JPH0926272A - Condenser - Google Patents

Condenser

Info

Publication number
JPH0926272A
JPH0926272A JP17878695A JP17878695A JPH0926272A JP H0926272 A JPH0926272 A JP H0926272A JP 17878695 A JP17878695 A JP 17878695A JP 17878695 A JP17878695 A JP 17878695A JP H0926272 A JPH0926272 A JP H0926272A
Authority
JP
Japan
Prior art keywords
cooling
nest
pipe
cooling water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17878695A
Other languages
Japanese (ja)
Inventor
Takayuki Sasaki
隆幸 佐々木
Toshihiko Ito
敏彦 伊藤
Shoji Amezutsumi
祥二 雨堤
Mitsuru Sudo
充 数藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17878695A priority Critical patent/JPH0926272A/en
Publication of JPH0926272A publication Critical patent/JPH0926272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an ammonia attack or the like by passing a cooling water through the center part of a tube nest or a part in the vicinity thereof and passing it through the outer peripheral part of the tube nest and a part in the vicinity thereof after the cooling water passes through a return chamber, and providing an air extraction pipe for extracting non-condensable gas in the vicinity of the center part of the tube nest. SOLUTION: A condenser is formed so that after a cooling water fed from the cooling water feed chamber 20a of a water feed and discharge header 20 passes through the center part of a tube nest and a part 1 in the vicinity thereof and the return chamber 21a of a return header 21, the cooling water passes through the outer peripheral part of the tube nest and a part 2 in the vicinity thereof. Then, the steam partial pressure of the center part of the tube nest is increased and an area where non- condensable gas is retained is collected in the vicinity of an air extraction pipe 3 and discharged outside the condenser through an air vent hole 5 by a vacuum pump 4. At this time, the cooling water entering from a cooling water pipe base 6 enters the cooling water feed chamber 20a, passes through the central part cooling tube nest 1, the return chamber 21a and the outer peripheral cooling tube nest 2, enters a drain water chamber 20b and is discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数折流の復水器の改良
に係り、特に冷却管管巣の中に、非凝縮ガスを抽出して
排出する空気抽出管を備えている複数折流の復水器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a condenser with a multi-folded flow, and more particularly to a multi-folded flow provided with an air extraction pipe for extracting and discharging non-condensable gas in a cooling pipe tube nest. Condenser of the.

【0002】[0002]

【従来の技術】従来一般に採用されているこの種の復水
器は、蒸気流と差交する多数の細管が並設された冷却管
管巣を備え、そしてこの冷却管管巣の一方端側には、細
管に冷却水を給排する冷却水供給水室および冷却水排出
水室を有する給排水ヘッダが設けられ、また他方端側に
は冷却水の折り返し室を有する折り返しヘッダが設けら
れているのが普通であり、さらに、この種の復水器に
は、管巣内に非凝縮ガスを抽出し外部へ排出する空気抽
出管が配置されている。なお、この種復水器に関連する
ものとしては、例えば火力原子力発電(1991年4
月)Vol.42 No.4が挙げられる。
2. Description of the Related Art A conventional condenser of this type has a cooling pipe tube nest in which a large number of thin tubes intersecting with a steam flow are arranged in parallel, and one end side of this cooling pipe tube nest. Is provided with a water supply / drainage header having a cooling water supply water chamber and a cooling water discharge water chamber for supplying / discharging cooling water to / from the thin tube, and a folding header having a cooling water folding chamber is provided on the other end side. Moreover, in this type of condenser, an air extraction pipe for extracting the non-condensed gas into the tube nest and discharging it to the outside is arranged. In addition, as a thing related to this kind of condenser, for example, thermal power nuclear power generation (April 1991)
Mon) Vol. 42 No. 4 is mentioned.

【0003】[0003]

【発明が解決しようとする課題】復水器内において、蒸
気は圧力の高い方から低い方へと流れるために、蒸気は
凝縮量が多い方、すなわち冷却水の温度の低い方へと流
れる。また、単位体積当りの蒸気に含まれる非凝縮ガス
の量が一定であれば、蒸気の凝縮量が多ければ必然的に
蒸気の凝縮量が多い冷却水入口側に非凝縮ガスの停滞域
が存在する。
In the condenser, since the steam flows from the higher pressure side to the lower pressure side, the steam flows toward the side having a large amount of condensation, that is, the side having a low temperature of the cooling water. Also, if the amount of non-condensable gas contained in the steam per unit volume is constant, if the amount of condensed steam is large, the amount of condensed steam will inevitably be large. To do.

【0004】この現象は、冷却水出入口が同方向に設け
てある2折流の復水器においては顕著に現れる。冷却水
出入口を左右に分けた2折流復水器では、冷却水入口を
右に設けた場合、蒸気は冷却水入口側、すなわち右に偏
る。しかも、冷却水出入り口付近と水返し水室付近で
は、左右管巣の冷却水温度が違うため、非凝縮ガスの停
滞域は冷却水の流れに対して左右方向に変動する。
This phenomenon is prominent in a two-fold flow condenser in which cooling water inlets and outlets are provided in the same direction. In the two-fold flow condenser in which the cooling water inlet / outlet is divided into left and right, when the cooling water inlet is provided on the right side, the steam is biased to the cooling water inlet side, that is, to the right. Moreover, since the cooling water temperatures of the left and right pipe nests are different near the cooling water inlet / outlet and near the water return water chamber, the stagnation region of the non-condensed gas fluctuates in the left / right direction with respect to the flow of the cooling water.

【0005】一方、冷却水出入口を上下に分けた2折流
復水器では、冷却水入口を上に設けた場合、蒸気は冷却
水入口側、上部に偏り、しかも冷却水出入口側と水返し
水室側での上部冷却水温度と下部冷却水温度差が違うた
め、非凝縮ガスの停滞域が上下に変動する。すなわち、
特に2折流復水器においては冷却水出入口温度差が非凝
縮ガスの停滞域の偏りになり、空気抽出管の設置箇所に
非凝縮ガスを集めることは非常に難しいことである。
On the other hand, in the two-fold flow condenser in which the cooling water inlet and outlet are divided into upper and lower parts, when the cooling water inlet is provided on the upper side, the steam is biased to the cooling water inlet side and the upper part, and the cooling water inlet and outlet sides Since the difference between the upper cooling water temperature and the lower cooling water temperature on the water chamber side is different, the stagnant region of non-condensed gas fluctuates up and down. That is,
In particular, in the two-fold flow condenser, the temperature difference between the inlet and outlet of the cooling water becomes uneven in the stagnation area of the non-condensed gas, and it is very difficult to collect the non-condensed gas at the installation location of the air extraction pipe.

【0006】非凝縮ガスはいくら冷却しても凝縮しない
ため、真空度が低下することによる復水器の性能の低下
や、銅合金を含む冷却管を採用している復水器で給水中
に鉄分が溶出するのを防ぐため、ボイラ給水にアンモニ
アを注入し給水のpHを高く保つようにしているが、ア
ンモニアは水よりも凝縮点が低いために凝縮されず、非
凝縮ガス中のアンモニアにより冷却管が浸食される、い
わゆるアンモニアアタックを発生させる要因となる。
Since the non-condensed gas does not condense no matter how much it is cooled, the performance of the condenser is deteriorated due to the reduced degree of vacuum, and the condenser using a cooling pipe containing a copper alloy is used to supply water. Ammonia is injected into the boiler feedwater to keep the pH of the feedwater high in order to prevent the iron content from being eluted, but ammonia is not condensed because it has a lower condensation point than water, and ammonia in the non-condensed gas causes This causes the so-called ammonia attack in which the cooling pipe is eroded.

【0007】この種の復水器において停滞域を完全に除
去することは難しいことであるが、その領域を狭め、か
つ非凝縮ガスをできる限り空気抽出管近傍に集め、真空
ポンプにより復水器外へ放出することが重要になる。
It is difficult to completely remove the stagnant area in this type of condenser, but the area is narrowed, and the non-condensed gas is collected as close to the air extraction pipe as possible, and the condenser is vacuum pumped. Discharge to the outside becomes important.

【0008】本発明はこれに鑑みなされたもので、その
目的とするところは、非凝縮ガスの停滞領域が狭められ
るとともに、空気抽出管近傍に非凝縮ガスが速やかに集
められ、復水器外へ放出することができ、非凝縮ガス中
のアンモニアにより冷却管が浸食されるアンモニアアタ
ック等を充分防止することができ、復水器内の蒸気凝縮
を促進し真空度を高めることにより、性能の向上を図る
ことのできるこの種の復水器を提供するにある。
The present invention has been made in view of the above, and an object thereof is to narrow the stagnant region of the non-condensed gas and quickly collect the non-condensed gas in the vicinity of the air extraction pipe to prevent the non-condensed gas from being condensed outside the condenser. It is possible to sufficiently prevent ammonia attack, etc. in which the cooling pipe is eroded by ammonia in the non-condensed gas, and to promote the vapor condensation in the condenser and increase the vacuum level to improve the performance. It is to provide this type of condenser that can be improved.

【0009】[0009]

【課題を解決するための手段】すなわち本発明は、多数
の細管が並設された冷却管管巣と、この管巣の一方端側
に配置され、冷却水供給水室および冷却水排出水室を有
する給排水ヘッダと、管巣の他方端側に配置され、冷却
水の折り返し室を有する折り返しヘッダと、前記管巣内
に配置され、非凝縮ガスを抽出し排出する空気抽出管と
を備えた2折流の復水器において、前記給排水ヘッダ
を、前記給排水ヘッダの冷却水供給水室から供給された
冷却水が、前記管巣の中心部分およびその近傍を流通
し、かつ折り返し室を流通した後管巣の外周部分および
その近傍を流通するように形成するとともに、前記非凝
縮ガスを抽出する空気抽出管を管巣の中心部近傍に配置
するようにし所期の目的を達成するようにしたものであ
る。
That is, the present invention provides a cooling pipe tube nest in which a large number of thin tubes are arranged in parallel, and a cooling water supply water chamber and a cooling water discharge water chamber which are arranged at one end side of this cooling tube nest. A water supply / drainage header, a return header having a return chamber for cooling water disposed on the other end side of the tube nest, and an air extraction tube disposed in the tube nest for extracting and discharging non-condensed gas. In the two-fold flow condenser, the cooling water supplied from the cooling water supply water chamber of the water supply / drainage header flows through the water supply / drainage header through the central portion of the tube nest and the vicinity thereof, and also flows through the folding chamber. The air extraction pipe for extracting the non-condensed gas is arranged near the central portion of the tube nest so as to achieve the intended purpose while being formed so as to flow through the outer periphery of the tube nest and its vicinity. It is a thing.

【0010】[0010]

【作用】すなわちこのように形成された復水器である
と、供給された冷却水が、管巣の中心部近傍を流通し、
かつ折り返し室を流通した後、管巣の外周部近傍を流通
するように形成されていることから、ガスは低温の管巣
中央方向に向かって積極的に流れ、したがって非凝縮ガ
スの停滞域は小さく、かつ停滞域は管巣の中央部とな
り、そしてこの非凝縮ガスは管巣中央部に配置されてい
る空気抽出管近傍にて復水器外へ放出され、復水器内の
蒸気凝縮を促進し真空度を高めることができ、性能の向
上を図ることができる。また非凝縮ガスの速やかな排除
により、非凝縮ガス中のアンモニアにより冷却管が浸食
されるアンモニアアタック等を充分防止することができ
るのである。
In other words, in the condenser thus formed, the supplied cooling water flows near the center of the tube nest,
Moreover, since the gas is formed so as to flow in the vicinity of the outer peripheral portion of the tube nest after flowing through the folding chamber, the gas positively flows toward the center of the tube nest at a low temperature, so that the stagnant region of the non-condensed gas is The small and stagnant area is in the central part of the tube nest, and this non-condensed gas is discharged to the outside of the condenser near the air extraction pipe located in the central part of the tube nest, and vapor condensation in the condenser is prevented. The degree of vacuum can be promoted, the degree of vacuum can be increased, and the performance can be improved. Further, by promptly removing the non-condensable gas, it is possible to sufficiently prevent an ammonia attack or the like in which the cooling pipe is eroded by ammonia in the non-condensed gas.

【0011】[0011]

【実施例】以下図示した実施例に基づいて本発明を詳細
に説明する。図1および図2にはその復水器の内部構成
が概略的に示されている。復水器内部には、海水等の中
に冷却水が流れている細管の集まりである冷却管管巣
1、2を備え、またいくら冷却しても凝縮せず、真空度
低下による性能の低下や、冷却管が浸食される問題があ
る非凝縮ガスを復水器外へ放出するための空気抽出管3
が設置されている。この空気抽出管3および前記冷却管
は適宜間隔で設置されている複数の仕切板12により支
持されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. 1 and 2 schematically show the internal structure of the condenser. Inside the condenser, cooling tube tube nests 1 and 2 that are a collection of thin tubes in which cooling water flows in seawater, etc. are not condensed even if cooled no matter how much, and the performance is deteriorated due to the reduced degree of vacuum. And the air extraction pipe 3 for discharging the non-condensable gas, which has a problem of eroding the cooling pipe, to the outside of the condenser
Is installed. The air extraction pipe 3 and the cooling pipe are supported by a plurality of partition plates 12 installed at appropriate intervals.

【0012】また、前記冷却管管巣の一方端側には、冷
却水供給水室20aおよび冷却水排出水室20bを有す
る給排水ヘッダ20が配置され、かつ管巣の他方端側に
は、冷却水の折り返し室21aを有する折り返しヘッダ
21が配置されている。
Further, a water supply / drainage header 20 having a cooling water supply water chamber 20a and a cooling water discharge water chamber 20b is arranged on one end side of the cooling tube tube nest, and cooling is provided on the other end side of the tube nest. A folding header 21 having a water folding chamber 21a is arranged.

【0013】前記給排水ヘッダ20は、特に次のように
形成されている。すなわち、給排水ヘッダの冷却水供給
水室20aから供給された冷却水が、前記管巣の中心部
分およびその近傍(中央部冷却管管巣1)を流通し、か
つ折り返しヘッダ21の折り返し室21aを流通した
後、管巣の外周部分およびその近傍(外周部冷却管管巣
2)を流通するように形成されている。
The water supply / drainage header 20 is particularly formed as follows. That is, the cooling water supplied from the cooling water supply water chamber 20a of the water supply / drainage header flows through the central portion of the pipe nest and its vicinity (the central cooling pipe pipe nest 1), and flows through the folding chamber 21a of the folding header 21. After flowing, it is formed so as to flow through the outer peripheral portion of the tube nest and the vicinity thereof (outer peripheral cooling tube tube nest 2).

【0014】低圧蒸気タ−ビンにて仕事を終えた蒸気は
復水器上部より復水器内に流入し、内部に冷却水が流れ
ている外周部冷却管管巣2、中央部冷却管管巣1を通過
する。この通過の際に蒸気は徐々に冷却されて凝縮し、
凝縮されない非凝縮ガスは空気抽出管3より復水器外部
に設置されている真空ポンプ4にて内部に冷却管が通っ
ている非凝縮ガス通気口5を介して、残留蒸気を凝縮さ
せ復水器の外部へ放出される。
The steam that has finished its work in the low-pressure steam turbine flows into the condenser from the upper part of the condenser, and the cooling water flows in the outer peripheral cooling pipe tube nest 2 and the central cooling pipe pipe. Pass through nest 1. During this passage, the vapor is gradually cooled and condensed,
The non-condensed gas that is not condensed is condensed by condensing the residual vapor through the non-condensed gas ventilation port 5 through which the cooling pipe passes through the vacuum pump 4 installed outside the condenser from the air extraction pipe 3. It is released to the outside of the container.

【0015】復水器胴体14と給排水ヘッダ20および
折り返しヘッダ21はフランジによる結合構造とし、そ
の間に管板が挟まれボルト締めにより結合されている。
冷却水管台6と冷却水管台7が設置されている給排水ヘ
ッダ20の内側には、中央部冷却管管巣1と外周部冷却
管管巣2を仕切るために冷却水供給水室20aが設けら
れており、また、冷却水管台6は冷却水排出水室20b
を貫通し冷却水供給水室20aに連通している。
The condenser body 14, the water supply / drainage header 20 and the folded header 21 are connected by a flange, and a tube plate is sandwiched between them to be connected by bolting.
Inside the water supply / drainage header 20 in which the cooling water pipe base 6 and the cooling water pipe base 7 are installed, a cooling water supply water chamber 20a is provided to partition the central cooling pipe pipe nest 1 and the outer peripheral cooling pipe pipe nest 2. In addition, the cooling water nozzle 6 is provided in the cooling water discharge water chamber 20b.
Through to communicate with the cooling water supply chamber 20a.

【0016】本発明は上記の如く構成されており、通常
中央部冷却管管巣1を入口側、外周部冷却管管巣2を出
口側とし、管巣中央部の蒸気分圧を上げ空気抽出管3近
傍に非凝縮ガスの停滞域を集め、空気抽出管3より非凝
縮ガス通気口5を介して復水器外部に設置されている真
空ポンプ4にて復水器外へ放出する。このとき、冷却水
管台6より流入した冷却水は、冷却水供給水室20aに
流入し、復水器内部に設置されている中央部冷却管管巣
1、折り返し水室21a、外周部冷却管管巣2を通り、
冷却水排出水室20bに流入し、冷却水管台7より放出
される。
The present invention is constructed as described above. Normally, the central cooling pipe tube nest 1 is the inlet side and the outer peripheral cooling tube nest 2 is the outlet side, and the vapor partial pressure in the central portion of the tube nest is increased to extract air. A non-condensable gas stagnation area is collected in the vicinity of the pipe 3, and is discharged to the outside of the condenser by the vacuum pump 4 installed outside the condenser from the air extraction pipe 3 through the non-condensed gas ventilation port 5. At this time, the cooling water that has flowed in from the cooling water pipe base 6 flows into the cooling water supply water chamber 20a and the central cooling pipe tube nest 1, the folded water chamber 21a, and the outer peripheral cooling pipe that are installed inside the condenser. Pass through the nest 2,
It flows into the cooling water discharge water chamber 20b and is discharged from the cooling water nozzle 7.

【0017】非凝縮ガス通気口5には、空気抽出管3か
ら復水器外部に設置されている真空ポンプ4により、非
凝縮ガスと同時に流入した微量の蒸気を凝縮させるた
め、一部冷却管が通過している。このとき、非凝縮ガス
通気口5の内部を通過する冷却管は、中央部冷却管管巣
1の一部を通過させる。
In the non-condensed gas vent 5, a small amount of vapor that flows in simultaneously with the non-condensed gas is condensed by the vacuum pump 4 installed outside the condenser from the air extraction pipe 3, so that a partial cooling pipe is provided. Is passing. At this time, the cooling pipe passing through the inside of the non-condensed gas vent 5 passes through a part of the central cooling pipe tube nest 1.

【0018】また、非凝縮ガス通気口5は仕切板12の
間に板を溶接する構造とし、1〜3スパンの幅をとする
のが良い。このとき、非凝縮ガス通気口5の内部を通過
する冷却管は全冷却管の2%〜5%とするのが好まし
い。
The non-condensed gas vent 5 is preferably constructed by welding plates between the partition plates 12 and has a width of 1 to 3 spans. At this time, it is preferable that the cooling pipes passing through the inside of the non-condensed gas ventilation port 5 be 2% to 5% of all the cooling pipes.

【0019】以上の説明では中央部冷却管管巣1および
外周部冷却管管巣2の冷却管の径がすべて等しい場合の
例であるが、次のようにしても良い。すなわち、管巣中
心部と管巣外周部の冷却管の外径を変えることにより、
中央部冷却管管巣1と外周部冷却管管巣2に於ける冷却
面積の比率を変化させ、中央部冷却管管巣1と外周部冷
却管管巣2の凝縮量の差による圧力差を生じさせ、空気
抽出管3近傍に非凝縮ガスの停滞域を集め、空気抽出管
3より非凝縮ガス通気口5を介して復水器外に設置され
ている真空ポンプ4にて復水器外へ放出するようにする
のである。
In the above description, the cooling pipe diameters of the central cooling pipe tube nest 1 and the outer peripheral cooling pipe tube nest 2 are all the same, but the following may be adopted. That is, by changing the outer diameters of the cooling tubes in the central portion of the tube nest and the outer peripheral portion of the tube nest,
By changing the ratio of the cooling areas in the central cooling pipe nest 1 and the outer cooling pipe nest 2, the pressure difference due to the difference in the amount of condensation between the central cooling pipe nest 1 and the outer cooling pipe nest 2 is changed. A non-condensable gas stagnation area is generated in the vicinity of the air extraction pipe 3, and the vacuum pump 4 installed outside the condenser from the air extraction pipe 3 through the non-condensed gas vent 5 outside the condenser. To be released to.

【0020】また、中央部冷却管管巣1を密集部、外周
部冷却管管巣2を拡散部とし、外周部冷却管管巣2の占
める面積を中央部冷却管管巣1の占める面積の1.5〜
2倍にすることにより、中央部冷却管管巣1と外周部冷
却管管巣2の幅の比を1:2〜2:1の範囲とし、中央
部冷却管管巣1と外周部冷却管管巣2の間に圧力差を生
じさせ蒸気の流れを作り、非凝縮ガスの停滞域を空気抽
出管近傍3に集め、空気抽出管3より非凝縮ガス通気口
5を介して復水器外に設置されている真空ポンプ4にて
復水器外へ放出するようにしても良い。この場合、中央
部冷却管管巣1と外周部冷却管管巣2の間隔は保守点検
時の作業を考慮して、100mm〜200mmとするの
が好ましい。
Further, the central cooling pipe nest 1 is a dense portion, the outer cooling pipe nest 2 is a diffusion portion, and the area occupied by the outer cooling pipe nest 2 is the area occupied by the central cooling pipe nest 1. 1.5 ~
By doubling, the width ratio of the central cooling pipe nest 1 and the outer peripheral cooling pipe nest 2 is set in the range of 1: 2 to 2: 1 and the central cooling pipe nest 1 and the outer cooling pipe are A pressure difference is generated between the tube nests 2 to generate a flow of steam, and a stagnation area of the non-condensable gas is collected in the vicinity 3 of the air extraction pipe, and the outside of the condenser is extracted from the air extraction pipe 3 via the non-condensed gas ventilation port 5. You may make it discharge | emit outside of a condenser with the vacuum pump 4 installed in. In this case, the distance between the central cooling pipe nest 1 and the outer peripheral cooling pipe nest 2 is preferably 100 mm to 200 mm in consideration of work during maintenance and inspection.

【0021】図3は本発明に用いられるヘッダの実施例
を示したもので、給排水ヘッダ20を冷却水供給水室2
0aと冷却水排出水室20bに分け2重構造とした場合
である。給排水ヘッダ20の内部は流入する冷却水と流
出する冷却水が混合しないよう冷却水供給水室20aの
外壁により仕切る2重構造とし冷却水入口側と冷却水出
口側に分ける。
FIG. 3 shows an embodiment of the header used in the present invention, in which the water supply / drainage header 20 is connected to the cooling water supply water chamber 2
0a and the cooling water discharge water chamber 20b are divided into a double structure. The inside of the water supply / drainage header 20 has a double structure in which the inflowing cooling water and the outflowing cooling water are partitioned by the outer wall of the cooling water supply water chamber 20a so that the cooling water does not mix with the cooling water inlet side and the cooling water outlet side.

【0022】2重構造とした給排水ヘッダの冷却水供給
水室20aは、冷却水排出水室20bを貫通する冷却水
管台6により固定され、なおかつ冷却水排出水室20b
に十字方向に補強11を設置し冷却水供給水室20aを
固定するが、強度的に充分であれば補強の数を減らして
も良い。補強11は、外周部冷却管管巣2に流入する冷
却水の流路に影響を少なくするため、管板面より200
mm〜400mm離して取り付けるのが好ましい。
The cooling water supply water chamber 20a of the water supply / drainage header having a double structure is fixed by the cooling water pipe base 6 penetrating the cooling water discharge water chamber 20b, and the cooling water discharge water chamber 20b is also provided.
The reinforcement 11 is installed in the cross direction to fix the cooling water supply water chamber 20a, but the number of reinforcements may be reduced if the strength is sufficient. The reinforcement 11 reduces the influence on the flow path of the cooling water flowing into the outer peripheral cooling pipe tube nest 2, so that
It is preferable to mount them at a distance of mm to 400 mm.

【0023】上記実施例において、冷却水供給水室20
aは四角形であるが、中央部冷却管管巣1の管配列に対
応した形になるようにする。また、冷却水排出水室20
bおよび折り返し水室21aは、水室内部の冷却水の流
れを円滑にするため、角に丸みをつけることが好まし
い。
In the above embodiment, the cooling water supply water chamber 20
Although a is a quadrangle, it has a shape corresponding to the tube arrangement of the central cooling tube tube nest 1. In addition, the cooling water discharge water chamber 20
The b and the folded water chamber 21a preferably have rounded corners in order to smooth the flow of cooling water inside the water chamber.

【0024】図4において、冷却水供給水室20aと冷
却水排出水室20bの間の流路面積が十分であれば、冷
却水供給水室20aを冷却水排出水室20bに直接溶接
固定し、なおかつ冷却水排出水室20bに十字方向に補
強11を設置し冷却水供給水室20aを固定するが、強
度的に充分であれば補強の数を減らしても良い。
In FIG. 4, if the flow passage area between the cooling water supply water chamber 20a and the cooling water discharge water chamber 20b is sufficient, the cooling water supply water chamber 20a is directly welded and fixed to the cooling water discharge water chamber 20b. Although the reinforcement 11 is installed in the cooling water discharge water chamber 20b in the cross direction to fix the cooling water supply water chamber 20a, the number of reinforcements may be reduced if the strength is sufficient.

【0025】冷却水供給水室20aは管板面に対しては
ボルトや溶接等による固定はせず、パッキンにて気密を
良くし冷却水供給水室20aと冷却水排出水室20bの
冷却水の混合を防止する。パッキンは、冷却水排出水室
20bと同材質、同構造とするか、水室内腐食防止のた
めに水室内部に用いるゴムと布製のパッキンを重ねて使
用しても良い。さらに、気密性を高めるため、管板のパ
ッキン接触面を機械加工により溝をつけても良い。
The cooling water supply water chamber 20a is not fixed to the tube sheet surface by bolts or welding, but is made airtight by a packing, and the cooling water supply water chamber 20a and the cooling water discharge water chamber 20b are cooled. To prevent the mixture of. The packing may be made of the same material and have the same structure as the cooling water discharge water chamber 20b, or rubber and cloth packings used in the water chamber may be stacked to prevent corrosion in the water chamber. Further, in order to improve the airtightness, the packing contact surface of the tube sheet may be machined to form a groove.

【0026】以上のように本発明であると、復水器内に
停滞し、いくら冷却しても凝縮せず、真空度低下による
復水器の性能低下、或いは、冷却管を浸食させるアンモ
ニアを含む非凝縮ガスを、冷却水出入口を中央部と外周
部に分けることによって、冷却水の温度差による非凝縮
ガスの停滞域の偏りを防ぎ、圧力差により復水器外へ放
出するための導入管である空気抽出管近傍に集め、復水
器の運転中に非凝縮ガスを抽出する回転機械である真空
ポンプにより復水器外へ放出するため、非凝縮ガスの停
滞により引き起こされる、性能低下や、非凝縮ガス中の
アンモニアによる冷却管の損傷を防止することができ
る。
As described above, according to the present invention, the condenser stays in the condenser, does not condense even if cooled, and the performance of the condenser is deteriorated due to the reduced degree of vacuum, or ammonia that corrodes the cooling pipe is removed. Introduce the non-condensed gas that contains the non-condensed gas to the outside of the condenser by preventing the non-condensed gas from being stagnant due to the temperature difference of the cooling water by dividing the cooling water inlet and outlet into the central part and the outer peripheral part. Collected in the vicinity of the air extraction pipe, which is a pipe, and discharged to the outside of the condenser by a vacuum pump, which is a rotating machine that extracts the non-condensed gas while the condenser is operating. Also, it is possible to prevent the cooling pipe from being damaged by ammonia in the non-condensed gas.

【0027】なお、以上の説明では2折流の復水器につ
いて説明してきたが、それ以上の折流の復水器に採用可
能であることは勿論である。なおこの場合には、給排水
ヘッダと折り返しヘッダを、給排水ヘッダの冷却水供給
水室から供給された冷却水が、管巣の中心部分およびそ
の近傍を流通し、かつ折り返し室を流通した後は前記流
通してきた管巣よりは外周側の管巣の部分を流通するよ
うに形成する。
Although the two-fold flow condenser has been described in the above description, it is needless to say that the condenser can be applied to a more-folded condenser. In this case, in the water supply / drainage header and the return header, the cooling water supplied from the cooling water supply water chamber of the water supply / drainage header flows through the central portion of the tube nest and its vicinity, and after flowing through the return chamber, It is formed so as to flow through the portion of the tube nest on the outer peripheral side of the tube nest that has flowed.

【0028】[0028]

【発明の効果】以上説明してきたように本発明によれ
ば、供給された冷却水が、管巣の中心部近傍を流通し、
かつ折り返し室を流通した後管巣の外周部近傍を流通す
るように形成されているので、ガスは低温の管巣中央方
向に向かって積極的に流れ、したがって非凝縮ガスの停
滞領域が狭められるとともに、空気抽出管近傍に非凝縮
ガスが速やかに集められ、復水器外へ放出することがで
き、非凝縮ガス中のアンモニアにより冷却管が浸食され
るアンモニアアタック等を充分防止することができ、復
水器内の蒸気凝縮を促進し真空度を高めることにより、
性能の向上を図ることのできるこの種の復水器を得るこ
とができる。
As described above, according to the present invention, the supplied cooling water flows near the center of the tube nest,
Moreover, since the gas is formed so as to flow in the vicinity of the outer peripheral portion of the tube nest after flowing through the folding chamber, the gas positively flows toward the center of the tube nest at a low temperature, thus narrowing the stagnant region of the non-condensed gas. At the same time, the non-condensable gas can be quickly collected in the vicinity of the air extraction pipe and discharged to the outside of the condenser, and it is possible to sufficiently prevent ammonia attack etc. in which the cooling pipe is eroded by ammonia in the non-condensed gas. By promoting vapor condensation in the condenser and increasing the degree of vacuum,
It is possible to obtain this type of condenser that can improve performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の復水器の一実施例を示す縦断側面図で
ある。
FIG. 1 is a vertical sectional side view showing one embodiment of a condenser according to the present invention.

【図2】図1のA−A線に沿う概略断面図である。FIG. 2 is a schematic sectional view taken along the line AA of FIG.

【図3】本発明の復水器に採用されるヘッダを示す一部
破断正面図である。
FIG. 3 is a partially cutaway front view showing a header used in the condenser of the present invention.

【図4】本発明の復水器に採用されるヘッダを示す一部
破断側面図である。
FIG. 4 is a partially cutaway side view showing a header used in the condenser of the present invention.

【符号の説明】[Explanation of symbols]

1…中央部冷却管管巣、2…外周部冷却管管巣、3…空
気抽出管、4…真空ポンプ、5…非凝縮ガス通気口、6
…冷却水管台、7…冷却水管台、11…補強、12…仕
切板、13…管板、14…復水器胴体、20…給排水ヘ
ッダ、20a…冷却水供給水室、20b…冷却水排出水
室、21…折り返しヘッダ、21a…折り返し室。
DESCRIPTION OF SYMBOLS 1 ... Central cooling pipe nest, 2 outer peripheral cooling pipe nest, 3 air extraction pipe, 4 vacuum pump, 5 non-condensing gas vent, 6
... Cooling water nozzle, 7 ... Cooling water nozzle, 11 ... Reinforcement, 12 ... Partition plate, 13 ... Tube, 14 ... Condenser body, 20 ... Water supply / drainage header, 20a ... Cooling water supply water chamber, 20b ... Cooling water discharge Water chamber, 21 ... Folding header, 21a ... Folding chamber.

フロントページの続き (72)発明者 数藤 充 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front page continuation (72) Inventor Mitsuru Sudo 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi, Ltd. Hitachi factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多数の管が並設された管巣と、該管巣の
一方端側に配置され、冷却水供給水室および冷却水排出
水室を有する給排水ヘッダと、管巣の他方端側に配置さ
れ、冷却水の折り返し室を有する折り返しヘッダと、前
記管巣内に配置され、非凝縮ガスを抽出し排出する空気
抽出管とを備えた2折流の復水器において、 前記給排水ヘッダを、前記給排水ヘッダの冷却水供給水
室から供給された冷却水が、前記管巣の中心部分および
その近傍を流通し、かつ折り返し室を流通した後管巣の
外周部分およびその近傍を流通するように形成するとと
もに、前記非凝縮ガスを抽出する空気抽出管を管巣の中
心部近傍に配置するようにしたことを特徴とする2折流
の復水器。
1. A pipe nest in which a large number of pipes are arranged side by side, a water supply / drainage header having a cooling water supply water chamber and a cooling water discharge water chamber, which is arranged on one end side of the pipe nest, and the other end of the pipe nest. A two-fold flow condenser equipped with a return header having a return chamber for cooling water, and an air extraction pipe disposed inside the tube nest for extracting and discharging non-condensed gas. In the header, the cooling water supplied from the cooling water supply water chamber of the water supply / drainage header flows through the central portion of the tube nest and its vicinity, and flows through the outer periphery of the tube nest and its vicinity after flowing through the folding chamber. The two-fold flow condenser is characterized in that the air extraction pipe for extracting the non-condensed gas is arranged near the center of the tube nest.
【請求項2】 多数の管が並設された管巣と、該管巣の
一方端側に配置され、冷却水供給水室および冷却水排出
水室を有する給排水ヘッダと、管巣の他方端側に配置さ
れ、冷却水の折り返し室を有する折り返しヘッダと、前
記管巣内に配置され、非凝縮ガスを抽出し排出する空気
抽出管とを備えた2折流の復水器において、 前記給排水ヘッダを、前記給排水ヘッダの冷却水供給水
室から供給された冷却水が、前記管巣の中心部分および
その近傍を流通し、かつ折り返し室を流通した後管巣の
外周部分およびその近傍を流通するように形成するとと
もに、前記管巣の冷却面積を外周部側の冷却管管巣より
中央部側の冷却管管巣の方が大きくなるように形成し、
かつ前記非凝縮ガスを抽出する空気抽出管を管巣の中心
部近傍に配置するようにしたことを特徴とする2折流の
復水器。
2. A pipe nest in which a large number of pipes are arranged side by side, a water supply / drainage header arranged at one end side of the pipe nest and having a cooling water supply water chamber and a cooling water discharge water chamber, and the other end of the pipe nest. A two-fold flow condenser equipped with a return header having a return chamber for cooling water, and an air extraction pipe disposed inside the tube nest for extracting and discharging non-condensed gas. In the header, the cooling water supplied from the cooling water supply water chamber of the water supply / drainage header flows through the central portion of the tube nest and its vicinity, and flows through the outer periphery of the tube nest and its vicinity after flowing through the folding chamber. And the cooling area of the tube nest is formed such that the cooling tube tube nest on the central side is larger than the cooling tube tube nest on the outer peripheral side,
A two-fold flow condenser, wherein an air extraction pipe for extracting the non-condensed gas is arranged near the center of the tube nest.
【請求項3】 前記外周部側の冷却管管巣の冷却管の径
を、前記中央部側の冷却管管巣の冷却管の径より大きく
形成し、冷却面積の比率を変化させるようにしてなる請
求項2記載の2折流の復水器。
3. The diameter of the cooling pipe of the cooling pipe tube nest on the outer peripheral side is formed larger than the diameter of the cooling pipe of the cooling pipe tube nest on the central portion side, and the ratio of the cooling area is changed. The two-fold flow condenser according to claim 2.
【請求項4】 前記給排水ヘッダの冷却水供給水室が、
給排水ヘッダの中央部に形成されるとともに、その周囲
に冷却水排出水室が、この冷却水供給水室を囲むように
二重に形成されてなる請求項1記載の2折流の復水器。
4. The cooling water supply water chamber of the water supply / drainage header comprises:
The two-fold flow condenser according to claim 1, wherein the condenser is formed in a central portion of the water supply / drainage header, and a cooling water discharge water chamber is formed around the central portion of the water supply / drainage header so as to surround the cooling water supply water chamber. .
【請求項5】 前記空気抽出管の内部に冷却管管巣の一
部の冷却管が通過するように形成してなる請求項1、
2、3若しくは4記載の2折流の復水器。
5. The air extraction tube is formed so that a part of the cooling tube tube nest passes through the inside of the air extraction tube.
A two-fold flow condenser described in 2, 3, or 4.
【請求項6】 前記空気抽出管の内部に冷却管管巣の一
部の冷却管が通過するように形成してなる請求項5記載
の2折流の復水器。
6. The two-fold flow condenser according to claim 5, wherein a part of the cooling pipes of the cooling pipe is formed inside the air extraction pipe so as to pass therethrough.
【請求項7】 前記空気抽出管の内部を通過する冷却管
は、全冷却管の2%〜5%である請求項6記載の2折流
の復水器。
7. The double-branched flow condenser according to claim 6, wherein the cooling pipe passing through the inside of the air extraction pipe is 2% to 5% of all the cooling pipes.
【請求項8】 多数の管が並設された管巣と、該管巣の
一方端側に配置され、冷却水供給水室および冷却水排出
水室を有する給排水ヘッダと、管巣の他方端側に配置さ
れ、冷却水の折り返し室を有する折り返しヘッダと、前
記管巣内に配置され、非凝縮ガスを抽出し排出する空気
抽出管とを備えた複数折流の復水器において、 前記給排水ヘッダおよび折り返しヘッダを、前記給排水
ヘッダの冷却水供給水室から供給された冷却水が、前記
管巣の中心部分およびその近傍を流通し、かつ折り返し
室を流通した後は前記流通してきた管巣よりは外周側の
管巣の部分を流通するように形成するとともに、前記非
凝縮ガスを抽出する空気抽出管を管巣の中心部近傍に配
置するようにしたことを特徴とする複数折流の復水器。
8. A pipe nest in which a large number of pipes are arranged side by side, a water supply / drainage header arranged on one end side of the pipe nest and having a cooling water supply water chamber and a cooling water discharge water chamber, and the other end of the pipe nest. In the condenser of a multi-fold flow, which is disposed on the side, has a turn-back header having a turn-back chamber for cooling water, and an air extraction pipe that is placed inside the tube nest and that extracts and discharges non-condensed gas, The header and the return header, the cooling water supplied from the cooling water supply water chamber of the water supply and drainage header flows through the central portion of the pipe nest and its vicinity, and after flowing through the folding chamber, the circulating pipe nest. A plurality of folds characterized by being formed so as to flow through a portion of the tube nest on the outer peripheral side and arranged so that the air extraction pipe for extracting the non-condensed gas is arranged in the vicinity of the central portion of the tube nest. Condenser.
JP17878695A 1995-07-14 1995-07-14 Condenser Pending JPH0926272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17878695A JPH0926272A (en) 1995-07-14 1995-07-14 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17878695A JPH0926272A (en) 1995-07-14 1995-07-14 Condenser

Publications (1)

Publication Number Publication Date
JPH0926272A true JPH0926272A (en) 1997-01-28

Family

ID=16054619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17878695A Pending JPH0926272A (en) 1995-07-14 1995-07-14 Condenser

Country Status (1)

Country Link
JP (1) JPH0926272A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025247A1 (en) 2007-08-17 2009-02-26 Fujifilm Corporation Hydrophilic film-forming composition, spray composition, and hydrophilic member using the same
CN102692137A (en) * 2012-06-07 2012-09-26 镇江新梦溪能源科技有限公司 Air-cooling-type tubular condensation device
JP2013076489A (en) * 2011-09-29 2013-04-25 Toshiba Corp Heat exchanger
CN103644002A (en) * 2013-11-29 2014-03-19 广西博宣食品有限公司 Steam extraction cooling system of turbine steam seal for sugar factory
CN104390481A (en) * 2014-10-29 2015-03-04 天津中能蓝天节能技术开发有限公司 Heat supply and cooling mixed type condenser
CN104501615A (en) * 2014-12-17 2015-04-08 榆林学院 Device for discharging non-condensable gas from condensation segment by means of venturi effect
JP2015068613A (en) * 2013-09-30 2015-04-13 株式会社東芝 Condenser
JP2021076315A (en) * 2019-11-11 2021-05-20 株式会社東芝 Multi-tube condenser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025247A1 (en) 2007-08-17 2009-02-26 Fujifilm Corporation Hydrophilic film-forming composition, spray composition, and hydrophilic member using the same
JP2013076489A (en) * 2011-09-29 2013-04-25 Toshiba Corp Heat exchanger
CN102692137A (en) * 2012-06-07 2012-09-26 镇江新梦溪能源科技有限公司 Air-cooling-type tubular condensation device
JP2015068613A (en) * 2013-09-30 2015-04-13 株式会社東芝 Condenser
CN103644002A (en) * 2013-11-29 2014-03-19 广西博宣食品有限公司 Steam extraction cooling system of turbine steam seal for sugar factory
CN104390481A (en) * 2014-10-29 2015-03-04 天津中能蓝天节能技术开发有限公司 Heat supply and cooling mixed type condenser
CN104501615A (en) * 2014-12-17 2015-04-08 榆林学院 Device for discharging non-condensable gas from condensation segment by means of venturi effect
JP2021076315A (en) * 2019-11-11 2021-05-20 株式会社東芝 Multi-tube condenser

Similar Documents

Publication Publication Date Title
JPH0926272A (en) Condenser
US6233941B1 (en) Condensation system
FI89678B (en) CONNECTION OF CONDITIONING CONTAINER CONDENSATION IN CIRCUIT BETWEEN AND CONSTRUCTION
US3338052A (en) High recovery condenser
US6296049B1 (en) Condenser
US7540905B2 (en) Deaerating and degassing system for power plant condensers
CN219376083U (en) Uniform steam inlet end socket suitable for horizontal tube falling film evaporator
KR20050014712A (en) Condenser
US4193446A (en) Intermediate steam superheater
JP2008128079A (en) Moisture separator and straightening mechanism of manifold
US4679529A (en) Steam generator feed water heater
AU704083B2 (en) Integral deaerator for a heat pipe steam condenser
US2114873A (en) Elastic fluid surface condenser
CN210286819U (en) Built-in evaporation treatment device of condenser
US3391911A (en) Mixing condensers
US20010011458A1 (en) Steam condenser
FI78981B (en) VAERMEVAEXLARE.
JPS6157997B2 (en)
CN108871006A (en) Aixal admission condenser
JP2511149B2 (en) Water heater
JPS631515B2 (en)
US2158842A (en) Condenser apparatus
CN115364507B (en) Desalting and binary mixing integrated condenser
KR830003027Y1 (en) Shell and tube heat exchanger
JPS58187788A (en) Condenser