JPH09264677A - Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler - Google Patents

Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler

Info

Publication number
JPH09264677A
JPH09264677A JP8075692A JP7569296A JPH09264677A JP H09264677 A JPH09264677 A JP H09264677A JP 8075692 A JP8075692 A JP 8075692A JP 7569296 A JP7569296 A JP 7569296A JP H09264677 A JPH09264677 A JP H09264677A
Authority
JP
Japan
Prior art keywords
boiling
heat
fluid
heat exchanger
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8075692A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
和雄 小林
Seiji Kawaguchi
清司 川口
Shigeru Kadota
茂 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP8075692A priority Critical patent/JPH09264677A/en
Priority to US08/790,015 priority patent/US6119767A/en
Priority to GB9706506A priority patent/GB2312499B/en
Priority to AU16601/97A priority patent/AU699379B2/en
Priority to GB9922813A priority patent/GB2340218B/en
Priority to KR1019970011132A priority patent/KR100259599B1/en
Priority to CN97113010A priority patent/CN1131988C/en
Priority to BR9701588A priority patent/BR9701588A/en
Publication of JPH09264677A publication Critical patent/JPH09264677A/en
Priority to US09/467,003 priority patent/US6575230B1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the heat exchanging performance and provide a compact ebullient cooling apparatus by setting a fin pitch of heat receiving fins mounted on an ebullient cooling tube which constitutes a boiling portion narrower than a fin pitch of radiation fins mounted on an ebullient cooling pipe which constitutes a condensing portion. SOLUTION: A plurality of ebullient cooling tubes 4 in which a coolant of an ebullient cooling apparatus 3 is filled are communicated with each other by means of a pair of connecting pipes 5. A plurality of heat transmitting fins 6 are mounted on the outer surface of the ebullient cooling tubes 4. The ebullient cooling tubes 4 pass through a plurality of through holes formed in a fluid separation plate 2. A coolant reservoir (a boiling portion) 7 is provided at a high temperature air side of the fluid separation plate 2 while a coolant vapor reservoir (a condensing portion) 8 is provided at a low temperature air side of the fluid separation plate 2. The heat transmitting fins 6 are made of heat receiving fins 6a of the boiling portion 7 and heat radiating fins 6b of the condensing portion 8. The fin pitch of the heat receiving fins 6a is set narrower than the fin pitch of the heat radiating fins 6b at a rate of, for example, 50 to 65%. Although an effective heat exchanging area of the boiling portion 7 is set to be smaller than an effective heat exchanging area of the condensing portion 8, since the heat exchanging performance of the boiling portion 7 is improved with its narrower fin pitch, a size of the apparatus in a vertical direction can be reduced thus making the apparatus compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内部が外部から密
閉化された筐体内の高温流体を筐体外の低温流体と熱交
換させて冷却させる熱サイフォン式の沸騰冷却器、この
沸騰冷却器を備えた熱交換装置、および熱交換装置を備
えた沸騰冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosyphon type boiling cooler for cooling a high temperature fluid in a housing whose inside is sealed from the outside by exchanging heat with a low temperature fluid outside the housing. The present invention relates to a heat exchange device having the same and a boiling cooling device having the heat exchange device.

【0002】[0002]

【先行の技術】従来より、埃、塵や水分等の異物の付着
による作動不良を防止するために、半導体を用いた電子
部品等の発熱体を密閉化されたハウジング内に収容して
使用する場合がある。この場合、発熱体を冷却する方法
として、ハウジング内部に直接外気を取り入れて換気す
ることができないため、ハウジング内の内部空気とハウ
ジング外の外部空気との間で熱交換を行う方法が一般に
行われている。
2. Description of the Related Art Conventionally, in order to prevent malfunction due to adhesion of foreign matter such as dust, dust and water, a heating element such as an electronic component using a semiconductor is housed and used in a sealed housing. There are cases. In this case, as a method of cooling the heating element, it is not possible to directly take in the outside air into the housing for ventilation, and therefore a method of performing heat exchange between the inside air inside the housing and the outside air outside the housing is generally used. ing.

【0003】本願発明者等は、この方式で小型化が可能
な熱サイフォン式の熱交換装置を備えた沸騰冷却装置を
特願平7−88988号(平成7年7月14日出願)と
して出願している。なお、この熱交換装置を構成する沸
騰冷却器は、発熱体により加熱されたハウジング内の内
部空気(内気)とハウジング外の外部空気(外気)とを
隔離する流体隔離板と、この流体隔離板よりも内気側に
配され、内気から受熱して内部に封入された冷媒が沸騰
する沸騰部を成すハウジング内熱交換器と、流体隔離板
よりも外気側に配され、沸騰部で沸騰した冷媒蒸気の熱
を外気に放出して冷媒蒸気を凝縮させる凝縮部を成すハ
ウジング外熱交換器とが設けられていた。
The inventors of the present application filed Japanese Patent Application No. 7-88988 (filed on July 14, 1995) of a boiling cooling device equipped with a thermosyphon type heat exchange device which can be miniaturized by this method. are doing. The boiling cooler that constitutes this heat exchange device includes a fluid separator that separates the inside air (inside air) inside the housing heated by the heating element from the outside air (outside air) outside the housing, and the fluid separator plate. The heat exchanger inside the housing, which is placed on the inside air side, receives the heat from the inside air, and forms a boiling portion in which the refrigerant is boiled, and is placed on the outside air side of the fluid separator, and the refrigerant that boiled in the boiling portion There was provided a housing outside heat exchanger that forms a condensing unit that releases the heat of the steam to the outside air to condense the refrigerant steam.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記の沸騰
冷却器を備えた熱交換装置においては、外気と冷媒との
熱交換を行うハウジング外熱交換器の放熱フィンに、外
気に含まれる埃や塵等の異物が付着し易い。特に、ハウ
ジング外熱交換器の放熱フィンにフィンピッチの小さい
ものを使用すると、放熱フィンが目詰まりを起こし、ハ
ウジング外熱交換器の熱交換性能(放熱性能)を低下さ
せてしまうので、ハウジング外熱交換器の放熱フィンの
フィンピッチをあまり小さくできない。それによって、
ハウジング内熱交換器の冷却性能が悪化し、ひいては沸
騰冷却装置の大型化を招くという問題が生じている。
However, in the heat exchanging device having the above-mentioned boiling cooler, the radiating fins of the housing outside heat exchanger for exchanging heat between the outside air and the refrigerant have dust and dirt contained in the outside air. Foreign matter such as dust easily attaches. In particular, if you use a fin with a small fin pitch for the heat exchanger outside the housing, the heat dissipation fin will be clogged, and the heat exchange performance (heat dissipation performance) of the outside heat exchanger will deteriorate. The fin pitch of the heat radiation fins of the heat exchanger cannot be made too small. Thereby,
There is a problem that the cooling performance of the in-housing heat exchanger is deteriorated, and eventually the boiling cooling device is increased in size.

【0005】[0005]

【発明の目的】本発明は、上記事情に基づいて成された
もので、更なる沸騰冷却器の小型化を図ることを目的と
する。また、更なる熱交換装置の小型化を図ることを目
的とする。さらに、更なる沸騰冷却装置の小型化を図る
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to further reduce the size of a boiling cooler. Another object is to further reduce the size of the heat exchange device. Further, it is an object to further reduce the size of the boiling cooling device.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明に
よれば、外部から密閉化された筐体内の内部流体の熱を
受熱する受熱フィンの方はフィンピッチを小さくしても
目詰まりを起こすことがないことに着目し、沸騰部を成
す沸騰冷却管に設けられる受熱フィンのフィンピッチ
を、凝縮部を成す沸騰冷却管に設けられる放熱フィンの
フィンピッチよりも小さくすることにより、受熱フィン
と放熱フィンとのフィンピッチを筐体の内外で同じ大き
さにした場合と比較して沸騰冷却器の熱交換性能を向上
できる。これにより、更に沸騰冷却器の小型化を図るこ
とが可能となるという効果が得られる。
According to the invention as set forth in claim 1, the heat receiving fins for receiving the heat of the internal fluid in the housing hermetically sealed from the outside are clogged even if the fin pitch is reduced. Focusing on the fact that heat is not generated, the fin pitch of the heat-receiving fins provided in the boiling cooling pipe forming the boiling part is made smaller than the fin pitch of the heat-radiating fins provided in the boiling cooling pipe forming the condensing part. The heat exchange performance of the boiling cooler can be improved as compared with the case where the fin pitches of the fins and the radiation fins are the same inside and outside the housing. As a result, it is possible to further reduce the size of the boiling cooler.

【0007】請求項2に記載の発明によれば、1段目の
沸騰冷却器の冷媒と2段目以降の沸騰冷却器との冷媒に
効果的に温度差を設けることができ、温度差のある冷媒
により内部流体を順次降温し、外部流体を順次昇温する
ことができる。それによって、単段の沸騰冷却器と比較
して、内部流体の降温の飽和現象による冷却性悪化を低
減できる。このため、沸騰冷却器の熱交換容積を増やす
ことなく、冷却性能が改善されるので、沸騰冷却器を備
えた熱交換装置の小型化を図ることが可能となるという
効果が得られる。
According to the second aspect of the invention, it is possible to effectively provide a temperature difference between the refrigerant in the first-stage boiling cooler and the refrigerant in the second-stage and subsequent boiling coolers. The internal fluid can be sequentially cooled by a certain refrigerant, and the external fluid can be sequentially heated. As a result, as compared with a single-stage boiling cooler, it is possible to reduce deterioration of cooling performance due to a saturation phenomenon of temperature drop of the internal fluid. For this reason, the cooling performance is improved without increasing the heat exchange volume of the boiling cooler, so that the heat exchanging device including the boiling cooler can be downsized.

【0008】請求項3に記載の発明によれば、筐体内流
体循環手段によって筐体内通路内に強制的に内部流体を
循環させることにより、沸騰部を成す沸騰冷却管での内
部流体と冷媒との熱交換性能を向上できると共に、筐体
外流体循環手段によって筐体外通路内に強制的に外部流
体を循環させることにより、凝縮部を成す沸騰冷却管で
の外部流体と冷媒との熱交換性能を向上できる。これに
より、更に沸騰冷却装置の小型化を図ることが可能とな
るという効果が得られる。
According to the third aspect of the present invention, the internal fluid and the refrigerant in the boiling cooling pipe forming the boiling portion are forced to circulate the internal fluid in the internal passage by the internal fluid circulating means. The heat exchange performance of the external fluid and the refrigerant in the boiling cooling pipe forming the condensing part can be improved by forcibly circulating the external fluid in the external passage of the enclosure by the external fluid circulation means. Can be improved. As a result, there is an effect that it is possible to further reduce the size of the boiling cooling device.

【0009】請求項4に記載の発明によれば、外部から
密閉化された筐体内の内部流体の熱を受熱する受熱フィ
ンの方はフィンピッチを小さくしても目詰まりを起こす
ことがないことに着目し、沸騰部を成す筐体内熱交換器
に設けられる受熱フィンのフィンピッチを、凝縮部を成
す筐体外熱交換器に設けられる放熱フィンのフィンピッ
チよりも小さくすることにより、受熱フィンと放熱フィ
ンとのフィンピッチを筐体の内外で同じ大きさにした場
合と比較して沸騰冷却器の熱交換性能を向上できる。こ
れにより、更に沸騰冷却器の小型化を図ることが可能と
なるという効果が得られる。
According to the fourth aspect of the present invention, the heat-receiving fins that receive the heat of the internal fluid in the housing sealed from the outside do not cause clogging even if the fin pitch is reduced. Focusing on the heat receiving fins by making the fin pitch of the heat receiving fins provided in the heat exchanger in the casing forming the boiling portion smaller than the fin pitch of the heat radiation fins provided in the heat exchanger outside the casing forming the condensation portion. The heat exchange performance of the boiling cooler can be improved as compared with the case where the fin pitch with the radiating fins is the same size inside and outside the housing. As a result, it is possible to further reduce the size of the boiling cooler.

【0010】請求項5に記載の発明によれば、沸騰冷却
器の幅方向の両側に突出して第1連結管および第2連結
管を配管する場合と比較して、不要になった配管突出部
とデッドスペースの分だけ幅方向寸法を短縮でき、ひい
ては更に沸騰冷却器の小型化を図ることが可能となると
いう効果が得られる。
According to the fifth aspect of the present invention, as compared with the case where the first connecting pipe and the second connecting pipe are piped so as to project on both sides in the width direction of the boiling cooler, the pipe projecting portion which has become unnecessary Therefore, the size in the width direction can be reduced by the amount of the dead space, and the size of the evaporative cooler can be further reduced.

【0011】請求項6に記載の発明によれば、1段目の
沸騰冷却器の冷媒と2段目以降の沸騰冷却器との冷媒に
効果的に温度差を設けることができ、温度差のある冷媒
により内部流体を順次降温し、外部流体を順次昇温する
ことができる。それによって、単段の沸騰冷却器と比較
して、内部流体の降温の飽和現象による冷却性悪化を低
減できる。このため、沸騰冷却器の熱交換容積を増やす
ことなく、冷却性能が改善されるので、沸騰冷却器を備
えた熱交換装置の小型化を図ることが可能となるという
効果が得られる。
According to the sixth aspect of the invention, it is possible to effectively provide a temperature difference between the refrigerant in the first-stage boiling cooler and the refrigerant in the second-stage and subsequent boiling coolers. The internal fluid can be sequentially cooled by a certain refrigerant, and the external fluid can be sequentially heated. As a result, as compared with a single-stage boiling cooler, it is possible to reduce deterioration of cooling performance due to a saturation phenomenon of temperature drop of the internal fluid. For this reason, the cooling performance is improved without increasing the heat exchange volume of the boiling cooler, so that the heat exchanging device including the boiling cooler can be downsized.

【0012】請求項7に記載の発明によれば、筐体内流
体循環手段によって筐体内通路内に強制的に内部流体を
循環させることにより、沸騰部を成す筐体内熱交換器で
の内部流体と冷媒との熱交換性能を向上できると共に、
筐体外流体循環手段によって筐体外通路内に強制的に外
部流体を循環させることにより、凝縮部を成す筐体外熱
交換器での外部流体と冷媒との熱交換性能を向上でき
る。これにより、更に沸騰冷却装置の小型化を図ること
が可能となるという効果が得られる。
According to the seventh aspect of the invention, by forcibly circulating the internal fluid in the in-casing passage by the in-casing fluid circulating means, the internal fluid in the in-casing heat exchanger forming the boiling portion is While improving the heat exchange performance with the refrigerant,
By forcibly circulating the external fluid in the external channel of the external case by the external fluid circulating means, the heat exchange performance between the external fluid and the refrigerant in the external heat exchanger forming the condensing section can be improved. As a result, there is an effect that it is possible to further reduce the size of the boiling cooling device.

【0013】[0013]

【発明の実施の形態】次に、本発明の熱交換装置を備え
た沸騰冷却装置を電子機器装置に組み込んだ実施例を図
面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment in which a boiling cooling device having a heat exchange device of the present invention is incorporated in an electronic device will be described with reference to the drawings.

【0014】〔第1実施例の構成〕図1ないし図6は本
発明の第1実施例を示したもので、図1は電子機器装置
の全体構造を示した図である。
[Structure of First Embodiment] FIGS. 1 to 6 show a first embodiment of the present invention, and FIG. 1 is a view showing the overall structure of an electronic apparatus.

【0015】電子機器装置1は、例えば携帯電話や自動
車電話等の移動無線電話の無線基地局装置であって、内
部に電子部品11、12を気密的に収容するハウジング
13、およびこのハウジング13内に組み込まれ、電子
部品11、12を冷却する沸騰冷却装置(冷却器)14
等から構成されている。
The electronic apparatus 1 is a radio base station apparatus of a mobile radio telephone such as a mobile telephone or a car telephone, and has a housing 13 in which electronic components 11 and 12 are hermetically sealed, and a housing 13 inside the housing 13. And a cooling device (cooler) 14 for cooling the electronic components 11 and 12
And so on.

【0016】電子部品11は、電気が流れると所定の作
動を行うと共に、発熱する発熱体(例えば送受信器に組
み込まれる高周波スイッチング回路を構成する半導体ス
イッチング素子等)である。電子部品12は、電気が流
れると所定の作動を行うと共に、発熱する発熱体(例え
ばパワーアンプに組み込まれるパワートランジスタ等の
半導体増幅素子等)である。
The electronic component 11 is a heating element (for example, a semiconductor switching element forming a high-frequency switching circuit incorporated in a transceiver) that performs a predetermined operation when electricity flows and also generates heat. The electronic component 12 is a heating element (for example, a semiconductor amplifying element such as a power transistor incorporated in a power amplifier) that performs a predetermined operation when electricity flows and also generates heat.

【0017】ハウジング13は、内部を外部から気密化
する筐体であって、内部には密閉空間15が形成されて
いる。この密閉空間15は、電子部品11、12に塵、
埃や水分等の異物が付着することにより電子部品11、
12の性能が低下することを防止するために、後記する
沸騰冷却装置14の流体隔離板等により外部と完全に気
密的に区画されている。
The housing 13 is a housing which is hermetically sealed from the outside, and a sealed space 15 is formed inside. This sealed space 15 is used for dusting electronic components 11 and 12.
Foreign substances such as dust and moisture adhere to the electronic component 11,
In order to prevent the performance of 12 from deteriorating, it is completely airtightly partitioned from the outside by a fluid separator plate of a boiling cooling device 14 which will be described later.

【0018】そして、密閉空間15は、沸騰冷却装置1
4の流体隔離板および沸騰冷却装置14のケーシングに
よって、電子部品11、12を収容する電子部品収容空
間16と筐体内通路としての高温側伝熱空間17とに区
画されている。この高温側伝熱空間17は、風上側が沸
騰冷却装置14の奥行き寸法をできるだけ小さくするた
めに流路面積が狭く、風下側が風上側よりも流路面積が
広くなっている。さらに、ハウジング13は、流体隔離
板によって高温側伝熱空間17と気密的に区画された筐
体外通路としての低温側伝熱空間18を形成している。
The closed space 15 has a boiling cooling device 1
The liquid separator 4 and the casing of the boiling cooling device 14 separate the electronic component housing space 16 for housing the electronic components 11 and 12 and the high-temperature side heat transfer space 17 as a passage in the housing. The high-temperature side heat transfer space 17 has a narrow flow path area on the windward side in order to make the depth dimension of the boiling cooling device 14 as small as possible, and a flow path area on the leeward side is larger than the windward side. Further, the housing 13 forms a low-temperature-side heat transfer space 18 as an external passage that is airtightly partitioned from the high-temperature-side heat transfer space 17 by a fluid separator.

【0019】沸騰冷却装置14は、ハウジング13に一
体的に設けられたケーシング20、低温空気(外部流
体、低温流体)の空気流を発生させる2個の上部側遠心
式送風機21、高温空気(内部流体、高温流体)の空気
流を発生させる2個の下部側遠心式送風機22、密閉空
間15内の空気温度を下限温度(例えば0℃)以上にす
るための電気ヒータ23、これらの沸騰冷却装置14の
電気機器を通電制御するコントローラ24、および密閉
空間15内の空気温度を上限温度(例えば65℃)以下
にするための熱交換装置25等から構成されている。
The boiling cooling device 14 includes a casing 20 integrally provided in the housing 13, two upper side centrifugal blowers 21 for generating an air flow of low temperature air (external fluid, low temperature fluid), high temperature air (internal). Fluid, high-temperature fluid) two lower-side centrifugal blowers 22 for generating an air flow, an electric heater 23 for raising the temperature of the air in the closed space 15 to a lower limit temperature (for example, 0 ° C.), a boiling cooling device for these. A controller 24 for controlling energization of the electrical equipment 14 and a heat exchange device 25 for keeping the temperature of the air in the closed space 15 below the upper limit temperature (for example, 65 ° C.).

【0020】ケーシング20は、電子機器装置1の最も
外側に配される外壁板26、および高温側伝熱空間17
を囲む背面側区画板27等からなり、これらの外壁板2
6と背面側区画板27はスポット溶接等の手段による接
合、あるいはねじやボルト等の締結具による締結により
ハウジング13に固定されている。
The casing 20 includes an outer wall plate 26 arranged on the outermost side of the electronic device 1 and a high temperature side heat transfer space 17.
And a rear side partition plate 27 surrounding the outer wall plate 2 and the like.
The rear plate 6 and the rear side partition plate 27 are fixed to the housing 13 by joining such as spot welding or by fastening with fasteners such as screws or bolts.

【0021】2個の上部側遠心式送風機21は、本発明
の筐体外流体循環手段であって、低温側伝熱空間18内
に空気流を発生させる遠心式ファン31、この遠心式フ
ァン31を回転させる電動モータ32、および遠心式フ
ァン31を回転自在に収容するスクロールケーシング3
3をそれぞれ有している。
The two upper centrifugal blowers 21 are means for circulating the fluid outside the housing of the present invention, and are centrifugal fans 31 for generating an air flow in the heat transfer space 18 on the low temperature side. A scroll casing 3 that rotatably houses an electric motor 32 that rotates and a centrifugal fan 31.
3 respectively.

【0022】2個の下部側遠心式送風機22は、本発明
の筐体内流体循環手段であって、高温側伝熱空間17内
に空気流を発生させる遠心式ファン34、この遠心式フ
ァン34を回転させる電動モータ35、および遠心式フ
ァン34を回転自在に収容するスクロールケーシング3
6をそれぞれ有している。
The two lower centrifugal blowers 22 are the fluid circulating means in the casing of the present invention, and are a centrifugal fan 34 for generating an air flow in the high temperature side heat transfer space 17, and the centrifugal fan 34. A scroll casing 3 that rotatably houses an electric motor 35 that rotates and a centrifugal fan 34.
6 respectively.

【0023】電気ヒータ23は、密閉空間15内の温度
が下限温度(例えば0℃)よりも低温のときに電子部品
(例えば半導体素子)11、12の性能が低下するた
め、密閉空間15内の温度を下限温度以上となるよう
に、高温側伝熱空間17を流れる空気を加熱する内部流
体加熱手段である。この実施例の電気ヒータ23は、例
えば1.2kWの発熱量を持つものである。
In the electric heater 23, when the temperature in the closed space 15 is lower than the lower limit temperature (for example, 0 ° C.), the performance of the electronic parts (for example, semiconductor elements) 11 and 12 is deteriorated, so that the electric heater 23 in the closed space 15 is closed. It is an internal fluid heating means for heating the air flowing through the high temperature side heat transfer space 17 so that the temperature becomes equal to or higher than the lower limit temperature. The electric heater 23 of this embodiment has a heat generation amount of 1.2 kW, for example.

【0024】コントローラ24は、例えばサーミスタ等
の感温素子よりなる温度センサ9により検出した密閉空
間15内の検出温度に基づいて、2個の上部側遠心式送
風機21の電動モータ32、2個の下部側遠心式送風機
22の電動モータ35および電気ヒータ23等の電気機
器を制御する制御手段である。
The controller 24 uses, for example, the electric motors 32 of the two upper centrifugal fans 21 and the two electric motors 32 of the upper centrifugal fan 21 on the basis of the detected temperature in the closed space 15 detected by the temperature sensor 9 including a temperature sensitive element such as a thermistor. It is a control unit that controls electric devices such as the electric motor 35 of the lower centrifugal blower 22 and the electric heater 23.

【0025】コントローラ24は、密閉空間15内の温
度が下限温度(例えば0℃)以上の時に、2個の上部側
遠心式送風機21および2個の下部側遠心式送風機22
をHi運転(強風量)またはLo運転(弱風量)し、電
気ヒータ23をOFF(オフ)する。また、コントロー
ラ24は、密閉空間15内の温度が下限温度(例えば0
℃)以下の時に、2個の上部側遠心式送風機21の電動
モータ32をOFF(オフ)し、2個の下部側遠心式送
風機22の電動モータ35をHi運転(強風量)または
Lo運転(弱風量)し、電気ヒータ23をON(オン)
する。
The controller 24 has two upper side centrifugal blowers 21 and two lower side centrifugal blowers 22 when the temperature in the closed space 15 is equal to or higher than the lower limit temperature (for example, 0 ° C.).
Is operated for Hi (strong air flow) or Lo (low air flow), and the electric heater 23 is turned off. Further, the controller 24 determines that the temperature in the closed space 15 is the lower limit temperature (for example, 0
(° C.) or less, the electric motors 32 of the two upper side centrifugal blowers 21 are turned off, and the electric motors 35 of the two lower side centrifugal blowers 22 are operated in Hi operation (strong air volume) or Lo operation ( (A small amount of air flow) and the electric heater 23 is turned on.
I do.

【0026】次に、沸騰冷却器を備えた熱交換装置25
を図1ないし図5に基づいて詳細に説明する。ここで、
図2(a)は沸騰冷却装置の概略構造を示した図で、図
2(b)は沸騰冷却器を多段に配設した熱交換装置を示
した図で、図3は沸騰冷却器の具体的構造を示した図
で、図4および図5は沸騰冷却器を2分割する流体隔離
板を示した図である。
Next, the heat exchange device 25 equipped with a boiling cooler
Will be described in detail with reference to FIGS. here,
2 (a) is a diagram showing a schematic structure of a boiling cooling device, FIG. 2 (b) is a diagram showing a heat exchange device in which boiling cooling devices are arranged in multiple stages, and FIG. 3 is a specific example of the boiling cooling device. FIG. 4 and FIG. 5 are views showing a fluid separator for dividing the boiling cooler into two parts.

【0027】熱交換装置25は、ハウジング13内を循
環する内部空気(筐体内部流体、所謂内気)である高温
空気とハウジング13外を循環する外部空気(筐体外部
流体、所謂外気)である低温空気とを気密的に隔離する
流体隔離板2、およびこの流体隔離板2を貫通した状態
で流体隔離板2に組み付けられた多段式(2段式)の沸
騰冷却器3等から構成されている。
The heat exchanging device 25 is high temperature air which is the internal air (the internal fluid of the casing, so-called internal air) circulating inside the housing 13 and external air (the external fluid of the casing, so-called external air) circulating outside the housing 13. A fluid separator 2 for airtightly isolating low-temperature air, and a multi-stage (two-stage) boiling cooler 3 and the like attached to the fluid separator 2 while penetrating the fluid separator 2 There is.

【0028】流体隔離板2は、内部が高温となる密閉空
間15の一壁面および内部が低温となる低温側伝熱空間
18の一壁面を構成する、ハウジング13の一壁面(筐
体の一部)を成すものである。例えばアルミニウム等の
熱伝導性に優れる金属材料よりなる薄板からなり、高温
側伝熱空間17を含む密閉空間15と低温側伝熱空間1
8を含む外部とを気密的に区画するように、沸騰冷却器
3およびケーシング20と一体的に接合(ろう付け)さ
れている。
The fluid separating plate 2 constitutes one wall surface of the closed space 15 whose inside temperature is high and one wall surface of the low temperature side heat transfer space 18 whose inside temperature is low (part of the housing). ) Is done. For example, the closed space 15 including the high-temperature-side heat transfer space 17 and the low-temperature-side heat transfer space 1 are made of a thin plate made of a metal material having excellent thermal conductivity such as aluminum.
8 is integrally joined (brazed) with the evaporator 3 and the casing 20 so as to hermetically partition the outside including the casing 8.

【0029】この流体隔離板2には、図4に示したよう
に、後記する沸騰冷却器3の各沸騰冷却管を貫通させる
ための細長い長方形状または長円形状の貫通孔38(例
えば幅が1.7mmで、長さが16.0mm)が一定の
間隔をおいて複数開けられている。但し、流体隔離板2
は、図5に示したように、分割体(本例では二分割)と
しても良い。
As shown in FIG. 4, the fluid separator 2 has a through-hole 38 (e.g., having a width of, e.g., an elongated rectangle) or an ellipse for penetrating each boiling cooling pipe of the boiling cooler 3 described later. A plurality of 1.7 mm in length and 16.0 mm in length are provided at regular intervals. However, fluid separator 2
May be divided into two (in this example, two) as shown in FIG.

【0030】沸騰冷却器3は、ケーシング20内に所定
の角度だけ傾斜した状態で多段(2段)に組み付けら
れ、内部にフロロカーボン系またはフロン系の冷媒が封
入された複数本の沸騰冷却管4、各沸騰冷却管4を連通
する一対の連結管5、沸騰冷却管4の外部に取り付けら
れた複数の伝熱フィン6等から構成されたマルチフロー
パス型の熱交換器である。なお、沸騰冷却器3の両側に
は、流体隔離板2およびケーシング20に締結具により
締結する役目と複数本の沸騰冷却管や複数の伝熱フィン
6を補強する役目のサイドプレート37が接合されてい
る。また、沸騰冷却器3は、高温空気および低温空気の
流れ方向に多段(例えば2段)となるように配設されて
いる。
The boiling cooler 3 is assembled in a multi-stage (two stages) in the casing 20 in a state of being inclined at a predetermined angle, and a plurality of boiling cooling pipes 4 in which a fluorocarbon-based or freon-based refrigerant is enclosed. Is a multi-flow path type heat exchanger composed of a pair of connecting pipes 5 communicating the respective boiling cooling pipes 4, a plurality of heat transfer fins 6 attached to the outside of the boiling cooling pipe 4, and the like. Side plates 37 serving to fasten the fluid separator 2 and the casing 20 with fasteners and to reinforce the plurality of boiling cooling tubes and the plurality of heat transfer fins 6 are joined to both sides of the boiling cooler 3. ing. Further, the boiling coolers 3 are arranged in multiple stages (for example, two stages) in the flow direction of the high-temperature air and the low-temperature air.

【0031】複数本の沸騰冷却管4は、例えばアルミニ
ウムや銅等の熱伝導性に優れた金属材料を断面形状が細
長い長方形状または長円形状を成す偏平管(例えば幅が
1.7mmで、長さが16.0mm)に形成したもので
あり、それぞれ流体隔離板2の貫通孔38を通り抜ける
ように配されている。これらの沸騰冷却管4よりなる沸
騰冷却器3は、流体隔離板2より高温空気側に配される
一方側(図3の図示下側)が冷媒液槽(沸騰部)7、流
体隔離板2より低温空気側に配される他方側(図3の図
示上側)が冷媒蒸気槽(凝縮部)8として構成される。
なお、この実施例では、沸騰部7および凝縮部8は、幅
(幅方向寸法)が360mm、高さが430mm、厚さ
が16mmとされている。
The plurality of boiling cooling tubes 4 are flat tubes (for example, having a width of 1.7 mm, which are made of a metal material having excellent thermal conductivity such as aluminum and copper and have a rectangular or elliptical cross section). The length is 16.0 mm), and each of them is arranged so as to pass through the through hole 38 of the fluid separator 2. The boiling cooler 3 including these boiling cooling tubes 4 has a refrigerant liquid tank (boiling portion) 7 and a fluid separating plate 2 on one side (lower side in FIG. 3) arranged on the hot air side of the fluid separating plate 2. The other side (the upper side in the drawing of FIG. 3) arranged on the lower temperature air side is configured as a refrigerant vapor tank (condensing section) 8.
In this embodiment, the boiling part 7 and the condensing part 8 have a width (widthwise dimension) of 360 mm, a height of 430 mm and a thickness of 16 mm.

【0032】連結管5は、複数本の沸騰冷却管4(沸騰
部7)の下端部に接続された高温側タンク41、および
複数本の沸騰冷却管4(凝縮部8)の上端部に接続され
た低温側タンク42からなり、各沸騰冷却管4を連通し
ている。これらの高温側、低温側タンク41、42は、
沸騰冷却管4側に設けられたコアプレートとこのコアプ
レートに接合する略逆U字状のタンクプレートとから構
成されている。なお、何れか一方の高温側タンク41ま
たは低温側タンク42には、沸騰冷却器3内に冷媒を封
入するための冷媒封入口(図示せず)が1箇所だけ設け
られている。冷媒は、その液面がほぼ流体隔離板2の位
置と一致する高さまで、すなわち、沸騰部7の高さまで
沸騰冷却器3の各沸騰冷却管4内に封入されている。但
し、冷媒の封入は、沸騰冷却管4に伝熱フィン6をろう
付け接合した後に行われる。また、高温側タンク41は
なくても良い。
The connecting pipe 5 is connected to the high temperature side tank 41 connected to the lower ends of the plurality of boiling cooling pipes 4 (boiling part 7) and the upper ends of the plurality of boiling cooling pipes 4 (condensing part 8). The low temperature side tank 42 is connected to each of the boiling cooling pipes 4. These high-temperature and low-temperature tanks 41 and 42 are
It comprises a core plate provided on the boiling cooling pipe 4 side and a substantially inverted U-shaped tank plate joined to the core plate. One of the high-temperature side tank 41 and the low-temperature side tank 42 is provided with only one refrigerant charging port (not shown) for charging the refrigerant in the boiling cooler 3. The refrigerant is sealed in each boiling cooling pipe 4 of the boiling cooler 3 to a height whose liquid level substantially coincides with the position of the fluid separator 2, that is, up to the height of the boiling portion 7. However, the refrigerant is sealed after the heat transfer fins 6 are joined to the boiling cooling pipe 4 by brazing. Further, the high temperature side tank 41 may be omitted.

【0033】伝熱フィン6は、沸騰冷却器3の高温側
(沸騰部7)で隣合う沸騰冷却管4間に介在された受熱
フィン6aと、沸騰冷却器3の低温側(凝縮部8)で隣
合う沸騰冷却管4間に介在された放熱フィン6bとから
なる。この伝熱フィン6は、例えばアルミニウム等の熱
伝導性に優れる金属材料よりなる薄い板(例えば板厚
0.02〜0.50mm程度)を交互に押し返して波形
状に形成したコルゲートフィンであり、沸騰冷却管4の
平坦な外壁面にろう付けされている。すなわち、沸騰冷
却管4の外壁面と伝熱フィン6とが融合した状態で接合
されている。
The heat transfer fins 6 are heat receiving fins 6a interposed between the adjacent boiling cooling pipes 4 on the high temperature side (boiling section 7) of the boiling cooler 3 and the low temperature side (condensing section 8) of the boiling cooler 3. The heat dissipating fins 6b are interposed between the adjacent boiling cooling tubes 4. The heat transfer fins 6 are corrugated fins formed by alternately pushing back thin plates (for example, a plate thickness of about 0.02 to 0.50 mm) made of a metal material having excellent thermal conductivity such as aluminum, and forming a corrugated shape. It is brazed to the flat outer wall surface of the boiling cooling pipe 4. That is, the outer wall surface of the boiling cooling pipe 4 and the heat transfer fins 6 are joined in a fused state.

【0034】受熱フィン6aは、流体隔離板2よりも下
方に配され、フィンピッチP1 が例えば2.40mm、
フィン幅B1 が例えば16mmである。なお、フィンピ
ッチP1 は例えば1.50mm〜2.90mmの範囲が
良く、望ましくは2.00mm〜2.50mmの範囲が
良い。放熱フィン6bは、流体隔離板2よりも上方に配
され、フィンピッチP2 が例えば3.75mm、フィン
幅B2 が例えば16mmである。なお、フィンピッチP
2 は、例えば3.00mm〜4.50mmの範囲が良
く、望ましくは3.50mm〜4.00mmが良い。す
なわち、沸騰冷却器3は、受熱フィン6aのフィンピッ
チP1 を放熱フィン6bのフィンピッチP2 よりも、例
えば50%〜65%程度だけ小さくしている。
The heat receiving fins 6a are arranged below the fluid separating plate 2, and the fin pitch P1 is, for example, 2.40 mm.
The fin width B1 is, for example, 16 mm. The fin pitch P1 is, for example, preferably in the range of 1.50 mm to 2.90 mm, and more preferably in the range of 2.00 mm to 2.50 mm. The radiating fins 6b are disposed above the fluid separator 2, and have a fin pitch P2 of, for example, 3.75 mm and a fin width B2 of, for example, 16 mm. Note that the fin pitch P
2 is, for example, preferably in the range of 3.00 mm to 4.50 mm, and more preferably in the range of 3.50 mm to 4.00 mm. That is, the boiling cooler 3 makes the fin pitch P1 of the heat receiving fins 6a smaller than the fin pitch P2 of the heat radiation fins 6b by, for example, about 50% to 65%.

【0035】そして、熱交換装置25は、図1および図
2(b)に示したように、密閉空間15の高温側伝熱空
間17内を循環する高温空気(ハウジング13内の清浄
な空気)と低温側伝熱空間18内を循環する低温空気
(ハウジング13外の汚れた空気)とが対向流となるよ
うに、高温空気および低温空気の流れ方向に沸騰冷却器
3が多段に配設されている。
As shown in FIGS. 1 and 2 (b), the heat exchange device 25 circulates hot air (clean air in the housing 13) which circulates in the high temperature side heat transfer space 17 of the closed space 15. The boiling cooler 3 is arranged in multiple stages in the flow direction of the high-temperature air and the low-temperature air so that the low-temperature air and the low-temperature air (dirt air outside the housing 13) circulating in the low-temperature side heat transfer space 18 form a counter flow. ing.

【0036】すなわち、多段の沸騰冷却器3等よりなる
熱交換装置25は、2段目の沸騰冷却器3の各沸騰冷却
管4の下端部(沸騰部7)の図示右側部が高温空気の入
口とされ、1段目の沸騰冷却器3の各沸騰冷却管4の下
端部(沸騰部7)の図示左側部が高温空気の出口とされ
ている。また、熱交換装置25は、1段目の沸騰冷却器
3の各沸騰冷却管4の上端部(凝縮部8)の図示左側部
が高温空気の入口とされ、2段目の沸騰冷却器3の各沸
騰冷却管4の上端部(凝縮部8)の図示右側部が高温空
気の出口とされている。
That is, in the heat exchanging device 25 including the multi-stage boiling cooler 3 and the like, the right side portion of the lower end portion (boiling portion 7) of each boiling cooling pipe 4 of the second stage boiling cooler 3 in the figure is for hot air. The left side portion of the lower end portion (boiling portion 7) of each boiling cooling pipe 4 of the first-stage boiling cooler 3 in the drawing serves as an outlet for high temperature air. In the heat exchange device 25, the upper left portion (condensing section 8) of each boiling cooling pipe 4 of the first-stage boiling cooler 3 serves as an inlet for high-temperature air, and the second-stage boiling cooler 3 The right side in the drawing of the upper end (condensing section 8) of each boiling cooling pipe 4 is an outlet for high-temperature air.

【0037】〔第1実施例の作用〕次に、本実施例の沸
騰冷却器3を高温空気と低温空気とが対向流となるよう
に多段に配設した熱交換装置25を備えた沸騰冷却装置
14の作用を図2および図3に基づいて簡単に説明す
る。
[Operation of the First Embodiment] Next, the boil cooling equipped with the heat exchanger 25 in which the boiling cooler 3 of this embodiment is arranged in multiple stages so that the high temperature air and the low temperature air are in counterflow. The operation of the device 14 will be briefly described with reference to FIGS.

【0038】ハウジング13中の密閉空間15内の温度
が下限温度(例えば0℃)以上の時に、2個の上部側遠
心式送風機21の電動モータ32および2個の下部側遠
心式送風機22の電動モータ35の通電を開始すること
により、遠心式ファン31、34が作動を始める。これ
により、ハウジング13内の密閉空間15中に高温空気
(埃、塵または水分等の異物を含まない清浄な内気、内
部流体)の循環流が発生する。また、ハウジング13外
の低温側伝熱空間18中に低温空気(埃、塵または水分
等の異物を含む外気、外部流体)の循環流が発生する。
When the temperature in the closed space 15 in the housing 13 is equal to or higher than the lower limit temperature (for example, 0 ° C.), the electric motors 32 of the two upper side centrifugal blowers 21 and the electric power of the two lower side centrifugal blowers 22 are electrically driven. When the motor 35 is turned on, the centrifugal fans 31 and 34 start operating. As a result, a circulating flow of high-temperature air (clean internal air or internal fluid that does not include foreign matter such as dust, dust, or water) is generated in the closed space 15 inside the housing 13. In addition, a circulating flow of low-temperature air (outside air or external fluid containing foreign matter such as dust, dust or moisture) is generated in the low-temperature side heat transfer space 18 outside the housing 13.

【0039】そして、ハウジング13の流体隔離板2を
貫通した状態で取り付けられた沸騰冷却器3は、多段式
の沸騰冷却器3の各沸騰冷却管4に封入された冷媒が、
図2(a)に示したように、受熱フィン6aを介して高
温空気より伝達された熱を受けて沸騰気化する。気化し
た冷媒蒸気は、低温空気に晒されて低温となっている沸
騰冷却器3の上端側に設けられる凝縮部8で内壁面に凝
縮液化し、その凝縮潜熱が放熱フィン6bを介して低温
空気に伝達される。
Then, in the boiling cooler 3 mounted so as to penetrate the fluid separator plate 2 of the housing 13, the refrigerant enclosed in each boiling cooling pipe 4 of the multistage boiling cooler 3 is
As shown in FIG. 2A, heat is transferred from the high-temperature air via the heat receiving fins 6a to evaporate. The vaporized refrigerant vapor is condensed and liquefied on the inner wall surface in a condensing section 8 provided at the upper end side of the boiling cooler 3 which is exposed to the low-temperature air and has a low temperature, and the condensed latent heat is transmitted to the low-temperature air through the radiation fins 6b. Is transmitted to

【0040】凝縮部8で凝縮液化した冷媒は、図2
(a)に示したように、自重により各沸騰冷却管4の内
壁面を伝って沸騰冷却器3の下端側に設けられる沸騰部
7へ滴下する。以上のように、沸騰冷却器3の各沸騰冷
却管4内に封入された冷媒が沸騰気化・凝縮液化を交互
に繰り返すことにより、高温空気の熱を低温空気へ移動
することにより、電子部品11、12で発生した熱を多
段の沸騰冷却器3で放熱できる。
The refrigerant condensed and liquefied in the condenser section 8 is shown in FIG.
As shown in (a), the water drops along the inner wall surface of each boiling cooling pipe 4 by its own weight and is dropped onto a boiling portion 7 provided at the lower end side of the boiling cooler 3. As described above, the refrigerant enclosed in each boiling cooling pipe 4 of the boiling cooler 3 repeats boiling vaporization / condensation liquefaction alternately to transfer the heat of the high-temperature air to the low-temperature air. , 12 can be radiated by the multistage boiling cooler 3.

【0041】それによって、密閉空間15の高温側伝熱
空間17内を循環する高温空気(ハウジング13内のき
れいな空気)と低温側伝熱空間18内を循環する低温空
気(ハウジング13外の汚れた空気)とが混合すること
なく、電子部品11、12を冷却することができる。
As a result, high temperature air (clean air inside the housing 13) circulating in the high temperature side heat transfer space 17 of the closed space 15 and low temperature air circulating in the low temperature side heat transfer space 18 (dirt outside the housing 13 The electronic components 11 and 12 can be cooled without being mixed with air.

【0042】ここで、本実施例の沸騰冷却器3は、受熱
フィン6aのフィンピッチP1 が、放熱フィン6bのフ
ィンピッチP2 よりも小さいので、複数本の沸騰冷却管
4のうち流体隔離板2より上方に突出する(ハウジング
13外に突出する)凝縮部8の熱交換有効面積よりも流
体隔離板2より下方に突出する(ハウジング13内に突
出する)沸騰部7の熱交換有効面積の方が小さくなって
いるが、沸騰部7はフィンピッチの小さい分だけ熱交換
性能が向上するので、沸騰部7の熱交換有効面積が小さ
くなっても熱交換性能の低下はない。
Here, in the boiling cooler 3 of this embodiment, the fin pitch P1 of the heat receiving fins 6a is smaller than the fin pitch P2 of the heat radiating fins 6b, so that the fluid separating plate 2 of the plurality of boiling cooling pipes 4 is used. The heat exchange effective area of the boiling portion 7 which protrudes below the fluid separator 2 (projects into the housing 13) more than the heat exchange effective area of the condensing portion 8 which projects further upward (projects outside the housing 13). However, since the heat exchange performance of the boiling portion 7 is improved by the smaller fin pitch, the heat exchange performance is not deteriorated even if the heat exchange effective area of the boiling portion 7 is reduced.

【0043】〔第1実施例の効果〕したがって、本実施
例の沸騰冷却器3は、ハウジング13(流体隔離板2)
により高温側が気密化されているので、目詰まりを起こ
す心配のない沸騰部7を成す沸騰冷却管4に設けられる
受熱フィン6aのフィンピッチP1 を、埃、塵または水
分等の異物を含んだ外気に晒される凝縮部8を成す沸騰
冷却管4に設けられる放熱フィン6bのフィンピッチP
2 よりも小さくしている。
[Effects of the First Embodiment] Therefore, the boiling cooler 3 of the present embodiment includes the housing 13 (fluid separator 2).
Since the high temperature side is made airtight by the, the fin pitch P1 of the heat receiving fins 6a provided in the boiling cooling pipe 4 forming the boiling portion 7 that does not cause clogging is set to the outside air containing foreign matter such as dust, dust or water. The fin pitch P of the radiating fins 6b provided on the boiling cooling pipe 4 forming the condensing part 8 exposed to
It is smaller than 2.

【0044】これにより、フィンピッチを流体隔離板2
の高温側(内気側)と低温側(外気側)とで同じ大きさ
にした場合と比較して、凝縮部8の目詰まりを防止しな
がら、沸騰部7のフィンピッチP1 を凝縮部8のフィン
ピッチP2 よりも小さくすることで高温空気の冷却性能
を向上できる。また、フィンピッチP1 を小さくした分
だけ、受熱フィン6aの上下方向寸法を放熱フィン6b
の上下方向寸法よりも短縮でき、それによって複数本の
沸騰冷却管4の沸騰部7の上下方向寸法(放熱有効面
積)を小さくできるので、沸騰冷却器3、ひいては沸騰
冷却装置14全体の小型化を達成できる。
As a result, the fin pitch is fixed to the fluid separator 2
The fin pitch P1 of the boiling portion 7 is reduced while the clogging of the condensing portion 8 is prevented, as compared with the case where the same size is set on the high temperature side (inside air side) and the low temperature side (outside air side). By making the fin pitch smaller than P2, the cooling performance of high-temperature air can be improved. In addition, the vertical dimension of the heat receiving fin 6a is reduced by the reduced fin pitch P1.
And the vertical dimension (radiation effective area) of the boiling portions 7 of the plurality of boiling cooling pipes 4 can be reduced, so that the boiling cooler 3 and, consequently, the overall size of the boiling cooling device 14 can be reduced. Can be achieved.

【0045】次に、沸騰冷却器3を高温空気および低温
空気の流れ方向に多段に配設した熱交換装置の特徴を図
6(a)、(b)に基づいて説明する。図6(a)、
(b)は沸騰冷却器3が単段(1段)および多段(2
段)の場合の空気の流路方向温度分布および冷媒の流路
方向温度分布を示した模式図である。なお、模式図の縦
軸は温度(下方ほど高温)であり、横軸は流体(空気)
の流れ方向である。
Next, the features of the heat exchange device in which the boiling cooler 3 is arranged in multiple stages in the flow direction of high temperature air and low temperature air will be described with reference to FIGS. 6 (a) and 6 (b). FIG. 6 (a),
In (b), the boiling cooler 3 has a single stage (one stage) and multiple stages (2 stages).
FIG. 7 is a schematic diagram showing a temperature distribution in the flow direction of air and a temperature distribution in the flow direction of refrigerant in the case of (stage). The vertical axis of the schematic diagram is the temperature (the lower the temperature, the higher the temperature), and the horizontal axis is the fluid (air).
Flow direction.

【0046】沸騰冷却器3が単段(1段)の熱交換装置
(従来例)の場合には、図6(a)に示したように、高
温空気が下段の沸騰冷却器(沸騰部7)の図示右側から
流入し、上段の沸騰冷却器(凝縮部8)へ放熱するに従
って高温空気の温度が降温した後に、放熱した高温空気
(冷却された高温空気)が沸騰冷却器3の図示左側へ流
出する。また、沸騰冷却器3が単段(1段)の熱交換装
置(従来例)の場合には、図6(a)に示したように、
低温空気が上段の沸騰冷却器(凝縮部8)の図示左側か
ら流入し、沸騰冷却器3から受熱するに従って高温空気
の温度が昇温し沸騰冷却器3の図示右側へ流出する。
When the boiling cooler 3 is a single-stage (one-stage) heat exchanger (conventional example), as shown in FIG. 6 (a), high temperature air is in the lower stage of the boiling cooler (boiling section 7). ) Flows in from the right side of the drawing, and after the temperature of the high-temperature air decreases as it radiates heat to the upper boiling cooler (condensing section 8), the high-temperature air that has radiated (cooled high-temperature air) is left on the left side of the boiling cooler 3 in the drawing. Outflow to. When the boiling cooler 3 is a single-stage (one-stage) heat exchange device (conventional example), as shown in FIG.
The low-temperature air flows in from the left side of the upper-stage boiling cooler (condensing section 8), and as the heat is received from the boiling cooler 3, the temperature of the high-temperature air rises and flows out to the right side of the boiling cooler 3 in the figure.

【0047】ここで、沸騰冷却器3の凝縮部8の入口空
気と出口空気との温度差をΔT1 とすると、沸騰冷却器
3内に封入された冷媒と熱交換する熱交換媒体は空気で
あるため、低温空気は、沸騰冷却器3の放熱フィン6b
により急速に加熱され、低温空気は入口で急激に昇温す
るものの、その後、飽和状態となるため、温度差ΔT1
(冷却性能)はあまり大きくならない。
Assuming that the temperature difference between the inlet air and the outlet air of the condenser 8 of the boiling cooler 3 is ΔT1, the heat exchange medium for exchanging heat with the refrigerant enclosed in the boiling cooler 3 is air. Therefore, the low-temperature air is generated by the radiation fins 6b of the boiling cooler 3.
The low-temperature air rapidly rises in temperature at the inlet, but then becomes saturated, so that the temperature difference ΔT1
(Cooling performance) does not increase so much.

【0048】これに対し、沸騰冷却器3を多段に配設し
た熱交換装置(第1実施例)25の場合には、図6
(b)に示したように、空気の流れ方向に少なくとも2
段階で沸騰冷却器3内に封入された冷媒と空気との熱交
換を行うことができる。このとき、1段目の沸騰冷却器
3内に封入された冷媒と2段目の沸騰冷却器3内に封入
された冷媒には図示破線のように温度差(放熱フィン温
度差、受熱フィン温度差)があるため、図6(b)に示
したように、低温空気は1段目の沸騰冷却器3の凝縮部
8の途中で飽和温度になった後、更に2段目の沸騰冷却
器3の入口付近で温度が昇温すると共に、高温空気は2
段目の沸騰冷却器3の沸騰部7の途中で飽和温度になっ
た後、更に1段目の沸騰冷却器3の入口付近で温度が降
温する。
On the other hand, in the case of the heat exchange device (first embodiment) 25 in which the boiling cooler 3 is arranged in multiple stages, FIG.
As shown in (b), at least 2 in the direction of air flow.
At a stage, heat exchange between the refrigerant enclosed in the boiling cooler 3 and air can be performed. At this time, the refrigerant enclosed in the first-stage boiling cooler 3 and the refrigerant enclosed in the second-stage boiling cooler 3 have temperature differences (radiation fin temperature difference, heat receiving fin temperature) as shown by broken lines in the figure. 6 (b), the low-temperature air reaches a saturation temperature in the middle of the condenser section 8 of the first-stage boiling cooler 3 and then further cools the second-stage boiling cooler. As the temperature rises near the inlet of 3, the hot air becomes 2
After reaching the saturation temperature in the boiling portion 7 of the first stage boiling cooler 3, the temperature further decreases near the inlet of the first stage boiling cooler 3.

【0049】したがって、図6(a)、(b)に示した
ように、本実施例(沸騰冷却器3を多段に配設した熱交
換装置25)の場合の温度差ΔT2 は、従来例(単段の
沸騰冷却器3を配設した熱交換装置)の場合の温度差Δ
T1 よりも大きくできるので、高温空気の熱を低温空気
へ放熱させることにより、高温空気の冷却性能を向上で
きる。これにより、電子部品11、12の冷却効果を向
上できるので、電子部品11、12が安定した作動を行
う。また、本実施例では、従来例と同等の放熱性能(冷
却性能)で比較した場合、沸騰冷却器3の熱交換有効面
積(放熱有効面積)を減少できるので、このようなコン
パクトな熱交換装置25を備えた沸騰冷却装置14全体
を小型化できる。
Therefore, as shown in FIGS. 6 (a) and 6 (b), the temperature difference ΔT2 in the case of this embodiment (the heat exchange device 25 in which the boiling cooler 3 is arranged in multiple stages) is the same as that of the conventional example ( Temperature difference in the case of a heat exchange device having a single-stage boiling cooler 3)
Since it can be made larger than T1, the cooling performance of the high temperature air can be improved by radiating the heat of the high temperature air to the low temperature air. Thereby, the cooling effect of the electronic components 11 and 12 can be improved, so that the electronic components 11 and 12 perform stable operations. Further, in this embodiment, when compared with the heat dissipation performance (cooling performance) equivalent to that of the conventional example, the heat exchange effective area (heat dissipation effective area) of the boiling cooler 3 can be reduced, and thus such a compact heat exchange device is used. It is possible to downsize the entire boil cooling device 14 including 25.

【0050】また、沸騰冷却器3を多段に配設した熱交
換装置25は、高温空気と低温空気とが対向流となるよ
うに配設されている。したがって、1段目の沸騰冷却器
3内に封入された冷媒の温度(放熱フィン温度、受熱フ
ィン温度)と2段目の沸騰冷却器3内に封入された冷媒
の温度(放熱フィン温度、受熱フィン温度)との間に効
果的に温度差を設けることができるので、温度差のある
冷媒を用いて低温空気・高温空気を順次効率良く昇温・
降温することが可能である。それによって、更に冷却性
能が改善され沸騰冷却装置14全体の小型化が可能とな
る。
Further, the heat exchange device 25 in which the boiling cooler 3 is arranged in multiple stages is arranged so that the high temperature air and the low temperature air are in counterflow. Therefore, the temperature of the refrigerant (radiation fin temperature and heat receiving fin temperature) sealed in the first-stage boiling cooler 3 and the temperature of the refrigerant (radiation fin temperature and heat receiving fin) sealed in the second-stage boiling cooler 3 Fin temperature), so that low-temperature air and high-temperature air can be sequentially and efficiently heated using a refrigerant having a temperature difference.
It is possible to lower the temperature. Thereby, the cooling performance is further improved, and the size of the entire boiling cooling device 14 can be reduced.

【0051】なお、本実施例では、沸騰冷却器3が2段
の場合について説明したが、熱交換装置25の沸騰部7
および凝縮部8の空気入口と空気出口との温度差を更に
大きく取りたい場合には、3段以上の多段としても良
く、作用効果については同様なため説明は省略する。
In this embodiment, the case where the boiling cooler 3 has two stages has been described, but the boiling part 7 of the heat exchange device 25 is described.
Further, if it is desired to make the temperature difference between the air inlet and the air outlet of the condenser 8 larger, the number of stages may be three or more, and the description of the actions and effects will be omitted because they are the same.

【0052】〔第2実施例の構成〕図7ないし図11は
本発明の第2実施例を示したもので、図7ないし図9は
電子機器装置に組み込まれた沸騰冷却装置の具体的構造
を示した図で、図10は沸騰冷却器の具体的構造を示し
た図で、図11は沸騰冷却器を多段に配設した熱交換装
置の概略構造を示した図である。
[Structure of Second Embodiment] FIGS. 7 to 11 show a second embodiment of the present invention. FIGS. 7 to 9 show a concrete structure of a boiling cooling device incorporated in an electronic device. FIG. 10 is a diagram showing a specific structure of the boiling cooler, and FIG. 11 is a diagram showing a schematic structure of a heat exchange device in which the boiling coolers are arranged in multiple stages.

【0053】本実施例の熱交換装置25を構成する沸騰
冷却器3は、ケーシング内に所定の角度だけ傾斜した状
態で多段(3段)に組み付けられ、複数本の沸騰冷却管
4aが沸騰部7を構成する高温側熱交換器(内気側熱交
換器)3aと複数本の沸騰冷却管4bが凝縮部8を構成
する低温側熱交換器(外気側熱交換器)3bとに2分割
され、さらにこれらの高温側、低温側熱交換器3a、3
bを2本の冷媒循環用第1、第2連結管9a、9bで連
結している。
The boiling cooler 3 constituting the heat exchange device 25 of the present embodiment is assembled in multiple stages (three stages) in a state of being inclined at a predetermined angle in the casing, and a plurality of boiling cooling pipes 4a are provided in the boiling part. 7, a high temperature side heat exchanger (inside air side heat exchanger) 3a and a plurality of boiling cooling pipes 4b are divided into a low temperature side heat exchanger (outside air side heat exchanger) 3b forming a condensing section 8. , These high-temperature side and low-temperature side heat exchangers 3a, 3
b is connected by two refrigerant circulation first and second connection pipes 9a and 9b.

【0054】ケーシング20は、第1実施例と同様に、
外壁板26および背面側区画板27等からなる。外壁板
26の中央部には、外部より低温空気(埃、塵または水
分等の異物を含む汚れた外気)を低温側伝熱空間18内
に吸い込むための1個の方形状低温側吸込口26aが開
口している。また、外壁板26の上部側には、上部側遠
心式送風機21より外部に低温空気を吐出するための2
個の方形状低温側吐出口26bが開口している。
The casing 20 has the same structure as in the first embodiment.
The outer wall plate 26 and the rear partition plate 27 are included. In the central portion of the outer wall plate 26, one square low temperature side suction port 26a for sucking low temperature air (dirty outside air containing foreign matter such as dust, dust or water) into the low temperature side heat transfer space 18 from the outside. Is open. Further, the upper wall of the outer wall plate 26 is provided with 2 for discharging low temperature air to the outside from the upper centrifugal fan 21.
The individual rectangular low-temperature side discharge ports 26b are open.

【0055】背面側区画板27の上部側には、電子部品
収容空間16より高温空気(埃、塵または水分等の異物
を含まない清浄な内気)を高温側伝熱空間17に吸い込
むための1個の方形状高温吸込口27aが開口してい
る。また、背面側区画板27の下側には、一方の下部側
遠心式送風機22から電子部品11に冷却された高温空
気を導くダクト27b、および他方の下部側遠心式送風
機22から電子部品12に冷却された高温空気を導くダ
クト27cがスポット溶接等の手段により接合されてい
る。ダクト27b、27cは、2個の下部側遠心式送風
機22のスクロールケーシング36にそれぞれ一体的に
接続されている。
On the upper side of the rear side partition plate 27, there is provided 1 for sucking hot air (clean internal air containing no foreign matter such as dust, dust or water) from the electronic component housing space 16 into the high temperature side heat transfer space 17. The individual rectangular high-temperature suction ports 27a are open. In addition, a duct 27b for guiding the high temperature air cooled from one lower side centrifugal blower 22 to the electronic component 11 is provided below the rear side partition plate 27, and the other lower side centrifugal blower 22 is provided to the electronic component 12. A duct 27c for guiding the cooled high-temperature air is joined by means such as spot welding. The ducts 27b and 27c are integrally connected to the scroll casings 36 of the two lower centrifugal fans 22.

【0056】高温側熱交換器3aは、本発明の筐体内熱
交換器であって、複数本の沸騰冷却管4a、高温側上端
タンク41a、高温側下端タンク42a、隣合う沸騰冷
却管4a間に介在された受熱フィン6a、およびサイド
プレート37a等から構成されている。この高温側熱交
換器3aは、ハウジング13により外部から密閉化され
た高温側伝熱空間17内に配されているので、埃、塵ま
たは水分等の異物を含んだ外気に晒される心配はない。
The high temperature side heat exchanger 3a is a heat exchanger in the housing of the present invention, and comprises a plurality of boiling cooling pipes 4a, a high temperature side upper end tank 41a, a high temperature side lower end tank 42a, and adjacent boiling cooling pipes 4a. The heat receiving fins 6a interposed between the side plate 37a and the side plate 37a. Since the high temperature side heat exchanger 3a is arranged in the high temperature side heat transfer space 17 which is sealed from the outside by the housing 13, there is no fear of being exposed to the outside air containing foreign matter such as dust, dust or water. .

【0057】低温側熱交換器3bは、本発明の筐体外熱
交換器であって、複数本の沸騰冷却管4b、低温側上端
タンク41b、低温側下端タンク42b、隣合う沸騰冷
却管4b間に介在された放熱フィン6b、およびサイド
プレート37b等から構成されている。この低温側熱交
換器3bは、埃、塵または水分等の異物を含んだ外気に
晒される低温側伝熱空間18内において高温側熱交換器
3aと略同一平面上に位置するように配されている。な
お、低温側下端タンク42bを第2連結管9b側が下方
となるように傾斜しても良い。
The low temperature side heat exchanger 3b is a heat exchanger outside the housing of the present invention, and comprises a plurality of boiling cooling pipes 4b, a low temperature side upper end tank 41b, a low temperature side lower end tank 42b, and adjacent boiling cooling pipes 4b. The heat radiation fins 6b and the side plates 37b and the like are interposed between them. The low temperature side heat exchanger 3b is arranged so as to be located on substantially the same plane as the high temperature side heat exchanger 3a in the low temperature side heat transfer space 18 exposed to the outside air containing foreign matter such as dust, dust or water. ing. The low temperature side lower end tank 42b may be inclined so that the second connecting pipe 9b side is downward.

【0058】本実施例の沸騰冷却器3は、高温側熱交換
器3aに設けられる受熱フィン6aのフィンピッチP1
(例えば1.50mm〜2.90mm、望ましくは2.
00mm〜2.50mmで、本例では2.40mm)
を、低温側熱交換器3bの放熱フィン6bのフィンピッ
チP2 (例えば3.00mm〜4.50mm、望ましく
は3.50mm〜4.00mmで、本例では3.75m
m)よりも小さくしている。すなわち、沸騰冷却器3
は、受熱フィン6aのフィンピッチP1 を放熱フィン6
bのフィンピッチP2 よりも、例えば50%〜65%程
度だけ小さくしている。
In the boiling cooler 3 of this embodiment, the fin pitch P1 of the heat receiving fins 6a provided in the high temperature side heat exchanger 3a is set.
(For example, 1.50 mm to 2.90 mm, preferably 2.
(00 mm to 2.50 mm, 2.40 mm in this example)
Is the fin pitch P2 (for example, 3.00 mm to 4.50 mm, preferably 3.50 mm to 4.00 mm) of the radiation fins 6b of the low temperature side heat exchanger 3b, and in this example 3.75 m.
It is smaller than m). That is, the boiling cooler 3
Is the fin pitch P1 of the heat receiving fins 6a.
It is smaller than the fin pitch P2 of b by, for example, about 50% to 65%.

【0059】第1連結管9aは、沸騰冷却管4と同じ金
属材料によって断面形状が円形状に形成された金属パイ
プであって、沸騰部7の上端部に設けられる高温側上端
タンク41aと凝縮部8の上端部に設けられる低温側上
端タンク41bとを連通している。この第1連結管9a
は、沸騰部7で沸騰気化した冷媒蒸気を凝縮部8に導く
高温低温誘導手段である。
The first connecting pipe 9a is a metal pipe having a circular cross-section made of the same metal material as that of the boiling cooling pipe 4, and is condensed with the high temperature side upper end tank 41a provided at the upper end of the boiling part 7. It communicates with the low temperature side upper end tank 41b provided at the upper end of the portion 8. This first connecting pipe 9a
Is a high-temperature / low-temperature inducing means for guiding the refrigerant vapor boiled in the boiling section 7 to the condenser section 8.

【0060】第2連結管9bは、第1連結管9aと同じ
金属材料によって断面形状が円形状に形成された金属パ
イプであって、凝縮部8の下端部に設けられる低温側下
端タンク42bと沸騰部7の下端部に設けられる高温側
下端タンク42aとを連通している。この第2連結管9
bは、凝縮部8で凝縮液化した冷媒液を沸騰部7に導く
低温高温誘導手段である。
The second connecting pipe 9b is a metal pipe having a circular cross section made of the same metal material as that of the first connecting pipe 9a, and includes a low temperature side lower end tank 42b provided at the lower end of the condenser section 8. It communicates with the high temperature side lower end tank 42a provided at the lower end of the boiling section 7. This second connecting pipe 9
Reference numeral b is a low-temperature high-temperature inducing means for guiding the refrigerant liquid condensed and liquefied in the condenser section 8 to the boiling section 7.

【0061】〔第2実施例の効果〕本実施例では、フィ
ンピッチを流体隔離板2の高温側(内気側)と低温側
(外気側)とで同じ大きさにした場合と比較して、低温
側熱交換器3bの目詰まりを防止しながら、高温側熱交
換器3aのフィンピッチP1 を低温側熱交換器3bのフ
ィンピッチP2 よりも小さくすることで高温空気の冷却
性能を向上でき、沸騰冷却器3、ひいては沸騰冷却装置
14全体の小型化を達成できる。本実施例は、沸騰部7
と凝縮部8とを2本の第1、第2連結管9a、9bによ
って環状に連結した沸騰冷却器3を空気の流れ方向に多
段に配設した熱交換装置25を備えた沸騰冷却装置14
を備えている。この構成によって、各沸騰冷却器3内に
おいて冷媒の循環流が形成され、冷媒蒸気(沸騰蒸気)
と冷媒液(凝縮液)との衝突を防止できるので、各沸騰
冷却器3単体の放熱性能(冷却性能)を第1実施例より
も向上することができる。このような沸騰冷却器3を多
段に配設することにより、第1実施例よりも更に熱交換
装置25の放熱性能(冷却性能)の向上を図ることがで
きる。
[Effect of Second Embodiment] In this embodiment, as compared with the case where the fin pitch has the same size on the high temperature side (inside air side) and the low temperature side (outside air side) of the fluid separator 2, The cooling performance of the high temperature air can be improved by making the fin pitch P1 of the high temperature side heat exchanger 3a smaller than the fin pitch P2 of the low temperature side heat exchanger 3b while preventing clogging of the low temperature side heat exchanger 3b. It is possible to reduce the size of the boiling cooler 3, and thus the boiling cooling device 14 as a whole. In this embodiment, the boiling portion 7
And the condenser section 8 are annularly connected by two first and second connecting pipes 9a and 9b, and a boiling cooler 14 is provided with a heat exchanger 25 in which the boiling cooler 3 is arranged in multiple stages in the air flow direction.
It has. With this configuration, a circulating flow of the refrigerant is formed in each boiling cooler 3, and the refrigerant vapor (boiling vapor) is formed.
Since it is possible to prevent the collision of the refrigerant liquid (condensed liquid) with each other, the heat dissipation performance (cooling performance) of each boiling cooler 3 can be improved as compared with the first embodiment. By disposing such a boiling cooler 3 in multiple stages, it is possible to further improve the heat dissipation performance (cooling performance) of the heat exchange device 25 as compared with the first embodiment.

【0062】〔第3実施例の構成〕図12は本発明の第
3実施例を示したもので、沸騰冷却器の具体的構造を示
した図である。
[Structure of Third Embodiment] FIG. 12 shows a third embodiment of the present invention and is a view showing a specific structure of a boiling cooler.

【0063】本実施例の熱交換装置25を構成する沸騰
冷却器3は、ケーシング内に所定の角度だけ傾斜した状
態で多段(3段)に組み付けられ、沸騰部7を成す高温
側熱交換器(筐体内熱交換器、内気側熱交換器)3aと
凝縮部8を成す低温側熱交換器(筐体外熱交換器、外気
側熱交換器)3bとに2分割され、さらにこれらの高温
側、低温側熱交換器3a、3bを2本の第1、第2連結
管9a、9bで連結している。
The boiling cooler 3 constituting the heat exchanging device 25 of the present embodiment is assembled in multiple stages (three stages) in a state of being inclined at a predetermined angle in the casing, and the high temperature side heat exchanger forming the boiling portion 7 is formed. (In-case heat exchanger, inside-air side heat exchanger) 3a and low-temperature side heat exchanger (condenser section 8) (outside-case heat exchanger, outside-air side heat exchanger) 3b, which are further divided into two parts. The low temperature side heat exchangers 3a and 3b are connected by two first and second connecting pipes 9a and 9b.

【0064】そして、本実施例の沸騰冷却器3は、第2
実施例と比べて、高温側熱交換器3aと低温側熱交換器
3bとを略同一平面上で幅方向の両側(図示左右側)に
互い違いにずらして配設している。さらに、その互い違
い部(位置ずれ部)51、52に高温側熱交換器3aと
低温側熱交換器3bとを環状に連結するための冷媒循環
用の第1、第2連結管9a、9bを配している。
The boiling cooler 3 of this embodiment is the second
Compared with the embodiment, the high temperature side heat exchanger 3a and the low temperature side heat exchanger 3b are arranged on both sides in the width direction (left and right sides in the drawing) in a staggered manner on substantially the same plane. Further, first and second connecting pipes 9a, 9b for circulating the refrigerant for connecting the high temperature side heat exchanger 3a and the low temperature side heat exchanger 3b in an annular shape are provided at the alternating portions (positional displacement portions) 51, 52. It is arranged.

【0065】第1連結管9aは、高温側熱交換器3a
(沸騰部7)の上端部に設けられる高温側上端タンク4
1aと低温側熱交換器3b(凝縮部8)の上端部に設け
られる低温側上端タンク41bとを連通し、沸騰部7で
沸騰気化した冷媒蒸気を凝縮部8に導く金属パイプであ
る。第2連結管9bは、低温側熱交換器3bの下端部に
設けられる低温側下端タンク42bと高温側熱交換器3
aの下端部に設けられる高温側下端タンク42aとを連
通し、凝縮部8で凝縮液化した冷媒液を沸騰部7に導く
金属パイプである。
The first connecting pipe 9a is the high temperature side heat exchanger 3a.
High temperature side upper end tank 4 provided at the upper end of (boiling part 7)
It is a metal pipe that communicates 1a with the low temperature side upper end tank 41b provided at the upper end of the low temperature side heat exchanger 3b (condensing part 8) and guides the refrigerant vapor boiled in the boiling part 7 to the condensing part 8. The second connecting pipe 9b includes a low temperature side lower end tank 42b provided at a lower end portion of the low temperature side heat exchanger 3b and a high temperature side heat exchanger 3.
It is a metal pipe which communicates with the high temperature side lower end tank 42a provided at the lower end of a and guides the refrigerant liquid condensed and liquefied in the condensing part 8 to the boiling part 7.

【0066】〔第3実施例の効果〕本実施例では、高温
側熱交換器3aと低温側熱交換器3bとを略同一平面上
で幅方向の両側に互い違いにずらして配設し、その互い
違い部51、52に高温側熱交換器3aと低温側熱交換
器3bとを連結する第1、第2連結管9a、9bを配し
ている。それによって、沸騰冷却器3の幅方向の両側
(図示左右側)に第1、第2連結管9a、9bが突出し
て配管される第2実施例の場合と比べて、不要になった
配管突出部とデッドスペースである第1連結管9aの分
だけ側方寸法を短縮でき、このようにコンパクトな沸騰
冷却器3を備えた沸騰冷却装置14全体の一層の小型化
を図ることができる。
[Effects of the Third Embodiment] In this embodiment, the high temperature side heat exchanger 3a and the low temperature side heat exchanger 3b are arranged on both sides in the width direction in a staggered manner on the substantially same plane. First and second connecting pipes 9a and 9b for connecting the high temperature side heat exchanger 3a and the low temperature side heat exchanger 3b are arranged in the alternating portions 51 and 52. Thereby, as compared with the case of the second embodiment in which the first and second connecting pipes 9a and 9b are piped so as to project on both sides in the width direction of the boiling cooler 3 (left and right sides in the drawing), unnecessary pipe protrusions are provided. The lateral dimension can be reduced by an amount corresponding to the first connection pipe 9a which is a portion and a dead space, and thus the boiling cooling device 14 including the compact boiling cooler 3 can be further downsized.

【0067】〔変形例〕本実施例の熱交換装置25を備
えた沸騰冷却装置14は、密閉化された空間に電子部品
11、12等の発熱体を収容する必要がある場合に利用
される。なお、密閉化された空間に発熱体を収容する必
要がある場合とは、例えば油、水分、鉄粉、腐食性ガス
等を含む厳しい環境下で発熱体を使用する場合、または
電気的な断続を行う際のアーク防止や接点の酸化を防ぐ
ために不活性ガス(ヘリウムガス、アルゴンガス等)を
使用する場合、あるいは人体に有害な気体(例えばフロ
ロカーボンから分解生成されたフッ化水素等)を外部に
洩らさないようにする場合等がある。
[Modification] The boiling cooling device 14 provided with the heat exchange device 25 of the present embodiment is used when it is necessary to accommodate the heating elements such as the electronic components 11 and 12 in the sealed space. . In addition, when it is necessary to store the heating element in a sealed space, for example, when using the heating element in a severe environment containing oil, moisture, iron powder, corrosive gas, etc., or electrical interruption When using an inert gas (helium gas, argon gas, etc.) to prevent arcing or oxidation of contacts when performing, or a gas harmful to the human body (eg, hydrogen fluoride decomposed and produced from fluorocarbons) In some cases, it may not be leaked to.

【0068】本実施例では、沸騰冷却器3、高温側熱交
換器3a、低温側熱交換器3bとしてコルゲートフィン
・チューブ式のマルチフローパス型の熱交換器を用いた
が、沸騰冷却器3、高温側熱交換器3a、低温側熱交換
器3bとしてプレートフィン・チューブ式の熱交換器、
微細ピンフィン・チューブ式の熱交換器、偏平管(チュ
ーブ)を蛇行状に屈曲形成したサーペンタイン型の熱交
換器、2枚の成形プレートを貼り合わせた沸騰冷却管を
多数積層したドロンカップ型の熱交換器を用いても良
い。受熱フィン6aまたは放熱フィン6bとしてスリッ
トフィンやルーバーフィンを利用しても良い。
In this embodiment, a corrugated fin tube type multi-flow path type heat exchanger is used as the boiling cooler 3, the high temperature side heat exchanger 3a, and the low temperature side heat exchanger 3b. A plate fin / tube heat exchanger as the high temperature side heat exchanger 3a and the low temperature side heat exchanger 3b,
Fine pin fin tube heat exchanger, serpentine type heat exchanger in which flat tubes are bent and bent in a serpentine shape, and drone cup type heat in which a large number of boiling cooling tubes with two molded plates are laminated A switch may be used. A slit fin or a louver fin may be used as the heat receiving fin 6a or the heat radiating fin 6b.

【0069】本実施例では、ハウジング13内部空気、
筐体内部流体である高温空気(内気)として電子部品1
1、12等の発熱体により高温化される高温空気等の高
温気体を用いたが、高温流体として電子部品11、12
等の発熱体を冷却する冷却水やオイル(作動油や潤滑油
を含む)等の高温液体を用いても良い。これと同様に、
ハウジング13外部空気、筐体外部流体である外部流体
(外気)として低温空気等の低温気体だけでなく水やオ
イル等の低温液体を用いても良い。これらの場合には、
筐体内流体循環手段や筐体外流体循環手段はポンプを使
用することになる。なお、ポンプや遠心式ファン31、
34を駆動する駆動手段としては本例のような電動モー
タ32、35だけでなく内燃機関、水車、風車等を用い
ても良い。
In this embodiment, the air inside the housing 13 is
Electronic component 1 as high temperature air (inside air) that is a fluid inside the housing
Although a high temperature gas such as high temperature air that is heated by a heating element such as 1 or 12 is used, electronic components 11 and 12 are used as the high temperature fluid.
A high temperature liquid such as cooling water or oil (including hydraulic oil and lubricating oil) for cooling the heating element such as the above may be used. Similarly,
Not only low-temperature gas such as low-temperature air but also low-temperature liquid such as water or oil may be used as the external air (outside air) that is the external air of the housing 13 and the external fluid of the housing. In these cases,
A pump is used as the fluid circulating means inside the housing and the fluid circulating means outside the housing. In addition, a pump and a centrifugal fan 31,
As the drive means for driving 34, not only the electric motors 32 and 35 of this example but also an internal combustion engine, a water turbine, a wind turbine, or the like may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子機器装置の全体構造を示した概略図である
(第1実施例)。
FIG. 1 is a schematic diagram showing the overall structure of an electronic device (first embodiment).

【図2】(a)は沸騰冷却装置の熱交換装置の概略構造
を示した断面図で、(b)は沸騰冷却装置の熱交換装置
の概略構造を示した模式図である(第1実施例)。
FIG. 2A is a sectional view showing a schematic structure of a heat exchange device of a boiling cooling device, and FIG. 2B is a schematic view showing a schematic structure of a heat exchange device of a boiling cooling device (first embodiment). Example).

【図3】沸騰冷却器の具体的構造を示した正面図である
(第1実施例)。
FIG. 3 is a front view showing a specific structure of a boiling cooler (first embodiment).

【図4】沸騰冷却器を2分割する流体隔離板を示した斜
視図である(第1実施例)。
FIG. 4 is a perspective view showing a fluid separator which divides the boiling cooler into two parts (first embodiment).

【図5】沸騰冷却器を2分割する流体隔離板を示した斜
視図である(第1実施例)。
FIG. 5 is a perspective view showing a fluid separator which divides the boiling cooler into two parts (first embodiment).

【図6】(a)は従来例の場合の空気および冷媒の流路
方向温度分布を表した模式図で、(b)は第1実施例の
場合の空気および冷媒の流路方向温度分布を表した模式
図である。
FIG. 6A is a schematic diagram showing the temperature distribution in the flow direction of air and refrigerant in the case of the conventional example, and FIG. 6B is the temperature distribution in the flow direction of air and refrigerant in the case of the first embodiment. It is the represented schematic diagram.

【図7】沸騰冷却装置の具体的構造を示した断面図であ
る(第2実施例)。
FIG. 7 is a sectional view showing a specific structure of a boiling cooling device (second embodiment).

【図8】沸騰冷却装置の具体的構造を示した正面図であ
る(第2実施例)。
FIG. 8 is a front view showing a specific structure of a boiling cooling device (second embodiment).

【図9】沸騰冷却装置の具体的構造を示した背面図であ
る(第2実施例)。
FIG. 9 is a rear view showing a specific structure of the boiling cooling device (second embodiment).

【図10】沸騰冷却器の具体的構造を示した正面図であ
る(第2実施例)。
FIG. 10 is a front view showing a specific structure of a boiling cooler (second embodiment).

【図11】沸騰冷却器の概略構造を示した断面図である
(第2実施例)。
FIG. 11 is a sectional view showing a schematic structure of a boiling cooler (second embodiment).

【図12】沸騰冷却器の具体的構造を示した正面図であ
る(第3実施例)。
FIG. 12 is a front view showing a specific structure of a boiling cooler (third embodiment).

【符号の説明】[Explanation of symbols]

1 電子機器装置 2 流体隔離板 3 沸騰冷却器 4 沸騰冷却管 5 連結管 6 伝熱フィン 7 沸騰部 8 凝縮部 9 温度センサ 11 電子部品(発熱体) 12 電子部品(発熱体) 13 ハウジング(筐体) 14 沸騰冷却装置 15 密閉空間 17 高温側伝熱空間(筐体内通路) 18 低温側伝熱空間(筐体外通路) 21 上部側遠心式送風機(筐体外流体循環手段) 22 下部側遠心式送風機(筐体内流体循環手段) 25 熱交換装置 41 高温側タンク 42 低温側タンク 51 互い違い部(位置ずれ部) 52 互い違い部(位置ずれ部) 3a 高温側熱交換器(筐体内熱交換器) 3b 低温側熱交換器(筐体外熱交換器) 4a 沸騰冷却管 4b 沸騰冷却管 6a 受熱フィン 6b 放熱フィン 9a 第1連結管 9b 第2連結管 41a 高温側上端タンク 41b 低温側上端タンク 42a 高温側下端タンク 42b 低温側下端タンク DESCRIPTION OF SYMBOLS 1 Electronic device device 2 Fluid separator 3 Boiling cooler 4 Boiling cooling pipe 5 Connecting pipe 6 Heat transfer fin 7 Boiling part 8 Condensing part 9 Temperature sensor 11 Electronic parts (heating element) 12 Electronic parts (heating element) 13 Housing (case) 14) Boiling cooling device 15 Closed space 17 High temperature side heat transfer space (passage inside the housing) 18 Low temperature side heat transfer space (passage outside the housing) 21 Upper side centrifugal blower (outside casing fluid circulation means) 22 Lower side centrifugal blower (Fluid circulating means in housing) 25 Heat exchange device 41 High temperature side tank 42 Low temperature side tank 51 Alternate part (positional deviation part) 52 Alternating part (positional deviation part) 3a High temperature side heat exchanger (internal housing heat exchanger) 3b Low temperature Side heat exchanger (heat exchanger outside the housing) 4a Boiling cooling pipe 4b Boiling cooling pipe 6a Heat receiving fin 6b Radiating fin 9a First connecting pipe 9b Second connecting pipe 41a High temperature side upper end tank 41b Low temperature side upper end tank 42a High temperature side lower end tank 42b Low temperature side lower end tank

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内部が外部から密閉化され、内部流体と外
部流体とを隔離する筐体を貫通して配され、前記筐体内
の内部流体の熱を前記筐体外の外部流体へ移動させる沸
騰冷却器であって、 (a)前記筐体内に配される側が内部流体から受熱して
内部に封入された冷媒が沸騰する沸騰部を成すと共に、
前記筐体外に配される側が前記沸騰部で沸騰した冷媒蒸
気の熱を外部流体に放出して冷媒蒸気を凝縮させる凝縮
部を成す沸騰冷却管と、 (b)前記沸騰部を成す前記沸騰冷却管に設けられ、内
部流体から受熱する受熱フィンと、 (c)前記凝縮部を成す前記沸騰冷却管に設けられ、外
部流体に放熱する放熱フィンとを具備した沸騰冷却器に
おいて、 前記受熱フィンのフィンピッチをP1 、 前記放熱フィンのフィンピッチをP2 としたとき、 P1 <P2 の関係を満足することを特徴とする沸騰冷却器。
1. A boiling system in which the inside is sealed from the outside and is arranged so as to pass through a casing that separates the internal fluid from the external fluid, and the heat of the internal fluid in the casing is transferred to the external fluid outside the casing. In the cooler, (a) the side provided in the casing forms a boiling portion in which the refrigerant enclosed in the inside receives heat from the internal fluid and
A boiling cooling pipe that forms a condensing portion that condenses the refrigerant vapor by radiating the heat of the refrigerant vapor that has boiled in the boiling portion to an external fluid, and (b) the boil cooling that forms the boiling portion. A boiling cooler comprising: a heat receiving fin provided on a pipe and receiving heat from an internal fluid; and (c) a heat radiating fin provided on the boiling cooling pipe forming the condensing portion and radiating heat to an external fluid, When the fin pitch is P1 and the fin pitch of the radiating fins is P2, a boiling cooler satisfying the relationship of P1 <P2.
【請求項2】請求項1に記載の沸騰冷却器を備えた熱交
換装置において、 前記沸騰冷却器は、内部流体と外部流体とが対向流とな
るように内部流体および外部流体の流れ方向に多段に配
設されたことを特徴とする熱交換装置。
2. A heat exchange apparatus having a boiling cooler according to claim 1, wherein the boiling cooler is arranged in a flow direction of the internal fluid and the external fluid so that the internal fluid and the external fluid are in counterflow. A heat exchange device characterized by being arranged in multiple stages.
【請求項3】請求項2に記載の熱交換装置を備えた沸騰
冷却装置において、 内部流体が流れると共に、前記沸騰部を収容した筐体内
通路と、 この筐体内通路に前記筐体により気密的に区画され、外
部流体が流れると共に、前記凝縮部を収容した筐体外通
路と、 前記筐体内通路内において内部流体を強制循環させる筐
体内流体循環手段と、 前記筐体外通路内において外部流体を強制循環させる筐
体外流体循環手段とを備えたことを特徴とする沸騰冷却
装置。
3. A boiling cooling device comprising the heat exchange device according to claim 2, wherein an internal fluid flows, and a casing internal passage accommodating the boiling portion, and the casing internal air passage is hermetically sealed by the casing. And an external fluid flowing therein, the external fluid passage containing the condenser, an internal fluid circulation means for forcibly circulating the internal fluid in the internal passage, and an external fluid in the external passage. A boil cooling apparatus comprising: a fluid circulating means for circulating a fluid outside a casing.
【請求項4】内部が外部から密閉化され、内部流体と外
部流体とを隔離する筐体を貫通して配され、前記筐体内
の内部流体の熱を前記筐体外の外部流体へ移動させる沸
騰冷却器であって、 (a)前記筐体内に配され、内部流体から受熱して内部
に封入された冷媒が沸騰する沸騰部を成す筐体内熱交換
器と、 (b)前記筐体外に配され、前記沸騰部で沸騰した冷媒
蒸気の熱を外部流体に放出して冷媒蒸気を凝縮させる凝
縮部を成す筐体外熱交換器と、 (c)前記筐体を貫通して配され、前記筐体内熱交換器
と前記筐体外熱交換器とを気密的に連結する連結管と、 (d)前記筐体内熱交換器に設けられ、内部流体から受
熱する受熱フィンと、 (e)前記筐体外熱交換器に設けられ、外部流体に放熱
する放熱フィンとを具備した沸騰冷却器において、 前記受熱フィンのフィンピッチをP1 、 前記放熱フィンのフィンピッチをP2 としたとき、 P1 <P2 の関係を満足することを特徴とする沸騰冷却器。
4. Boiling for sealing the inside from the outside and penetrating through a casing that separates the internal fluid and the external fluid, and transferring the heat of the internal fluid inside the casing to the external fluid outside the casing. A cooler comprising: (a) a heat exchanger in a housing, which is arranged in the housing and serves as a boiling portion where the refrigerant enclosed in the interior of the housing receives heat from an internal fluid, and (b) is arranged outside the housing. A heat exchanger outside the housing that forms a condensing portion that condenses the refrigerant vapor by releasing the heat of the refrigerant vapor that has boiled in the boiling portion to an external fluid; and (c) is disposed so as to penetrate the housing, A connecting pipe that hermetically connects the internal heat exchanger and the external heat exchanger to each other, (d) a heat receiving fin provided in the internal heat exchanger for receiving heat from an internal fluid, and (e) outside the external housing A boiling cooler equipped with heat radiating fins installed in the heat exchanger that radiates heat to the external fluid. Te, when the fin pitch of the heat-receiving fins P1, the fin pitch of the heat radiating fin was P2, boiling cooler and satisfies a relationship of P1 <P2.
【請求項5】請求項4に記載の沸騰冷却器において、 前記筐体内熱交換器と前記筐体外熱交換器とを略同一平
面上で、且つ幅方向に位置をずらして配設し、この位置
ずれ部に前記筐体内熱交換器の上部と前記筐体外熱交換
器の上部とを連結する第1連結管、および前記筐体内熱
交換器の下部と前記筐体外熱交換器の下部とを連結する
第2連結管を設けたことを特徴とする沸騰冷却器。
5. The boiling cooler according to claim 4, wherein the heat exchanger inside the housing and the heat exchanger outside the housing are arranged on substantially the same plane and displaced in the width direction. A first connecting pipe connecting the upper part of the heat exchanger inside the housing and the upper part of the heat exchanger outside the housing to the position shift part, and the lower part of the heat exchanger inside the housing and the lower part of the heat exchanger outside the housing. A boiling cooler comprising a second connecting pipe for connecting.
【請求項6】請求項4または請求項5に記載の沸騰冷却
器を備えた熱交換装置において、 前記沸騰冷却器は、内部流体と外部流体とが対向流とな
るように内部流体および外部流体の流れ方向に多段に配
設されたことを特徴とする熱交換装置。
6. A heat exchange device having a boiling cooler according to claim 4 or 5, wherein the boiling cooler has an internal fluid and an external fluid such that the internal fluid and the external fluid are in counterflow. A heat exchange device characterized in that the heat exchange device is arranged in multiple stages in the flow direction of.
【請求項7】請求項6に記載の熱交換装置を備えた沸騰
冷却装置において、 内部を内部流体が流れると共に、前記筐体内熱交換器を
収容した筐体内通路と、 この筐体内通路に前記筐体により気密的に区画され、内
部を外部流体が流れると共に、前記筐体外熱交換器を収
容した筐体外通路と、 前記筐体内通路内において内部流体を強制循環させる筐
体内流体循環手段と、 前記筐体外通路内において外部流体を強制循環させる筐
体外流体循環手段とを備えたことを特徴とする沸騰冷却
装置。
7. A boiling cooling device provided with a heat exchange device according to claim 6, wherein an internal fluid flows through the inside, and a passage inside the casing accommodating the heat exchanger inside the casing, and a passage inside the casing. An enclosure external passage that is airtightly partitioned by an enclosure, and an external fluid flows through the interior, and that accommodates the enclosure external heat exchanger; and an enclosure internal fluid circulation unit that forcibly circulates the internal fluid in the enclosure internal passage, A boil cooling apparatus, comprising: an external fluid circulating means for forcibly circulating an external fluid in the external passage.
JP8075692A 1996-01-29 1996-03-29 Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler Pending JPH09264677A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP8075692A JPH09264677A (en) 1996-03-29 1996-03-29 Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler
US08/790,015 US6119767A (en) 1996-01-29 1997-01-28 Cooling apparatus using boiling and condensing refrigerant
GB9706506A GB2312499B (en) 1996-03-29 1997-03-27 Cooling apparatus using boiling and condensing refrigerant
AU16601/97A AU699379B2 (en) 1996-03-29 1997-03-27 Cooling apparatus using boiling and condensing refrigerant
GB9922813A GB2340218B (en) 1996-03-29 1997-03-27 Cooling apparatus using boiling and condensing refrigerant
KR1019970011132A KR100259599B1 (en) 1996-03-29 1997-03-28 Cooling apparatus using boiling and condensing refrigerant
CN97113010A CN1131988C (en) 1996-03-29 1997-03-29 Cooling device by use of boiling and condensing refrigerant
BR9701588A BR9701588A (en) 1996-03-29 1997-03-31 Cooling device
US09/467,003 US6575230B1 (en) 1996-01-29 1999-12-20 Cooling apparatus using boiling and condensing refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8075692A JPH09264677A (en) 1996-03-29 1996-03-29 Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler

Publications (1)

Publication Number Publication Date
JPH09264677A true JPH09264677A (en) 1997-10-07

Family

ID=13583518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8075692A Pending JPH09264677A (en) 1996-01-29 1996-03-29 Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler

Country Status (1)

Country Link
JP (1) JPH09264677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222253A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust gas heat recovery unit
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
US20160076819A1 (en) * 2014-09-15 2016-03-17 Aavid Thermalloy, Llc Thermosiphon with bent tube section

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222253A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust gas heat recovery unit
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
US8345425B2 (en) 2009-08-28 2013-01-01 Hitachi, Ltd. Cooling system and electronic apparatus applying the same therein
US20160076819A1 (en) * 2014-09-15 2016-03-17 Aavid Thermalloy, Llc Thermosiphon with bent tube section
JP2017534826A (en) * 2014-09-15 2017-11-24 アアヴィッド・サーマロイ・エルエルシー Thermosiphon with a bent tube
US10655920B2 (en) 2014-09-15 2020-05-19 Aavid Thermalloy, Llc Thermosiphon with bent tube section

Similar Documents

Publication Publication Date Title
US6119767A (en) Cooling apparatus using boiling and condensing refrigerant
KR100259599B1 (en) Cooling apparatus using boiling and condensing refrigerant
US5737923A (en) Thermoelectric device with evaporating/condensing heat exchanger
CN103687443B (en) Cooling device and manufacture method thereof
TW200541443A (en) Electronic component cooling system for an air-cooled chiller
CN106954366B (en) Heat exchanger for power electronic components
JP2003179375A (en) Modular cooler and heat bath for high power electronic cabinet
JPH08340189A (en) Boiling cooling device
JP2001349651A (en) Withdrawing liquid cooling device using phase change coolant
JP2004125381A (en) Heat pipe unit and heat pipe cooler
JP2004233791A (en) Electronic equipment and refrigeration unit used therein
EP2171385A2 (en) Auxiliary cooling system
US6826923B2 (en) Cooling device for semiconductor elements
JP3767053B2 (en) Boiling cooling device and casing cooling device using the same
JPH10227554A (en) Cooling apparatus
JP2005210088A (en) Cooling device in closed cabinet
JPH09264677A (en) Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler
JP3834873B2 (en) Boiling cooler
JP3906511B2 (en) Cooling device and casing cooling device provided with the cooling device
JPH09326582A (en) Boiling cooling device and case cooling device equipped therewith
JP3861361B2 (en) COOLING DEVICE AND CASE COOLING DEVICE HAVING THE COOLING DEVICE
JP3539151B2 (en) Cooling system
JP2004028403A (en) Heating element cooler
JP3750209B2 (en) Boiling cooler
JPH10178292A (en) Boiling cooler and housing cooler employing it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419