JPH09262650A - Method for controlling fluidity in mold in continuous casting and device therefor - Google Patents

Method for controlling fluidity in mold in continuous casting and device therefor

Info

Publication number
JPH09262650A
JPH09262650A JP9733096A JP9733096A JPH09262650A JP H09262650 A JPH09262650 A JP H09262650A JP 9733096 A JP9733096 A JP 9733096A JP 9733096 A JP9733096 A JP 9733096A JP H09262650 A JPH09262650 A JP H09262650A
Authority
JP
Japan
Prior art keywords
mold
molten steel
magnetic field
continuous casting
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9733096A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazawa
憲一 宮沢
Hiroshi Harada
寛 原田
Takashi Morohoshi
隆 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9733096A priority Critical patent/JPH09262650A/en
Publication of JPH09262650A publication Critical patent/JPH09262650A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably execute the reduction of center segregation with increase of equi-axes crystals and the reduction of non-metallic inclusion in a cast slab with the reduction of penetrating depth of spouting flow, etc., in a continuous casting. SOLUTION: One pair of electromagnets 7 constituted with iron cores 8 interposing a mold 1 and arranged so as to be faced while keeping a fixed interval, plural coils 9 wound on the iron cores, plural magnetic poles 10 branched from the iron cores and plural coils 11 wound on the iron part near the magnetic pole, are set at the lower part of spouting hole of an immersion nozzle so as to conduct the current of DC or AC in the coils. By this method, the molten steel in the mold is stirred by impressing shifting magnetic field in the mold or the molten steel is braked by impressing static magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法に関する。
TECHNICAL FIELD The present invention relates to a continuous casting method for molten steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造では、一つの連鋳機で種々
の鋼種を鋳造する。鋼種の中には、連続鋳造において溶
鋼が凝固する際、中心偏析を極力低減する必要があるも
のや、鋳片内部の非金属介在物を極力低減する必要があ
るものがある。中心偏析の低減には、鋳型内の溶鋼を電
磁撹拌し、等軸晶を増加させることにより、中心偏析を
分散・低減できる。一方、鋳片内部の非金属介在物の低
減については、鋳型内の溶鋼に静磁場を印加し、浸漬ノ
ズルの吐出孔よりも下方へ流れる下向き流の浸透深さを
低減することにより、溶鋼内の介在物が鋳片内部へ捕捉
されることを抑制することができる。鋳型部に電磁石装
置を設置して溶鋼を撹拌する方法は従来より知られてお
り、特願平4−134898号公報や特願平4−159
802号公報では鋳型内の溶鋼に移動磁界を印加して撹
拌する方法を開示している。また、溶鋼に静磁場を印加
し、溶鋼流動を制動する方法は特願昭62−24143
9号公報や特願平4−127938号公報で開示されて
いる。
2. Description of the Related Art In continuous casting of steel, various steel types are cast by one continuous casting machine. Among steel grades, there is a need to reduce center segregation as much as possible when molten steel is solidified in continuous casting, and a matter to reduce non-metallic inclusions inside a slab as much as possible. In order to reduce the center segregation, the molten steel in the mold is electromagnetically stirred to increase equiaxed crystals, whereby the center segregation can be dispersed / reduced. On the other hand, regarding the reduction of non-metallic inclusions in the slab, by applying a static magnetic field to the molten steel in the mold and reducing the penetration depth of the downward flow that flows downward from the discharge hole of the immersion nozzle, It is possible to prevent the inclusions from being trapped inside the slab. A method of installing an electromagnet device in a casting mold and stirring molten steel has been conventionally known, and is disclosed in Japanese Patent Application No. 4-134898 and Japanese Patent Application No. 4-159.
Japanese Patent No. 802 discloses a method of applying a moving magnetic field to molten steel in a mold and stirring the molten steel. A method for applying a static magnetic field to molten steel to dampen the molten steel flow is disclosed in Japanese Patent Application No. 62-24143.
No. 9 and Japanese Patent Application No. 4-127938.

【0003】しかし、溶鋼を撹拌するための電磁石装置
と、静磁場の印加により溶鋼を制動するための電磁石装
置の二つを鋳型部の同じ場所に設置することは困難であ
り、また、これら二種類の電磁石装置を近接させて鋳型
部に設置することも空間的に困難な場合が多く、仮に可
能だとしても設備費用が高くなり、鋳型部に設置した一
つの電磁石装置により、連続鋳造する鋼種に応じて溶鋼
の撹拌と制動の機能を使い分ける方法が無いのが実状で
あった。
However, it is difficult to install two electromagnet devices for stirring molten steel and an electromagnet device for damping molten steel by applying a static magnetic field at the same place in the mold part. It is often difficult spatially to install different types of electromagnet devices close to each other in the mold part, and even if it is possible, the equipment cost will increase, and one electromagnet device installed in the mold part will continuously cast steel. It was the actual situation that there was no method to properly use the functions of stirring and braking molten steel depending on the situation.

【0004】[0004]

【発明が解決しようとする課題】一つの連続鋳造機の鋳
型部へ設置した一つの電磁石装置によって、鋳型内の溶
鋼を撹拌する機能と、鋳型内の溶鋼に静磁場を印加して
吐出流の浸透深さを低減する機能を鋼種に応じて使い分
けて、等軸晶増加による中心偏析低減や、吐出流の浸透
深さ低減による鋳片内の非金属介在物低減を安定にかつ
安価に行うことが課題である。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention A function of agitating molten steel in a mold by one electromagnet device installed in a mold portion of one continuous casting machine, and a static magnetic field applied to the molten steel in the mold to prevent discharge flow The function to reduce the penetration depth is used properly according to the steel type, and the central segregation is reduced by increasing the equiaxed crystal and the nonmetallic inclusions in the cast piece are reduced by reducing the penetration depth of the discharge flow, stably and at low cost. Is an issue.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために種々検討した結果、電磁石の鉄芯、コ
イル、磁極の配置や形状に関する工夫と、鉄芯に巻かれ
た複数のコイルに流す電流の種類を変えることにより、
一つの電磁石装置によって、鋳型内の溶鋼に移動磁場を
印加して溶鋼を撹拌させたり、静磁場を印加して溶鋼を
制動できることを見い出した。また、この一つの電磁石
装置を浸漬ノズルの吐出孔の下部に設置することが、撹
拌と制動の二つの機能を発揮するのに効果的であること
を見いだした。
Means for Solving the Problems As a result of various investigations for solving the above problems, the inventors of the present invention have devised the arrangement and shape of the iron core, the coil, and the magnetic pole of the electromagnet, and a plurality of coils wound around the iron core. By changing the type of current flowing through the coil,
It has been found that one electromagnet apparatus can apply a moving magnetic field to the molten steel in the mold to stir the molten steel, or apply a static magnetic field to brake the molten steel. Further, it was found that installing this one electromagnet device under the discharge hole of the immersion nozzle is effective for exhibiting two functions of stirring and braking.

【0006】本発明の要旨は、鋼の連続鋳造において、
溶鋼を浸漬ノズルを経て鋳型内へ注湯して鋳片を製造す
る際、鋳型を挟んで、一定の間隔を保って対向配置され
た鉄芯、該鉄芯に巻かれた複数のコイル、鉄芯から枝分
かれした複数の磁極、および該磁極近くの鉄部分に巻か
れた複数のコイルから構成される1対の電磁石を、浸漬
ノズルの吐出孔の下部に設置し、コイルに直流または交
流の電流を流すことにより、1対の電磁石によって、鋳
型内に移動磁場を印加して鋳型内の溶鋼を撹拌したり、
または、静磁場を誘起して溶鋼を制動することを特徴と
する連続鋳造方法である。また、連続鋳造用の鋳型を挟
んで、一定の間隔を保って対向配置された鉄芯、該鉄芯
に巻かれた複数のコイル、鉄芯から枝分かれした複数の
磁極、および該磁極の鉄部分に巻かれた複数のコイルか
ら構成される電磁石装置において、電流の種類を直流や
3相交流などに切り替えてコイルに電流を流すことによ
り、1対の電磁石によって、鋳型内に移動磁場を印加し
たり、または、静磁場を印加することを特徴とする連続
鋳造用の電磁石装置である。
The gist of the present invention is, in continuous casting of steel,
When producing molten slab by pouring molten steel into a mold through a dipping nozzle, the mold is sandwiched between iron cores arranged facing each other with a constant gap, a plurality of coils wound around the iron core, and iron. A pair of electromagnets composed of a plurality of magnetic poles branched from the core and a plurality of coils wound around an iron portion near the magnetic poles are installed below the discharge holes of the immersion nozzle, and a direct current or an alternating current is applied to the coils. By flowing a magnetic field in the mold by a pair of electromagnets to stir the molten steel in the mold,
Alternatively, the continuous casting method is characterized by inducing a static magnetic field to brake the molten steel. Further, an iron core that is opposed to the mold for continuous casting with a constant interval, a plurality of coils wound around the iron core, a plurality of magnetic poles branched from the iron core, and an iron portion of the magnetic pole. In an electromagnet device composed of a plurality of coils wound on a coil, a moving magnetic field is applied to the mold by a pair of electromagnets by switching the type of current to direct current, three-phase alternating current, etc. Or an electromagnet device for continuous casting characterized by applying a static magnetic field.

【0007】[0007]

【発明の実施の形態】図1は、連続鋳造において、浸漬
ノズル2の吐出孔3を経て溶鋼4を鋳型1の中へ注湯す
る際、鋳型部に電磁石装置7を設置した時の縦断面図を
示す。浸漬ノズルの吐出孔は、通常、水平方向よりも下
向きになっており、電磁石装置を作動させない場合、鋳
型内へ注湯された溶鋼のノズル吐出流は、鋳片の短片側
の凝固シェルに衝突して、ノズルの吐出孔よりも下方へ
流れる下向き流と、吐出孔よりも上へ流れる上向き流に
分かれる。溶鋼は鋳型への抜熱により凝固し、凝固シェ
ル6は連続的に下方へ引き抜かれる。下向き流の速度が
余りにも大きいと、吐出流の浸透深さが深くなるため、
非金属介在物の浮上除去にとって不利となり、鋳片の内
部に介在物が多く残り、鋼製品の品質に悪影響を及ぼ
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a vertical cross-sectional view of an electromagnet device 7 installed in a casting mold when pouring molten steel 4 into a casting mold 1 through a discharge hole 3 of a dipping nozzle 2 in continuous casting. The figure is shown. The discharge hole of the immersion nozzle is usually downward from the horizontal direction, and when the electromagnet device is not activated, the nozzle discharge flow of molten steel poured into the mold collides with the solidified shell on the short side of the slab. Then, it is divided into a downward flow that flows downward from the discharge hole of the nozzle and an upward flow that flows upward from the discharge hole. The molten steel is solidified by heat removal to the mold, and the solidified shell 6 is continuously drawn downward. If the velocity of the downward flow is too high, the depth of penetration of the discharge flow will increase, so
It is disadvantageous for floating removal of non-metallic inclusions, and many inclusions remain inside the slab, which adversely affects the quality of steel products.

【0008】鋳型内で溶鋼を電磁撹拌すると、鋳型内の
溶鋼温度が低減して浮遊している等軸晶が安定に成長す
るとともに、凝固シェルやメニスカス近傍において等軸
晶の生成が促進され、凝固後の鋳片の中心部における等
軸晶領域が多くなる。溶鋼撹拌の強さが強いほど、等軸
晶の生成が促進されるが、電磁石による強い撹拌をメニ
スカス近傍で行うと、鋳造用フラックスを溶鋼中へ巻き
込むことになり、品質に悪影響を及ぼす。このため、中
心偏析を低減したい鋼種を鋳造する場合、図1に示すよ
うに、浸漬ノズルの吐出孔より下方に電磁石を設置し、
電磁石装置7を使って溶鋼を撹拌すると、フラックスの
巻き込みなどの弊害を招かずに、溶鋼を強く電磁撹拌す
ることができ、等軸晶の増加が容易にでき、中心偏析を
分散・低減することが可能である。
When the molten steel is electromagnetically stirred in the mold, the temperature of the molten steel in the mold is reduced and the floating equiaxed crystals grow stably, and the formation of equiaxed crystals near the solidified shell and meniscus is promoted. The equiaxed crystal region in the center of the solidified slab increases. The stronger the strength of the molten steel stirring, the more the formation of equiaxed crystals is promoted. However, if the strong stirring by the electromagnet is performed near the meniscus, the casting flux is caught in the molten steel, which adversely affects the quality. Therefore, when casting a steel type whose center segregation is to be reduced, as shown in FIG. 1, an electromagnet is installed below the discharge hole of the immersion nozzle,
When the molten steel is stirred using the electromagnet device 7, the molten steel can be strongly electromagnetically stirred without causing any adverse effects such as entrainment of flux, the equiaxed crystal can be easily increased, and the central segregation can be dispersed / reduced. Is possible.

【0009】一方、ブリキ製品に使われる低炭アルミキ
ルド鋼などのように鋳片内部の非金属介在物の低減を厳
格に行わねばならない鋼種を鋳造する場合、電磁石装置
7を使って、溶鋼に静磁場を印加すると、静磁場中を流
動する溶鋼に、溶鋼の流動の方向と逆方向へ電磁気力が
作用し、溶鋼の流速が低下する。このため、吐出流の浸
透深さが大幅に低減し、非金属介在物が溶鋼プールの深
い位置まで侵入せず、メニスカスへの浮上除去が促進さ
れる。
On the other hand, when casting a steel type such as a low carbon aluminum killed steel used in a tin product, which must strictly reduce non-metallic inclusions in the slab, the electromagnet device 7 is used to form a molten steel. When a magnetic field is applied, an electromagnetic force acts on the molten steel flowing in the static magnetic field in the direction opposite to the flowing direction of the molten steel, and the flow velocity of the molten steel decreases. For this reason, the penetration depth of the discharge flow is significantly reduced, non-metallic inclusions do not penetrate deep into the molten steel pool, and floating removal to the meniscus is promoted.

【0010】図2は、図1のA−Aの位置の水平断面の
模式図であり、鋳型1を挟んで一定の間隔を保って対向
配置された一対の電磁石7および7’を示す。この電磁
石7と7’の構成や機能は同じである。電磁石7は、鉄
芯8、鉄芯から枝別れした磁極10、鉄芯に巻かれた複
数のコイル9、枝別れした磁極の鉄部分に巻かれたコイ
ル11から構成される。次に説明するように、コイル9
や11に流す電流を変えることにより、鋳型内の溶鋼に
移動磁界や静磁場を印加することができる。
FIG. 2 is a schematic diagram of a horizontal cross section taken along the line AA in FIG. 1, showing a pair of electromagnets 7 and 7'arranged facing each other with a certain distance therebetween with the mold 1 interposed therebetween. The electromagnets 7 and 7'have the same configuration and function. The electromagnet 7 includes an iron core 8, a magnetic pole 10 branched from the iron core, a plurality of coils 9 wound around the iron core, and a coil 11 wound around an iron portion of the branched magnetic pole. As will be described next, the coil 9
A moving magnetic field or a static magnetic field can be applied to the molten steel in the mold by changing the electric current flowing to or.

【0011】移動磁場の印加方法について、図2のコイ
ル11を便宜上省略して示した図3を使って説明する。
図3において、隣接した3個のコイルu、v、wに、交
流電流の位相を120度づつずらした3相の交流電流を
流すと、コイルu、v、wに流す電流の経時変化に応じ
て、各磁極10の先端から鋳型内の溶鋼に印加される磁
界は時間的に変化し、磁極に近い溶鋼に移動磁界が作用
することになり、この移動磁界の作用により溶鋼の流れ
12が生じる。同様な方法で鋳型の対面側でも溶鋼の流
れ12’を生起させることができ、鋳型内の溶鋼が撹拌
されることになる。
A method of applying the moving magnetic field will be described with reference to FIG. 3 in which the coil 11 of FIG. 2 is omitted for convenience.
In FIG. 3, when three-phase AC currents with the phases of the AC currents shifted by 120 degrees are applied to three adjacent coils u, v, and w, when the currents applied to the coils u, v, and w change with time. Then, the magnetic field applied from the tip of each magnetic pole 10 to the molten steel in the mold changes with time, and the moving magnetic field acts on the molten steel near the magnetic poles, and the action 12 of the moving magnetic field causes the molten steel flow 12. . In the same manner, the molten steel flow 12 'can be generated on the opposite side of the mold, and the molten steel in the mold is agitated.

【0012】溶鋼に静磁場を印加する方法については、
2図に示した電磁石装置の場合には、3通りの方法があ
る。1番目の方法は、コイル11へ直流電流を流す方法
であり、コイル11に流す直流電流の向きを任意に変え
ることにより、図4に示すように、磁極の極性がN極と
S極の交互の配置にすることができる。磁界は、N極か
らS極へ向かうため、鋳型の対面側の磁極の極性をN極
とS極の交互の配置とすると、鋳型内の溶鋼にN極から
S極へ向かう静磁場が印加でき、この静磁場の中を溶鋼
が流動すると、流動の方向と反対側に電磁気力が作用
し、溶鋼の流動が抑制される。2番目の方法は、コイル
9に2相交流電流を流す際、交流電流の向きを隣接した
コイルで交互に変える方法であり、これによって、図4
に示すような磁極の極性の配置が得られる。第3の方法
は、第2図のコイル11に2相交流電流を流す際、交流
電流の向きを隣接したコイルで交互に変える方法であ
り、これによって、図4に示すような磁極の極性の配置
が可能である。
Regarding the method of applying a static magnetic field to molten steel,
In the case of the electromagnet device shown in FIG. 2, there are three methods. The first method is to pass a direct current through the coil 11, and by changing the direction of the direct current flowing through the coil 11 as shown in FIG. 4, the polarities of the magnetic poles alternate between N and S poles. Can be arranged. Since the magnetic field goes from the N pole to the S pole, if the polarities of the magnetic poles on the opposite side of the mold are arranged such that the N pole and the S pole are alternately arranged, a static magnetic field from the N pole to the S pole can be applied to the molten steel in the mold. When molten steel flows in this static magnetic field, an electromagnetic force acts on the side opposite to the flowing direction, and the flow of molten steel is suppressed. The second method is a method in which, when a two-phase alternating current is passed through the coil 9, the direction of the alternating current is alternately changed between adjacent coils.
An arrangement of magnetic pole polarities as shown in FIG. The third method is to alternately change the direction of the alternating current between adjacent coils when a two-phase alternating current is passed through the coil 11 shown in FIG. 2, whereby the polarity of the magnetic poles as shown in FIG. Can be arranged.

【0013】[0013]

【実施例】スラブの連続鋳造において、図2に示すよう
な電磁石装置で鋳型の幅方向に4個の磁極10を有する
電磁石装置を鋳型の両側に設置し、移動磁界印加の効
果、および静磁場印加の効果を調べる実験を行った。通
常の銅鋳型を使った連続鋳造機で、モールドフラックス
を用いた鋳造実験において、スラブ鋳片のサイズは厚さ
170mm、幅800mmで、鋳型の長さは800m
m、ノズル吐出孔の位置はメニスカスから250mm
下、鋳造方向における電磁石の中心位置はメニスカスか
ら400mm下になるように設置した。
EXAMPLES In continuous casting of slabs, an electromagnet device having four magnetic poles 10 in the width direction of the mold was installed on both sides of the mold by the electromagnet device as shown in FIG. An experiment was conducted to examine the effect of application. In a continuous casting machine using an ordinary copper mold, in a casting experiment using mold flux, the size of the slab slab was 170 mm thick and 800 mm wide, and the mold length was 800 m.
m, the position of the nozzle discharge hole is 250 mm from the meniscus
The center of the electromagnet in the casting direction was set 400 mm below the meniscus.

【0014】まず、炭素濃度が約0.1%の溶鋼の鋳造
実験で、鋳型内の溶鋼に移動磁界を印加して、鋳片内部
の等軸晶の増加を調査した。移動磁界を印加する図2の
コイルへは、3相の交流電流を約500Aを流した。鋳
造速度は1m/min、タンディシュにおける溶鋼の注
湯過熱度は約30℃であった。鋳造実験後、鋳片内部の
凝固組織を調査した結果、鋳片の等軸晶率(すなわち、
鋳片の厚さに対する等軸晶帯の厚さの割合)は、移動磁
界を印加しない場合に12%、移動磁界を印加した場合
には30%となり、移動磁界を印加することにより等軸
晶が大幅に増加することが判明した。また、鋳片内の非
金属介在物を調査したが、撹拌によるフラックスの巻き
込みによる介在物の増加は認められなかった。溶鋼流動
の影響下で成長する凝固組織は溶鋼流動の上流側へ傾い
て成長するが、鋳片内の凝固組織の傾きを調査し、その
傾きの値から溶鋼流速を経験式に基づき推定した結果、
最大0.6〜0.8m/sの流速があったことが推定さ
れた。この様に早い流速でメニスカス付近を撹拌すると
フラックスの溶鋼中への巻き込みを助長して、鋳片品質
を低下させるが、本発明のようにノズル吐出孔の下部に
おいて、早い流速で撹拌すると、鋳造用フラックスの巻
き込みを回避して、等軸晶の増加をより効率的に実行で
きる。
First, in a casting experiment of molten steel having a carbon concentration of about 0.1%, a moving magnetic field was applied to the molten steel in the mold to investigate the increase of equiaxed crystals inside the slab. About 500 A of 3-phase alternating current was applied to the coil of FIG. 2 which applies a moving magnetic field. The casting speed was 1 m / min, and the pouring superheat of molten steel in Tundish was about 30 ° C. After the casting experiment, as a result of investigating the solidification structure inside the slab, the equiaxed crystal ratio of the slab (that is,
The ratio of the thickness of the equiaxed crystal zone to the thickness of the cast slab is 12% when the moving magnetic field is not applied and 30% when the moving magnetic field is applied. Was found to increase significantly. In addition, when non-metallic inclusions in the slab were investigated, no increase in inclusions due to the inclusion of flux due to stirring was observed. The solidification structure that grows under the influence of molten steel flow grows with an inclination toward the upstream side of the molten steel flow, but the inclination of the solidification structure in the slab was investigated and the molten steel flow velocity was estimated from the value of that inclination based on an empirical formula. ,
It was estimated that there was a maximum flow velocity of 0.6-0.8 m / s. When the vicinity of the meniscus is stirred at a high flow rate as described above, the flux is promoted to be entrained in the molten steel and the quality of the slab is deteriorated. The increase of equiaxed crystals can be executed more efficiently by avoiding the inclusion of the working flux.

【0015】次に、炭素濃度が0.01%のアルミキル
ド鋼を使って、静磁場印加の実験を行い、鋳造途中に鋳
型部の溶鋼中へ硫黄を添加し、鋳造後鋳片内部の硫黄の
分布状況に基づいて吐出流の浸透深さを調べるための実
験を行った。鋳造速度は1m/minで、溶鋼過熱度は
約30℃であった。静磁場印加の条件については、図2
のコイル11に直流電流を流すことにより、鋳型内に約
0.3テスラの静磁場を発生させた。鋳造実験後の鋳片
内部の硫黄分布の調査の結果、静磁場を印加しないと、
吐出流の浸透深さは約5.5mであるが、静磁場印加の
場合には約3.0mとかなり短くなることが判明した。
また、鋳片内部の非金属介在物の調査をスライム抽出法
で行った結果、鋼1kg当りに存在する約50μm以上
の介在物の個数は、静磁場印加なしの場合、約450個
であるが、静磁場を印加すると約250個に減少し、静
磁場印加により鋳片品質が向上することが分かった。
Next, an experiment of applying a static magnetic field was carried out using an aluminum-killed steel having a carbon concentration of 0.01%. Sulfur was added to the molten steel in the mold part during casting, and the sulfur content in the cast slab was changed after casting. An experiment was conducted to investigate the penetration depth of the discharge flow based on the distribution situation. The casting speed was 1 m / min and the degree of superheat of molten steel was about 30 ° C. The conditions for applying the static magnetic field are shown in FIG.
A static magnetic field of about 0.3 Tesla was generated in the mold by passing a direct current through the coil 11. As a result of investigating the sulfur distribution inside the slab after the casting experiment, if a static magnetic field is not applied,
It was found that the permeation depth of the discharge flow was about 5.5 m, but it was considerably shortened to about 3.0 m when a static magnetic field was applied.
In addition, as a result of investigating the non-metallic inclusions in the slab by the slime extraction method, the number of inclusions of about 50 μm or more existing per 1 kg of steel is about 450 without static magnetic field application. It was found that when a static magnetic field was applied, it decreased to about 250 pieces, and the quality of the cast product was improved by applying a static magnetic field.

【0016】このように、浸漬ノズル吐出孔の下部に設
置した一つの電磁石装置を使って、鋼種に応じて溶鋼に
移動磁界や静磁場を印加することにより、等軸晶を増加
させたり、吐出流の浸透深さを低減して非金属介在物を
低減させたりすることが可能であることが分かった。
As described above, by using one electromagnet device installed below the discharge hole of the immersion nozzle, a moving magnetic field or a static magnetic field is applied to the molten steel according to the steel type, thereby increasing equiaxed crystals and discharging. It has been found that it is possible to reduce the penetration depth of the flow to reduce non-metallic inclusions.

【0017】[0017]

【発明の効果】本発明を実施すれば、中心偏析を低減し
たい鋼種や非金属介在物を低減したい鋼種の連続鋳造を
安定かつ低コストで行うことができる。
Industrial Applicability According to the present invention, continuous casting of a steel type for which center segregation is desired to be reduced and a steel type for which non-metallic inclusions are desired to be reduced can be carried out stably and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸漬ノズル、鋳型、電磁石装置の関係を示す縦
断面図である。
FIG. 1 is a vertical cross-sectional view showing a relationship among an immersion nozzle, a mold, and an electromagnet device.

【図2】図1のA−Aの位置の平面図であり、鋳型を挟
んで設置した電磁石装置の模式図である。
FIG. 2 is a plan view of a position AA in FIG. 1, and is a schematic view of an electromagnet device installed with a mold sandwiched therebetween.

【図3】鋳型を挟んで設置した電磁石装置の模式図であ
る。
FIG. 3 is a schematic diagram of an electromagnet device installed with a mold sandwiched therebetween.

【図4】電磁石の磁極の極性が鋳型の両側で交互に対称
な場合の模式図である。
FIG. 4 is a schematic diagram when the polarities of the magnetic poles of the electromagnet are alternately symmetrical on both sides of the mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 吐出孔 4 溶鋼 5 溶鋼の流れる方向 6 凝固シェル 7、7’ 電磁石 8 鉄芯 9 コイル 10 磁極 11 コイル 12、12’ 溶鋼の撹拌方向 DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge hole 4 Molten steel 5 Direction of flowing molten steel 6 Solidification shell 7, 7'Electromagnet 8 Iron core 9 Coil 10 Magnetic pole 11 Coil 12, 12 'Stirring direction of molten steel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造において、溶鋼を浸漬ノズ
ルを経て鋳型内へ注湯して鋳片を製造する際、鋳型を挟
んで、一定の間隔を保って対向配置された鉄芯、該鉄芯
に巻かれた複数のコイル、鉄芯から枝分かれした複数の
磁極、および該磁極近くの鉄部分に巻かれた複数のコイ
ルから構成される1対の電磁石を、浸漬ノズルの吐出孔
の下部に設置し、コイルに直流または交流の電流を流す
ことにより、1対の電磁石によって、鋳型内に移動磁場
を印加して鋳型内の溶鋼を撹拌したり、または、静磁場
を印加して溶鋼を制動することを特徴とする連続鋳造方
法。
1. In continuous casting of steel, when molten steel is poured into a mold through a dipping nozzle to produce a slab, iron cores that are opposed to each other with a certain interval sandwiching the mold, A pair of electromagnets composed of a plurality of coils wound around an iron core, a plurality of magnetic poles branched from the iron core, and a plurality of coils wound around an iron portion near the magnetic poles are provided under the discharge hole of the immersion nozzle. Installed in the mold, a moving magnetic field is applied to the mold by a pair of electromagnets to stir the molten steel in the mold, or a static magnetic field is applied to melt the molten steel. A continuous casting method characterized by braking.
【請求項2】 連続鋳造用の鋳型を挟んで、一定の間隔
を保って対向配置された鉄芯、該鉄芯に巻かれた複数の
コイル、鉄芯から枝分かれした複数の磁極、および該磁
極の鉄部分に巻かれた複数のコイルから構成される電磁
石装置において、電流の種類を直流や3相交流などに切
り替えてコイルに電流を流すことにより、1対の電磁石
によって、鋳型内に移動磁場を印加したり、または、静
磁場を印加することを特徴とする連続鋳造用の電磁石装
置。
2. An iron core, which is arranged to face each other with a constant interval, sandwiching a mold for continuous casting, a plurality of coils wound around the iron core, a plurality of magnetic poles branched from the iron core, and the magnetic pole. In an electromagnet device composed of a plurality of coils wound around an iron part, a type of electric current is switched to direct current, three-phase alternating current, etc., and an electric current is passed through the coils, so that a moving magnetic field is generated in the mold by a pair of electromagnets. Or a static magnetic field is applied to the electromagnet apparatus for continuous casting.
JP9733096A 1996-03-28 1996-03-28 Method for controlling fluidity in mold in continuous casting and device therefor Withdrawn JPH09262650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9733096A JPH09262650A (en) 1996-03-28 1996-03-28 Method for controlling fluidity in mold in continuous casting and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9733096A JPH09262650A (en) 1996-03-28 1996-03-28 Method for controlling fluidity in mold in continuous casting and device therefor

Publications (1)

Publication Number Publication Date
JPH09262650A true JPH09262650A (en) 1997-10-07

Family

ID=14189486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9733096A Withdrawn JPH09262650A (en) 1996-03-28 1996-03-28 Method for controlling fluidity in mold in continuous casting and device therefor

Country Status (1)

Country Link
JP (1) JPH09262650A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
US6712124B1 (en) 2000-07-10 2004-03-30 Jfe Steel Corporation Method and apparatus for continuous casting of metals
JP2005508755A (en) * 2001-09-27 2005-04-07 エービービー エービー Apparatus and method for continuous casting
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
CN101844212A (en) * 2010-05-19 2010-09-29 中南大学 Electromagnetic/ultrasound compound outfield continuous casting and rolling device
EP2295168A1 (en) * 1997-12-08 2011-03-16 Nippon Steel Corporation Cast slab and method for casting molten metal, apparatus for the same
WO2016078718A1 (en) * 2014-11-20 2016-05-26 Abb Technology Ltd Electromagnetic brake system and method of controllong molten metal flow in a metal-making process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295168A1 (en) * 1997-12-08 2011-03-16 Nippon Steel Corporation Cast slab and method for casting molten metal, apparatus for the same
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
US6712124B1 (en) 2000-07-10 2004-03-30 Jfe Steel Corporation Method and apparatus for continuous casting of metals
US7628196B2 (en) 2000-07-10 2009-12-08 Jfe Steel Corporation Method and apparatus for continuous casting of metals
JP2005508755A (en) * 2001-09-27 2005-04-07 エービービー エービー Apparatus and method for continuous casting
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
CN101844212A (en) * 2010-05-19 2010-09-29 中南大学 Electromagnetic/ultrasound compound outfield continuous casting and rolling device
WO2016078718A1 (en) * 2014-11-20 2016-05-26 Abb Technology Ltd Electromagnetic brake system and method of controllong molten metal flow in a metal-making process
CN107000049A (en) * 2014-11-20 2017-08-01 Abb瑞士股份有限公司 The method of electormagnetic braking sytem and control molten metal flowing in metal manufacturing process
US10207318B2 (en) 2014-11-20 2019-02-19 Abb Schweiz Ag Electromagnetic brake system and method of controlling molten metal flow in a metal-making process

Similar Documents

Publication Publication Date Title
US6712124B1 (en) Method and apparatus for continuous casting of metals
EP2682201A1 (en) Method and apparatus for the continuous casting of aluminium alloys
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JP4348988B2 (en) Steel continuous casting method
RU2170157C2 (en) Ingot continuous casting mold with apparatus for electromagnetically agitating melt
JP4591156B2 (en) Steel continuous casting method
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
JPS63165052A (en) Method and device for agitating and braking molten metal
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
US5137077A (en) Method of controlling flow of molten steel in mold
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
US7448431B2 (en) Method of continuous steel casting
JP3697585B2 (en) Steel continuous casting method and equipment
JP4263396B2 (en) Steel continuous casting method and equipment
JP4591456B2 (en) Steel continuous casting method
JP2001009559A (en) Method and device for continuously casting steel
JPS5976647A (en) Method and device for stirring molten metal for casting in continuous casting
JP3937961B2 (en) Continuous casting method of steel
JP3697584B2 (en) Steel continuous casting method and equipment
JP3520841B2 (en) Metal continuous casting method
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP2000351048A (en) Method and apparatus for continuously casting metal
JP4910357B2 (en) Steel continuous casting method
JP4848656B2 (en) Method and apparatus for continuous casting of steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603