JPH09263463A - Production of lightweight refractory - Google Patents

Production of lightweight refractory

Info

Publication number
JPH09263463A
JPH09263463A JP8077077A JP7707796A JPH09263463A JP H09263463 A JPH09263463 A JP H09263463A JP 8077077 A JP8077077 A JP 8077077A JP 7707796 A JP7707796 A JP 7707796A JP H09263463 A JPH09263463 A JP H09263463A
Authority
JP
Japan
Prior art keywords
raw material
slurry
stock
alumina
mullite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8077077A
Other languages
Japanese (ja)
Other versions
JP3094147B2 (en
Inventor
Fumitake Nishiyama
文毅 西山
Yoichi Yajima
洋一 矢島
Mikio Tsukahara
幹夫 塚原
Rikio Fukuda
力夫 福田
Kiyoo Tatebayashi
清夫 館林
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGANO PREF GOV
NAPATSUKU KK
TOYONO CERATEC KK
Nagano Prefecture
Nichias Ceratech Corp
Nichias Corp
Original Assignee
NAGANO PREF GOV
NAPATSUKU KK
TOYONO CERATEC KK
Nagano Prefecture
Nichias Ceratech Corp
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGANO PREF GOV, NAPATSUKU KK, TOYONO CERATEC KK, Nagano Prefecture, Nichias Ceratech Corp, Nichias Corp filed Critical NAGANO PREF GOV
Priority to JP08077077A priority Critical patent/JP3094147B2/en
Publication of JPH09263463A publication Critical patent/JPH09263463A/en
Application granted granted Critical
Publication of JP3094147B2 publication Critical patent/JP3094147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure superior thermal shock resistance, to save energy and to reduce cost by dehydration-molding a slurry prepd. by mixing specified powdery refractory stock with alumina fibers and water and firing the resultant molded body at a high temp. SOLUTION: Powdery refractory stock is prepd. by mixing hydraulic alumina with kaolin, silica flour and mullite powder in a ratio of 60:7:15:18 to 15:20:25:30 and 5-35wt.% alumina fibers and water are added to the stock or smectite is further added by 0.5-8wt.% of the total amt. of the stock and the alumina fibers. They are mixed and the resultant slurry is dehydration-molded and fired at 1,600-1,650 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は軽量耐火物、特に粉
末冶金の製造工程で使用される焼成受け治具(以下、セ
ッターという)に好適な軽量耐火物の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a lightweight refractory, particularly a lightweight refractory suitable for a firing receiving jig (hereinafter referred to as a setter) used in a manufacturing process of powder metallurgy.

【0002】[0002]

【従来の技術並びに発明が解決しようとする課題】粉末
冶金の製造工程において、成形体を焼結させ、金属の持
つべき特性を十分に発現させるために焼成工程は必要不
可欠であり、また求める特性を十分に得るためにセッタ
ーが極めて重要な役割を果たしている。このセッター
は、ムライト製の台盤にSUS304のトレイを載せて
構成されるのが一般的である。しかし、上記の現在主流
となっているセッターは、SUS304は製品が付着す
るという問題があり、またムライト製の台盤は曲げ強さ
が3.9MPaと実用上問題の無い程度に高いものの、
密度が3.0g/cm3 と高いことから、加熱効率が悪
く省エネルギーの観点から問題がある。特に、最近で
は、製品の小型化が進行しており、セッターに比べて被
焼成物の重量が小さくなる傾向にあり、焼成燃費に占め
るセッター加熱の割合が無視できない状況にある。
2. Description of the Related Art In the manufacturing process of powder metallurgy, a firing step is indispensable and required in order to sinter a compact and fully develop the characteristics that a metal should have. The setter plays an extremely important role to get enough. This setter is generally configured by mounting a SUS304 tray on a mullite base. However, the above-mentioned current mainstream setter has a problem that the product adheres to SUS304, and the base plate made of mullite has a bending strength of 3.9 MPa, which is high enough to cause no practical problem.
Since the density is as high as 3.0 g / cm 3 , the heating efficiency is poor and there is a problem from the viewpoint of energy saving. In particular, in recent years, the size of products has been reduced, and the weight of the object to be fired tends to be smaller than that of the setter, and the ratio of the setter heating to the fuel consumption of firing cannot be ignored.

【0003】本発明は上記の状況に鑑みてなされたもの
であり、粉末冶金における省エネルギー及びコスト削減
を目的に、耐熱衝撃性を維持しつつ軽量化した、特にセ
ッターに好適な耐火物の製造方法を提供することを目的
とする。
The present invention has been made in view of the above situation, and for the purpose of energy saving and cost reduction in powder metallurgy, a method for producing a refractory material which is lightweight while maintaining thermal shock resistance, particularly suitable for a setter. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記の目的は、本発明
の、(1)水硬性アルミナ、カオリン、シリカフラワー
及びムライト粉末を主成分とする耐火物原料粉末と、ア
ルミナファイバーとを水と混合して得られたスラリーを
脱水成形した後、高温焼成することを特徴とする軽量耐
火物の製造方法、及び(2)前記耐火物原料粉末に、ス
メクタイトを添加することを特徴とする上記(1)に記
載の軽量耐火物の製造方法によって達成される。
The above object is to mix (1) a refractory raw material powder mainly composed of hydraulic alumina, kaolin, silica flour and mullite powder of the present invention with alumina fiber. The slurry thus obtained is dehydrated and molded, and then fired at a high temperature, and (2) a smectite is added to the refractory raw material powder. ) Is achieved by the method for manufacturing a lightweight refractory material.

【0005】上記の構成によれば、下記の如き作用効果
が得られる。 ムライトはその粉末自体の焼結性は良くないが、原料
粉末中に配合することにより、ムライト化反応の核とし
て作用させて、ムライト特有の耐熱性を焼成体(即ち、
本発明の軽量耐火物と同義)に効果的に付与することが
でき、焼成時間を短縮することができる。 水硬性アルミナはマトリックス形成の他に無機バイン
ダーとしての機能も果たし、脱水成形した成形体(以
下、原料成形体と呼ぶ)のハンドリング強度を増大させ
る。 スメクタイトを添加することにより、スラリーの粘性
が高まり、またスラリー調製時における混合中の剪断力
が増大して出発原料の分散性が良くなるとともに、水硬
性アルミナとゲル化反応を起こし原料成形体の硬化を促
進する。
According to the above construction, the following operational effects can be obtained. Mullite does not have a good sinterability in the powder itself, but by blending it in the raw material powder, it acts as the core of the mullite reaction, and the heat resistance peculiar to mullite is imparted to the fired body (ie,
(Synonymous with the lightweight refractory material of the present invention) can be effectively applied, and the firing time can be shortened. The hydraulic alumina also functions as an inorganic binder in addition to forming a matrix, and increases the handling strength of a dehydrated molded body (hereinafter referred to as a raw material molded body). By adding smectite, the viscosity of the slurry is increased, and the shearing force during mixing during slurry preparation is increased to improve the dispersibility of the starting material, and at the same time, a gelling reaction occurs with hydraulic alumina to form a raw material compact. Accelerates curing.

【0006】[0006]

【発明の実施の形態】以下に、本発明の軽量耐火物の製
造方法に関して詳細に説明する。原料粉末は水硬性アル
ミナ、カオリン、シリカフラワー及びムライト粉末を主
成分とする。また、原料粉末の組成は水硬性アルミナ、
カオリン、シリカフラワー及びムライトを60:7:1
5:18〜25:20:25:30、特に35:14:
22:29〜39:10:26:25であることが好ま
しい。原料粉末の組成において、上記の範囲外にある場
合には、ムライト質の生成が不十分となり、機械的強度
の向上が得られない。また、原料粉末を構成する前記各
成分の平均粒径は3〜40μm、特に5〜20μmであ
ることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a lightweight refractory material of the present invention will be described in detail below. The raw material powder is mainly composed of hydraulic alumina, kaolin, silica flour and mullite powder. The composition of the raw material powder is hydraulic alumina,
Kaolin, silica flower and mullite 60: 7: 1
5:18 to 25: 20: 25: 30, especially 35:14:
It is preferably from 22:29 to 39: 10: 26: 25. When the composition of the raw material powder is out of the above range, mullite is insufficiently produced, and the mechanical strength cannot be improved. Further, the average particle diameter of each of the components constituting the raw material powder is preferably 3 to 40 μm, and particularly preferably 5 to 20 μm.

【0007】アルミナファイバーは、ムライト質マトリ
ックスを補強するために配合される成分である。このア
ルミナファイバーは、原料粉末に対して5〜35重量
%、特に15〜20重量%混合されることが好ましく、
これより少ないと得られる補強効果が発現しない。
Alumina fibers are components that are compounded to reinforce the mullite matrix. This alumina fiber is preferably mixed in an amount of 5 to 35% by weight, particularly 15 to 20% by weight, based on the raw material powder,
If it is less than this, the reinforcing effect obtained is not exhibited.

【0008】本発明においては、上記原料粉末及びアル
ミナファイバーとを必須成分とするが、スメクタイトの
粉末を添加してもよい。スメクタイトは粘土質であるこ
とから、水スラリーとした時の粘度調整剤として機能す
るとともに、スラリーの分散性を向上させることができ
る。また、原料成形体とする時の成形性及び形状安定性
が向上するとともに、焼成時に原料成形体の亀裂や破損
を防止することができ、焼成体の機械的強度を向上させ
ることができる。また、スメクタイトは、その焼成生成
物がマトリックス中に均一に分散して存在する。このス
メクタイトの添加量としては、原料粉末とアルミナファ
イバーとの合計量に対して0.5〜8重量%、特に1〜
4重量%であることが好ましい。
In the present invention, the raw material powder and the alumina fiber are essential components, but smectite powder may be added. Since smectite is clay-like, it can function as a viscosity modifier when it is made into a water slurry and can improve the dispersibility of the slurry. In addition, the formability and shape stability of the raw material compact can be improved, cracks and damages of the raw material compact can be prevented during firing, and the mechanical strength of the fired product can be improved. In addition, smectite exists in a matrix in which the baked product thereof is uniformly dispersed. The amount of the smectite added is 0.5 to 8% by weight, particularly 1 to 8% by weight based on the total amount of the raw material powder and the alumina fiber.
It is preferably 4% by weight.

【0009】そして、上記の原料粉末、アルミナファイ
バー及び必要に応じて添加されるスメクタイトとからな
る出発原料を水に混合してスラリーとし、これを脱水成
形してなる原料成形体を所定温度で焼成することで軽量
耐火物が得られる。ここで、スラリーにおける出発原料
と水との混合割合は、成形に支障の無い範囲であれば特
に制限されない。脱水成形は、例えばスラリーを金型に
注入した状態で乾燥炉中50℃で1時間加熱した後、金
型から外し、更に乾燥炉中100℃で1時間加熱、乾燥
して行われる。
Then, a starting material consisting of the above-mentioned raw material powder, alumina fiber and smectite optionally added is mixed with water to form a slurry, and a raw material compact formed by dehydration molding is fired at a predetermined temperature. By doing so, a lightweight refractory material can be obtained. Here, the mixing ratio of the starting material and water in the slurry is not particularly limited as long as it does not hinder molding. The dehydration molding is carried out, for example, by heating the slurry in a mold in a drying furnace at 50 ° C. for 1 hour, removing the slurry from the mold, and further heating in a drying furnace at 100 ° C. for 1 hour to dry.

【0010】そして、原料成形体は、所定の温度で焼成
される。焼成温度はムライト質の生成に必要な温度であ
る。この温度は出発原料の組成により変化し、また一般
に焼成温度が高くなると、焼結体の収縮率が大きくなり
密度が高くなる傾向があることから、用途に応じて目的
とする密度と曲げ強度とを考慮して焼成温度を設定する
ことが好ましい。本発明においては、セッターとして実
用上好ましい密度1.0kg/cm3 以下、曲げ強度
8.0MPaを目的としており、これらを満足するため
には、上記の好ましい原料組成において焼成温度は概ね
1600〜1650℃である。
Then, the raw material compact is fired at a predetermined temperature. The firing temperature is the temperature required for producing mullite. This temperature changes depending on the composition of the starting material, and generally, when the firing temperature increases, the shrinkage rate of the sintered body tends to increase and the density tends to increase. It is preferable to set the firing temperature in consideration of the above. In the present invention, the purpose is to have a density of 1.0 kg / cm 3 or less and a bending strength of 8.0 MPa which are practically preferable as a setter, and in order to satisfy these, the firing temperature in the above preferable raw material composition is approximately 1600 to 1650. ℃.

【0011】上記の如く得られる本発明の軽量耐火物
は、ムライト質をマトリックスとし、その中にアルミナ
ファイバーが均一に分散し、またスメクタイトを添加し
た場合にはスメクタイト焼成生成物も均一に分散した構
造を有する。
The lightweight refractory material of the present invention obtained as described above uses mullite as a matrix, in which the alumina fibers are uniformly dispersed, and when smectite is added, the smectite calcined product is also uniformly dispersed. Have a structure.

【0012】以下に、実施例を挙げて本発明を更に詳細
に説明する。表1に示す割合で、出発原料と水とを攪拌
機を用いて2分間攪拌してスラリーを調製した。
The present invention will be described in more detail below with reference to examples. The starting materials and water were stirred at a ratio shown in Table 1 for 2 minutes using a stirrer to prepare a slurry.

【0013】[0013]

【表1】 [Table 1]

【0014】そして、スラリーを金枠(120×120
×10mm)中に流し込み、その表面をSUS製のコテ
を使用して平滑化した。尚、離型性を上げるためにグラ
スクロスを底部に敷き、金枠にマシン油を塗布した。次
いで、スラリーを流し込んだ金枠を乾燥炉中50℃で1
時間加熱した後、金枠及びグラスクロスから外し、更に
乾燥炉中100℃で1時間加熱、乾燥して原料成形体を
作成した。前記脱水成形した原料成形体を(株)広築製
HLF 203 5型高温電気炉を用いて、温度を変え
て空気中で30分間保持して焼成した。焼成条件は、急
熱急冷とした。
Then, the slurry is added to a metal frame (120 × 120
(10 mm), and the surface was smoothed using a SUS trowel. In addition, a glass cloth was laid on the bottom in order to improve releasability, and machine oil was applied to the metal frame. Then, the metal frame in which the slurry was poured was dried in a drying oven at 50 ° C. for 1 hour.
After heating for an hour, it was removed from the metal frame and glass cloth, and further heated and dried at 100 ° C. for 1 hour in a drying furnace to prepare a raw material molded body. The dehydrated and molded raw material compact was fired by using an HLF 203 5 type high temperature electric furnace manufactured by Hirotsuki Co., Ltd. while maintaining the temperature in air for 30 minutes while changing the temperature. The firing conditions were rapid heating and rapid cooling.

【0015】得られた焼成体について、密度及び収縮率
を測定するとともに、(株)島津製作所製オートグラフ
AG−A型を用いて、3点曲げ試験を行った。下部支点
距離は、50mm、クロスヘッド速度は、0.5mm/
minとした。測定結果を、図1及び図2に示す。実施
例1及び実施例2とも、ムライト台盤とSUSとから構
成された従来品以上の曲げ強度を有し、特に本発明で目
的とする値を実現できた。また、密度に関しても、本発
明で目的とする値を実現できた。
The density and shrinkage of the obtained fired body were measured, and a three-point bending test was performed using an Autograph AG-A type manufactured by Shimadzu Corporation. Lower fulcrum distance is 50 mm, crosshead speed is 0.5 mm /
min. The measurement results are shown in FIGS. 1 and 2. Both Example 1 and Example 2 had a bending strength higher than that of a conventional product composed of a mullite table and SUS, and in particular, the value targeted by the present invention could be realized. Further, regarding the density, the target value of the present invention could be realized.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば下
記の如き作用効果が得られ、特にセッターの製造に好適
に適用することができる。 ムライトはその粉末自体の焼結性は良くないが、原料
粉末中に配合することにより、ムライト化反応の核とし
て作用させて、ムライト特有の耐熱性を焼成体(即ち、
本発明の軽量耐火物と同義)に効果的に付与することが
でき、焼成時間を短縮することができる。 水硬性アルミナはマトリックス形成の他に無機バイン
ダーとしての機能も果たし、脱水成形した成形体(以
下、原料成形体と呼ぶ)のハンドリング強度を増大させ
る。 スメクタイトを添加することにより、スラリーの粘性
が高まり、またスラリー調製時における混合中の剪断力
が増大して出発原料の分散性が良くなるとともに、水硬
性アルミナとゲル化反応を起こし原料成形体の硬化を促
進する。
As described above, according to the present invention, the following operational effects can be obtained, and the present invention can be preferably applied particularly to the production of setters. Mullite does not have a good sinterability in the powder itself, but by blending it in the raw material powder, it acts as the core of the mullite reaction, and the heat resistance peculiar to mullite is imparted to the fired body (ie,
(Synonymous with the lightweight refractory material of the present invention) can be effectively applied, and the firing time can be shortened. The hydraulic alumina also functions as an inorganic binder in addition to forming a matrix, and increases the handling strength of a dehydrated molded body (hereinafter referred to as a raw material molded body). By adding smectite, the viscosity of the slurry is increased, and the shearing force during mixing during slurry preparation is increased to improve the dispersibility of the starting material, and at the same time, a gelling reaction occurs with hydraulic alumina to form a raw material compact. Accelerates curing.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において、焼成温度と得られた焼成体
の密度、曲げ強度並びに収縮率の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the firing temperature and the density, bending strength, and shrinkage rate of the obtained fired body in Example 1.

【図2】実施例2において、焼成温度と得られた焼成体
の密度、曲げ強度並びに収縮率の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the firing temperature and the density, bending strength, and shrinkage rate of the obtained fired body in Example 2.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 595109708 ナパック株式会社 長野県駒ヶ根市飯坂1丁目32番2号 (72)発明者 西山 文毅 長野県長野市丹波島2−2−3 (72)発明者 矢島 洋一 長野県長野市大字風間1374−15 (72)発明者 塚原 幹夫 千葉県印旛郡印西町小倉台1−1 (72)発明者 福田 力夫 長野県上水内郡牟礼村大字牟礼708−4 (72)発明者 館林 清夫 長野県長野市松代町東寺尾3893 (72)発明者 鈴木 明 長野県駒ケ根市梨ノ木6−24 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 595109708 Napac Co., Ltd. 1-232 Iisaka, Komagane City, Nagano Prefecture (72) Inventor Fumitake Nishiyama 2-2-3 Tambajima, Nagano City, Nagano Prefecture (72) Invention Person Yoichi Yajima 1374-15 Kazama, Nagano City, Nagano Prefecture 1372-15 Inventor Mikio Tsukahara 1-1 Koguradai, Inzai Town, Inba District, Chiba Prefecture Inventor Rikio Fukuda Mure Village, Kamuinai District, Nagano Prefecture 708-4 (72) Inventor Kiyoo Tatebayashi 3893 Higashiterao, Matsushiro Town, Nagano City, Nagano Prefecture (72) Inventor Akira Suzuki 6-24 Rinogi, Komagane City, Nagano Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水硬性アルミナ、カオリン、シリカフラ
ワー及びムライト粉末を主成分とする耐火物原料粉末
と、アルミナファイバーとを水と混合して得られたスラ
リーを脱水成形した後、高温焼成することを特徴とする
軽量耐火物の製造方法。
1. A slurry obtained by mixing refractory raw material powder mainly composed of hydraulic alumina, kaolin, silica flour and mullite powder, and alumina fiber with water is dehydrated and molded, and then fired at a high temperature. A method for manufacturing a lightweight refractory material.
【請求項2】 前記耐火物原料粉末に、スメクタイトを
添加することを特徴とする請求項1に記載の軽量耐火物
の製造方法。
2. The method for manufacturing a lightweight refractory material according to claim 1, wherein smectite is added to the refractory material powder.
JP08077077A 1996-03-29 1996-03-29 Firing jig Expired - Fee Related JP3094147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08077077A JP3094147B2 (en) 1996-03-29 1996-03-29 Firing jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08077077A JP3094147B2 (en) 1996-03-29 1996-03-29 Firing jig

Publications (2)

Publication Number Publication Date
JPH09263463A true JPH09263463A (en) 1997-10-07
JP3094147B2 JP3094147B2 (en) 2000-10-03

Family

ID=13623730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08077077A Expired - Fee Related JP3094147B2 (en) 1996-03-29 1996-03-29 Firing jig

Country Status (1)

Country Link
JP (1) JP3094147B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298227A (en) * 2004-04-06 2005-10-27 National Institute Of Advanced Industrial & Technology Method of manufacturing ceramic structure and ceramic structure
JP2005298225A (en) * 2004-04-06 2005-10-27 National Institute Of Advanced Industrial & Technology Plastic body for ceramic structure and its manufacturing method
US7735539B2 (en) 2007-12-28 2010-06-15 Nohara Guard System Co. Ltd. Fire-resistant smoke-suppressant device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298227A (en) * 2004-04-06 2005-10-27 National Institute Of Advanced Industrial & Technology Method of manufacturing ceramic structure and ceramic structure
JP2005298225A (en) * 2004-04-06 2005-10-27 National Institute Of Advanced Industrial & Technology Plastic body for ceramic structure and its manufacturing method
JP4517104B2 (en) * 2004-04-06 2010-08-04 独立行政法人産業技術総合研究所 Manufacturing method of ceramic structure and ceramic structure
US7735539B2 (en) 2007-12-28 2010-06-15 Nohara Guard System Co. Ltd. Fire-resistant smoke-suppressant device

Also Published As

Publication number Publication date
JP3094147B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CN101525248B (en) Ceramic aerogel and method for preparing the ceramic aerogel by gel injection moulding
CN101654362B (en) Silicon oxynitride combined carborundum high-temperature ceramic material and preparation method thereof
CN105481355B (en) A kind of aluminum oxide closed cell foamed ceramics of Zirconium oxide fibre enhancing and preparation method thereof
CN108017405A (en) A kind of preparation method of In-situ Mullite Whisker ceramic material
CN107162597A (en) A kind of formula of moulding by casting silicon nitride products based on silicon carbide and preparation method thereof
US3993495A (en) Porous ceramic articles and method for making same
CN102503494B (en) Preparation method of high-strength mullite light refractory material
CN110818398A (en) Sagger for high-temperature firing and preparation method thereof
CN108085785A (en) A kind of preparation method of silicon nitride fiber material
CN105016751A (en) Method for preparing zircon refractory material by using particle size distribution combined with gel injection molding process
CN104860712B (en) A kind of method for preparing light porous heat-insulated aggregate using discarded fused silica crucible
CN109081685B (en) Alumina ceramic and preparation method thereof
JP3094148B2 (en) Manufacturing method of lightweight refractory
CN110386809A (en) A kind of silicon-base ceramic core and preparation method thereof
JPH09263463A (en) Production of lightweight refractory
JPH0288452A (en) Heat-resistant inorganic compact
JPS5988378A (en) Lightweight refractories and manufacture
JP3451568B2 (en) Method for producing fiber molded body
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
CN107459342A (en) A kind of microwave metallurgical kiln car periclase silicon oxynitride composite refractory
CN115231925A (en) Method for preparing calcium hexaluminate combined silicon carbide ceramic by microwave
JP3094149B2 (en) Manufacturing method of lightweight refractory
CN114292101A (en) Preparation method of quartz ceramic revolving body
CN103274692A (en) Unfired SiC kiln furniture material and production method thereof
CN107010933A (en) A kind of slurry preparation method of investment-casting core

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees