JPH0926277A - Heat storage capsule - Google Patents

Heat storage capsule

Info

Publication number
JPH0926277A
JPH0926277A JP7173581A JP17358195A JPH0926277A JP H0926277 A JPH0926277 A JP H0926277A JP 7173581 A JP7173581 A JP 7173581A JP 17358195 A JP17358195 A JP 17358195A JP H0926277 A JPH0926277 A JP H0926277A
Authority
JP
Japan
Prior art keywords
capsule
heat storage
ribs
side direction
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7173581A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Masahiro Oka
正博 岡
Seiichi Kubokawa
清一 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Kasei Engineering Co
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Kasei Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Kasei Engineering Co filed Critical Mitsubishi Chemical Corp
Priority to JP7173581A priority Critical patent/JPH0926277A/en
Publication of JPH0926277A publication Critical patent/JPH0926277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To direct a heat medium to flow in a heat storage tank longitudinally and transversely by disposing several ribs between two lines of half-split protrusions in parallel to the short sides of the capsule, and forming a groove stripe into a shape where it is fitted to protrusions on the projecting parts and disposing the groove stripe at the position of the fitting of the protrusions. SOLUTION: A heat storage capsule 1 is a square hollow container on the surface of which there are formed a plurality of projecting parts 2 and ribs 3. Each projecting part is formed into an ellipsoidal shape in the direction of the short sides of the capsule, and there is provided a protrusion 4 on the major axis of the ellipse which is fitted to a groove provided on the back surface of another capsule. Several lines of the projecting parts are disposed at predetermined intervals in parallel to the short side of the capsule, and they are displaced for each line thereof in the long side direction of the capsule by half of the pitch of the projecting parts in the direction of the short sides of the same. Each projecting part 5 at the end surface of the capsule in the direction of the short sides of the same is configured into a half split shape where one projecting part is formed by arranging the two capsules horizontally. Hereby, a short path of a heat medium is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱カプセルに関
する。さらに詳しくは、蓄熱槽において熱媒体を縦方向
(鉛直方向)または横方向(水平方向)に流すことが可
能な平板状蓄熱カプセルに関するものである。
TECHNICAL FIELD The present invention relates to a heat storage capsule. More specifically, the present invention relates to a flat heat storage capsule capable of flowing a heat medium in a heat storage tank in a vertical direction (vertical direction) or a horizontal direction (horizontal direction).

【0002】[0002]

【従来の技術】潜熱蓄熱システムの蓄熱槽は、大別して
シェルアンドチューブ型とカプセル型に分けられる。シ
ェルアンドチューブ型は、通常のシェルアンドチューブ
型熱交換器のシェル側に蓄熱材が入っており、チューブ
側に熱媒体が流れる形式のものである。カプセル型は、
蓄熱材が円柱状、平板状または球状等の比較的小さな容
器(カプセル)の中に収納されており、シェル内に多数
配置された該容器外を熱媒体が流れる形式のものであ
る。シェルアンドチューブ型は氷蓄熱用としては数多く
研究されているが、氷以外の無機水和塩を蓄熱材に用い
る場合は、無機塩の腐食性などの問題から、圧倒的にカ
プセル型が多く研究開発および実用化されている。
2. Description of the Related Art A heat storage tank of a latent heat storage system is roughly classified into a shell-and-tube type and a capsule type. The shell-and-tube type is a type in which a heat storage material is contained in the shell side of a normal shell-and-tube type heat exchanger and a heat medium flows in the tube side. The capsule type is
The heat storage material is housed in a relatively small container (capsule) having a cylindrical shape, a flat plate shape, a spherical shape, or the like, and the heat medium flows through a large number of containers arranged inside the shell. The shell-and-tube type has been extensively studied for ice heat storage, but when inorganic hydrated salts other than ice are used for the heat storage material, the capsule type is overwhelmingly studied due to problems such as corrosiveness of inorganic salts. Has been developed and put to practical use.

【0003】カプセル型蓄熱システムに使用されるカプ
セルの形状についても、各種のものが検討されている。
例えば、球状カプセルはその形状からランダム充填が可
能であり、且つ耐圧性能からも優れた形状であることが
わかる。しかしながら、球は内容積に対する表面積が最
も小さくなることから、他の形状に比べて伝熱性能が悪
いという欠点がある。伝熱性能が良い形状の一つに平板
状カプセルがある。平板状カプセルとしては、例えば、
複数の容器を上下に積み重ねるための凹凸部分およびリ
ブをその裏表に備えた容器が提案されている(米国特許
第4,872,557号明細書参照)。平板状カプセルは、容器
の厚みを全体に薄くできるため伝熱特性がよく、蓄熱時
間及び放熱時間を短縮することが可能である。また他に
も、蓄熱槽内に容器が層状に積み重ねられた状態では横
(水平)方向に流れる熱媒体の流路が整然と確保され上
下方向流路がほぼ完全になくなるために、自然対流等に
よる熱媒体流れの偏流度が大きくなりにくいなど、伝熱
性能が向上する効果が期待される。
Various types of capsules used in the capsule heat storage system have been studied.
For example, it can be seen that the spherical capsule can be randomly filled due to its shape and is excellent in pressure resistance. However, since the sphere has the smallest surface area with respect to the internal volume, it has a drawback that it has poor heat transfer performance as compared with other shapes. One of the shapes with good heat transfer performance is a flat capsule. As the flat capsule, for example,
There has been proposed a container provided with concave and convex portions and ribs for stacking a plurality of containers vertically (see US Pat. No. 4,872,557). The plate-shaped capsule has good heat transfer characteristics because the thickness of the container can be made thin as a whole, and the heat storage time and heat dissipation time can be shortened. In addition, in the state where the containers are stacked in layers in the heat storage tank, the flow path of the heat medium flowing in the horizontal (horizontal) direction is secured in an orderly manner, and the vertical flow path is almost completely eliminated. The effect of improving the heat transfer performance is expected, such as the degree of uneven distribution of the heat medium flow is less likely to increase.

【0004】しかし、一般的には蓄熱槽は温度差のある
熱媒体が槽内を流れるため、自然対流効果を考慮すれば
熱媒体の流れ方向は横方向(水平方向)より縦方向(鉛
直方向)の方が熱効率は向上し最適な運転となりうる。
これに対して、従来の平板状カプセルは熱媒体を横方向
にしか流すことができない。つまり、設置面積が広く水
深が比較的浅い蓄熱槽には適しているが、水深が深くな
るほど熱効率は低下し、また狭い立地スペースに設置さ
れる縦型蓄熱槽に対しては使用不可能である。例えば、
現在普及している水蓄熱槽は熱効率を向上させるため、
熱媒体(水)の流れを横方向から縦方向への改善が進め
られているが、従来のカプセルではこのような蓄熱槽へ
の適用も不可能となってしまう。また、平板状カプセル
を蓄熱槽に設置するとき、蓄熱槽の縦横寸法が平板状カ
プセルの縦横寸法の整数倍でない場合は、蓄熱槽壁と槽
内に敷き詰めた蓄熱槽壁付近のカプセルとの間にカプセ
ル寸法未満の隙間ができる。この隙間は蓄熱材充填率の
低下を招くだけでなく、熱媒体の蓄熱槽入口から出口ま
での流れのショートパスを招き、熱効率を著しく低下さ
せる原因となることが考えられる。
However, in a heat storage tank, a heat medium having a temperature difference generally flows in the heat storage tank. Therefore, considering the natural convection effect, the heat medium flows in a vertical direction (vertical direction) rather than lateral direction (horizontal direction). ), The thermal efficiency is improved and the optimum operation can be achieved.
On the other hand, the conventional flat capsule can only flow the heat medium laterally. In other words, it is suitable for a heat storage tank with a large installation area and a relatively shallow water depth, but as the water depth increases, the thermal efficiency decreases, and it cannot be used for a vertical heat storage tank installed in a narrow space. . For example,
In order to improve the thermal efficiency of the water heat storage tanks that are currently popular,
Although the flow of the heat medium (water) is being improved from the horizontal direction to the vertical direction, the conventional capsule cannot be applied to such a heat storage tank. When installing the flat capsule in the heat storage tank, if the vertical and horizontal dimensions of the heat storage tank are not an integral multiple of the vertical and horizontal dimensions of the flat capsule, the space between the heat storage tank wall and the capsule near the heat storage tank wall spread inside the tank There is a gap smaller than the capsule size. It is considered that this gap not only causes a reduction in the heat storage material filling rate but also causes a short path of the flow of the heat medium from the heat storage tank inlet to the outlet, which causes a significant decrease in thermal efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、熱媒
体を蓄熱槽中での縦方向または横方向に流すことが可能
で且つ蓄熱槽に隙間なく設置できる平板状蓄熱カプセル
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a flat heat storage capsule which allows a heat medium to flow vertically or horizontally in the heat storage tank and can be installed in the heat storage tank without a gap. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、 1.方形形状の中空容器であって、その表面に複数個の
凸部およびリブを有し、その裏面には複数の溝条および
前記リブに対応するリブを有する蓄熱カプセルであっ
て、前記凸部は楕円状であり、その長軸上にカプセル裏
面に設けられた溝と嵌合する突起部を有し、一定間隔を
置いて複数個の凸部がカプセルの短辺に並行に数列配置
されており、カプセル長辺方向に1列ごとにその位置が
凸部短辺方向ピッチの半分づつずれており、カプセル短
辺方向端面の凸部は半割れ形状であり、その部分は2つ
のカプセルを水平に並べることにより1つの凸部が形成
されるものであり;前記リブは、前記凸部の2つの列の
間にカプセルの短辺に並行に数列配置されており;およ
び前記の溝条は、他のカプセル表面に設けられた凸部上
の突起部と嵌合することができる形状を有し、該突起部
と嵌合する位置に配置されている;ことを特徴とする平
板状蓄熱カプセル、 2.前記カプセル短辺方向端面の凸部に設けられる突起
部は該端面まで延びておらず、且つこの凸部と嵌合する
カプセル裏面の溝条はカプセル短辺方向にその端面から
端面までの長さである請求項1記載の平板状蓄熱カプセ
ル、 3.カプセル表面のリブ及びそれと同じ位置にあるカプ
セル裏面のリブが、それぞれその底面が融着した構造を
有する請求項1記載の平板状蓄熱カプセル、 4.カプセル表面のリブ及びそれと同じ位置にあるカプ
セル裏面のリブが貫通してリブ穴を形成している請求項
1記載の平板状蓄熱カプセル、 5.前記リブはカプセル長辺方向に1列ごとにその位置
が凸部短辺方向ピッチの半分づつずれている請求項3ま
たは4記載の平板状蓄熱カプセル、および 6.前記リブはカプセルの長辺方向に対して前後非対称
であり、カプセルを前後反転させて上下に積み重ねたと
き貫通穴の中心が一段ごとにずれている請求項4記載の
平板状蓄熱カプセルである。
The present invention provides: A rectangular hollow container having a plurality of protrusions and ribs on its surface, and a heat storage capsule having a plurality of grooves and ribs corresponding to the ribs on its back surface, wherein the protrusions are It has an elliptical shape, and has a protrusion on its long axis that fits into a groove provided on the back surface of the capsule, and a plurality of protrusions are arranged in parallel at several intervals on the short side of the capsule at regular intervals. , The position of each capsule is shifted by half the pitch of the convex short side in the long side direction of the capsule, and the convex portion of the end face of the capsule short side is a half-cracked shape, and that portion makes two capsules horizontal. One protrusion is formed by lining up; said ribs are arranged in parallel between the two rows of said protrusions in several rows parallel to the short side of the capsule; and said groove is Mating with the protrusion on the protrusion provided on the capsule surface It has a shape, projecting are disposed are in a position for mating with raised portions; flat heat storage capsule, wherein, 2. The protrusion provided on the convex portion of the end surface of the capsule in the short side direction does not extend to the end surface, and the groove on the back surface of the capsule that fits with the convex portion is the length from the end surface to the end surface in the short side direction of the capsule. 2. The flat heat storage capsule according to claim 1, wherein 3. The flat heat storage capsule according to claim 1, wherein the ribs on the front surface of the capsule and the ribs on the back surface of the capsule at the same position as the ribs have a structure in which the bottom surfaces thereof are fused together. 4. The plate-shaped heat storage capsule according to claim 1, wherein the ribs on the front surface of the capsule and the ribs on the back surface of the capsule at the same positions as the ribs penetrate to form rib holes. 5. The plate-shaped heat storage capsule according to claim 3 or 4, wherein the ribs are displaced by one row in the capsule long side direction for each row by half the pitch of the convex portion short side direction. 5. The plate-shaped heat storage capsule according to claim 4, wherein the ribs are asymmetric with respect to the long side direction of the capsule, and the centers of the through holes are shifted step by step when the capsules are vertically inverted and stacked vertically.

【0007】[0007]

【発明の実施の形態】以下に、図面を参考にして、本発
明の具体例を詳述する。図1に示すように、本発明の蓄
熱カプセル1は方形形状の中空容器であって、その表面
に複数個の凸部2およびリブ3を有している。該容器の
サイズはその強度、取り扱い易さ等を考慮すれば、通常
長辺(縦)300〜1000mm、短辺(横)100〜
500mm、厚み(高さ)10〜70mmである。前記
凸部はカプセル短辺方向に楕円状に形成されており、楕
円長軸上に他のカプセル裏面に設けられた溝と嵌合する
突起部4を有している。前記凸部は一定間隔を置いてカ
プセルの短辺に並行に数列配置されており、カプセル長
辺方向に1列ごとにその位置が凸部短辺方向ピッチの半
分づつずれており、カプセル短辺方向端面の凸部5は半
割れ形状であり、その部分は2つのカプセルを水平に並
べることにより1つの凸部が形成されようになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1, the heat storage capsule 1 of the present invention is a rectangular hollow container having a plurality of convex portions 2 and ribs 3 on its surface. The size of the container is usually 300 to 1000 mm on the long side (vertical) and 100 to 100 on the short side (horizontal), considering its strength, easiness of handling and the like.
The thickness is 500 mm and the thickness (height) is 10 to 70 mm. The convex portion is formed in an elliptical shape in the short side direction of the capsule, and has a protrusion 4 on the major axis of the ellipse that fits into a groove provided on the back surface of another capsule. The convex portions are arranged in parallel in several rows in parallel with the short side of the capsule at regular intervals, and the positions thereof are shifted by one half of the pitch in the long side direction of the capsule by half the pitch in the short side direction of the capsule. The convex portion 5 on the end face in the direction has a half-split shape, and one convex portion is formed in that portion by arranging two capsules horizontally.

【0008】凸部の大きさは特に制限されないが、容器
の中空部容積(全内容積)を出来るだけ大きくするため
に、凸部での内容積が容器の全内容積の65〜75%と
なるように、凸部のサイズ及び数を適宜選択することが
好ましい。カプセル短辺方向端面に存在する凸部5は凸
部2の長軸長さの半割れの形状であるが、その長さは凸
部2の長軸長さの半分より僅かに長めであることがカプ
セルの成形性及び強度の観点から好ましい。また、カプ
セル短辺方向端面の凸部5に設けられる突起部6は、該
端面まで延びていないことがカプセルの成形性及び強度
の観点から好ましい。さらに、突起部6の蓄熱カプセル
の側面に近い端(図6の位置D)と突起部4の蓄熱カプ
セルの側面に近い端(図6の位置C)は、それぞれ蓄熱
カプセルの中心線から等距離にあることが好ましい。図
1に示した蓄熱カプセルでは、カプセル表面に楕円状凸
部が短辺と平行に一定間隔をおいて2個直列したものが
4列、及び1個と2つの半割れが直列したものが3列設
けられているが、これに限定されるものではなく、蓄熱
カプセルのサイズを考慮して、凸部の数を増減してもよ
い。例えば4個の凸部を有する列と、3個と2つの半割
れを有する列を交互に全部で5〜14列程度設けること
もできる。
The size of the convex portion is not particularly limited, but in order to maximize the hollow portion volume (total internal volume) of the container, the internal volume at the convex portion is 65 to 75% of the total internal volume of the container. Therefore, it is preferable to appropriately select the size and number of the convex portions. The convex portion 5 present on the end face in the short side direction of the capsule has a shape of a half crack of the major axis length of the convex portion 2, and the length thereof is slightly longer than half the major axis length of the convex portion 2. Are preferable from the viewpoint of moldability and strength of the capsule. Further, it is preferable from the viewpoint of moldability and strength of the capsule that the projection 6 provided on the convex portion 5 on the end face of the capsule in the short side direction does not extend to the end face. Furthermore, the end of the protrusion 6 close to the side surface of the heat storage capsule (position D in FIG. 6) and the end of the protrusion 4 close to the side surface of the heat storage capsule (position C in FIG. 6) are equidistant from the center line of the heat storage capsule. Is preferred. In the heat storage capsule shown in FIG. 1, four rows of elliptical convex portions are arranged in series on the capsule surface parallel to the short side at regular intervals, and three rows of one and two half-cracks are formed. Although they are provided in rows, the number is not limited to this, and the number of convex portions may be increased or decreased in consideration of the size of the heat storage capsule. For example, a row having four convex portions and a row having three and two half cracks may be alternately provided in a total of about 5 to 14 rows.

【0009】また、カプセル表面には、前記凸部の2つ
の列の間にカプセルの短辺に並行にリブ3が数列配置さ
れている。これらのリブはカプセルの補強するためのも
のであり、場合によりカプセル表面及び裏面のリブを打
ち抜いて貫通孔19(図12参照)となし、これを熱媒
体の流路とすることができる。この場合、表裏貫通した
リブは、カプセル長辺方向に1列ごとにその位置が約半
分づつずれていること、およびカプセルの長辺方向に対
して前後非対称であり、カプセルを前後反転させて上下
に積み重ねたとき貫通穴の中心が一段ごとにずれている
ことが好ましい(図12参照)。このような構造にする
ことにより、熱媒体を蓄熱槽の上下方向(縦方向に)流
すときにショートパスが防止され、熱媒体がカプセル外
表面と十分に接触することにより、熱交換が円滑に行わ
れる。
Further, on the capsule surface, several rows of ribs 3 are arranged in parallel with the short sides of the capsule between the two rows of the convex portions. These ribs are for reinforcing the capsule, and in some cases, ribs on the front surface and the back surface of the capsule are punched out to form through holes 19 (see FIG. 12), which can be used as the flow path of the heat medium. In this case, the ribs that penetrate the front and back sides are displaced by about half in each row in the long side direction of the capsule, and the ribs are asymmetric with respect to the long side direction of the capsule. It is preferable that the centers of the through holes are shifted step by step when they are stacked (see FIG. 12). With such a structure, a short path is prevented when the heat medium flows in the vertical direction (longitudinal direction) of the heat storage tank, and the heat medium is in sufficient contact with the outer surface of the capsule to facilitate heat exchange. Done.

【0010】一方、カプセルの裏面は、図2に示すよう
に、複数の溝条8およびカプセル表面のリブ3に対応す
るリブ9を有する。前記溝条8は、他のカプセル表面に
設けられた凸部上の突起部と嵌合することができる形状
を有し、該突起部と嵌合する位置に配置されている。カ
プセル表面の短辺方向端面の凸部5に設けられる突起部
6は該端面まで延びておらず(図1参照)、且つこの凸
部5と嵌合するカプセル裏面の溝条10はカプセル短辺
方向にその端面から端面までの長さ(即ち、カプセル短
辺の幅と同じ長さ)である。このような構造の溝条10
を設けることにより、カプセルを短辺方向に半分だけず
らして積み重ねることが可能となる。カプセル短辺の幅
と同じ長さの溝条10の両側には、1列のリブ9を挟ん
で、カプセル表面の1列の凸部突起部4に対応する長さ
の溝条8が設けられている。
On the other hand, the back surface of the capsule has a plurality of grooves 8 and ribs 9 corresponding to the ribs 3 on the surface of the capsule, as shown in FIG. The groove 8 has a shape capable of fitting with a protrusion on a convex portion provided on the surface of another capsule, and is arranged at a position for fitting with the protrusion. The projection 6 provided on the convex portion 5 on the end surface in the short side direction of the capsule surface does not extend to the end surface (see FIG. 1), and the groove 10 on the back surface of the capsule that fits with the convex portion 5 is the short side of the capsule. The length from the end face to the end face in the direction (that is, the same length as the width of the short side of the capsule). Groove 10 having such a structure
By providing the capsules, the capsules can be stacked while being shifted by half in the short side direction. On both sides of a groove 10 having the same length as the width of the short side of the capsule, a groove 8 having a length corresponding to one row of the convex projections 4 on the surface of the capsule is provided with one row of ribs 9 sandwiched therebetween. ing.

【0011】本発明の蓄熱カプセルは上記したような構
造上の特徴を有するので、これを蓄熱槽内に積み重ねる
場合には、下記のような種々の態様が可能である。 (i)蓄熱カプセルを同一方向に一面につなぎ合わせ、
これを数段積層する。 (ii)蓄熱カプセルを同一方向に一面につなぎ合わせ、
その上に他の1面を逆向きに(180度回転させて)積
み重ね、これを繰り返し数段積層する。 (iii)蓄熱カプセルを同一方向に一面につなぎ合わ
せ、その上に他の1面あるいは1部分を水平方向(短辺
方向にに半分、あるいは長辺方向に突起部のピッチ間隔
毎)にずらして積み重ね、これを繰り返し数段積層す
る。
Since the heat storage capsule of the present invention has the above-mentioned structural features, when the heat storage capsules are stacked in the heat storage tank, the following various modes are possible. (I) Join the heat storage capsules in the same direction on one side,
This is laminated in several stages. (Ii) Join the heat storage capsules in the same direction on one side,
The other surface is stacked on top of it in the opposite direction (rotated by 180 degrees), and this is repeatedly stacked for several stages. (Iii) Connect the heat storage capsules to one surface in the same direction, and shift the other one surface or part on it in the horizontal direction (half in the short side direction or every pitch interval of the protrusions in the long side direction) Stack and repeat this several times.

【0012】つぎに、蓄熱槽において熱媒体を横方向に
流す場合について説明する。図3は蓄熱槽12と蓄熱カ
プセル及び熱媒体の流れのイメージ図である。図3にお
いて、蓄熱カプセル1は上記(i)あるいは(ii)の態
様で積み重ねられており、熱媒体は蓄熱槽出入口部13
から出入口14ヘ横方向(水平方向)11に容器の隙間
を流れる図4は図3の蓄熱槽全体を上方より見た図であ
り、蓄熱カプセル1はバッファ空間15以外隙間なく敷
き詰められていることがわかる。バッファ空間15は、
熱媒体の流れをその流れ方向の全断面に対して、熱媒体
を均質に分散させるために必要なものである。図5は図
3の蓄熱槽を側面方向から見た断面図であり、蓄熱カプ
セルの積み重ねられた隙間16を熱媒体が流れることを
現している。このとき、図1における蓄熱カプセルのリ
ブ3とリブ9は貫通せず、縦方向に熱媒体が流れること
はない。また、容器の積み上げの高さは熱媒体水位より
も高くする必要がある。
Next, the case where the heat medium flows laterally in the heat storage tank will be described. FIG. 3 is an image diagram of the flow of the heat storage tank 12, the heat storage capsule, and the heat medium. In FIG. 3, the heat storage capsules 1 are stacked in the manner of (i) or (ii) described above, and the heat medium is the heat storage tank inlet / outlet portion 13
4 is a view of the entire heat storage tank of FIG. 3 viewed from above, in which the heat storage capsule 1 is spread without any space other than the buffer space 15 I understand. The buffer space 15 is
It is necessary to uniformly disperse the heat medium flow over the entire cross section in the flow direction. FIG. 5 is a cross-sectional view of the heat storage tank of FIG. 3 as viewed from the side, and shows that the heat medium flows through the gap 16 in which the heat storage capsules are stacked. At this time, the ribs 3 and 9 of the heat storage capsule in FIG. 1 do not penetrate, and the heat medium does not flow in the vertical direction. Further, the height of the stacked containers must be higher than the heat medium water level.

【0013】蓄熱カプセル間の隙間16を熱媒体がどの
ように流れ、熱交換するかを図6に示す。蓄熱カプセル
の表面には熱媒体と蓄熱材とが熱交換しやすいように楕
円状の凸部2があり、さらに該凸部にはその長軸方向に
突起部4を有し、該突起部が他のカプセル裏面の溝と嵌
合する。図6において、熱媒体が左側から流れてくる
と、位置Aの2つの凸部に衝突し、その流れが遮られ、
分流する。次ぎに、熱媒体は位置Aの2個並んだ凸部の
中間および両サイドを流れ、位置Bの凸部に遮られ、ま
た分流する。このとき半割れの凸部5はすぐ横の同一カ
プセルの半割れの凸部と並ぶことにより凸部2とほぼ同
じ形状となる。このように熱媒体は凸部により常に遮ら
れて左右に分流され、流れの乱流効果が向上され、効率
よく熱交換が行われる。
FIG. 6 shows how the heat medium flows through the gaps 16 between the heat storage capsules and exchanges heat. The surface of the heat storage capsule has an elliptical convex portion 2 for facilitating heat exchange between the heat medium and the heat storage material. Further, the convex portion has a protrusion 4 in the major axis direction thereof. It fits into the groove on the back of another capsule. In FIG. 6, when the heat medium flows from the left side, it collides with the two convex portions at the position A and the flow is blocked,
Divert. Next, the heat medium flows through the middle and both sides of the two convex portions at the position A, is blocked by the convex portion at the position B, and splits. At this time, the half-cracked convex portion 5 has substantially the same shape as the convex portion 2 by being aligned with the half-cracked convex portion of the same capsule immediately next to it. In this way, the heat medium is always blocked by the convex portion and divided into right and left, the turbulence effect of the flow is improved, and heat exchange is efficiently performed.

【0014】また、半割れの凸部5は図6に示すように
蓄熱カプセルの短辺方向の端部まで凸部が続いており、
高さも他のカプセルの凸部5と同じ高さであるので凸部
5の側面サイドを熱媒体が流れ抜けることはなく、効率
的に熱交換可能である。次ぎに、図7に示すように、積
み重なった蓄熱カプセル1を熱交換の流れ方向から見る
と、熱媒体の流路には必ず凸部(2,2’,2”及び
5,5’)があり、熱媒体が流れ抜ける(蓄熱槽の入口
部から出口部へ熱媒体がショートパスする)スペースは
ないことがわかる。また、凸部の蓄熱カプセルの側面に
近い端(図6の位置C)と凸部の蓄熱カプセルの側面に
近い端(図6の置D)は、それぞれ蓄熱カプセルの中心
線から等距離にある。
Further, as shown in FIG. 6, the semi-cracked convex portion 5 continues to the end portion in the short side direction of the heat storage capsule,
Since the height is also the same as that of the convex portions 5 of the other capsules, the heat medium does not flow through the side surface side of the convex portions 5, and heat can be efficiently exchanged. Next, as shown in FIG. 7, when the stacked heat storage capsules 1 are viewed from the flow direction of heat exchange, there are always convex portions (2, 2 ', 2 "and 5, 5') in the flow path of the heat medium. It can be seen that there is no space for the heat medium to flow out (the heat medium short-passes from the inlet to the outlet of the heat storage tank), and the end of the convex portion near the side surface of the heat storage capsule (position C in FIG. 6). The ends of the convex portion and the convex portion close to the side surface of the heat storage capsule (position D in FIG. 6) are equidistant from the center line of the heat storage capsule.

【0015】蓄熱カプセルの裏面は蓄熱カプセルを縦方
向に積み重ねるための溝があり、その特徴は凸部上の突
起と同じ形状ではなく、全ての凹部が一直線の溝条であ
ることである。このような溝条に構成したこと、および
凸部の蓄熱カプセルの側面に近い端(図6の位置C)と
凸部の蓄熱カプセルの側面に近い端(図6の置D)がそ
れぞれ蓄熱カプセルの中心線から等距離にあることによ
り、蓄熱カプセル表面の形状に拘わらず、蓄熱カプセル
の長辺方向に、短辺に並行な突起部のピッチ間隔毎にそ
の位置をずらして積み重ねることが可能である。また、
半割れ凸部5の裏側に位置する溝10は蓄熱カプセル短
辺の端部まで切られている。このことにより、蓄熱カプ
セルの短辺方向に短辺の長さの半分の位置にずらしてカ
プセルを積み重ねることが可能となる。
On the back surface of the heat storage capsule, there is a groove for stacking the heat storage capsules in the vertical direction, and the feature is that not all the recesses have the same shape as the projections on the projections, but all the recesses are straight grooves. With such a groove configuration, the end of the convex portion near the side surface of the heat storage capsule (position C in FIG. 6) and the end of the convex portion near the side surface of the heat storage capsule (position D in FIG. 6) are respectively heat storage capsules. Since they are equidistant from the center line of the heat storage capsules, it is possible to stack the heat storage capsules by shifting their positions at every pitch interval of the protrusions parallel to the short sides, regardless of the shape of the heat storage capsule surface. is there. Also,
The groove 10 located on the back side of the half-split convex portion 5 is cut to the end of the short side of the heat storage capsule. As a result, it becomes possible to stack the heat storage capsules while shifting them in the short side direction at a position half the length of the short side.

【0016】一般に、蓄熱槽に平板状蓄熱カプセルを敷
き詰める場合、蓄熱槽の大きさ及び形状から蓄熱カプセ
ルをぴったり蓄熱槽の壁に沿って充填することは困難で
ある。敷き詰められた蓄熱カプセルと蓄熱槽の壁との間
の隙間が大きいとその隙間を熱媒体が流れ抜けることと
なり、熱効率が悪くなることが考えられる。ところが、
上記のように蓄熱カプセルの長辺及び短辺方向にずらし
て積み重ねるなど、その積み重ね方に自由度を持たせる
ことにより、あらゆる寸法の蓄熱槽に対して蓄熱カプセ
ルを蓄熱槽壁面近くまでほぼ隙間なく敷き詰めることが
できるため、熱効率の低下を防止することが可能とな
る。蓄熱カプセルの厚み程度の隙間に対しては蓄熱カプ
セルを立てるような形でその隙間に充填しても構わな
い。
Generally, when a flat-plate heat storage capsule is spread over a heat storage tank, it is difficult to fill the heat storage capsule exactly along the wall of the heat storage tank due to the size and shape of the heat storage tank. If the gap between the spread heat storage capsules and the wall of the heat storage tank is large, it is conceivable that the heat medium will flow through the gap, resulting in poor thermal efficiency. However,
As described above, by stacking the heat storage capsules by shifting them in the long side direction and the short side direction so that the heat storage capsules have a degree of freedom in stacking them, the heat storage capsules for all sizes of heat storage capsules can be placed close to the wall surface of the heat storage tank with almost no gap. Since it can be spread, it is possible to prevent a decrease in thermal efficiency. For a gap of about the thickness of the heat storage capsule, the gap may be filled in such a manner that the heat storage capsule is erected.

【0017】次ぎに、蓄熱槽において熱媒体を縦方向に
流す場合について説明する。蓄熱槽と蓄熱カプセル及び
熱媒体の流れのイメージ図を図8に示す。図8におい
て、蓄熱カプセル1は上記(ii)あるいは(iii)の態
様で水平に積み重ねられ、熱媒体は蓄熱槽出入口部17
から出入口部18へ、縦方向(垂直方向)19に蓄熱カ
プセルの表面から裏面へ、あるいは裏面から表面へ、貫
通したリブ穴を流れる。図9は図8の蓄熱槽全体を上方
より見た図であり、図4とは異なり熱媒体が蓄熱カプセ
ルのリブ穴20を流れるため、蓄熱カプセルが隙間なく
敷き詰められていることがわかる。
Next, the case where the heat medium flows vertically in the heat storage tank will be described. An image diagram of the flow of the heat storage tank, the heat storage capsule, and the heat medium is shown in FIG. In FIG. 8, the heat storage capsules 1 are horizontally stacked in the form of (ii) or (iii) described above, and the heat medium is the heat storage tank inlet / outlet part 17
To the inlet / outlet part 18, and flows in the longitudinal direction (vertical direction) 19 through the rib holes penetrating from the front surface to the back surface of the heat storage capsule or from the back surface to the front surface. FIG. 9 is a view of the entire heat storage tank of FIG. 8 as viewed from above, and it can be seen that the heat medium flows through the rib holes 20 of the heat storage capsule, unlike FIG. 4, so that the heat storage capsules are spread without gaps.

【0018】図10は図8の蓄熱槽を側方から見た断面
図であり、バッファ空間21が蓄熱槽出入口部(蓄熱槽
下部及び蓄熱槽上部)に設けられている。バッファ空間
は、熱媒体の流れをその流れ方向の全断面に対して均一
に分散させるために必要なものである。またカプセルの
積み重ね高さは熱媒体レベルより低くても高くてもよ
い。蓄熱カプセルには容器の強度を増すためのリブ穴2
0があり、水平方向に熱媒体を流す場合にはリブ3とリ
ブ9は貫通させないが、鉛直方向に流す場合には該リブ
を貫通させて用いる。このリブ穴はカプセル成形直後は
貫通していないが、ポンチ等により打ち抜くことで容易
に貫通できるように表面及び裏面リブの底面が融着した
ひとつの薄い膜状構造にすることが好ましい。
FIG. 10 is a sectional view of the heat storage tank of FIG. 8 viewed from the side, and a buffer space 21 is provided at the heat storage tank inlet / outlet portion (the heat storage tank lower portion and the heat storage tank upper portion). The buffer space is necessary for uniformly distributing the flow of the heat medium over the entire cross section in the flow direction. The stack height of the capsules may be lower or higher than the heat carrier level. Rib hole 2 for increasing the strength of the heat storage capsule
When the heat medium flows in the horizontal direction, the ribs 3 and 9 are not penetrated, but when flowing in the vertical direction, the ribs are penetrated and used. The rib hole does not penetrate immediately after molding the capsule, but it is preferable to have one thin film-like structure in which the bottom surfaces of the front and back ribs are fused so that they can be easily penetrated by punching with a punch or the like.

【0019】本発明の蓄熱カプセル1を積み重ねる場合
は、図11に示すように容器プラグ部7を長辺方向に対
して左右交互にする。このように積み重ねることによ
り、上下に近接し合う容器のリブ穴20は必然的に上下
方向に重なり合うことがない。即ち、図11の断面図で
ある図12に示したように、上下に積み重ねられた蓄熱
カプセル1のリブ穴20は互いに位置が少しづつずれて
おり、熱媒体が上下方向にこのリブ穴を流れ出るとき、
その流れは近接する容器のの上面あるいは下面に遮ら
れ、常に分流しながら上下方向に流れることになる。ま
た、リブ穴から流れ出た熱媒体は蓄熱カプセルの凸部に
より水平方向にも分流される。このように熱媒体は常に
遮られて分流されながら進むので、流れの乱流効果を向
上させることができる。
When stacking the heat storage capsules 1 of the present invention, as shown in FIG. 11, the container plugs 7 are alternately arranged on the left and right sides with respect to the long side direction. By stacking in this way, the rib holes 20 of the vertically adjacent containers do not necessarily overlap in the vertical direction. That is, as shown in FIG. 12, which is a cross-sectional view of FIG. 11, the rib holes 20 of the heat storage capsules 1 stacked vertically are slightly displaced from each other, and the heat medium flows out vertically through the rib holes. When
The flow is interrupted by the upper surface or the lower surface of the adjacent container and always flows in a vertical direction while branching. Further, the heat medium flowing out from the rib hole is also divided in the horizontal direction by the convex portion of the heat storage capsule. In this way, since the heat medium is always blocked and flows while being divided, the turbulent flow effect can be improved.

【0020】[0020]

【発明の効果】本発明の蓄熱カプセルは、熱媒体を蓄熱
槽内において縦および横の両方向に流すことが可能であ
り、そして蓄熱槽内に隙間なく設置することができる特
徴を有する。平板状カプセルは容器の薄肉化が可能で伝
熱特性が良く、蓄熱時間および放熱時間を短縮すること
が可能である。また、熱媒体が横方向に流れる場合は蓄
熱槽内に容器が層状に積み重ねられ、熱媒体の水平方向
流路が整然と確保され、上下方向流路がほぼ完全になく
なることによる整流効果により伝熱特性が向上する効果
が期待される。
The heat storage capsule of the present invention is characterized in that the heat medium can flow in both the vertical and horizontal directions in the heat storage tank and can be installed in the heat storage tank without a gap. The flat capsule can make the container thin and has good heat transfer characteristics, and can shorten the heat storage time and heat dissipation time. Also, when the heat medium flows in the horizontal direction, the containers are stacked in layers in the heat storage tank, the horizontal flow path of the heat medium is orderly ensured, and the vertical flow path is almost completely eliminated so that the heat transfer is performed. The effect of improving the characteristics is expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄熱カプセルの表面を示す説明図であ
る。
FIG. 1 is an explanatory view showing a surface of a heat storage capsule of the present invention.

【図2】本発明の蓄熱カプセルの裏面を示す説明図であ
る。
FIG. 2 is an explanatory view showing the back surface of the heat storage capsule of the present invention.

【図3】本発明の蓄熱カプセルを蓄熱槽に積み重ね、熱
媒体を横方向に流す場合のイメージ図である。
FIG. 3 is an image diagram when the heat storage capsules of the present invention are stacked in a heat storage tank and a heat medium is flowed in a lateral direction.

【図4】図3において、蓄熱槽を上から見た説明図であ
る。
FIG. 4 is an explanatory view of the heat storage tank seen from above in FIG.

【図5】図3において、蓄熱槽の側面の断面説明図であ
る。
5 is a cross-sectional explanatory view of a side surface of the heat storage tank in FIG.

【図6】本発明の蓄熱カプセル表面における熱媒体の流
れを示す説明図である。
FIG. 6 is an explanatory diagram showing a flow of a heat medium on the surface of the heat storage capsule of the present invention.

【図7】本発明の蓄熱カプセルを積み重ね、その短辺側
から見た側面説明図である。
FIG. 7 is a side view showing the heat storage capsules of the present invention stacked and viewed from the short side.

【図8】本発明の蓄熱カプセルを蓄熱槽に積み重ね、熱
媒体を縦方向に流す場合のイメージ図である。
FIG. 8 is an image diagram when the heat storage capsules of the present invention are stacked in a heat storage tank and a heat medium is flown in the vertical direction.

【図9】図8において、蓄熱槽を上から見た説明図であ
る。
9 is an explanatory view of the heat storage tank viewed from above in FIG. 8. FIG.

【図10】図8において、蓄熱槽の側面の断面説明図で
ある。
10 is a cross-sectional explanatory view of a side surface of the heat storage tank in FIG.

【図11】3個積み重ねた蓄熱カプセルの部分斜視図で
ある。
FIG. 11 is a partial perspective view of three heat storage capsules stacked.

【図12】図11の断面説明図である。12 is a cross-sectional explanatory diagram of FIG.

【符号の説明】[Explanation of symbols]

1 蓄熱カプセル 2 凸部 3、9 リブ 4、6 突起部 5 半割れ凸部 7 プラグ部 8、10 溝条 12 蓄熱槽 15、21 バッファ空間 20 リブ穴 1 Heat Storage Capsule 2 Convex Part 3, 9 Rib 4, 6 Projection Part 5 Half Crack Convex Part 7 Plug Part 8, 10 Groove 12 Heat Storage Tank 15, 21 Buffer Space 20 Rib Hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪川 清一 三重県四日市市川尻町1000番地 三菱油化 エンジニアリング株式会社四日市支社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiichi Kubokawa 1000 Kawajiri-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Engineering Co., Ltd. Yokkaichi branch office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 方形形状の中空容器であって、その表面
に複数個の凸部およびリブを有し、その裏面には複数の
溝条および前記リブに対応するリブを有する蓄熱カプセ
ルであって、 前記凸部は楕円状であり、その長軸上にカプセル裏面に
設けられた溝と嵌合する突起部を有し、一定間隔を置い
て複数個の凸部がカプセルの短辺に並行に数列配置され
ており、カプセル長辺方向に1列ごとにその位置が凸部
短辺方向ピッチの半分づつずれており、カプセル短辺方
向端面の凸部は半割れ形状であり、その部分は2つのカ
プセルを水平に並べることにより1つの凸部が形成され
るものであり;前記リブは、前記凸部の2つの列の間に
カプセルの短辺に並行に数列配置されており;および前
記の溝条は、他のカプセル表面に設けられた凸部上の突
起部と嵌合することができる形状を有し、該突起部と嵌
合する位置に配置されている;ことを特徴とする平板状
蓄熱カプセル。
1. A heat storage capsule having a rectangular hollow container having a plurality of protrusions and ribs on its surface and a plurality of grooves and ribs corresponding to the ribs on its back surface. The convex portion has an elliptical shape and has a protrusion portion on its long axis that fits into a groove provided on the back surface of the capsule, and a plurality of convex portions are arranged at regular intervals in parallel with the short side of the capsule. The capsules are arranged in several rows, and their positions are shifted by one row in the long side direction of the capsule by half the pitch of the short side direction of the convex portion, and the convex portion of the end face in the short side direction of the capsule has a half-split shape, and that portion is 2 One capsule is formed by arranging two capsules horizontally; the ribs are arranged in parallel in several rows parallel to the short sides of the capsule between the two rows of the projections; and Grooves are protrusions on the protrusions provided on the surface of other capsules. Flat heat storage capsule, characterized in that; has a shape that can be fitted, the projecting is arranged in a position mating with the raised portion.
【請求項2】 前記カプセル短辺方向端面の凸部に設け
られる突起部は該端面まで延びておらず、且つこの凸部
と嵌合するカプセル裏面の溝条はカプセル短辺方向にそ
の端面から端面までの長さである請求項1記載の平板状
蓄熱カプセル。
2. The projection provided on the convex portion of the end surface of the capsule in the short side direction does not extend to the end surface, and the groove on the back surface of the capsule that fits with the convex portion extends from the end surface in the short side direction of the capsule. The plate-shaped heat storage capsule according to claim 1, which has a length up to the end surface.
【請求項3】 カプセル表面のリブ及びそれと同じ位置
にあるカプセル裏面のリブが、それぞれその底面が融着
した構造を有する請求項1記載の平板状蓄熱カプセル。
3. The plate-shaped heat storage capsule according to claim 1, wherein the ribs on the front surface of the capsule and the ribs on the back surface of the capsule at the same positions as the ribs have a structure in which their bottom surfaces are fused.
【請求項4】 カプセル表面のリブ及びそれと同じ位置
にあるカプセル裏面のリブが貫通してリブ穴を形成して
いる請求項1記載の平板状蓄熱カプセル。
4. The plate-shaped heat storage capsule according to claim 1, wherein a rib on the surface of the capsule and a rib on the back surface of the capsule at the same position as the rib penetrate through to form a rib hole.
【請求項5】 前記リブはカプセル長辺方向に1列ごと
にその位置が凸部短辺方向ピッチの半分づつずれている
請求項3または4記載の平板状蓄熱カプセル。
5. The plate-shaped heat storage capsule according to claim 3 or 4, wherein the ribs are arranged in rows in the long side direction of the capsule for each row by half the pitch of the short side direction of the convex portion.
【請求項6】 前記リブはカプセルの長辺方向に対して
前後非対称であり、カプセルを前後反転させて上下に積
み重ねたとき貫通穴の中心が一段ごとにずれている請求
項4記載の平板状蓄熱カプセル。
6. The flat plate shape according to claim 4, wherein the ribs are asymmetric with respect to the long side direction of the capsule, and the centers of the through holes are shifted step by step when the capsules are vertically stacked and vertically stacked. Thermal storage capsule.
JP7173581A 1995-07-10 1995-07-10 Heat storage capsule Pending JPH0926277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7173581A JPH0926277A (en) 1995-07-10 1995-07-10 Heat storage capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7173581A JPH0926277A (en) 1995-07-10 1995-07-10 Heat storage capsule

Publications (1)

Publication Number Publication Date
JPH0926277A true JPH0926277A (en) 1997-01-28

Family

ID=15963235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7173581A Pending JPH0926277A (en) 1995-07-10 1995-07-10 Heat storage capsule

Country Status (1)

Country Link
JP (1) JPH0926277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215938A (en) * 2008-03-10 2009-09-24 Aisan Ind Co Ltd Evaporated fuel treatment device
JP2013228186A (en) * 2012-03-27 2013-11-07 Jfe Engineering Corp Storage container, assembled elements of the same, assembly of the same, heat storage device, flow suppression member, and method of increasing heat exchanging efficiency between flowing heat medium and heat storage container
JP2020531776A (en) * 2017-08-22 2020-11-05 イノヒート スウェーデン アべ Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215938A (en) * 2008-03-10 2009-09-24 Aisan Ind Co Ltd Evaporated fuel treatment device
JP2013228186A (en) * 2012-03-27 2013-11-07 Jfe Engineering Corp Storage container, assembled elements of the same, assembly of the same, heat storage device, flow suppression member, and method of increasing heat exchanging efficiency between flowing heat medium and heat storage container
JP2020531776A (en) * 2017-08-22 2020-11-05 イノヒート スウェーデン アべ Heat exchanger

Similar Documents

Publication Publication Date Title
US10048020B2 (en) Heat transfer surfaces with flanged apertures
JP3618350B2 (en) Heat exchanger with improved plate
RU2561356C1 (en) Heat exchanger with two-side pattern of cavities
JP2019530845A (en) Heat exchange plate and heat exchanger
JP2006214646A (en) Heat exchanging plate
JP6823200B2 (en) Heat transfer plates, and heat exchangers with multiple such heat transfer plates
US11454448B2 (en) Enhanced heat transfer surface
JP6679810B1 (en) Heat exchange tube, heat exchange tube manufacturing method, and heat exchanger
JPH0926277A (en) Heat storage capsule
JP5947959B1 (en) Heat transfer plate for plate heat exchanger and plate heat exchanger equipped with the same
CN112414185B (en) Plate heat exchanger
KR102354446B1 (en) heat transfer plate
RU2194926C2 (en) Plate heat exchanger with corrugated plates
JP3526321B2 (en) Plate heat exchanger
CN108548437B (en) Bionic-based fishbone-type micro-staggered alveolar heat exchanger core and heat exchanger
JP5993884B2 (en) Plate heat exchanger
EP4023997B1 (en) Heat exchange plate and heat exchanger containing same
JP7278489B2 (en) Gaskets and assemblies for plate heat exchangers
WO2020259645A1 (en) Plate heat exchanger
US1993872A (en) Radiator core
JP4252132B2 (en) Plate heat exchanger
CN219934739U (en) Plate heat exchanger
CN105215228A (en) There is the heat-transfer area in flanged aperture
US11333448B2 (en) Printed circuit heat exchanger and heat exchange device including the same
CN114005800B (en) Microchannel structure for heat dissipation of edge server chip