JPH09257686A - Method for measuring air gap distribution of composite fine particle membrane - Google Patents

Method for measuring air gap distribution of composite fine particle membrane

Info

Publication number
JPH09257686A
JPH09257686A JP8094785A JP9478596A JPH09257686A JP H09257686 A JPH09257686 A JP H09257686A JP 8094785 A JP8094785 A JP 8094785A JP 9478596 A JP9478596 A JP 9478596A JP H09257686 A JPH09257686 A JP H09257686A
Authority
JP
Japan
Prior art keywords
fine particle
composite fine
air gap
image
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8094785A
Other languages
Japanese (ja)
Inventor
Shuzo Waratani
修三 藁谷
Chizuru Inoue
千鶴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8094785A priority Critical patent/JPH09257686A/en
Publication of JPH09257686A publication Critical patent/JPH09257686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To objectively and quantitatively measure an air gap distribution by forming a composite fine particle membrane of an ultrathin cut piece, holding it at a support, emitting a light thereto, and image data processing the air gap of obtained transmitted image. SOLUTION: An ultrathin cut piece 26 obtained by cutting a composite fine particle membrane by using a microtome in the state that it is frozen by liquid nitrogen is mounted on a copper mesh, fixed to a specimen sage 23 of an optical microscope 22, a transmitted image is focused b a knob 27 while emitting a light 25 from a transmission light emitting unit 24 of the lower side, photosensed at a Polaroide film attached to a camera 28 and a photograph is taken. According to the photograph, the presence of the air gap is clear, and the evaluation of the distribution state is facilitated. The transmitted image of the piece 26 is displayed on an image processor 29 with a television monitor via the camera 28, the image is gray level processed to quantitatively measure the peripheral length and area rate of the air gap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は異なる種類の微粒
子からなる複合微粒子膜の空隙分布測定方法に係り、特
に複合微粒子膜の簡便且つ精度の高い空隙分布測定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a void distribution measuring method for a composite fine particle film composed of different types of fine particles, and more particularly to a simple and highly accurate void distribution measuring method for a composite fine particle film.

【0002】[0002]

【従来の技術】リン酸型燃料電池はリン酸を電解質、水
素と酸素を燃料ガスとして用いる燃料電池で近年におい
て開発が活発化している。図5は複合微粒子膜を用いた
リン酸型燃料電池を示す断面図である。マトリックス4
は、リン酸電解質1に対し耐蝕性に優れ電気絶縁性の良
好なシリコンカーバイド2をはっ水剤としてのポリテト
ラフロロエチレン(以下PTFEと称する)3で結着し
て構成される。電極9は白金など貴金属5を担持した触
媒6をPTFE3で結着した電極触媒層7と、カーボン
繊維を絡ませた多孔質で電気伝導性の良い電極基板8と
から構成される。
2. Description of the Related Art A phosphoric acid fuel cell is a fuel cell using phosphoric acid as an electrolyte and hydrogen and oxygen as a fuel gas, and its development has been activated in recent years. FIG. 5 is a cross-sectional view showing a phosphoric acid fuel cell using a composite fine particle membrane. Matrix 4
Is composed of a polycarbofluoroethylene (hereinafter referred to as PTFE) 3 as a water repellent, and a silicon carbide 2 having excellent corrosion resistance to the phosphoric acid electrolyte 1 and excellent electrical insulation properties, which are bonded to each other. The electrode 9 is composed of an electrode catalyst layer 7 in which a catalyst 6 supporting a noble metal 5 such as platinum is bound with PTFE 3, and a porous electrode substrate 8 entangled with carbon fibers and having good electric conductivity.

【0003】このような電池において、マトリックス4
のシリコンカーバイド2とPTFE3により形成される
空隙10(リン酸電解質が特殊ハッチングで表示されて
いるが空隙10の測定に際してはリン酸電解質は除かれ
る。)、電極触媒層7の触媒6とPTFE3により形成
される空隙10は、リン酸電解質1の保持体または電極
基板側から供給される反応ガスの拡散通路として電池特
性を左右し、その分布状況や孔径などを把握することは
電池特性を向上させる上で重要である。
In such a battery, the matrix 4
Of silicon carbide 2 and PTFE 3 (the phosphoric acid electrolyte is indicated by special hatching, but the phosphoric acid electrolyte is removed when measuring the space 10), the catalyst 6 of the electrode catalyst layer 7 and PTFE 3 The formed voids 10 affect the battery characteristics as a support for the phosphoric acid electrolyte 1 or as a diffusion passage for the reaction gas supplied from the electrode substrate side, and understanding the distribution status and pore diameter improves the battery characteristics. Important above.

【0004】従来においては空隙10の測定はマトリッ
クス4の表面またはマトリックス4を取り除いた触媒層
6 の表面について走査型電子顕微鏡を用いて行われた。
図6は従来の空隙分布測定方法を示す断面図である。試
料11は試料台12に固定され、真空装置である走査型
電子顕微鏡内の試料ステージ13に載置される。図示し
ない高圧発生回路により電子線プローブ14を試料11
に照射して、試料11から励起される二次電子線15を
検出して試料11の表面形状に対応した二次電子像の観
察を行って空隙の分布状況などを観測していた。
Conventionally, the measurement of the voids 10 is performed on the surface of the matrix 4 or the catalyst layer from which the matrix 4 is removed.
6 surfaces were examined using a scanning electron microscope.
FIG. 6 is a sectional view showing a conventional void distribution measuring method. A sample 11 is fixed to a sample table 12 and placed on a sample stage 13 in a scanning electron microscope which is a vacuum device. The electron beam probe 14 is moved to the sample 11 by a high voltage generating circuit (not shown).
The secondary electron beam 15 excited by the sample 11 was detected, and a secondary electron image corresponding to the surface shape of the sample 11 was observed to observe the distribution state of voids.

【0005】図7は 従来の空隙分布測定方法により得
られた超薄切片の粒子構造を示し、(a)はマトリック
スの二次電子像写真、(b)は電極触媒層の二次電子像
写真である。マトリックス内のシリコンカーバイド2と
PTFE3および触媒層内の触媒5とPTFE3などで
形成される空隙10が分布している状態が観測される。
FIG. 7 shows a particle structure of an ultrathin section obtained by a conventional void distribution measuring method. (A) is a secondary electron image photograph of a matrix, (b) is a secondary electron image photograph of an electrode catalyst layer. Is. It is observed that the voids 10 formed by the silicon carbide 2 and PTFE 3 in the matrix and the catalyst 5 and PTFE 3 in the catalyst layer are distributed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の複合微粒子膜空隙分布測定方法においては、
観測する走査型電子顕微鏡が高価である上に焦点合わせ
などの操作が煩雑である。また観測試料である複合微粒
子膜の厚さが厚いために複数種の微粒子が複雑に分布し
ていること、複数種の各微粒子の二次電子発生強度がそ
れぞれ異なること、さらに試料の表面から得られる二次
電子像は表面の凹凸形状をも反映すること等の理由で、
空隙の同定および空隙分布の測定は測定者の主観による
曖昧な定性的評価法となり客観的且つ定量的な測定方法
とはなりにくいという問題があった。
However, in the conventional method for measuring the pore distribution of the composite fine particle film as described above,
The scanning electron microscope for observation is expensive, and operations such as focusing are complicated. In addition, since the composite fine particle film, which is an observation sample, is thick, multiple types of fine particles are distributed intricately, the secondary electron generation intensities of each of the multiple types of fine particles are different, and further obtained from the surface of the sample. Because the secondary electron image that is reflected also reflects the uneven shape of the surface,
There is a problem in that the identification of voids and the measurement of void distribution are vague qualitative evaluation methods by the subject's subjectivity, and it is difficult to be an objective and quantitative measurement method.

【0007】この発明は上述の点に鑑みてなされ、その
目的は客観的且つ定量的な測定方法により空隙の分布状
況を評価することが可能な複合微粒子膜の空隙分布測定
方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a void distribution measuring method of a composite fine particle film capable of evaluating the void distribution condition by an objective and quantitative measuring method. is there.

【0008】[0008]

【課題を解決するための手段】上述の目的はこの発明に
よれば、複数種の微粒子の複合膜である複合微粒子膜を
超薄切片とし、支持体に保持して光を照射し、得られた
透過像の空隙部を画像データ処理して微粒子間の空隙分
布を測定することにより達成される。上述の発明におい
て複合微粒子膜はセラミックス微粒子とフッ素樹脂微粒
子のプレス焼成体もしくはフッ素樹脂微粒子と貴金属を
担持したカーボン微粒子のプレス焼成体であること、ま
たは画像データ処理は透過像の空隙部につき面積または
周囲長を測定してディジタル化することにより達成され
る。
According to the present invention, the above object is obtained by forming a composite fine particle film, which is a composite film of a plurality of kinds of fine particles, into an ultrathin section, holding it on a support and irradiating it with light. It is achieved by image data processing of the void portion of the transmission image and measuring the void distribution between the fine particles. In the above-mentioned invention, the composite fine particle film is a press fired body of ceramic fine particles and fluororesin fine particles or a press fired body of carbon fine particles carrying fluororesin fine particles and a noble metal, or the image data processing is applied to the area per void portion of the transmission image or This is accomplished by measuring the perimeter and digitizing it.

【0009】超薄切片を用いて光を照射すると空隙部が
最も良く光を透過する。複数種の微粒子が存在する非空
隙部においては光は透過するが空隙部より少ない。セラ
ミックス微粒子とフッ素樹脂微粒子のプレス焼成体,フ
ッ素樹脂微粒子と貴金属を担持したカーボン微粒子のプ
レス焼成体は複合微粒子膜である。空隙分布は製作条件
などにより変化するがこれを透過像の面積率の変化とし
て評価することができる。
When light is irradiated using an ultrathin section, the void portion transmits light best. In the non-void portion where a plurality of types of fine particles are present, light is transmitted, but the light is less than in the void portion. The press-fired body of ceramic fine particles and fluororesin fine particles and the press-fired body of fluororesin fine particles and carbon fine particles carrying a noble metal are composite fine particle films. The void distribution varies depending on manufacturing conditions and the like, but this can be evaluated as a change in the area ratio of the transmission image.

【0010】[0010]

【発明の実施の形態】超薄切片は複合微粒子膜を例えば
液体窒素で凍結した状態でミクロトームを用いて切断す
ることができる。超薄切片の支持は銅メッシュまたはガ
ラス板を用いて行うことができる。透過像は光学顕微鏡
による光の透過写真,レーザ透過光のディスプレー表示
等により得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Ultrathin sections can be cut using a microtome in a state in which a composite fine particle film is frozen in liquid nitrogen, for example. The support of the ultrathin section can be performed using a copper mesh or a glass plate. The transmission image is obtained by a transmission photograph of light by an optical microscope, a display display of laser transmission light, and the like.

【0011】画像データ処理は透過像の空隙部につき面
積または周囲長を測定してディジタル化することにより
行う。複合微粒子膜は例えばセラミックス微粒子とフッ
素樹脂微粒子のプレス焼成体やフッ素樹脂微粒子と貴金
属を担持したカーボン微粒子のプレス焼成体が適用可能
であるがこれに限定されるものではなく複数種の微粒子
の複合膜であればよい。
The image data processing is performed by measuring the area or the perimeter of the void portion of the transmission image and digitizing it. The composite fine particle film may be, for example, a press fired body of ceramic fine particles and fluororesin fine particles or a press fired body of fluororesin fine particles and carbon fine particles carrying a noble metal, but is not limited to this and is a composite of a plurality of types of fine particles. Any film may be used.

【0012】本発明は複合微粒子膜の空隙分布測定の場
合に有効に利用されるが複合微粒子膜に限定されるもの
ではなく単一の微粒子膜についても適用可能である。ま
た微粒子はその粒子サイズが特に限定されるものではな
く一般の粒子構造を持つ膜にも適用されるものである。
The present invention is effectively used for measuring the void distribution of a composite fine particle film, but is not limited to the composite fine particle film and can be applied to a single fine particle film. Further, the particle size of the fine particles is not particularly limited, and is applicable to a film having a general particle structure.

【0013】[0013]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。図1はこの発明の実施例に係るミクロトームを示
す配置図である。燃料電池の試料11を約5×10mm
の大きさに図示しないカッターナイフで切り出し、図示
しないエポキシ樹脂などに埋めこんで硬化させた後、図
示しないガラスナイフなどで試料の面出しを行って、ミ
クロトーム19の試料固定ホルダー16に試料の断面が
切削ナイフ17に対して直角方向になるように固定す
る。次に図示しない試料固定ホルダー上下移動機構によ
り試料11を上下に動かすとともに、図示しない試料送
り機構により試料11を切削ナイフ側に微小量づつ移動
させて試料11を約5〜20μmの厚さに切削して、光
が十分透過可能な超薄切片18を得た。試料11がシリ
コンカーバイドを含んでやや脆い性質のマトリックスの
場合には、脆いことでシリコンカーバイド粒子が脱落し
ないように、試料固定ホルダー16に図示しない液体窒
素を供給して試料11を冷却しながら切削して超薄切片
18が得られる。超薄切片はナイフボート21に張られ
た水中に移し取られ、予め図示しない親水化処理装置に
より表面が処理された銅メッシュ20の表面にすくい取
られる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a layout view showing a microtome according to an embodiment of the present invention. Approximately 5 x 10 mm for fuel cell sample 11
After cutting with a cutter knife (not shown) to the size of the sample, embedding it in epoxy resin (not shown) and curing it, the sample is chamfered with a glass knife (not shown) and the cross section of the sample is placed on the sample fixing holder 16 of the microtome 19. Is fixed in a direction perpendicular to the cutting knife 17. Next, while moving the sample 11 up and down by the sample fixing holder vertical movement mechanism (not shown), the sample 11 is moved by a minute amount to the cutting knife side by the sample feeding mechanism (not shown) to cut the sample 11 to a thickness of about 5 to 20 μm. As a result, an ultrathin section 18 capable of sufficiently transmitting light was obtained. When the sample 11 is a matrix which contains silicon carbide and has a slightly brittle property, liquid nitrogen (not shown) is supplied to the sample fixing holder 16 to cool the sample 11 so that the silicon carbide particles do not fall off due to brittleness. Thus, the ultrathin section 18 is obtained. The ultrathin section is transferred into water stretched on the knife boat 21 and scooped onto the surface of the copper mesh 20 whose surface has been previously processed by a hydrophilization processing device (not shown).

【0014】図2はこの発明の実施例に係る超薄切片を
載置した銅メッシュを示す平面図である。図3はこの発
明の実施例に係る空隙分布測定装置を示す配置図であ
る。この装置は光学顕微鏡と画像処理装置からなる。銅
メッシュ20に載置した超薄切片26は光学顕微鏡22の
試料ステージ23に固定される。試料ステージ23の下
側の透過光照射装置24から光25を銅メッシュに載せ
た超薄切片26に照射しながら透過光で得られた透過像
を焦点合わせつまみ27で焦点を合わせてカメラ28に
付属するポラロイドフィルムに感光させて写真を撮影す
る。透過光25は銅メッシュ20に載置した超薄切片26
にダメージを与えない波長を有するレーザー光を発生さ
せるレーザー光発生装置でも得られる。
FIG. 2 is a plan view showing a copper mesh on which an ultrathin section according to an embodiment of the present invention is placed. FIG. 3 is a layout showing a void distribution measuring device according to an embodiment of the present invention. This device consists of an optical microscope and an image processing device. The ultrathin section 26 placed on the copper mesh 20 is fixed to the sample stage 23 of the optical microscope 22. While irradiating the ultra-thin section 26 on the copper mesh with the light 25 from the transmitted light irradiation device 24 on the lower side of the sample stage 23, the transmitted image obtained by the transmitted light is focused by the focusing knob 27 to the camera 28. Take a photo by exposing it to the attached Polaroid film. The transmitted light 25 is an ultrathin section 26 placed on the copper mesh 20.
It can also be obtained by a laser light generator that generates a laser light having a wavelength that does not damage the.

【0015】図4はこの発明の実施例に係る超薄切片の
粒子構造を示す光学顕微鏡透過像写真である。銅メッシ
ュに載せた燃料電池マトリックス超薄切片を光学顕微鏡
22のカメラ28に付属するポラロイドフィルムで撮影
した。暗部がマトリックスのシリコンカーバイドとPT
FEの微粒子30からなる部分で同写真で明瞭に観測さ
れる明部がマトリックスの微粒子30で形成された空隙
10である。同写真によれば、空隙10の存在が明瞭で
あり分布状況の評価は容易である。測定時間は従来の約
1/3 〜1/5 に短縮できる。
FIG. 4 is an optical microscope transmission image photograph showing the grain structure of an ultrathin section according to an embodiment of the present invention. An ultrathin section of the fuel cell matrix mounted on the copper mesh was photographed with a polaroid film attached to the camera 28 of the optical microscope 22. Dark matrix matrix silicon carbide and PT
The bright portion clearly observed in the same photograph in the portion composed of the FE fine particles 30 is the void 10 formed by the matrix fine particles 30. According to the same photograph, the existence of the voids 10 is clear, and the distribution condition can be easily evaluated. The measurement time is about
It can be shortened to 1/3 to 1/5.

【0016】空隙10の大きさまたは分布状況は以下の
方法で定量的に評価できる。図2の超薄切片26の透過
像をカメラ28を経由させてテレビモニター付の画像処理
装置29に表示し、その画像の濃淡処理を行って空隙1
0の周囲長を測定しまた面積率を測定する。
The size or distribution of the voids 10 can be quantitatively evaluated by the following method. The transmission image of the ultrathin section 26 shown in FIG. 2 is displayed on the image processing device 29 with a television monitor via the camera 28, and the image is subjected to the gradation processing to obtain the void 1.
The perimeter of 0 is measured and the area ratio is measured.

【0017】[0017]

【発明の効果】この発明によれば複数種の微粒子の複合
膜である電極触媒層やマトリックスなどの複合微粒子膜
を超薄切片とし、支持体に保持して光を照射し、得られ
た透過像の空隙部を画像データ処理して微粒子間の空隙
分布を測定するので、客観的且つ定量的な複合微粒子膜
の空隙分布測定方法が得られる。
According to the present invention, a composite fine particle film such as an electrode catalyst layer or a matrix, which is a composite film of plural kinds of fine particles, is made into an ultrathin section, and it is held on a support and irradiated with light to obtain the transmitted light. Since the void portion of the image is processed with image data to measure the void distribution between the fine particles, an objective and quantitative method for measuring the void distribution of the composite fine particle film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係るミクロトームを示す配
置図
FIG. 1 is a layout view showing a microtome according to an embodiment of the present invention.

【図2】この発明の実施例に係る超薄切片を載置した銅
メッシュを示す平面図
FIG. 2 is a plan view showing a copper mesh on which an ultrathin section according to an embodiment of the present invention is placed.

【図3】この発明の実施例に係る空隙分布測定装置を示
す配置図
FIG. 3 is a layout view showing a void distribution measuring device according to an embodiment of the present invention.

【図4】この発明の実施例に係る超薄切片の粒子構造を
示す光学顕微鏡透過像写真
FIG. 4 is an optical microscope transmission image photograph showing the particle structure of an ultrathin section according to an example of the present invention.

【図5】複合微粒子膜を用いたリン酸型燃料電池を示す
断面図
FIG. 5 is a cross-sectional view showing a phosphoric acid fuel cell using a composite fine particle membrane.

【図6】従来の空隙分布測定方法を示す断面図FIG. 6 is a cross-sectional view showing a conventional void distribution measuring method.

【図7】従来の空隙分布測定方法により得られた超薄切
片の粒子構造を示し、(a)はマトリックスの二次電子
像写真、(b)は電極触媒層の二次電子像写真
FIG. 7 shows a particle structure of an ultrathin section obtained by a conventional void distribution measuring method, (a) is a secondary electron image photograph of a matrix, and (b) is a secondary electron image photograph of an electrode catalyst layer.

【符号の説明】[Explanation of symbols]

1 リン酸電解質 2 シリコンカーバイト 3 ポリテトラフロロエチレン 4 マトリックス 5 貴金属 6 触媒 7 電極触媒層 8 電極基板 9 電極 10 空隙 11 試料 12 試料台 13 試料ステージ 14 電子線プローブ 15 二次電子線 17 切削ナイフ 18 超薄切片 19 ミクロトーム 20 銅メッシュ 21 ナイフボート 22 光学顕微鏡 23 試料ステージ 24 透過光照射装置 25 透過光 26 銅メッシュに載せた超薄切片 27 焦点合わせつまみ 28 カメラ 29 画像処理装置 30 微粒子 1 Phosphoric Acid Electrolyte 2 Silicon Carbide 3 Polytetrafluoroethylene 4 Matrix 5 Noble Metal 6 Catalyst 7 Electrocatalyst Layer 8 Electrode Substrate 9 Electrode 10 Void 11 Sample 12 Sample Stage 13 Sample Stage 14 Electron Beam Probe 15 Secondary Electron Beam 17 Cutting Knife 18 Ultrathin Section 19 Microtome 20 Copper Mesh 21 Knife Boat 22 Optical Microscope 23 Sample Stage 24 Transmitted Light Irradiation Device 25 Transmitted Light 26 Ultrathin Section Mounted on Copper Mesh 27 Focusing Knob 28 Camera 29 Image Processing Device 30 Fine Particles

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数種の微粒子の複合膜である複合微粒子
膜を超薄切片とし、支持体に保持して光を照射し、得ら
れた透過像の空隙部を画像データ処理して微粒子間の空
隙分布を測定することを特徴とする複合微粒子膜の空隙
分布測定方法。
1. A composite fine particle film, which is a composite film of a plurality of kinds of fine particles, is made into an ultrathin section, is held on a support, and is irradiated with light. A method for measuring a void distribution of a composite fine particle film, which comprises measuring the void distribution of a.
【請求項2】複合微粒子膜はセラミックス微粒子とフッ
素樹脂微粒子のプレス焼成体であることを特徴とする請
求項1に記載の複合微粒子膜の空隙分布測定方法。
2. The method for measuring the void distribution of a composite fine particle film according to claim 1, wherein the composite fine particle film is a press-fired body of ceramic fine particles and fluororesin fine particles.
【請求項3】複合微粒子膜はフッ素樹脂微粒子と貴金属
を担持したカーボン微粒子のプレス焼成体であることを
特徴とする請求項1に記載の複合微粒子膜の空隙分布測
定方法。
3. The method for measuring void distribution of a composite fine particle film according to claim 1, wherein the composite fine particle film is a press-fired product of fluororesin fine particles and carbon fine particles carrying a noble metal.
【請求項4】画像データ処理は透過像の空隙部につき面
積または周囲長を測定してディジタル化することを特徴
とする請求項1に記載の複合微粒子膜の空隙分布測定方
法。
4. The method for measuring the void distribution of a composite fine particle film according to claim 1, wherein the image data processing is performed by measuring the area or the perimeter of the void portion of the transmission image and digitizing it.
JP8094785A 1996-03-25 1996-03-25 Method for measuring air gap distribution of composite fine particle membrane Pending JPH09257686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094785A JPH09257686A (en) 1996-03-25 1996-03-25 Method for measuring air gap distribution of composite fine particle membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094785A JPH09257686A (en) 1996-03-25 1996-03-25 Method for measuring air gap distribution of composite fine particle membrane

Publications (1)

Publication Number Publication Date
JPH09257686A true JPH09257686A (en) 1997-10-03

Family

ID=14119740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094785A Pending JPH09257686A (en) 1996-03-25 1996-03-25 Method for measuring air gap distribution of composite fine particle membrane

Country Status (1)

Country Link
JP (1) JPH09257686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536852A (en) * 2002-08-21 2005-12-02 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Ex-situ PEM fuel cell test for visualizing gas diffusion
EP2894458A1 (en) 2014-01-14 2015-07-15 Jtekt Corporation Degree-of-dispersion inspecting apparatus for particles of electricity storage material in electricity storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536852A (en) * 2002-08-21 2005-12-02 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Ex-situ PEM fuel cell test for visualizing gas diffusion
EP2894458A1 (en) 2014-01-14 2015-07-15 Jtekt Corporation Degree-of-dispersion inspecting apparatus for particles of electricity storage material in electricity storage device

Similar Documents

Publication Publication Date Title
JP3440421B2 (en) Apparatus and method for detecting microdefects in semiconductor
DE10393237T5 (en) Method for detecting electrical defects in membrane electrode assemblies
JP2016532267A (en) Electron microscope sample support with porous metal foil
JPWO2006106818A1 (en) Cantilever for scanning probe microscope and scanning probe microscope having the same
JP2007309685A (en) Inspection device and method
GB1540780A (en) Scale for calibrating electron beam instruments and method of fabricating the same
US4975578A (en) Method and apparatus for determining distribution of mass density
JPH09257686A (en) Method for measuring air gap distribution of composite fine particle membrane
CN1688375A (en) Ex-situ PEM fuel cell testing: towards visualizing gas diffusion
JP2008256560A (en) Thin film sample and method of manufacturing the same
US3751780A (en) Ultra sharp diamond edges for ultra thin sectioning and as point cathode
US3646841A (en) Apparatus using ultrasharp diamond edge for ultrathin sectioning
US3447366A (en) Process of determining dimensions and properties of cutting edges of molecular dimensions
CN115047216A (en) Method for testing abrasion performance of particle reinforced metal matrix composite
JPH08313244A (en) Method of measuring thickness of thin film
JPH10106465A (en) Spin polarized electron beam source, making method and measuring device therefor
GB2480104A (en) Device analysis
JPH051997A (en) Inspection method and inspection device for thin film structure
JP4153388B2 (en) Sample measurement method
CN117451585A (en) Membrane electrode metal catalyst particle distribution measuring method and attenuation degree measuring method
JP2007205964A (en) Specific substance observation device and specific substance observation method
US6788071B2 (en) Method and apparatus for generating a voltage across a membrane
Vicente et al. Development of electrochemical cells for spatially resolved analysis using a multi-technique approach: from conventional experiments to X-ray nanoprobe beamlines
JP2000310585A (en) Formation for thin film sample for transmission type electron microscopic observation
Langer et al. First X-ray fluorescence excited Kossel diffraction in SEM