JPH09264983A - Reactor core and fuel assembly - Google Patents

Reactor core and fuel assembly

Info

Publication number
JPH09264983A
JPH09264983A JP8073597A JP7359796A JPH09264983A JP H09264983 A JPH09264983 A JP H09264983A JP 8073597 A JP8073597 A JP 8073597A JP 7359796 A JP7359796 A JP 7359796A JP H09264983 A JPH09264983 A JP H09264983A
Authority
JP
Japan
Prior art keywords
fuel
core
fuel assembly
length
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073597A
Other languages
Japanese (ja)
Inventor
Taichi Takii
太一 滝井
Hideo Soneda
秀夫 曽根田
Kimiaki Moriya
公三明 守屋
Tadao Aoyama
肇男 青山
Hidemitsu Shimada
秀充 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8073597A priority Critical patent/JPH09264983A/en
Publication of JPH09264983A publication Critical patent/JPH09264983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a reactor core capable of being reduced in size a plant without decreasing the output of a reactor power plant by a constitution that the effective heating length of a fuel assembly is less than specific value and the output density of the heating amount per unit volume is larger than the specific value. SOLUTION: A fuel assembly having an effective heating length of 3.1m is loaded in a square lattice state having a lattice interval of 23.2cm, a control rod 3 having a cross-shaped section is inserted into the water gap area 2 of a fuel assembly periphery of both sides of a pair of diagonal lines of the assembly surrounded by a channel box 1 having a length of one inside of 20.9cm to constitute a reactor core, and output is controlled. Further, when the void ratio of cooling water in the box in which a water rod is removed is 40%, the ratio of the number of atoms of hydrogen to that of uranium is about 4.1. Thus, the output density of the core can be set to about 55kW/L while obtaining the allowance of reactor stop. The partial length fuel rod is located to reduce the pressure loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原子炉の炉心および
燃料集合体に係わり、特に発電用沸騰水型原子炉に用い
るのに好適な原子炉炉心および燃料集合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor core and a fuel assembly, and more particularly to a nuclear reactor core and a fuel assembly suitable for use in a boiling water reactor for power generation.

【0002】[0002]

【従来の技術】発電用に使用される沸騰水型原子炉のう
ち、最新のものである改良型沸騰水型原子炉(以下、A
BWRと呼ぶ)の炉心は、新版機械工学便覧(日本機械
学会,昭和63年)に記載されているように、872体
の燃料集合体を正方格子状に装荷し、炉心平均出力密度
50.6kW/l ,熱出力3926Mwtで運転され
る。
2. Description of the Related Art Among the boiling water reactors used for power generation, the latest improved boiling water reactor (hereinafter referred to as A
The core of BWR) is loaded with 872 fuel assemblies in a square lattice shape and the average power density of the core is 50.6 kW, as described in the new edition of Mechanical Engineering Handbook (JSME, 1988). / L, heat output is 3926Mwt.

【0003】また、特開平6−174874 号公報には、熱的
余裕および炉停止余裕を確保しつつ、燃料集合体を大型
化することにより、炉心に装荷される燃料集合体を大型
化して体数を低減し、燃料取り替えの省力化を図る技術
が記載されている。
Further, in Japanese Patent Laid-Open No. 174874/1994, the fuel assembly to be loaded in the core is enlarged by increasing the size of the fuel assembly while ensuring a thermal margin and a reactor shutdown margin. A technique for reducing the number of workers and saving labor for refueling is described.

【0004】また、特開平7−167988 号公報には、沸騰
水と非沸騰水の流路面積割合と冷却材流量を適当な値に
することにより、炉停止余裕および熱的余裕を確保しつ
つ、出力密度を増大し、原子炉の出力の増大を図る技術
が記載されている。
Further, in Japanese Patent Laid-Open No. 7-167988, it is possible to secure a reactor shutdown margin and a thermal margin by setting the flow passage area ratio of boiling water and non-boiling water and the coolant flow rate to appropriate values. , A technique for increasing the power density and increasing the power output of a nuclear reactor is described.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術を用いて
炉心の出力密度を増加すると、熱的余裕を確保するため
に炉心の冷却材流量を増大させる必要があり、冷却材流
量を増大すると炉心の圧損も増加するので、再循環ポン
プの能力向上あるいは台数の増加が必要となり、設備容
量が増大する。また、従来の有効発熱長を持つ炉心の平
均出力密度を増大させた場合は、炉心断面積あたりの蒸
気流量が増大し、気水分離器,蒸気乾燥器についても、
一体あたりの処理容量を増大するか、または台数を増大
させる必要があるので、やはり設備容量が増大する。
When the power density of the core is increased by using the above-mentioned conventional technique, it is necessary to increase the coolant flow rate of the core in order to secure a thermal margin. When the coolant flow rate is increased, the core flow rate is increased. Since the pressure loss of the recirculation pump also increases, it is necessary to improve the capacity of the recirculation pump or increase the number of recirculation pumps, which increases the equipment capacity. Further, when the average power density of the core having the conventional effective heat generation length is increased, the steam flow rate per core cross-sectional area is increased, and the steam separator and the steam dryer are also
Since it is necessary to increase the processing capacity per unit or the number of units, the equipment capacity also increases.

【0006】また、炉心の出力密度を増加すると、線出
力密度が増加して熱的余裕が減少しないよう、燃料棒の
長さの総和を増やす必要がある。一方線出力密度が一定
に保たれる場合には表面熱流束が増加して熱的余裕が減
少しないよう、燃料棒の直径は減らすことができない。
従って燃料棒の長さの増加に伴って、燃料インベントリ
が増加する。
Further, when the power density of the core is increased, it is necessary to increase the total length of the fuel rods so that the linear power density does not increase and the thermal margin does not decrease. On the other hand, when the linear power density is kept constant, the diameter of the fuel rod cannot be reduced so that the surface heat flux does not increase and the thermal margin does not decrease.
Therefore, as the fuel rod length increases, the fuel inventory increases.

【0007】一方燃料インベントリが増加すると水素の
ウランに対する原子数比を減少し、運転時と停止時の反
応度差を拡大するため、炉停止余裕が減少する。
On the other hand, when the fuel inventory increases, the atomic ratio of hydrogen to uranium decreases, and the difference in reactivity between operation and shutdown increases, so the reactor shutdown margin decreases.

【0008】このため、熱的余裕及び炉停止余裕を確保
しつつ、出力密度およびインベントリを共に増加するこ
とは困難であった。
Therefore, it has been difficult to increase both the power density and the inventory while ensuring the thermal margin and the reactor shutdown margin.

【0009】本発明の第1の目的は、原子力発電プラン
トの出力を減少させることなしに、プラントを小型化で
きる沸騰水型原子炉の炉心を提供することである。
A first object of the present invention is to provide a core of a boiling water reactor capable of downsizing the plant without reducing the output of the nuclear power plant.

【0010】本発明の第2の目的は、炉停止余裕および
熱的余裕を確保しつつ、炉心の出力密度を増大させるこ
とである。
A second object of the present invention is to increase the power density of the core while ensuring the reactor shutdown margin and the thermal margin.

【0011】本発明の第3の目的は、原子力発電プラン
トの出力を減少させることなしに、プラントを小型化で
きる沸騰水型原子炉の燃料集合体を提供することであ
る。
A third object of the present invention is to provide a fuel assembly for a boiling water reactor capable of downsizing the plant without reducing the output of the nuclear power plant.

【0012】また、本発明の第4の目的は、炉停止余裕
および熱的余裕を確保しつつ、燃料集合体の出力密度を
増大させることである。
A fourth object of the present invention is to increase the power density of the fuel assembly while ensuring the reactor shutdown margin and the thermal margin.

【0013】[0013]

【課題を解決するための手段】第1の目的を達成するた
めの手段は、チャンネルボックスに囲まれた燃料集合体
を複数装荷した原子炉炉心において、燃料集合体の有効
発熱長が2.5m 以上3.4m未満であり、且つ炉心の
単位体積当りの発熱量である出力密度が52kW/lよ
り大きくなるように構成する。好ましくは、前記出力密
度を55kW/l以上65kW/l以下とする。更に好
ましくは、炉心の水平断面の直径を6m以下とする。
[Means for Solving the Problem] A means for achieving the first object is to provide an effective heat generation length of a fuel assembly of 2.5 m in a reactor core loaded with a plurality of fuel assemblies surrounded by a channel box. The power density, which is less than 3.4 m and is the heat generation amount per unit volume of the core, is greater than 52 kW / l. Preferably, the power density is 55 kW / l or more and 65 kW / l or less. More preferably, the diameter of the horizontal cross section of the core is 6 m or less.

【0014】第2の目的を達成するための手段は、上記
炉心において、前記燃料集合体は正方格子状に装荷さ
れ、その格子の間隔が20cm以上30cm以下で、燃料集
合体間の水ギャップ領域に断面が十字形の制御棒が挿入
可能に設けられ、単位体積当りの燃料棒の長さが300
0m/m3 以上であり、且つ水ロッド内を除いたチャン
ネルボックス内の冷却水のボイド率が40%の時に、水
素のウランに対する原子数比が3.0以上4.5以下であ
るように構成する。
The means for achieving the second object is that, in the core, the fuel assemblies are loaded in a square lattice shape, and the lattice intervals are 20 cm or more and 30 cm or less, and the water gap region between the fuel assemblies is formed. A control rod with a cruciform cross section is provided so that it can be inserted, and the length of the fuel rod per unit volume is 300.
And at 0 m / m 3 or more, and when the void rate of the cooling water in the channel box except for the water rod is 40% as an atomic ratio of uranium of hydrogen is 3.0 to 4.5 Configure.

【0015】第3の目的を達成するための手段は、正方
形断面を持つチャンネルボックスに囲まれた燃料集合体
において、有効発熱長が2.5m以上3.4m未満であ
り、炉心に装荷された状態で、チャンネルボックス外の
水領域も含めた、有効発熱部の単位体積当りの出力密度
が52kW/lより大きくなるように構成する。好まし
くは、前記出力密度を55kW/l以上65kW/l以
下とする。
Means for achieving the third object is that the effective heat generation length is 2.5 m or more and less than 3.4 m in the fuel assembly surrounded by the channel box having a square cross section, and the fuel assembly is loaded in the core. In this state, the power density per unit volume of the effective heat generating part including the water area outside the channel box is set to be larger than 52 kW / l. Preferably, the power density is 55 kW / l or more and 65 kW / l or less.

【0016】第4の目的を達成するための手段は、上記
燃料集合体において、チャンネルボックスの内側の一辺
の長さが19cm以上29cm以下で、炉心に装荷された状
態で、チャンネルボックス外の水領域を含めた単位体積
当りの燃料棒の長さが3000m/m3 以上であり、且つ水
ロッド内を除いたチャンネルボックス内の冷却水のボイ
ド率が40%の時に、水素のウランに対する原子数比が
3.0以上4.5以下であるように構成する。
The means for achieving the fourth object is that, in the above fuel assembly, the length of one side inside the channel box is 19 cm or more and 29 cm or less, and the water outside the channel box is loaded in the core. Number of atoms of hydrogen to uranium when the length of the fuel rod per unit volume including the region is 3000 m / m 3 or more and the void ratio of the cooling water in the channel box excluding the water rod is 40% It is configured such that the ratio is 3.0 or more and 4.5 or less.

【0017】本発明による炉心および燃料集合体では、
炉心高さが従来より短尺化されているにも関わらず、出
力密度が増加することによって、従来と同程度の直径の
円筒形炉心において、従来程度またはそれ以上の熱出力
が得られる。従って、従来程度またはそれ以上の電気出
力が得られる。その一方、炉心の有効発熱長が短尺化す
ることにより、炉心および制御棒と、制御棒を収容する
制御棒案内管が、それぞれ短尺化するので、原子炉圧力
容器も短尺化できる。さらに、原子炉圧力容器の下方に
備えられた制御棒駆動機構も短尺化できる。また、燃料
集合体および制御棒駆動機構を交換,整備,貯蔵するた
めの空間も減少するので、原子炉建屋に関わる物量が大
幅に減少する。
In the core and fuel assembly according to the present invention,
Although the core height is shorter than before, the power density is increased, so that the cylindrical core having the same diameter as that of the conventional core can obtain the heat output of the conventional level or higher. Therefore, a conventional or higher electric output can be obtained. On the other hand, since the effective heat generation length of the reactor core is shortened, the reactor core, the control rods, and the control rod guide tubes for accommodating the control rods are also shortened, so that the reactor pressure vessel can be shortened. Further, the control rod drive mechanism provided below the reactor pressure vessel can be shortened. In addition, the space for replacing, maintaining, and storing the fuel assembly and the control rod drive mechanism is reduced, so that the amount of materials related to the reactor building is significantly reduced.

【0018】また、本発明による炉心または燃料集合体
では、図12に示すように、単位体積当りの燃料棒長さ
が3000m/m3 以上であるので、出力密度を高めて
も線出力密度を従来以下とすることができる。更に、水
ロッド内を除いたチャンネルボックス内の冷却水のボイ
ド率が40%の時に、水素のウランに対する原子数比
(H/U)を3.0以上4.5以下とすることにより、燃
料棒の表面熱流束を従来程度とすることができ、熱的余
裕を確保できる。
Further, in the core or fuel assembly according to the present invention, as shown in FIG. 12, since the fuel rod length per unit volume is 3000 m / m 3 or more, the linear power density is increased even if the power density is increased. Conventionally, it can be set to the following. Furthermore, when the void ratio of the cooling water in the channel box excluding the water rod is 40%, the atomic number ratio of hydrogen to uranium (H / U) is set to 3.0 or more and 4.5 or less, thereby The surface heat flux of the rod can be set to the conventional level, and a thermal margin can be secured.

【0019】また、断面が十字状の制御棒を、燃料集合
体の横断面の一つの対角線の両側の燃料集合体周囲の水
ギャップ領域に挿入可能に設けることにより、制御棒の
4枚の翼のそれぞれの幅を隣接する制御棒と接触しない
範囲で大型化して制御棒価値を増大できる。これによ
り、図13に示すように、本発明のH/Uの範囲で炉停
止余裕を確保できる。
Further, by providing control rods having a cross-shaped cross section so that they can be inserted into the water gap regions around the fuel assemblies on both sides of one diagonal line of the cross section of the fuel assembly, the four blades of the control rods are provided. The control rod value can be increased by enlarging the width of each of them in a range where they do not come into contact with the adjacent control rods. Thereby, as shown in FIG. 13, the reactor shutdown margin can be secured within the H / U range of the present invention.

【0020】[0020]

【発明の実施の形態】図1に本発明による炉心および燃
料集合体の実施例を示す。
1 shows an embodiment of a core and a fuel assembly according to the present invention.

【0021】有効発熱長3.1mの燃料集合体を格子間
隔が23.2cmの正方格子状に装荷し、内側の一辺の長
さが20.9cm のチャンネルボックス1に囲まれた燃料
集合体の一つの対角線の両側の燃料集合体周囲の水ギャ
ップ領域2に、十字型断面をもつ制御棒3を挿入するこ
とにより、出力を制御する炉心の例である。燃料集合体
は正方形断面のチャンネルボックス1内に、燃料棒4ま
たは燃料棒4より全長が短く下流が冷却材流路となる部
分長燃料棒5を、縦横それぞれ14本の正方格子状に配
置し、その一部を燃料棒より断面積の大きい4本の水ロ
ッド6で置き換えた配置とする。部分長燃料棒5の長さ
は燃料棒4の長さの約三分の一とする。単位体積内の燃
料棒の長さは約3250m/m3 であり、さらに水ロッ
ド内を除いたチャンネルボックス内の冷却水のボイド率
が40%の時に水素のウランに対する原子数比が約4.
1 である。これにより、炉停止余裕,熱的余裕を確保
しつつ、炉心の出力密度を約55kW/lとすることが
できる。また、部分長燃料棒を配置することにより、圧
力損失の低減を図っている。
A fuel assembly having an effective heat generation length of 3.1 m is loaded in a square lattice shape having a lattice spacing of 23.2 cm, and a fuel assembly surrounded by a channel box 1 having an inner side length of 20.9 cm. This is an example of a core in which power is controlled by inserting control rods 3 having a cross-shaped cross section into the water gap regions 2 around the fuel assemblies on both sides of one diagonal line. In the fuel assembly, in the channel box 1 having a square cross section, the fuel rods 4 or the partial length fuel rods 5 having a shorter overall length than the fuel rods 4 and a coolant flow path in the downstream are arranged in a square lattice shape of 14 vertical and horizontal lines. , A part of which is replaced by four water rods 6 having a larger cross-sectional area than the fuel rod. The length of the partial length fuel rod 5 is about one third of the length of the fuel rod 4. The length of the fuel rod in a unit volume is about 3250 m / m 3 , and when the void ratio of the cooling water in the channel box excluding the water rod is 40%, the atomic ratio of hydrogen to uranium is about 4.
1. As a result, the power density of the core can be set to about 55 kW / l while ensuring the reactor shutdown margin and the thermal margin. Also, by arranging the partial length fuel rods, the pressure loss is reduced.

【0022】図2,図3,図4,図5,図6には本発明
による炉心および燃料集合体の別の実施例を示す。図1
の実施例と同様に有効発熱長3.1m の燃料集合体を格
子間隔が23.2cm の正方格子状に装荷し、チャンネル
ボックス1に囲まれた燃料集合体の一つの対角線の両側
の燃料集合体周囲の水ギャップ領域2に、十字型断面を
もつ制御棒3を挿入することにより、出力を制御する炉
心の例である。燃料集合体は正方形断面のチャンネルボ
ックス1内に、燃料棒4または部分長燃料棒5を、縦横
それぞれ14本の正方格子状に配置した例である。一本
以上の水ロッド6を配置してもよい。
FIGS. 2, 3, 4, 5, and 6 show another embodiment of the core and the fuel assembly according to the present invention. FIG.
In the same manner as in the above example, the fuel assemblies having an effective heat generation length of 3.1 m are loaded in a square lattice shape with a lattice spacing of 23.2 cm, and the fuel assemblies on both sides of one diagonal of the fuel assembly surrounded by the channel box 1 are loaded. This is an example of a core in which power is controlled by inserting a control rod 3 having a cross-shaped cross section into a water gap region 2 around the body. The fuel assembly is an example in which the fuel rods 4 or the partial length fuel rods 5 are arranged in a square lattice shape of 14 vertical and horizontal fuel cells in a channel box 1 having a square cross section. One or more water rods 6 may be arranged.

【0023】図7,図8,図9,図10には本発明によ
る炉心および燃料集合体のさらに別の実施例を示す。燃
料集合体は正方形断面のチャンネルボックス1内に、燃
料棒4または部分長燃料棒5を、縦横それぞれ15本の
正方格子状に配置し、その一部を燃料棒より断面積の大
きい1本以上の水ロッド6で置き換えた配置とした例で
ある。
FIGS. 7, 8, 9, and 10 show still another embodiment of the core and the fuel assembly according to the present invention. In the fuel assembly, the fuel rods 4 or the partial length fuel rods 5 are arranged in a square lattice shape of 15 vertical and horizontal fuel rods in a channel box 1 having a square cross section, and a part of the fuel rods 4 or the partial length fuel rods 5 has a cross-sectional area larger than that of the fuel rods. In this example, the water rod 6 is replaced.

【0024】以上の各実施例は、チャンネルボックス外
の水ギャップ幅と、チャンネル内の水ロッドおよび燃料
棒の、形状,本数,直径を最適化することにより、いず
れも単位体積当りの燃料棒の長さが3000m/m3
上であり、かつ水ロッド内を除いたチャンネルボックス
内の冷却水のボイド率が40%の時に水素のウランに対
する原子数比を3.0以上4.5以下とした例であり、炉
停止余裕,熱的余裕を確保しつつ、出力密度を55kW
/l以上とすることができる。
In each of the above embodiments, by optimizing the water gap width outside the channel box and the shape, number and diameter of the water rods and fuel rods in the channel, all of the fuel rods per unit volume are When the length is 3000 m / m 3 or more and the void ratio of the cooling water in the channel box excluding the water rod is 40%, the atomic ratio of hydrogen to uranium is set to 3.0 or more and 4.5 or less. This is an example, power density is 55 kW while ensuring the furnace shutdown margin and thermal margin.
/ L or more.

【0025】また、これらの燃料集合体を図11に横断
面を示すように392体装荷することにより円筒形炉心
を構成すると、たとえば出力密度を61kW/lとすれ
ば、熱出力は3900Mwt,炉心横断面の直径は約
5.4m となり、出力において同規模のABWR炉心と
ほぼ同じ直径となる。
If a cylindrical core is constructed by loading 392 of these fuel assemblies as shown in the cross section in FIG. 11, for example, if the power density is 61 kW / l, the heat output is 3900 Mwt, the core is The diameter of the cross section is about 5.4 m, which is almost the same diameter as the ABWR core of the same scale in power output.

【0026】一方、本実施例では燃料集合体の有効発熱
長が、従来のABWRの約3.7mに比べ、約0.6m
短いので、これを用いた原子力発電プラントでは、燃料
集合体,制御棒案内管,制御棒駆動機構がそれぞれ0.
6m 短尺化され、さらに制御棒駆動機構を交換するた
めの作業スペースおよび燃料交換のためのスペースの高
さも同程度低減されるので、従来技術による炉心を用い
たプラントに比べ、原子炉建屋高さは約3m低減され
る。
On the other hand, in this embodiment, the effective heat generation length of the fuel assembly is about 0.6 m, compared with about 3.7 m of the conventional ABWR.
Since it is short, in the nuclear power plant using this, the fuel assembly, the control rod guide tube, and the control rod drive mechanism are each 0.0
The length of the reactor building is reduced to 6 m, and the height of the work space for replacing the control rod drive mechanism and the space for refueling are also reduced to the same extent. Is reduced by about 3 m.

【0027】また、本実施例では装荷される燃料集合体
数はABWRの872体に比べ半数以下となり、燃料交
換が省力化される。
Further, in the present embodiment, the number of fuel assemblies loaded is less than half the number of 872 bodies of ABWR, and the fuel exchange can be saved.

【0028】[0028]

【発明の効果】本発明によれば、発電プラント出力を減
少させることなしに、プラントを小型化でき、また、熱
的余裕および炉停止余裕を確保しつつ、炉心及び燃料集
合体の出力密度を増加できる。
According to the present invention, the plant can be downsized without reducing the power plant output, and the power densities of the core and the fuel assembly can be improved while ensuring the thermal margin and the reactor shutdown margin. Can increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による炉心の一部分および燃料集合体の
水平断面図。
1 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図2】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 2 is a horizontal sectional view of a part of a core and a fuel assembly according to the present invention.

【図3】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 3 is a horizontal sectional view of a part of a core and a fuel assembly according to the present invention.

【図4】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 4 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図5】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 5 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図6】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 6 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図7】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 7 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図8】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 8 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図9】本発明による炉心の一部分および燃料集合体の
水平断面図。
FIG. 9 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図10】本発明による炉心の一部分および燃料集合体
の水平断面図。
FIG. 10 is a horizontal cross-sectional view of a portion of a core and a fuel assembly according to the present invention.

【図11】本発明による炉心全体の水平断面図。FIG. 11 is a horizontal sectional view of the entire core according to the present invention.

【図12】線出力密度と炉心の単位体積当りの燃料棒長
さの関係を示す図。
FIG. 12 is a diagram showing the relationship between the linear power density and the fuel rod length per unit volume of the core.

【図13】炉停止余裕と水素対ウラン原子数比の関係を
示す図。
FIG. 13 is a diagram showing a relationship between a reactor shutdown margin and a hydrogen-to-uranium atom number ratio.

【符号の説明】[Explanation of symbols]

1…チャンネルボックス、2…水ギャップ、3…制御
棒、4…燃料棒、5…部分長燃料棒、6…水ロッド。
1 ... Channel box, 2 ... Water gap, 3 ... Control rod, 4 ... Fuel rod, 5 ... Partial length fuel rod, 6 ... Water rod.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 肇男 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 嶋田 秀充 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Aoyama 72-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Power & Electric Machinery Development Headquarters (72) Hidemitsu Shimada Hitachi City, Ibaraki Prefecture 7-2-1 Omika-cho, Electric Power & Electric Development Division, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】チャンネルボックスに囲まれた燃料集合体
を複数装荷した原子炉炉心において、 燃料集合体の有効発熱長が2.5m以上3.4m未満であ
り、且つ炉心の単位体積当りの発熱量である出力密度が
52kW/lより大きいことを特徴とする原子炉炉心。
1. A nuclear reactor core loaded with a plurality of fuel assemblies surrounded by channel boxes, wherein the effective heat generation length of the fuel assemblies is 2.5 m or more and less than 3.4 m, and heat generation per unit volume of the core. A reactor core characterized in that the power density, which is the quantity, is greater than 52 kW / l.
【請求項2】請求項1において、前記出力密度が55k
W/l以上65kW/l以下であることを特徴とする原
子炉炉心。
2. The power density according to claim 1, wherein the power density is 55 k.
A reactor core having a W / l or more and 65 kW / l or less.
【請求項3】請求項2において、更に炉心の水平断面の
直径が6m以下であることを特徴とする原子炉炉心。
3. The reactor core according to claim 2, wherein the horizontal cross section of the core has a diameter of 6 m or less.
【請求項4】請求項1において、前記燃料集合体は正方
格子状に装荷され、その格子の間隔が20cm以上30cm
以下で、燃料集合体間の水ギャップ領域に断面が十字形
の制御棒が挿入可能に設けられ、単位体積当りの燃料棒
の長さが3000m/m3 以上であり、且つ水ロッド内
を除いたチャンネルボックス内の冷却水のボイド率が4
0%の時に、水素のウランに対する原子数比が3.0以
上4.5以下であることを特徴とする原子炉炉心。
4. The fuel assembly according to claim 1, wherein the fuel assemblies are loaded in a square lattice, and the lattice intervals are 20 cm or more and 30 cm.
Below, a control rod having a cross-shaped cross section is provided so that it can be inserted into the water gap region between the fuel assemblies, and the length of the fuel rod per unit volume is 3000 m / m 3 or more, and the inside of the water rod is excluded. The void ratio of the cooling water in the channel box is 4
A nuclear reactor core, wherein the atomic ratio of hydrogen to uranium is 3.0 or more and 4.5 or less at 0%.
【請求項5】正方形断面を持つチャンネルボックスに囲
まれた燃料集合体において、 有効発熱長が2.5m以上3.4m未満であり、炉心に装
荷された状態で、チャンネルボックス外の水領域も含め
た、有効発熱部の単位体積当りの出力密度が52kW/
lより大きいことを特徴とする燃料集合体。
5. In a fuel assembly surrounded by a channel box having a square cross section, the effective heat generation length is 2.5 m or more and less than 3.4 m, and the water region outside the channel box is also loaded in the core. Power density per unit volume of the effective heat generating part including is 52 kW /
A fuel assembly characterized by being greater than 1.
【請求項6】請求項5において、前記出力密度が55k
W/l以上65kW/l以下であることを特徴とする燃
料集合体。
6. The power density according to claim 5, wherein the power density is 55 k.
A fuel assembly having a W / l or more and 65 kW / l or less.
【請求項7】請求項6において、チャンネルボックスの
内側の一辺の長さが19cm以上29cm以下で、炉心に装
荷された状態で、チャンネルボックス外の水領域を含め
た単位体積当りの燃料棒の長さが3000m/m3 以上
であり、且つ水ロッド内を除いたチャンネルボックス内
の冷却水のボイド率が40%の時に、水素のウランに対
する原子数比が3.0以上4.5以下であることを特徴と
する燃料集合体。
7. The fuel rod according to claim 6, wherein the length of one side of the channel box is 19 cm or more and 29 cm or less, and the fuel rod per unit volume including the water region outside the channel box is loaded in the core. When the length is 3000 m / m 3 or more and the void ratio of the cooling water in the channel box excluding the water rod is 40%, the atomic ratio of hydrogen to uranium is 3.0 or more and 4.5 or less. A fuel assembly characterized by being present.
JP8073597A 1996-03-28 1996-03-28 Reactor core and fuel assembly Pending JPH09264983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073597A JPH09264983A (en) 1996-03-28 1996-03-28 Reactor core and fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073597A JPH09264983A (en) 1996-03-28 1996-03-28 Reactor core and fuel assembly

Publications (1)

Publication Number Publication Date
JPH09264983A true JPH09264983A (en) 1997-10-07

Family

ID=13522901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073597A Pending JPH09264983A (en) 1996-03-28 1996-03-28 Reactor core and fuel assembly

Country Status (1)

Country Link
JP (1) JPH09264983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232500A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Operation method of nuclear reactor and nuclear power plant
US7333584B2 (en) 2004-01-14 2008-02-19 Hitachi - Ge Nuclear Energy, Ltd. Nuclear power plant and operation method thereof
US7614233B2 (en) 2005-01-28 2009-11-10 Hitachi-Ge Nuclear Energy, Ltd. Operation method of nuclear power plant
JP2011102813A (en) * 2011-01-27 2011-05-26 Hitachi-Ge Nuclear Energy Ltd Method for operating nuclear reactor and nuclear power generation plant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333584B2 (en) 2004-01-14 2008-02-19 Hitachi - Ge Nuclear Energy, Ltd. Nuclear power plant and operation method thereof
US7970094B2 (en) 2004-01-14 2011-06-28 Hitachi-Ge Nuclear Energy, Ltd. Nuclear power plant and operation method thereof
US7614233B2 (en) 2005-01-28 2009-11-10 Hitachi-Ge Nuclear Energy, Ltd. Operation method of nuclear power plant
US7997078B2 (en) 2005-01-28 2011-08-16 Hitachi-Ge Nuclear Energy, Ltd. Operation method of nuclear power plant
US8291704B2 (en) 2005-01-28 2012-10-23 Hitachi-Ge Nuclear Energy, Ltd. Operation method of nuclear power plant
US8453451B2 (en) 2005-01-28 2013-06-04 Hitachi-Ge Nuclear Energy, Ltd. Operation method of nuclear power plant
JP2007232500A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Operation method of nuclear reactor and nuclear power plant
JP2011102813A (en) * 2011-01-27 2011-05-26 Hitachi-Ge Nuclear Energy Ltd Method for operating nuclear reactor and nuclear power generation plant

Similar Documents

Publication Publication Date Title
US6925138B2 (en) Reactor core and method for operating nuclear reactor
JPH0830747B2 (en) Fuel bundle assembly placed in boiling water reactor
JPH05341074A (en) Spacer band optimizing the clearance between fuel bundle and channel in boiling water reactor
WO2018074341A1 (en) Fuel assembly and reactor core of boiling water nuclear reactor loaded with same
US20130003908A1 (en) Boiling water reactor core and fuel assemblies therefor
JP4537585B2 (en) Control rod
JPH09264983A (en) Reactor core and fuel assembly
EP1914758B1 (en) Nuclear reactor fuel assebmblies
JPH04143694A (en) Fuel assembly
US5171522A (en) Fuel design for high power density forced circulation boiling water reactor
US5809101A (en) Handle unit for a fuel assembly in a nuclear reactor and fuel assembly having modified channel
JPH04301596A (en) Nuclear reactor control rod, fuel assembly and nuclear reactor core
US5519739A (en) Boiling water type thermal neutron reactor and its operating method
EP3547329B1 (en) Fuel assembly
JP4558477B2 (en) Boiling water reactor fuel assemblies
JPH07167988A (en) Boiling water type thermal neutron reactor and operating method thereof
JP6588155B2 (en) Fuel assemblies and reactor cores loaded with them
JP3603878B2 (en) Operating method of boiling water thermal neutron reactor
JP3445423B2 (en) Nuclear reactor and its operation method
JP7365297B2 (en) Fuel assemblies and boiling water reactors
JPH04301591A (en) Fuel assembly
JPH0376434B2 (en)
JP2731599B2 (en) Boiling water reactor and its fuel loading method
JPH0827366B2 (en) Nuclear fuel assembly
JPH067182B2 (en) Fuel assembly

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250