止できる。さらに、外気中の酸
素・水素等が溶接部に混入するのを有効に防止でき、ブ
ローホールなどの溶接欠陥の発生が抑制できる。尚、本
発明のごとく溶接電流Iの波形制御を行う場合には、通
常の下向き溶接のみを行っている場合でも、短絡周期t
の長期化に対応してパルス電流を発生させるから、スパ
ッタSの少ない溶接が可能となる。
When the control device recognizes that there is the above relation, the pulse waveform P is not applied and the welding current I having the normal short-circuit waveform N flows. In addition, in order to judge the moment when the welding wire W and the base material B are short-circuited, the rising time of the welding current value may be directly detected,
It is also possible to detect a time point at which the welding voltage drops due to the elimination of the potential difference between the welding wire W and the base material B due to the short circuit. By adopting the above calculation method,
It is possible to exclude a case where the short-circuit cycle t is lengthened simply by a disturbance, and accurately detect only when the short-circuit cycle t is truly lengthened. As described above, by adding a pulse current having a large rising degree of the welding current value at the time of short circuit, after the short circuit between the welding wire W and the base material B, the molten portion is promptly accelerated by the electromagnetic pinch force. The base material B is forcibly cut before the droplets become excessive.
Can be moved to. Therefore, the droplet transfer is stabilized, the generation of spatter S is suppressed, and the droplets can be prevented from falling inside the welding nozzle, so that the cleaning state of the welding nozzle can be maintained for a long time and the shield gas shield It is possible to prevent the effect from being impaired. Further, it is possible to effectively prevent oxygen, hydrogen, etc. in the outside air from entering the welded portion, and suppress the occurrence of welding defects such as blowholes. In the case where the waveform control of the welding current I is performed as in the present invention, the short circuit period t is obtained even when only the normal downward welding is performed.
Since the pulse current is generated in response to the longer period of time, welding with less spatter S is possible.

【0019】〔別実施形態〕上記のガスシールドアーク
溶接法においては、溶接電流Iの波形のみを制御する方
式を示したが、次の例のごとく、パルス電流を発生させ
るタイミングをも制御してスパッタSの発生を低減する
ことも可能である。この場合の溶接状況の判断手法およ
び制御手法を図4を基に説明する。この例においても、
図3と同様に、t1 からt5 までは短絡周期tが一定で
ある。そして、次の短絡周期t61が長期化したものとす
る。この場合に、t61がそれまでの平均短絡周期に基づ
いて予定される所定の周期tよりも長い場合には、制御
装置が定数αを用いて演算した所定のタイミングに、即
ち、前回の短絡から周期t6 が経過した後にパルス電流
を印加するものである。具体的には、
[Other Embodiments] In the gas shielded arc welding method described above, a method of controlling only the waveform of the welding current I was shown, but as in the following example, the timing of generating a pulse current is also controlled. It is also possible to reduce the generation of spatter S. The method of determining the welding condition and the control method in this case will be described with reference to FIG. Also in this example,
Similar to FIG. 3, the short circuit period t is constant from t 1 to t 5 . Then, it is assumed that the next short circuit period t 61 is lengthened. In this case, when t 61 is longer than the predetermined period t scheduled based on the average short-circuit period up to that point, the control device calculates at a predetermined timing using the constant α, that is, the previous short-circuit. The pulse current is applied after a lapse of the period t 6 from. In particular,

【0020】[0020]

【数4】 (Equation 4)

【0021】なる関係が成立した場合、つまり、t61
短絡周期tが延びて、制御装置が演算した所定の周期t
(図4中、α1で表示)よりも長くなった場合には、当
該溶接制御装置が、
When the above relation is established, that is, the short circuit period t of t 61 is extended, and the predetermined period t calculated by the control device is calculated.
If it is longer than (indicated by α1 in FIG. 4), the welding control device

【0022】[0022]

【数5】 (Equation 5)

【0023】であるような周期t6 が経過した時点(図
4中、α2で表示)でパルス電流を印加するものであ
る。ただし、周期t61が経過した後であって、演算によ
る周期t6 が経過する時点よりも前に実際の短絡が生じ
た場合には、その実際の短絡の時点でパルス電流を印加
するものとする。続くt71の周期tが更に長期化した場
合も同様である。ただし、次のt81が、
The pulse current is applied at the time when the period t 6 such as is passed (indicated by α2 in FIG. 4). However, if the actual short circuit occurs after the period t 61 elapses and before the time when the calculation period t 6 elapses, the pulse current is applied at the time of the actual short circuit. To do. The same applies when the cycle t of the subsequent t 71 is further extended. However, the next t 81 is

【0024】[0024]

【数6】 (Equation 6)

【0025】なる関係であると前記制御装置が認識した
場合には、パルス波形Pは印加されず、t81=t8 とし
て、周期t8 なる時間が経過した後に通常の短絡波形N
を有する溶接電流Iが流れることとなる。尚、上記の定
数 α1 ,α2 は、1以上の値であって任意に設定する
ことができる。つまり、使用する溶接ワイヤーの直径な
どを変更した場合には、スパッタSの発生が少なくなる
ように前記定数αを適宜変更するためである。以上のご
とく、本方法は、前記短絡周期tが長期化する場合に
は、その長期化する周期幅を、過去5回の平均短絡周期
に基づいて一定範囲内に留めようとするものである。こ
の方法により、スパッタSの発生が増加することとなる
短絡周期tの極端な長期化を抑制することができ、円滑
な溶接作業を維持できると共に、溶接欠陥等の発生を最
小限に抑えることができる。
If the control device recognizes that the relation is as follows, the pulse waveform P is not applied, and t 81 = t 8 is set, and the normal short-circuit waveform N is obtained after the period t 8 has elapsed.
Welding current I having The above constants α 1 and α 2 are values of 1 or more and can be set arbitrarily. That is, when the diameter of the welding wire to be used is changed, the constant α is appropriately changed so as to reduce the generation of spatter S. As described above, when the short-circuit period t becomes long, the present method tries to keep the lengthening period width within a certain range based on the average short-circuit period of the past five times. By this method, it is possible to suppress an extremely long short-circuit period t that would increase the occurrence of spatter S, maintain a smooth welding operation, and minimize the occurrence of welding defects and the like. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】下向き溶接時の短絡電流波形と溶接現象とを示
す模式図
FIG. 1 is a schematic diagram showing a short-circuit current waveform and welding phenomenon during downward welding.

【図2】上向き溶接時の短絡電流波形と溶接現象とを示
す模式図
FIG. 2 is a schematic diagram showing a short-circuit current waveform and welding phenomenon during upward welding.

【図3】本発明に係る溶接電流の波形制御方法を示す説
明図
FIG. 3 is an explanatory diagram showing a method of controlling a waveform of a welding current according to the present invention.

【図4】別実施の形態に係る溶接電流の波形制御方法を
示す説明図
FIG. 4 is an explanatory diagram showing a welding current waveform control method according to another embodiment.

【符号の説明】[Explanation of symbols]

W 溶接ワイヤー B 母材 M 溶融金属 P パルス波形 I 溶接電流 t 短絡の周期 α 定数 W Welding wire B Base material M Molten metal P Pulse waveform I Welding current t Short circuit period α constant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 充志 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsushi Kimura 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶接ワイヤーから母材への溶融金属の移
行が、短絡移行により行われるガスシールドアーク溶接
法であって、 溶接電源に備えた溶接制御手段によって、最新の短絡
と、当該最新の短絡から所定回数遡った過去の短絡との
間の夫々の短絡について、連続する短絡どうしの平均短
絡周期を求め、 前記最新の短絡から次回の短絡までの周期が前記平均短
絡周期より長くなった場合には、前記次回の短絡時に、
前記溶接ワイヤーと前記母材との間に強制的にパルス波
形を有する溶接電流を付加するガスシールドアーク溶接
法。
1. A gas shielded arc welding method in which a molten metal is transferred from a welding wire to a base material by a short-circuit transfer, and the latest short-circuit and the latest short-circuit are performed by a welding control means provided in a welding power source. For each short circuit between the past short circuit that has gone back a predetermined number of times from the short circuit, the average short circuit cycle of successive short circuits is obtained, and the cycle from the latest short circuit to the next short circuit is longer than the average short circuit cycle. At the time of the next short circuit,
A gas shielded arc welding method for forcibly applying a welding current having a pulse waveform between the welding wire and the base material.
【請求項2】 溶接ワイヤーから母材への溶融金属の移
行が、短絡移行により行われるガスシールドアーク溶接
法であって、 溶接電源に備えた溶接制御手段によって、最新の短絡
と、当該最新の短絡から所定回数遡った過去の短絡との
間の夫々の短絡について、連続する短絡どうしの平均短
絡周期を求め、 前記最新の短絡から次回の短絡までの周期が、前記溶接
制御手段が前記平均短絡周期に基づいて算出した所定の
周期よりも長い場合には、前記最新の短絡から前記算出
した所定の周期が経過したときに、前記溶接ワイヤーと
前記母材との間に強制的にパルス波形を有する溶接電流
を付加するガスシールドアーク溶接法。
2. A gas shield arc welding method in which a molten metal is transferred from a welding wire to a base material by a short circuit transfer, and the latest short circuit and the latest short circuit are performed by a welding control means provided in a welding power source. For each short-circuit between the past short-circuits that went back a predetermined number of times from the short-circuit, the average short-circuit cycle of successive short-circuits is obtained, the cycle from the latest short-circuit to the next short-circuit, the welding control means is the average short-circuit. When longer than the predetermined cycle calculated based on the cycle, when the predetermined cycle calculated from the latest short circuit has elapsed, a pulse waveform is forcibly forced between the welding wire and the base metal. Gas shielded arc welding method for adding welding current.
【請求項3】 前記溶接制御手段が、最新の短絡と、当
該最新の短絡から五回分遡った過去の短絡との間の夫々
の短絡について前記平均短絡周期を求めるものである請
求項1または2の何れかに記載のガスシールドアーク溶
接法。
3. The welding control means obtains the average short-circuit period for each short circuit between the latest short circuit and a past short circuit which is five times back from the latest short circuit. The gas shield arc welding method according to any one of 1.
【請求項4】 前記算出した所定の周期は、前記平均短
絡周期に定数を乗じて求められる請求項2に記載のガス
シールドアーク溶接法。
4. The gas shielded arc welding method according to claim 2, wherein the calculated predetermined period is obtained by multiplying the average short circuit period by a constant.
JP7575796A 1996-03-29 1996-03-29 Gas shielded metal arc welding method Pending JPH09267170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7575796A JPH09267170A (en) 1996-03-29 1996-03-29 Gas shielded metal arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7575796A JPH09267170A (en) 1996-03-29 1996-03-29 Gas shielded metal arc welding method

Publications (1)

Publication Number Publication Date
JPH09267170A true JPH09267170A (en) 1997-10-14

Family

ID=13585437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7575796A Pending JPH09267170A (en) 1996-03-29 1996-03-29 Gas shielded metal arc welding method

Country Status (1)

Country Link
JP (1) JPH09267170A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001908A (en) * 2019-12-26 2020-04-14 唐山松下产业机器有限公司 Consumable electrode pulse welding method, consumable electrode pulse welding system and consumable electrode pulse welding machine
US11413697B2 (en) 2018-11-02 2022-08-16 Lincoln Global, Inc. Wire management for a welding system
US11426813B2 (en) 2018-10-15 2022-08-30 Lincoln Global, Inc. Welding or additive manufacturing dual wire drive system
US11440121B2 (en) 2017-08-08 2022-09-13 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11484960B2 (en) 2017-08-08 2022-11-01 Lincoln Global, Inc. Dual wire welding or additive manufacturing contact tip and diffuser
US11498146B2 (en) 2019-09-27 2022-11-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11504787B2 (en) 2018-10-15 2022-11-22 Lincoln Global, Inc. Welding or additive manufacturing dual wire drive system
US11504788B2 (en) 2017-08-08 2022-11-22 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11964346B2 (en) 2017-08-08 2024-04-23 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440121B2 (en) 2017-08-08 2022-09-13 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11484960B2 (en) 2017-08-08 2022-11-01 Lincoln Global, Inc. Dual wire welding or additive manufacturing contact tip and diffuser
US11504788B2 (en) 2017-08-08 2022-11-22 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11964346B2 (en) 2017-08-08 2024-04-23 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11426813B2 (en) 2018-10-15 2022-08-30 Lincoln Global, Inc. Welding or additive manufacturing dual wire drive system
US11504787B2 (en) 2018-10-15 2022-11-22 Lincoln Global, Inc. Welding or additive manufacturing dual wire drive system
US11413697B2 (en) 2018-11-02 2022-08-16 Lincoln Global, Inc. Wire management for a welding system
US11498146B2 (en) 2019-09-27 2022-11-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
CN111001908A (en) * 2019-12-26 2020-04-14 唐山松下产业机器有限公司 Consumable electrode pulse welding method, consumable electrode pulse welding system and consumable electrode pulse welding machine

Similar Documents

Publication Publication Date Title
US8080763B2 (en) Method of controlling arc welding and welding apparatus
JP4263886B2 (en) Arc length control method for pulse arc welding
Wang et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
MX2010007965A (en) Method and system to increase heat to a weld during a short-circuit arc welding process.
US9533366B2 (en) Apparatus and method for welding with AC waveform
US4994646A (en) Pulse arc discharge welding apparatus
JP3132409B2 (en) Consumable electrode type pulse arc welding machine controller
JP2014528360A (en) Method and system for suppressing spatter in a pulsed arc welding process
JP2008246524A (en) Consumable electrode gas shielded arc welding control apparatus and welding control method
JPH09267170A (en) Gas shielded metal arc welding method
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
WO2018051911A1 (en) Arc welding device and arc welding control method
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP2020069537A (en) Time-based short circuit response
JPH11138265A (en) Dc pulsed mag welding method and its equipment
JP2008105095A (en) Output control method for pulsed arc welding
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JP4776868B2 (en) Method used in gas shielded metal arc welding
JPS6064774A (en) Method for controlling current of welding accompanying short-circuit transfer
JPS60223661A (en) Arc welding method
US20220055134A1 (en) Arc welding method and arc welding device
JPS60180669A (en) Pulse arc welding method
JPH0557071B2 (en)
US20220055136A1 (en) Arc welding method and arc welding device