JPH09256076A - Method for cooling steel strip on continuous annealing and cooling device therefor - Google Patents

Method for cooling steel strip on continuous annealing and cooling device therefor

Info

Publication number
JPH09256076A
JPH09256076A JP6273796A JP6273796A JPH09256076A JP H09256076 A JPH09256076 A JP H09256076A JP 6273796 A JP6273796 A JP 6273796A JP 6273796 A JP6273796 A JP 6273796A JP H09256076 A JPH09256076 A JP H09256076A
Authority
JP
Japan
Prior art keywords
steel strip
cooling
nozzles
spray
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6273796A
Other languages
Japanese (ja)
Other versions
JP3189669B2 (en
Inventor
Michiharu Hannoki
道春 播木
Kenji Hamaogi
健司 濱荻
Masataka Morita
昌孝 森田
Kazuhiko Kishi
一彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06273796A priority Critical patent/JP3189669B2/en
Publication of JPH09256076A publication Critical patent/JPH09256076A/en
Application granted granted Critical
Publication of JP3189669B2 publication Critical patent/JP3189669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the development of vapor film, to cool a steel strip without Inverness of temp. and to obtain the steel strip having high quality by cooling the steel strip down to a specific temp. while covering entirely the steel strip only with liquid drips ejected from nozzles in the last cooling of continuous annealing. SOLUTION: In the last cooling of continuos annealing, a water cooling device is composed of box type banks 11, and flat spraying nozzles 12a-12c fitted to the inside surface of each bank 11, respectively. Spraying faces of No.1-1 step nozzles 12a and No.1-2 step nozzles 12b and No.1-3 step nozzles 12c are mutually overlapped slightly so that the liquid drips directly and thoroughly collide against the steel strip 7. The steel strip 7 at about 200-300 deg.C after heating and holding the heat, is bent downward with a vending roll and successively cooled down to 180 deg.C with a cooling device 10. Successively, the steel strip is cooled to the room temp. with ordinary water spray nozzles 4B, 4C and a dripping vessel. Atomizing shape of the spray of the nozzles 12a-12c is desirably formed in a full-cone shape. By this method. the steel strip can be produced without residual strain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は連続焼鈍における鋼
帯の最終冷却方法及び冷却装置に関する。
TECHNICAL FIELD The present invention relates to a final cooling method and a cooling device for a steel strip in continuous annealing.

【0002】[0002]

【従来の技術】圧延機で所定の薄板に圧延したストリッ
プ(以下「鋼帯」と記す。)は、必要に応じて焼鈍(焼
なまし)処理を施す。焼鈍は鋼を軟化させる処理であっ
て、圧延歪の是正や伸び性向上などが図れるので、深絞
りなどのプレス加工に当てる鋼帯では必須である。鋼帯
を焼鈍するには、連続焼鈍設備が生産性の点から好んで
採用されるが、この連続焼鈍設備は、鋼帯を焼鈍温度ま
で加熱するための予熱帯や加熱帯、焼鈍温度に保持する
ための均熱帯、その後、過時効処理帯をへて、調質圧延
が可能な温度まで徐冷するための最終冷却帯をこの順に
配置してなる。
2. Description of the Related Art A strip (hereinafter referred to as "steel strip") rolled into a predetermined thin plate by a rolling mill is annealed as necessary. Annealing is a process for softening steel, and can correct rolling strain and improve elongation, so it is essential for steel strips that are subjected to press working such as deep drawing. To anneal steel strips, continuous annealing equipment is preferred because of its productivity, but this continuous annealing equipment keeps the preheating zone, heating zone, and annealing temperature for heating the steel strip to the annealing temperature. After that, a soaking zone is provided, and then a final cooling zone for gradually cooling to a temperature at which temper rolling is possible is arranged in this order through an overaging zone.

【0003】この冷却帯は、冷却装置を備えて鋼帯を強
制冷却するものであるが、従来は、例えば特公昭63
−37171号公報の「連続熱処理における鋼帯の冷却
方法」や水スプレーノズルと浸漬槽とを組合わせた冷
却装置が知られている。
This cooling zone is equipped with a cooling device to forcibly cool the steel strip.
There is known a "cooling method for steel strip in continuous heat treatment" of JP-37171 and a cooling device in which a water spray nozzle and a dipping tank are combined.

【0004】上記は、同公報の第4図によれば、冷却
水槽1にシンクロール2を沈め、このシンクロール2に
U字状に鋼帯を掛けたところの浸漬冷却装置(方法)に
関する。上記を次図で説明する。なお、その他にガス
ジェット冷却装置もある。これはガスを鋼帯に吹き付け
て鋼帯を強制冷却するものであるが、液体に比べてガス
は熱容量が格段に小さいために、冷却帯が極めて長くな
り、設備が膨大となる欠点を有する。
According to FIG. 4 of the publication, the above relates to the immersion cooling device (method) in which the sink roll 2 is submerged in the cooling water tank 1 and the sink roll 2 is covered with a U-shaped steel strip. The above will be described with reference to the following figure. Besides, there is also a gas jet cooling device. In this method, gas is blown onto the steel strip to forcibly cool the steel strip. However, since the gas has a much smaller heat capacity than liquid, the cooling zone becomes extremely long and the equipment becomes huge.

【0005】図6は従来の連続焼鈍の代表的な冷却装置
の原理図であり、この冷却装置100は、鋼帯101の
通板方向に補助冷却手段としての水スプレーノズル10
2・・・(・・・は複数個を示す。以下同様。)を適当に配列
し、次にシンクロール103を含む浸漬槽104を配置
したものであり、水スプレーノズル102・・・にて1次
冷却を行なうので浸漬槽104の負担が小さくなり、浸
漬槽104の高さを小さくすることができる。
FIG. 6 is a principle diagram of a conventional cooling apparatus for conventional continuous annealing. This cooling apparatus 100 is a water spray nozzle 10 as an auxiliary cooling means in the sheet passing direction of a steel strip 101.
2 ... (... indicates a plurality. The same applies hereinafter), and then a dipping tank 104 including a sink roll 103 is arranged. The water spray nozzle 102 ... Since the primary cooling is performed, the load on the immersion tank 104 is reduced, and the height of the immersion tank 104 can be reduced.

【0006】[0006]

【発明が解決しようとする課題】上記は熱容量の大き
な水を冷媒(冷却剤)としているために、通常、200
〜300℃の鋼帯を室温付近まで下げる能力を有する。
しかし、近年の生産性向上や品質向上の一環として、鋼
帯速度を増加したり、冷却帯入口における鋼帯温度を上
げると、能力不足となって、設備長さを増大しなければ
ならなくなる。従って、上記がその改良装置として出
現したわけである。
Since the above uses water having a large heat capacity as a refrigerant (coolant), it is usually 200
It has the ability to lower a steel strip of ~ 300 ° C to near room temperature.
However, if the steel strip speed is increased or the steel strip temperature at the cooling zone inlet is increased as part of the recent improvement in productivity and quality, the capacity becomes insufficient and the equipment length must be increased. Therefore, the above has emerged as an improved device.

【0007】上記は比較的高温の鋼帯表面に水滴を噴
霧するために熱伝達率が高く冷却性は良い。しかし、あ
る種の鋼帯において、後にプレス加工を実施したところ
板内の一部分が加工を受けずに線状キズなる欠陥が発生
することが判明した。この現象は、降伏点伸びを有する
鋼帯即ち不均一変形し易い鋼帯に顕著に現れる。そこ
で、本発明者らは原因究明のために種々の調査を実施
し、次に述べる仮説を立てるに至った。
Since the above-mentioned method sprays water droplets on the surface of the steel strip having a relatively high temperature, the heat transfer coefficient is high and the cooling property is good. However, it has been found that when a certain type of steel strip is subjected to press working later, a portion of the inside of the plate is not subjected to working and linear defects occur. This phenomenon remarkably appears in a steel strip having a yield point elongation, that is, a steel strip that is easily deformed unevenly. Therefore, the present inventors have conducted various investigations for investigating the cause, and have made the following hypothesis.

【0008】図7(a),(b)は従来の水スプレーノ
ズルの配置図であり、(a)に示す通り、スプレーノズ
ルは鋼帯101の通板方向に順に第1段ノズル102a
・・・、第2段ノズル102b・・・(第3段以降は省略)の
如く配置され、且つ、そのピッチPは十分に大きく、ス
プレー面の径をdとした場合に、Pはdの10倍前後で
ある。従って、(P−d)で示した領域は、第1段ノズ
ル102a…のスプレー水が2次的に流れ落ちる流下域
となる。(b)は(a)のB矢視図であり、第1段ノズ
ル102a・・・と第2段ノズル102b・・・とを互いに千
鳥配列したことを示す。
FIGS. 7 (a) and 7 (b) are layout diagrams of a conventional water spray nozzle. As shown in FIG. 7 (a), the spray nozzles are the first stage nozzles 102a in order in the sheet passing direction of the steel strip 101.
..., the second-stage nozzles 102b ... (The third and subsequent stages are omitted), and the pitch P is sufficiently large, where P is d when the diameter of the spray surface is d. It is around 10 times. Therefore, the area indicated by (P-d) is a downflow area where the spray water of the first stage nozzles 102a ... (B) is a view from the arrow B of (a), and shows that the first-stage nozzles 102a ... And the second-stage nozzles 102b ... Are staggered with respect to each other.

【0009】図8(a),(b)は従来の水スプレーノ
ズルのスプレーパターン図であり、(a)はスプレー直
後の状態を示し、ノズル102a,102bはともにス
プレーパターンが長円であるフラットノズルであり、こ
の長円の左右端が互いにある程度重なるようにノズルの
水平ピッチを選定した。
FIGS. 8 (a) and 8 (b) are spray pattern diagrams of a conventional water spray nozzle. FIG. 8 (a) shows a state immediately after spraying, and the nozzles 102a and 102b are both flat elliptical spray patterns. It is a nozzle, and the horizontal pitch of the nozzles was selected so that the left and right ends of this ellipse overlap each other to some extent.

【0010】(b)はその後の流下域の模様を示し、第
1段ノズル102aと第2段ノズル102bとの間の流
下域では、蒸気膜105・・・が発生する。一方、スプレ
ーはノズル102a,102bから偏平円錐状に拡径し
ながら、進むために鋼帯に当った時点でも拡径方向のモ
ーメントを有する。この結果、図に付き矢印で示した
箇所の流下水が少く、付き矢印で示した箇所の流下水
が多くなり、このの矢印の箇所では隣同士の流下水が
衝突し、干渉するため水量が倍加すると共に攪拌力が強
い。従って、図示したとおりに、流下域において、の
箇所の蒸気膜105が残り、の箇所は蒸気膜105が
破壊されて実質的に残っていないと推定する。
(B) shows the pattern in the subsequent flow-down region, and the vapor film 105 is generated in the flow-down region between the first stage nozzle 102a and the second stage nozzle 102b. On the other hand, the spray has a moment in the expanding direction even when it hits the steel strip in order to proceed while expanding the diameter from the nozzles 102a and 102b into a flat conical shape. As a result, there is less runoff at the location indicated by the arrow in the figure and more runoff at the location indicated by the arrow. Doubling and strong stirring power. Therefore, as shown in the figure, it is presumed that the vapor film 105 at the location of is left in the flow-down region, and the vapor film 105 is destroyed at the location of substantially not remaining.

【0011】図9は従来の水スプレーの作用説明図であ
り、図左に、上から下へ進む鋼帯101へ冷却剤を噴射
する第1段ノズル102aと第2段ノズル102bを示
す。図右はグラフであり、横軸が鋼帯温度、縦軸が鋼帯
のポジションを示し、図右端に記載したとおりに、第1
段ノズル102aによって冷却が開始される箇所が「冷
却開始線」であり、第1段ノズル102aのスプレーの
当っているエリアが「第1衝突域」、第2段ノズル10
2bのスプレーの当っているエリアが「第2衝突域」、
これらの間が「第1流下域」、第2衝突域の下方が「第
2流下域」となる。
FIG. 9 is an explanatory view of the operation of a conventional water spray, and the left side of the figure shows a first-stage nozzle 102a and a second-stage nozzle 102b for injecting a coolant onto a steel strip 101 moving from top to bottom. The right side of the figure is a graph, where the horizontal axis indicates the temperature of the steel strip and the vertical axis indicates the position of the steel strip.
The point where cooling is started by the stage nozzle 102a is the "cooling start line", and the sprayed area of the first stage nozzle 102a is the "first collision region", the second stage nozzle 10
The area where the spray of 2b is hit is the "second collision area",
The area between them is the “first downstream area”, and the area below the second collision area is the “second downstream area”.

【0012】図右のグラフにおいて、(図8のに対
応)の曲線は、上記の理由により第1流下域においても
良好に冷却が進み、鋼帯の温度は順調に下がる。一方、
(図8のに対応)の曲線は、第1流下域に蒸気膜が
残り、この蒸気膜が冷却を弱めるため、ここでは殆ど鋼
帯の温度が下がらない。第2衝突域では強いスプレーで
冷却が促され、以降、鋼帯の温度が順調に下がる。この
ことから、例えば第2衝突域入口において、との間
に大きな温度差ΔTが発生し、この温度差ΔTが、鋼帯
の内部に歪を残留させる。この残留歪が後加工の際に欠
陥の原因となっていると推定した。
In the graph on the right side of the figure, the curve (corresponding to FIG. 8) shows that the cooling is satisfactorily performed even in the first flow-down region and the temperature of the steel strip is steadily lowered. on the other hand,
In the curve (corresponding to FIG. 8), the steam film remains in the first downflow region, and this steam film weakens the cooling. Therefore, the temperature of the steel strip hardly decreases here. In the second collision area, the cooling is promoted by the strong spray, and thereafter the temperature of the steel strip is smoothly decreased. From this, for example, at the entrance of the second collision area, a large temperature difference ΔT is generated between and, and this temperature difference ΔT causes strain to remain inside the steel strip. It was estimated that this residual strain was the cause of defects during post-processing.

【0013】[0013]

【課題を解決するための手段】本発明者らは、流下域を
無くすべく鋼板を、噴霧液滴のみで覆いつくすことを思
い付いた。しかし、これでは必要水量が膨大となるた
め、この点も検討した。種々の実験を重ねた結果、18
0℃以下であれば流下水域であっても蒸気膜が形成され
ないことを突き止めた。従って、冷却開始温度が200
〜300℃の鋼帯を180℃まで、流下水域なしで冷却
すれば、それ以降は従来の流下水域での冷却が可能であ
るという技術を確立するに至った。
The inventors have come up with the idea of covering the steel sheet only with spray droplets in order to eliminate the flow-down zone. However, since this requires a huge amount of water, we also examined this point. As a result of various experiments, 18
It was found that if the temperature was 0 ° C or lower, no vapor film was formed even in the flowing water area. Therefore, the cooling start temperature is 200
If a steel strip of ~ 300 ° C is cooled to 180 ° C without a flowing water area, a technique has been established that thereafter, cooling in a conventional flowing water area is possible.

【0014】まとめると、請求項1は、連続焼鈍の最終
冷却において、水スプレーノズルまたはミストスプレー
ノズルを縦向き鋼帯の両側に多数配置して冷却を行なう
にあたり、鋼帯温度が少なくとも180℃に達するま
で、前記ノズルから噴射した液滴のみで鋼帯を覆いつく
すようにして冷却することを特徴とする。ノズルからの
液滴のみで鋼帯を覆いつくすようにしたので、蒸気膜の
発生を抑えることができる。このままで180℃まで冷
却すれば、以降蒸気膜の発生を心配することなしに流下
水などで冷却を継続することができる。温度むら無く冷
却できるため、残留歪のない、高品質の鋼帯を製造する
ことができる。
In summary, the first aspect of the present invention is that, in the final cooling of the continuous annealing, when the water spray nozzles or the mist spray nozzles are arranged on both sides of the vertically oriented steel strip for cooling, the steel strip temperature is at least 180 ° C. Until reaching, the steel strip is cooled by covering the steel strip only with the droplets ejected from the nozzle. Since the steel strip is covered only with the liquid droplets from the nozzle, it is possible to suppress the formation of a vapor film. If it is cooled to 180 ° C. as it is, it is possible to continue cooling with running water without worrying about the formation of a vapor film. Since it can be cooled without temperature unevenness, it is possible to manufacture a high-quality steel strip without residual strain.

【0015】請求項2は、前記スプレーの噴霧形状を、
フルコーン形状としたこと特徴とする。スプレー面がほ
ぼ正円であるため、なお均一な冷却が可能である。
According to a second aspect, the spray shape of the spray is
It is characterized by having a full cone shape. Since the spray surface is almost a circle, uniform cooling is possible.

【0016】そのための装置として、請求項3は、少な
くとも冷却帯の入口に、ノズルから噴射した液滴のみで
鋼帯を覆いつくすようにスプレーノズルを、板幅方向並
びに通板方向に密に配置する。ノズルからの液滴のみで
鋼帯を覆いつくすようにしたので、蒸気膜の発生を抑え
ることができ、温度むら無く冷却できるため、残留歪の
ない、高品質の鋼帯を製造することができる。
As a device therefor, in claim 3, at least at the inlet of the cooling zone, spray nozzles are densely arranged in the plate width direction and the plate passing direction so as to cover the steel strip only with the droplets ejected from the nozzle. To do. Since the steel strip is covered only with the liquid droplets from the nozzle, the generation of vapor film can be suppressed and the temperature can be cooled without unevenness, so high quality steel strip without residual strain can be manufactured. .

【0017】請求項4は、前記スプレーノズルを、噴霧
形状がフルコーン形状であるフルコーンノズルとしたこ
と特徴とする。スプレー面がほぼ正円であるため、通板
方向の取付けピッチを大きくすることができ、設備構成
が容易となる。
A fourth aspect of the present invention is characterized in that the spray nozzle is a full cone nozzle having a full cone shape. Since the spray surface is a nearly perfect circle, the mounting pitch in the plate passing direction can be increased, and the equipment configuration becomes easy.

【0018】[0018]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。また、以下の説明中、「スプレー面」は、
ノズルからのスプレーが鋼帯に衝突したときの衝突面を
指す。図1は本発明の冷却装置を備えた冷却帯のレイア
ウト図であり、冷却帯1はチャンバ2の内部に、上から
ベンディングロール3、冷却装置10、普通の水スプレ
ーノズル4B,4C,4D・・・、シンクロール5を含む
浸漬槽6を順に並べ、鋼帯7を順次冷却する装置であ
る。このうちの冷却装置10が従来の第1段ノズル、4
Bが第2段ノズル、4Cが第3段ノズル、4Dが第4段
ノズルに相当する。以降の段は符号及び説明を省略す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. In the following explanation, "spray surface" is
It refers to the collision surface when the spray from the nozzle collides with the steel strip. FIG. 1 is a layout diagram of a cooling zone provided with the cooling device of the present invention. The cooling zone 1 is located inside the chamber 2 from the top, including the bending roll 3, the cooling device 10, and ordinary water spray nozzles 4B, 4C, 4D. .., the dipping tanks 6 including the sink rolls 5 are arranged in order, and the steel strips 7 are sequentially cooled. Among them, the cooling device 10 is the conventional first stage nozzle,
B corresponds to the second stage nozzle, 4C corresponds to the third stage nozzle, and 4D corresponds to the fourth stage nozzle. Subsequent stages will not be described with reference numerals and explanations.

【0019】図2は本発明に係る冷却装置の原理図であ
り、水冷装置10は、細長いボックス形バンク11,1
1と、これらのバンク11,11の内側面に各々取付け
たフラットスプレーノズル(以下「フラットノズル」と
記す。)12a,12b,12cとからなる。なお、便
宜上、第1段ノズルの第1ノズルを第1−1段ノズル1
2aと記載し、第1段ノズルの第2,3ノズルを第1−
2ノズル12b、第1−3ノズル12cと記載する。
FIG. 2 is a diagram showing the principle of the cooling device according to the present invention. The water cooling device 10 is an elongated box-shaped bank 11, 1.
1 and flat spray nozzles (hereinafter referred to as "flat nozzles") 12a, 12b, 12c attached to the inner surfaces of these banks 11, 11, respectively. For the sake of convenience, the first nozzle of the first stage nozzle is replaced with the 1-1st stage nozzle 1.
2a, and the second and third nozzles of the first stage nozzle are
Two nozzles 12b and first to third nozzles 12c are described.

【0020】図3は本発明に係る冷却装置のスプレーパ
ターン図であり、第1−1段ノズル12aと第1−2段
ノズル12bと第1−3段ノズル12cのスプレー面が
互いに僅かに重なるようにして満遍なく液滴が直接鋼帯
に衝突するようにフラットノズル12a,12b,12
c・・・を配置したことを特徴とする。なお、フラットノ
ズル12a,12b,12cは、長楕円のスプレー面を
形成することのできるスプレーノズルである。
FIG. 3 is a spray pattern diagram of the cooling device according to the present invention. The spray surfaces of the 1-1st stage nozzle 12a, the 1-2nd stage nozzle 12b and the 1st-3rd stage nozzle 12c slightly overlap each other. In this way, the flat nozzles 12a, 12b, 12 are arranged so that the droplets directly and evenly collide with the steel strip.
It is characterized by arranging c ... The flat nozzles 12a, 12b, 12c are spray nozzles capable of forming a long elliptical spray surface.

【0021】以上に述べた冷却帯及び冷却装置の作用を
次に説明する。図1において、加熱及び保熱後の200
〜300℃の鋼帯7を、ベンディングロール3で下向き
に曲げ、次に、冷却装置10で180℃まで冷却し、次
に普通の水スプレーノズル4B,4C,4D・・・及び浸
漬槽6で室温まで冷却する。
The operation of the cooling zone and the cooling device described above will be described below. In FIG. 1, 200 after heating and heat retention
The steel strip 7 of ˜300 ° C. is bent downward by the bending roll 3 and then cooled to 180 ° C. by the cooling device 10, and then the ordinary water spray nozzles 4B, 4C, 4D ... Cool to room temperature.

【0022】図4は本発明の水スプレーの作用説明図で
あり、図左に、上から下へ進む鋼帯7へ冷却剤を噴射す
る第1−1段ノズル12a、第1−2段ノズル12b、
第1−3段ノズル12c及び第2段ノズル4Bを示す。
図右はグラフであり、横軸が鋼帯温度、縦軸が鋼帯のポ
ジションを示し、図右端に記載したとおりに、第1−1
段ノズル12aによって冷却が開始される箇所が「冷却
開始線」であり、第1段ノズル12a〜12cのスプレ
ーの当っているエリアが「第1衝突域」、第2段ノズル
4Bのスプレーの当っているエリアが「第2衝突域」、
これらの間が「第1流下域」、第2衝突域の下方が「第
2流下域」となる。
FIG. 4 is an explanatory view of the action of the water spray according to the present invention. On the left side of the figure, the 1-1st stage nozzle 12a and the 1-2nd stage nozzle for injecting the coolant to the steel strip 7 traveling from the top to the bottom. 12b,
The 1st-3rd stage nozzle 12c and the 2nd stage nozzle 4B are shown.
The right side of the figure is a graph, where the horizontal axis indicates the temperature of the steel strip and the vertical axis indicates the position of the steel strip.
The point where cooling is started by the stage nozzle 12a is the "cooling start line", the area where the sprays of the first stage nozzles 12a to 12c are in contact is the "first collision area", and the spray of the second stage nozzle 4B is in contact. The area you are in is the “second collision area”,
The area between them is the “first downstream area”, and the area below the second collision area is the “second downstream area”.

【0023】図右のグラフにおいて、250℃で第1衝
突域に入った鋼帯は、冷却装置で満遍なく冷却され、蒸
気膜の影響を受けずに180℃に至る。即ち、蒸気膜が
発生したとしても、この膜は直接鋼帯へ衝突する液滴で
破壊されて実質的に消失するためである。第1流下域で
は、鋼帯が180℃以下であるため、蒸気膜が発生せず
に流下水で冷却される。第2衝突域で冷却速度が増大
し、第2流下域に冷却を引き継ぐ如くして室温付近まで
強制冷却される。
In the graph on the right side of the figure, the steel strip that has entered the first collision zone at 250 ° C. is evenly cooled by the cooling device and reaches 180 ° C. without being affected by the vapor film. That is, even if a vapor film is generated, this film is destroyed by the liquid droplets directly impinging on the steel strip and is substantially disappeared. In the first flow-down zone, the steel strip is at 180 ° C. or lower, so that a steam film is not generated and cooling is performed with the flow-down water. The cooling rate increases in the second collision region, and the cooling is forced to near room temperature so that the cooling is taken over by the second downstream region.

【0024】図5(a),(b)は本発明のスプレーノ
ズルの別実施例を示す図であり、(a)は冷却装置10
を、第1−1段フルコーンノズル14a・・・と第1−2
段フルコーンノズル14b・・・で構成したものである。
なお、フルコーンノズル14a,14bはスプレー面が
正円となるスプレーノズルである。(b)はスプレーパ
ターンを示し、左右及び上又は下のスプレーが互いに一
部重なっており、鋼帯を液滴のみ覆う形態となる。フル
コーンノズル14a,14bを採用すると、上下方向の
ノズルピッチをそれほど狭くする必要がないので、前記
ボックス型バンク11を、安価なパイプヘッダに変更で
き、設備が簡単になる。
FIGS. 5A and 5B are views showing another embodiment of the spray nozzle of the present invention, and FIG. 5A is a cooling device 10.
And the 1-1st full cone nozzle 14a ...
It is composed of a stepped full cone nozzle 14b.
The full cone nozzles 14a and 14b are spray nozzles whose spray surface is a perfect circle. (B) shows a spray pattern in which the left and right sprays and the upper and lower sprays partially overlap each other, so that the steel strip is covered only with the liquid droplets. If the full-cone nozzles 14a and 14b are adopted, it is not necessary to make the nozzle pitch in the vertical direction so narrow, so that the box-type bank 11 can be changed to an inexpensive pipe header, and the equipment becomes simple.

【0025】すなわち、本発明はスプレー面のエッジを
互いに重ねるように水スプレーノズルを配置することに
特徴があるため、スプレーノズルとしてフラットノズ
ル、フルコーンノズル、又は他の形式のスプレーノズル
を採用することは差支えない。
That is, since the present invention is characterized in that the water spray nozzles are arranged so that the edges of the spray surfaces overlap with each other, a flat nozzle, a full cone nozzle, or another type of spray nozzle is used as the spray nozzle. That doesn't matter.

【0026】[0026]

【実施例】本発明に係る実施例を次に説明する。しか
し、本発明は実施例に限るものではない。 比較例1,2及び実施例1,2; 共通条件; 鋼帯の種類 極低炭素鋼板 鋼帯の板厚 0.8 mm 鋼帯の幅 1,560 mm 通板速度 140 m/min
Embodiments of the present invention will be described below. However, the present invention is not limited to the embodiment. Comparative Examples 1 and 2 and Examples 1 and 2; Common Conditions; Types of Steel Strips Ultra-Low Carbon Steel Sheet Steel Strip Thickness 0.8 mm Steel Strip Width 1,560 mm Threading Speed 140 m / min

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1;第1衝突域に、表1下部に記載
した※1のフラットノズルを採用し、このノズルを幅方
向250mm、通板方向235mmのピッチで通板方向
に1段配置した。入口温度230℃の鋼帯を、第1衝突
域で強制冷却したところ、208℃まで下がった。しか
し、第1流下域や第2衝突域などで引続き室温まで冷却
し、プレス加工を施したところ、この鋼帯に表面欠陥が
発生したので、評価は「×」である。
Comparative Example 1 In the first collision area, the flat nozzle of * 1 described in the lower part of Table 1 was adopted, and the nozzles were arranged in one row in the sheet passing direction at a pitch of 250 mm in the width direction and 235 mm in the sheet passing direction. . When the steel strip with an inlet temperature of 230 ° C was forcibly cooled in the first collision zone, it fell to 208 ° C. However, when the steel strip was subsequently cooled to room temperature in the first flow-down region and the second collision region and subjected to press working, surface defects were generated in this steel strip, so the evaluation was “x”.

【0029】比較例2;第1衝突域に、表1下部に記載
した※1のフラットノズルを採用し、このノズルを幅方
向125mm、通板方向235mmのピッチで通板方向
に1段配置した。入口温度230℃の鋼帯を、第1衝突
域で強制冷却したところ、200℃まで下がった。しか
し、第1流下域や第2衝突域などで引続き室温まで冷却
し、プレス加工を施したところ、この鋼帯に表面欠陥が
発生したので、評価は「×」である。
Comparative Example 2; In the first collision area, the flat nozzle of * 1 described in the lower part of Table 1 was adopted, and the nozzles were arranged in one step in the sheet passing direction at a pitch of 125 mm in the width direction and 235 mm in the sheet passing direction. . When the steel strip with an inlet temperature of 230 ° C was forcibly cooled in the first collision zone, the temperature dropped to 200 ° C. However, when the steel strip was subsequently cooled to room temperature in the first flow-down region and the second collision region and subjected to press working, surface defects were generated in this steel strip, so the evaluation was “x”.

【0030】実施例1;第1衝突域に、表1下部に記載
した※1のフラットノズルを採用し、このノズルを幅方
向250mm、通板方向20mmのピッチで通板方向に
3段配置した。入口温度230℃の鋼帯を、第1衝突域
で強制冷却したところ、180℃まで下がり、第1流下
域や第2衝突域などで引続き室温まで冷却し、プレス加
工を施したところ、この鋼帯に表面欠陥が発生しなかっ
たので、評価は「○」である。
Example 1; In the first collision area, the flat nozzle of * 1 shown in the lower part of Table 1 was adopted, and the nozzles were arranged in three stages in the sheet passing direction at a pitch of 250 mm in the width direction and 20 mm in the sheet passing direction. . When a steel strip with an inlet temperature of 230 ° C was forcibly cooled in the first collision zone, it fell to 180 ° C, and was subsequently cooled to room temperature in the first downflow zone, the second collision zone, etc. Since no surface defect was generated in the belt, the evaluation was “◯”.

【0031】実施例2;第1衝突域に、表1下部に記載
した※2のフルコーンノズルを採用し、このノズルを幅
方向250mm、通板方向235mmのピッチで通板方
向に2段配置した。入口温度230℃の鋼帯を、第1衝
突域で強制冷却したところ、180℃まで下がり、第1
流下域や第2衝突域などで引続き室温まで冷却し、プレ
ス加工を施したところ、この鋼帯に表面欠陥が発生しな
かったので、評価は「○」である。
Example 2; In the first collision area, the full cone nozzle of * 2 described in the lower part of Table 1 was adopted, and these nozzles were arranged in two stages in the sheet passing direction at a pitch of 250 mm in the width direction and 235 mm in the sheet passing direction. did. When the steel strip with an inlet temperature of 230 ° C was forcibly cooled in the first collision zone, it fell to 180 ° C
When the steel strip was cooled down to room temperature and pressed in the downflow zone and the second collision zone and the like, and no surface defect was generated in this steel strip, the evaluation was “◯”.

【0032】尚、本発明のスプレーノズルは、液滴を極
く細かい水滴(すなわちミスト)にするミストスプレー
ノズルであってもよい。
Incidentally, the spray nozzle of the present invention may be a mist spray nozzle which makes the liquid droplets into extremely fine water droplets (that is, mist).

【0033】[0033]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、連続焼鈍の最終冷却において、水ス
プレーノズルまたはミストスプレーノズルを縦向き鋼帯
の両側に多数配置して冷却を行なうにあたり、鋼帯温度
が少なくとも180℃に達するまで、前記ノズルから噴
射した液滴のみで鋼帯を覆いつくすようにして冷却する
ことを特徴とする。ノズルからの液滴のみで鋼帯を覆い
つくすようにしたので、蒸気膜の発生を抑えることがで
きる。このままで180℃まで冷却すれば、以降蒸気膜
の発生を心配することなしに流下水などで冷却を継続す
ることができる。温度むら無く冷却できるため、残留歪
のない、高品質の鋼帯を製造することができる。
The present invention has the following effects due to the above configuration. According to claim 1, in the final cooling of the continuous annealing, when a large number of water spray nozzles or mist spray nozzles are arranged on both sides of the vertically oriented steel strip to perform cooling, the steel strip is discharged from the nozzle until the steel strip temperature reaches at least 180 ° C. It is characterized in that the steel strip is cooled by covering the steel strip only with the sprayed droplets. Since the steel strip is covered only with the liquid droplets from the nozzle, it is possible to suppress the formation of a vapor film. If it is cooled to 180 ° C. as it is, it is possible to continue cooling with running water without worrying about the formation of a vapor film. Since it can be cooled without temperature unevenness, it is possible to manufacture a high-quality steel strip without residual strain.

【0034】請求項2は、前記スプレーの噴霧形状を、
フルコーン形状としたこと特徴とする。スプレー面がほ
ぼ正円であるため、なお均一な冷却が可能である。
In the second aspect, the spray shape of the spray is
It is characterized by having a full cone shape. Since the spray surface is almost a circle, uniform cooling is possible.

【0035】そのための装置として、請求項3は、少な
くとも冷却帯の入口に、ノズルから噴射した液滴のみで
鋼帯を覆いつくすようにスプレーノズルを、板幅方向並
びに通板方向に密に配置する。ノズルからの液滴のみで
鋼帯を覆いつくすようにしたので、蒸気膜の発生を抑え
ることができ、温度むら無く冷却できるため、残留歪の
ない、高品質の鋼帯を製造することができる。
As a device therefor, in claim 3, at least at the inlet of the cooling zone, spray nozzles are densely arranged in the plate width direction and the plate passing direction so as to cover the steel band only with the droplets ejected from the nozzle. To do. Since the steel strip is covered only with the liquid droplets from the nozzle, the generation of vapor film can be suppressed and the temperature can be cooled without unevenness, so high quality steel strip without residual strain can be manufactured. .

【0036】請求項4は、前記スプレーノズルを、噴霧
形状がフルコーン形状であるフルコーンノズルとしたこ
と特徴とする。スプレー面がほぼ正円であるため、通板
方向の取付けピッチを大きくすることができ、設備構成
が容易となる。
A fourth aspect of the present invention is characterized in that the spray nozzle is a full cone nozzle having a full cone shape. Since the spray surface is a nearly perfect circle, the mounting pitch in the plate passing direction can be increased, and the equipment configuration becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却装置を備えた冷却帯のレイアウト
FIG. 1 is a layout diagram of a cooling zone provided with a cooling device of the present invention.

【図2】本発明に係る冷却装置の原理図FIG. 2 is a principle diagram of a cooling device according to the present invention.

【図3】本発明に係る冷却装置のスプレーパターン図FIG. 3 is a spray pattern diagram of the cooling device according to the present invention.

【図4】本発明の水スプレーの作用説明図FIG. 4 is an explanatory view of the action of the water spray of the present invention.

【図5】本発明のスプレーノズルの別実施例を示す図FIG. 5 is a view showing another embodiment of the spray nozzle of the present invention.

【図6】従来の連続焼鈍の代表的な冷却装置の原理図FIG. 6 is a principle diagram of a conventional typical cooling device for continuous annealing.

【図7】従来の水スプレーノズルの配置図FIG. 7 is a layout view of a conventional water spray nozzle.

【図8】従来の水スプレーノズルのスプレーパターン図FIG. 8 is a spray pattern diagram of a conventional water spray nozzle.

【図9】従来の水スプレーの作用説明図FIG. 9 is an explanatory view of the action of a conventional water spray.

【符号の説明】[Explanation of symbols]

1…連続焼鈍の冷却帯、4B,4C,4D…普通の水ス
プレーノズル、7…鋼帯、10…冷却装置、11…バン
ク、12a,12b,12c…フラットスプレーノズル
(フラットノズル)、14a,14b…フルコーンスプ
レーノズル(フルコーンノズル)。
1 ... Continuous annealing cooling zone, 4B, 4C, 4D ... Ordinary water spray nozzle, 7 ... Steel strip, 10 ... Cooling device, 11 ... Bank, 12a, 12b, 12c ... Flat spray nozzle (flat nozzle), 14a, 14b ... Full cone spray nozzle (full cone nozzle).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 一彦 茨城県鹿嶋市大字光3番地 住友金属工業 株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Kishi Sumitomo Metal Industry Co., Ltd. Kashima Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続焼鈍の最終冷却において、水スプレ
ーノズルまたはミストスプレーノズルを縦向き鋼帯の両
側に多数配置して冷却を行なうにあたり、鋼帯温度が少
なくとも180℃に達するまで、前記ノズルから噴射し
た液滴のみで鋼帯を覆いつくすようにして冷却すること
を特徴とする連続焼鈍における鋼帯の冷却方法。
1. In the final cooling of continuous annealing, when a large number of water spray nozzles or mist spray nozzles are arranged on both sides of a vertically oriented steel strip for cooling, until the steel strip temperature reaches at least 180 ° C. A method for cooling a steel strip in continuous annealing, which comprises cooling the steel strip by covering the steel strip only with the sprayed droplets.
【請求項2】 前記スプレーの噴霧形状を、フルコーン
形状としたこと特徴とする請求項1記載の連続焼鈍にお
ける鋼帯の冷却方法。
2. The method for cooling a steel strip in continuous annealing according to claim 1, wherein the spray shape of the spray is a full cone shape.
【請求項3】 連続焼鈍の最終冷却において、水スプレ
ーノズルまたはミストスプレーノズルを縦向き鋼帯の両
側に多数配置して冷却を行なうにあたり、少なくとも冷
却帯の入口に、ノズルから噴射した液滴のみで鋼帯を覆
いつくすようにスプレーノズルを、板幅方向並びに通板
方向に密に配置したことを特徴とする連続焼鈍における
鋼帯の冷却装置。
3. In the final cooling of continuous annealing, when a large number of water spray nozzles or mist spray nozzles are arranged on both sides of a vertically oriented steel strip for cooling, at least at the inlet of the cooling zone, only droplets ejected from the nozzles are used. A steel strip cooling device in continuous annealing, characterized in that spray nozzles are densely arranged in the sheet width direction and the sheet passing direction so as to cover the steel strip with.
【請求項4】 前記スプレーノズルを、噴霧形状がフル
コーン形状であるフルコーンノズルとしたこと特徴とす
る請求項3記載の連続焼鈍における鋼帯の冷却装置。
4. The steel strip cooling device in continuous annealing according to claim 3, wherein the spray nozzle is a full cone nozzle having a spray cone shape.
JP06273796A 1996-03-19 1996-03-19 Cooling method of steel strip in continuous annealing and cooling device therefor Expired - Fee Related JP3189669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06273796A JP3189669B2 (en) 1996-03-19 1996-03-19 Cooling method of steel strip in continuous annealing and cooling device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06273796A JP3189669B2 (en) 1996-03-19 1996-03-19 Cooling method of steel strip in continuous annealing and cooling device therefor

Publications (2)

Publication Number Publication Date
JPH09256076A true JPH09256076A (en) 1997-09-30
JP3189669B2 JP3189669B2 (en) 2001-07-16

Family

ID=13209004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06273796A Expired - Fee Related JP3189669B2 (en) 1996-03-19 1996-03-19 Cooling method of steel strip in continuous annealing and cooling device therefor

Country Status (1)

Country Link
JP (1) JP3189669B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200745A (en) * 2004-01-19 2005-07-28 Jfe Steel Kk Method for cooling cold-rolled steel sheet and water-cooling facility or washing facility
KR100775306B1 (en) * 2001-12-19 2007-11-08 주식회사 포스코 An apparatus for cooling a reheating furnace
KR20150018086A (en) * 2013-08-09 2015-02-23 주식회사 포스코 cooling apparatus for metal strip
JP2017025357A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
JP2018080364A (en) * 2016-11-16 2018-05-24 Jfeスチール株式会社 Cooling method for steel sheet
WO2023248389A1 (en) * 2022-06-22 2023-12-28 Primetals Technologies Japan株式会社 Apparatus for cooling metal strip, heat treatment facility for metal strips, and method for cooling metal strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775306B1 (en) * 2001-12-19 2007-11-08 주식회사 포스코 An apparatus for cooling a reheating furnace
JP2005200745A (en) * 2004-01-19 2005-07-28 Jfe Steel Kk Method for cooling cold-rolled steel sheet and water-cooling facility or washing facility
JP4561104B2 (en) * 2004-01-19 2010-10-13 Jfeスチール株式会社 Cooling method for cold-rolled steel sheet
KR20150018086A (en) * 2013-08-09 2015-02-23 주식회사 포스코 cooling apparatus for metal strip
JP2017025357A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
JP2018080364A (en) * 2016-11-16 2018-05-24 Jfeスチール株式会社 Cooling method for steel sheet
WO2023248389A1 (en) * 2022-06-22 2023-12-28 Primetals Technologies Japan株式会社 Apparatus for cooling metal strip, heat treatment facility for metal strips, and method for cooling metal strip

Also Published As

Publication number Publication date
JP3189669B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
KR100496607B1 (en) Method And Device For Manufacturing A Hot Rolled Steel Strip
EP0049729B1 (en) Process and apparatus for cooling a cold rolled steel strip
KR100580357B1 (en) Method and device for cooling steel sheet
JPH09256076A (en) Method for cooling steel strip on continuous annealing and cooling device therefor
US4052235A (en) Method of preventing oxidation during water quenching of steel strip
JP4331982B2 (en) Steel strip cooling device
JP4586314B2 (en) Manufacturing method of hot-rolled steel sheet
JP3277985B2 (en) High temperature steel plate cooling system
KR20020038888A (en) Method For Manufacturing A Hot Rolled Steel Strip And Device For Removing Oxide Film On The Hot Rolled Steel Strip
JPH1143752A (en) Cleaning nozzle arrangement structure for hot dip metal coating line
JP4102113B2 (en) Cooling method in continuous annealing line of steel strip
JP4145606B2 (en) Steel plate lower surface cooling device, steel plate and method for producing the same
JP4901276B2 (en) Steel strip cooling device
JPH08176884A (en) Method for quenching tin plated steel strip and device therefor
JP4537875B2 (en) Steel strip cooling device
JP4332017B2 (en) Steel strip cooling device for continuous annealing furnace
JP3546310B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JPH09271832A (en) Descaling method of hot rolled ferritic stainless steel plate
JP3201513B2 (en) Hot rolled steel sheet cooling method
JP4352953B2 (en) Method of suppressing thermal crown of hearth roll and method of continuous annealing of steel plate
JP2689845B2 (en) Descaling method for hot rolled steel
JP2002275545A (en) Continuous annealing facility
JPH06142752A (en) Manufacture of thin scale hot rolled steel plate
CN117732868A (en) Control method for surface pressing-in type defects of hot continuous rolling titanium coil
JP2006274365A (en) Apparatus for cooling steel strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees