JPH09250474A - Fluid machine - Google Patents

Fluid machine

Info

Publication number
JPH09250474A
JPH09250474A JP5769896A JP5769896A JPH09250474A JP H09250474 A JPH09250474 A JP H09250474A JP 5769896 A JP5769896 A JP 5769896A JP 5769896 A JP5769896 A JP 5769896A JP H09250474 A JPH09250474 A JP H09250474A
Authority
JP
Japan
Prior art keywords
expansion mechanism
mechanism section
compression mechanism
expansion
fluid machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5769896A
Other languages
Japanese (ja)
Inventor
Hitoshi Hattori
仁司 服部
Akira Morishima
明 森嶋
Toshio Otaka
敏男 大高
Kazuo Saito
和夫 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5769896A priority Critical patent/JPH09250474A/en
Publication of JPH09250474A publication Critical patent/JPH09250474A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • F04C23/003Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate electrically driven elements for startup, try to suppress torque variation, and ensure smooth operation state. SOLUTION: This machine incorporates an expansion mechanism part constituting Rankine cycle, and a compression mechanism part 11 constituting a freezing cycle by means of rotational drive force in the same sealing case, the expansion mechanism part 9 is a rotational drive force generation means for generating rotational drive force during startup by means of high-pressure gas while there is provided with a fly wheel 50 for standardize torque variation generated at the expansion mechanism part 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ランキンサイク
ル用の膨張機構部と冷凍サイクル用の圧縮機構部とを一
つの密閉ケース内に配置した流体機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid machine in which a Rankine cycle expansion mechanism section and a refrigeration cycle compression mechanism section are arranged in a single sealed case.

【0002】[0002]

【従来の技術】従来、膨張機構部と圧縮機構部とを一つ
の密閉ケース内に配置した流体機械としては、例えば、
特開昭59−25097号公報記載のものが知られてい
る。
2. Description of the Related Art Conventionally, as a fluid machine in which an expansion mechanism section and a compression mechanism section are arranged in one sealed case, for example,
The one described in JP-A-59-25097 is known.

【0003】流体機械の概要は、起動時にステータと、
ステータに対して回転可能なロータとから成る電動要素
によって回転動力が与えられる膨張機構部に、高圧の作
動ガスが送り込まれ、ランキンサイクルを繰返すことで
回転動力が発生し、その回転動力は、圧縮機構部に伝達
されるようになる。圧縮機構部では、膨張機構部からの
回転動力により、圧縮室に送り込まれた作動ガスを高圧
として吐出する冷凍サイクルが行なわれる構造となって
いる。
An outline of a fluid machine is that a stator is used at the time of start-up.
A high-pressure working gas is sent to the expansion mechanism section that receives rotational power by an electric element that is composed of a rotor that can rotate with respect to the stator, and the Rankine cycle is repeated to generate rotational power, which is compressed. It will be transmitted to the mechanical section. The compression mechanism unit has a structure in which a refrigeration cycle is performed in which the working gas sent to the compression chamber is discharged as high pressure by the rotational power from the expansion mechanism unit.

【0004】[0004]

【発明が解決しようとする課題】流体機械は、膨張機構
部によって回転動力が発生し、その回転動力は圧縮機構
部に伝達される。膨張機構部は、間欠的に膨張を繰返す
ことで出力トルクを発生する所から膨張機構部からの出
力トルクは、一回転中にムラがあり、圧縮機構部に伝達
する上で、トルク波形に合わさねばならなかったが、従
来は、起動時の電動要素のロータが回転マスとして機能
し、トルク変動を平準化する役目を担っていた。
In the fluid machine, rotary power is generated by the expansion mechanism, and the rotary power is transmitted to the compression mechanism. The expansion mechanism section generates output torque by repeating expansion intermittently.Therefore, the output torque from the expansion mechanism section has unevenness during one rotation, and when it is transmitted to the compression mechanism section, it is matched with the torque waveform. Although it had to be done, conventionally, the rotor of the electric element at the time of start-up functioned as a rotating mass and had a role of leveling the torque fluctuation.

【0005】このために、従来の流体機械にあっては、
トルク変動の平準化が得られる反面、起動時専用の電動
要素が必要となるため、装置全体の大型化、複雑化する
問題を招来していたものである。
Therefore, in the conventional fluid machine,
On the other hand, although the torque fluctuation can be leveled, an electric element dedicated for starting is required, which causes a problem that the entire apparatus becomes large and complicated.

【0006】そこで、この発明は、起動時の電動要素を
なくし、かつ、膨張機構部のトルク変動の平準化が図れ
るようにした流体機械を提供することを目的としてい
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fluid machine which eliminates an electric element at the time of starting and can equalize the torque fluctuation of the expansion mechanism.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、ランキンサイクルを構成する膨張機構
部と、膨張機構部からの回転動力により冷凍サイクルを
構成する圧縮機構部とを同一密閉ケース内に組込み、前
記膨張機構部を、高圧ガスによって起動時の回転動力を
発生させる回転動力が発生手段とする一方、前記膨張機
構部で発生するトルク変動を平準化するフライホールを
備える。
In order to achieve the above-mentioned object, the present invention provides an expansion mechanism part which constitutes a Rankine cycle and a compression mechanism part which constitutes a refrigeration cycle by rotational power from the expansion mechanism part. The expansion mechanism is incorporated in a sealed case, and the expansion mechanism is provided with a flyhole for equalizing torque fluctuations generated in the expansion mechanism, while using rotation power for generating rotation power at the time of startup by high-pressure gas.

【0008】フライホイールを配置する好ましい実施形
態としては、圧縮機構部の反対側となる膨張機構部の回
転シャフト端部に設ける場合、あるいは、圧縮機構部と
膨張機構部の間で、圧縮機構部と膨張機構部とをつなぐ
回転シャフトに設ける場合、あるいは、膨張機構部の反
対側となる圧縮機構部の回転シャフト端部に設ける場合
がある。
As a preferred embodiment of arranging the flywheel, the compression mechanism part is provided at the end of the rotary shaft of the expansion mechanism part opposite to the compression mechanism part, or between the compression mechanism part and the expansion mechanism part. There is a case where it is provided on the rotary shaft that connects the expansion mechanism section and the expansion mechanism section, or a case where it is provided on the rotary shaft end of the compression mechanism section that is on the opposite side of the expansion mechanism section.

【0009】かかる流体機械によれば、起動時に、高圧
ガスを膨張機構部へ送り込むことで、起動時の回転動力
が発生すると共に、運転中のランキンサイクルにより得
られる膨張機構部からの回転動力は圧縮機構部に伝達さ
れる。圧縮機構部では、膨張機構部からの回転動力によ
り、圧縮室内に取込まれた作動ガスを圧縮して吐出する
冷凍サイクルが行なわれる。
According to such a fluid machine, when the high pressure gas is sent to the expansion mechanism at the time of starting, the rotational power at the time of starting is generated and the rotational power from the expansion mechanism obtained by the Rankine cycle in operation is generated. It is transmitted to the compression mechanism section. In the compression mechanism section, a refrigeration cycle is performed in which the rotational power from the expansion mechanism section compresses and discharges the working gas taken into the compression chamber.

【0010】この運転中において、発生するトルク変動
は、フライホイールにより平準化されて圧縮機構部に伝
達され、安定した運転が行なえるようになる。
During this operation, the torque fluctuations generated are leveled by the flywheel and transmitted to the compression mechanism section, so that stable operation can be performed.

【0011】[0011]

【発明の実施の形態】以下、図1と図2の図面を参照し
ながらこの発明の実施形態を具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the drawings of FIGS.

【0012】図1において、1は流体機械を示してお
り、ランキンサイクル用の第1の吸込管2及び冷凍サイ
クル用の第2の吸込管3と、吐出管5とを有する密閉ケ
ース7内の右側に膨張機構部9が、左側に圧縮機構部1
1がそれぞれ配置されている。流体機械1は冷凍サイク
ルを構成する圧縮機構部11の吐出ガスと、ランキンサ
イクルを構成する膨張機構9の吐出ガスが密閉ケース7
内に吐出される1流体方式対応となっている。
In FIG. 1, reference numeral 1 denotes a fluid machine, which is provided in a sealed case 7 having a first suction pipe 2 for Rankine cycle, a second suction pipe 3 for refrigeration cycle, and a discharge pipe 5. The expansion mechanism section 9 is on the right side and the compression mechanism section 1 is on the left side.
1 are arranged respectively. In the fluid machine 1, the discharge gas of the compression mechanism section 11 that constitutes the refrigeration cycle and the discharge gas of the expansion mechanism 9 that constitutes the Rankine cycle are sealed case 7
It is compatible with the one-fluid system that is discharged inside.

【0013】膨張機構部9は、シリンダ13とシリンダ
15とからなるツインタイプとなっていて、各シリンダ
13,15は、中間仕切板17によってそれぞれ独立す
るよう仕切られ、両シリンダ13,15に第1の回転シ
ャフト19が貫通している。
The expansion mechanism 9 is of a twin type consisting of a cylinder 13 and a cylinder 15. The cylinders 13 and 15 are partitioned by an intermediate partition plate 17 so as to be independent from each other. The rotary shaft 19 of No. 1 penetrates.

【0014】膨張機構9の第1の回転シャフト19は、
主軸受部材21と副軸受部材23とによって回転自在に
両端支持されている。第1の回転シャフト19は、後述
するガス吸込通路25と、前記各シリンダ13,15に
対応する部分に、互いに180度位相をずらした偏心軸
部27,29が設けられ、これら偏心軸部27,29に
は前記両シリンダ13,15内に配置された第1のロー
ラ31および第2のローラ33が嵌合している。
The first rotary shaft 19 of the expansion mechanism 9 is
Both ends are rotatably supported by the main bearing member 21 and the sub bearing member 23. The first rotary shaft 19 is provided with eccentric shaft portions 27 and 29, which are 180 degrees out of phase with each other, in a portion corresponding to each of the cylinders 13 and 15 and a gas suction passage 25 described later. , 29 are fitted with a first roller 31 and a second roller 33 arranged in the cylinders 13 and 15, respectively.

【0015】これにより、各ローラ31,33は、偏心
軸部27,29の回転により180度位相がずれた偏心
回転が与えられるようになる。
As a result, the rollers 31 and 33 are given eccentric rotations which are 180 degrees out of phase with each other due to the rotation of the eccentric shaft portions 27 and 29.

【0016】第1、第2のローラ31,33の外周面に
は、図3に示す如く背圧又は、ばね等による付勢手段3
5によって常時接触し合うブレード37が設けられ、各
ローラ31,33及びブレード37とにより膨張室39
がそれぞれ作られるようになる。第1の回転シャフト1
9に設けられたガス吸込通路25は、第1の回転シャフ
ト19の軸端部から中心軸線に沿って左右の偏心軸部2
7,29の領域まで延長されている。ガス吸込通路25
の一方の吸込口25aはケーシング41を介して前記吸
込管2と連通している。
On the outer peripheral surfaces of the first and second rollers 31 and 33, as shown in FIG. 3, a back pressure or a biasing means 3 such as a spring is used.
5, a blade 37 that is in constant contact with each other is provided, and the expansion chamber 39 is formed by the rollers 31, 33 and the blade 37.
Will be made respectively. First rotating shaft 1
The gas suction passage 25 provided in the shaft 9 is provided on the left and right eccentric shaft portions 2 along the central axis line from the axial end portion of the first rotary shaft 19.
It extends to the area of 7,29. Gas suction passage 25
One suction port 25a communicates with the suction pipe 2 via the casing 41.

【0017】ガス吸込通路25の他方は、各偏心軸部2
7,29の外周面に180度の位相差を有して設けられ
た吸込ポート47と連通し、吸込ポート47は、各ロー
ラ31,33に設けられた連通ポート49を介して各膨
張室39,39と連通可能となっている。
The other of the gas suction passages 25 has the other eccentric shaft portions 2.
7, 29 communicates with a suction port 47 provided with a phase difference of 180 degrees on the outer peripheral surface, and the suction port 47 passes through a communication port 49 provided in each of the rollers 31 and 33 to each expansion chamber 39. , 39 can be communicated with.

【0018】ケーシング41は、主軸受部材21の軸受
部材端部に装着され、ケーシング41内は、吸込管2か
ら高圧ガスが送り込まれる高圧室となっており、内部に
はフライホイール50が配置されている。
The casing 41 is mounted on the end of the bearing member of the main bearing member 21, the inside of the casing 41 is a high-pressure chamber into which high-pressure gas is fed from the suction pipe 2, and the flywheel 50 is arranged inside. ing.

【0019】主軸受部材21の軸受部材の装着面と、前
記ケーシング41の内部のシャフト外周面及び前記軸受
部材端部内周面との間はシール材42,43によりシー
ルされている。
Sealing materials 42 and 43 are provided between the bearing member mounting surface of the main bearing member 21 and the outer peripheral surface of the shaft inside the casing 41 and the inner peripheral surface of the end portion of the bearing member.

【0020】シール材42は、Oリングとなっており、
シール部材43はリング状に形成され、付勢ばね45に
より、密着方向の付勢力が与えられ、吸込管2からの高
圧ガスが密閉ケース7の内部又はシリンダ13へ漏れる
のを防いでいる。
The sealing material 42 is an O-ring,
The seal member 43 is formed in a ring shape, and an urging force in the close contact direction is applied by the urging spring 45 to prevent the high-pressure gas from the suction pipe 2 from leaking into the sealed case 7 or the cylinder 13.

【0021】フライホイール50は、トルク変動を平準
化して圧縮機構部11に位置する所定の質量を有する円
板状に形成され、図2に示す如く第1の回転シャフト1
9の軸端部に、ナット52により固着されている。
The flywheel 50 is formed in a disk shape having a predetermined mass and located in the compression mechanism portion 11 for equalizing the torque fluctuation, and as shown in FIG. 2, the first rotating shaft 1
It is fixed to the shaft end of 9 by a nut 52.

【0022】一方、吸込ポート47及び連通ポート49
は、偏心軸部27,29が約180度回転し、吸込ポー
ト47と連通ポート49が連通し合うことで、高圧ガス
が膨張室39内へ送り込まれる流入タイミング制御手段
51を構成している。
On the other hand, the suction port 47 and the communication port 49
The eccentric shaft portions 27, 29 rotate about 180 degrees, and the suction port 47 and the communication port 49 communicate with each other, thereby forming the inflow timing control means 51 for feeding the high-pressure gas into the expansion chamber 39.

【0023】各シリンダ13,15の吸込ポート47
は、図5,図6に示す如く吸込ガス流入開口角θが18
0度以上に設定され、運転停止時にいずれか一方のシリ
ンダ13,15側の吸込ポート47が連通ポート49と
連通し合う組合せ構造となっている。
Suction port 47 of each cylinder 13, 15
And the suction gas inflow opening angle θ is 18 as shown in FIGS.
It is set to 0 degrees or more, and has a combination structure in which the suction port 47 on one of the cylinders 13 and 15 side communicates with the communication port 49 when the operation is stopped.

【0024】これにより、各吸込ポート47がいずれの
角度位置で停止しても、吸込ポート47と連通ポート4
9との連通状態の確保が可能となり、高圧ガスが送り込
まれることで、膨張室39内において、吸込開始→吸込
終了→膨張開始→膨張終了の起動運転が行なわれるよう
になっている。
As a result, even if each suction port 47 stops at any angular position, the suction port 47 and the communication port 4 can be connected.
A communication state with 9 can be secured, and by the high-pressure gas being fed, the start operation of suction start → suction end → expansion start → expansion end is performed in the expansion chamber 39.

【0025】シリンダ13,15には、吐出ポート55
をそれぞれ有し、一方のシリンダ13側の吐出ポート5
5にあっては、主軸受部材21側に、他方のシリンダ1
5の吐出ポート55にあっては、副軸受部材23側にそ
れぞれ設けられている。
A discharge port 55 is provided in each of the cylinders 13 and 15.
Discharge port 5 on one cylinder 13 side
5, the main bearing member 21 side, the other cylinder 1
The discharge ports 55 of No. 5 are provided on the sub bearing member 23 side.

【0026】一方のシリンダ13側の吐出ポート55
は、マフラ室57内に臨み、マフラ室57から密閉ケー
ス7内を通り前記吐出管5と連通している。他方のシリ
ンダ15側の吐出ポート55は、シリンダ15,中間仕
切板17,シリンダ13を貫通した貫通孔55aを介し
てマフラ室57に臨み、マフラ室57から密閉ケース7
内を通り前記吐出管5と連通している。
Discharge port 55 on one cylinder 13 side
Faces the muffler chamber 57 and communicates with the discharge pipe 5 from the muffler chamber 57 through the sealed case 7. The discharge port 55 on the other cylinder 15 side faces the muffler chamber 57 through a through hole 55a penetrating the cylinder 15, the intermediate partition plate 17, and the cylinder 13, and then from the muffler chamber 57 to the closed case 7.
It communicates with the discharge pipe 5 through the inside.

【0027】圧縮機構部11は、シリンダ61を有する
シングルタイプとなっていて、シリンダ61には第2の
回転シャフト63が貫通している。
The compression mechanism 11 is of a single type having a cylinder 61, and a second rotary shaft 63 penetrates through the cylinder 61.

【0028】圧縮機構部11の第2の回転シャフト63
は、継ぎ手65を介して膨張機構9の第1の回転シャフ
ト19と一体に結合されると共に、主軸受部材67及び
副軸受部材69とによって回転自在に軸支されている。
第2の回転シャフト63には、前記第2のシリンダ61
に対応する部分に偏心軸部71が設けられ、偏心軸部7
1には前記シリンダ61内に配置されたローラ73が嵌
合している。これにより、ローラ73は、偏心軸部71
の回転により偏心回転が与えられるようになる。
The second rotary shaft 63 of the compression mechanism section 11
Is integrally connected to the first rotary shaft 19 of the expansion mechanism 9 via the joint 65, and is rotatably supported by the main bearing member 67 and the sub bearing member 69.
The second rotary shaft 63 includes the second cylinder 61.
The eccentric shaft portion 71 is provided in the portion corresponding to
A roller 73 arranged in the cylinder 61 is fitted into the cylinder 1. As a result, the roller 73 moves the eccentric shaft portion 71.
The eccentric rotation is given by the rotation of.

【0029】主軸受部材67には、開閉弁75を有する
吐出ポート77が設けられている。吐出ポート77は、
マフラ室79から密閉ケース7の内部空間を介して前記
吐出管5と連通している。
The main bearing member 67 is provided with a discharge port 77 having an opening / closing valve 75. The discharge port 77 is
The muffler chamber 79 communicates with the discharge pipe 5 through the internal space of the closed case 7.

【0030】図4に示す如く、シリンダ61には、前記
した吸込管3と連通し合う吸込ポート85と、前記ロー
ラ73の外周面と背圧又はばね等による付勢手段によっ
て常時接触し合うブレード87とが設けられ、ローラ7
3及びブレード87とにより圧縮室89が作られるよう
になっている。
As shown in FIG. 4, the cylinder 61 has a suction port 85 communicating with the suction pipe 3 and a blade which constantly contacts the outer peripheral surface of the roller 73 by a back pressure or a biasing means such as a spring. 87 and the roller 7
A compression chamber 89 is formed by 3 and the blade 87.

【0031】膨張機構部9と圧縮機構部11は、膨張機
構部9側の副軸受部材23と圧縮機構部11側の主軸受
部材67が接合され、締結ボルト91によって一体に結
合されている。また、膨張機構部9の第1の回転シャフ
ト19と、圧縮機構部11の第2の回転シャフト63は
継ぎ手65により同一軸心上に連結されている。
The expansion mechanism portion 9 and the compression mechanism portion 11 are joined together by a sub-bearing member 23 on the expansion mechanism portion 9 side and a main bearing member 67 on the compression mechanism portion 11 side, and are integrally connected by a fastening bolt 91. Further, the first rotary shaft 19 of the expansion mechanism section 9 and the second rotary shaft 63 of the compression mechanism section 11 are connected on the same axis center by a joint 65.

【0032】副軸受部材23と主軸受部材67が結合さ
れた結合外周部93となるフランジ部95は、前記主軸
受部材67と一体に形成され、組付けが容易となるよう
分割された密閉ケース7の重ね合せ結合部97により挾
み込み支持された構造となっている。また、結合外周部
93となるフランジ部95の挾み込み位置は、結合され
た膨張機構部9と圧縮機構部11の重心位置に設定さ
れ、偏荷重による応力の発生が阻止された構造となって
いる。
A flange portion 95, which serves as a joint outer peripheral portion 93 in which the sub-bearing member 23 and the main bearing member 67 are joined, is integrally formed with the main bearing member 67, and is a sealed case which is divided for easy assembly. It is structured so as to be sandwiched and supported by the superposing and connecting portion 97 of 7. Further, the sandwiching position of the flange portion 95 that becomes the joint outer peripheral portion 93 is set to the center of gravity position of the jointed expansion mechanism portion 9 and compression mechanism portion 11, and the structure is such that generation of stress due to unbalanced load is prevented. ing.

【0033】なお、膨張機構部9と圧縮機構部11の間
となる膨張機構部9の内側に、給油ポンプ131が、ま
た圧縮機構部11の内側と外側とに、回転時の第1・第
2の回転シャフト19,63のバランスをとるバランサ
133,133が設けられている。さらに、圧縮機構部
9の外側となる副軸受部材69の内部には第2の回転シ
ャフト63のスラスト力を受けるスラスト受部材135
が設けられている。
The oil supply pump 131 is provided inside the expansion mechanism section 9 between the expansion mechanism section 9 and the compression mechanism section 11, and is provided inside and outside the compression mechanism section 11 for the first and first rotations. Balancers 133 and 133 for balancing the two rotary shafts 19 and 63 are provided. Further, a thrust receiving member 135 that receives the thrust force of the second rotary shaft 63 is provided inside the auxiliary bearing member 69 that is outside the compression mechanism unit 9.
Is provided.

【0034】バランサ133は、圧縮機構部11の第2
の回転シャフト63の端部に、偏心軸部71と180度
反対向きに装着されている。
The balancer 133 is the second of the compression mechanism section 11.
The rotary shaft 63 is attached to the end of the rotary shaft 63 opposite to the eccentric shaft 71 by 180 degrees.

【0035】給油ポンプ131は、膨張機構部9の第1
の回転シャフト19の端部に配置され、吸込側には油溜
め部137に延長された給油管(図示されていない)が
接続されている。給油ポンプ131の吐出側は、潤滑給
油路(図示していない)を介して一方は、膨張機構部9
側の副軸受部材23,偏心軸部27,29、主軸受部材
21と連通し、各摺動部に対して潤滑油が供給されるよ
うになっており、ケーシング41を介して油溜め137
に戻るようになっている。
The oil supply pump 131 is the first of the expansion mechanism section 9.
An oil supply pipe (not shown) extended to the oil reservoir 137 is connected to the suction side of the rotary shaft 19. The discharge side of the oil supply pump 131 is provided with a lubricating oil supply passage (not shown), and one of them is connected to the expansion mechanism 9
Side sub-bearing member 23, eccentric shaft portions 27 and 29, and main bearing member 21 so that lubricating oil is supplied to each sliding portion, and oil sump 137 is provided via casing 41.
To return to.

【0036】他方は、圧縮機構部11側の主軸受部材6
7,偏心軸部71,副軸受部材69と連通し、各摺動部
に対して潤滑油が供給されるようになっており、副軸受
部材69に設けられた戻り通路(図示していない)を介
して油溜め部137に戻るようになっている。
On the other hand, the main bearing member 6 on the compression mechanism 11 side
7, communicating with the eccentric shaft portion 71 and the auxiliary bearing member 69 so that lubricating oil is supplied to each sliding portion, and a return passage (not shown) provided in the auxiliary bearing member 69. It returns to the oil sump 137 via the.

【0037】このように構成された流体機械によれば、
運転停止時において、膨張機構部9側の各吸込ポート4
7と、吸込ガス流入開口角θが180度以上のずれを有
した組合せとなっているため、いずれの角度位置で吸込
ポート47が停止しても、吸込ポート47と膨張室39
との連通状態が確保される。したがって、運転開始と同
時に高圧ガスは、膨張室39内へ送り込まれる。
According to the fluid machine configured as described above,
Each suction port 4 on the expansion mechanism 9 side when operation is stopped
7 and the suction gas inflow opening angle θ have a deviation of 180 degrees or more. Therefore, even if the suction port 47 stops at any angle position, the suction port 47 and the expansion chamber 39
The communication state with is secured. Therefore, the high-pressure gas is sent into the expansion chamber 39 at the same time when the operation is started.

【0038】これにより、起動用の電動要素がなくて
も、高圧ガスは、吸込ポート47から吸込まれ、吸込開
始→吸込終了→膨張開始→膨張終了となり、排気行程を
経て、再び吸込み開始に戻る行程を繰返す起動運転が可
能となる。
As a result, the high-pressure gas is sucked in through the suction port 47 even if there is no electric element for start-up, and the suction start-> suction end-> expansion start-> expansion end is completed, and the suction stroke returns again after the exhaust stroke. A start-up operation that repeats the process becomes possible.

【0039】この時、膨張機構部9側の第1の回転シャ
フト19に与えられた回転動力は、圧縮機構部11の第
2の回転シャフト63を駆動し、ローラ73に偏心回転
を与える。これにより、吸込ポート85から送り込まれ
た作動ガスは圧縮され吐出管5から吐出された後、吸込
管3に戻る冷凍サイクルを繰返すようになる。
At this time, the rotary power given to the first rotary shaft 19 on the expansion mechanism 9 side drives the second rotary shaft 63 of the compression mechanism 11 to give the roller 73 eccentric rotation. As a result, the working gas sent from the suction port 85 is compressed and discharged from the discharge pipe 5, and then the refrigeration cycle of returning to the suction pipe 3 is repeated.

【0040】この運転時において発生するトルク変動
は、フライホイール50により平準化されて圧縮機構部
11に伝達され、安定した運転状態が得られるようにな
る。
The torque fluctuations generated during this operation are leveled by the flywheel 50 and transmitted to the compression mechanism section 11, so that a stable operating state can be obtained.

【0041】この場合、フライホイール50の取付位置
は必ずしもケーシング41内の第1の回転シャフト19
に特定されない。
In this case, the mounting position of the flywheel 50 is not necessarily the first rotating shaft 19 in the casing 41.
Not specified in.

【0042】例えば、第7図に示す如く、膨張機構部9
と圧縮機構部11の間で、第1,第2の回転シャフト1
9,63の接続領域に設けるようにしてもよい。あるい
は、第8図に示す如く、膨張機構部9の反対側となる圧
縮機構部11の第2の回転シャフト63の軸端部に設け
ることでもよく、あるいは、図示していないが、図1と
図7と、あるいは図7と図8をそれぞれ組合せた構成と
することも可能である。
For example, as shown in FIG. 7, the expansion mechanism section 9
And the compression mechanism section 11 between the first and second rotary shafts 1
You may make it provide in the connection area of 9,63. Alternatively, as shown in FIG. 8, it may be provided at the shaft end portion of the second rotary shaft 63 of the compression mechanism portion 11 on the opposite side of the expansion mechanism portion 9, or, although not shown, as shown in FIG. It is also possible to adopt a configuration in which FIG. 7 or a combination of FIG. 7 and FIG. 8 is combined.

【0043】[0043]

【発明の効果】以上、説明したように、この発明の流体
機械によれば、起動用の電動要素を構成するロータがな
くても、フライホイールによってトルク変動の平準化が
図れるようになり、安定した運転状態が得られるように
なる。
As described above, according to the fluid machine of the present invention, even if there is no rotor constituting the electric starting element, the flywheel can equalize the torque fluctuations and stabilize the torque. The operating condition can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る流体機械を示した概要切断面。FIG. 1 is a schematic sectional view showing a fluid machine according to the present invention.

【図2】フライホイールの取付状態を示した拡大断面
図。
FIG. 2 is an enlarged cross-sectional view showing a mounted state of a flywheel.

【図3】膨張機構部の膨張室、ローラ、ブレードの関係
を示した切断面図。
FIG. 3 is a sectional view showing a relationship among an expansion chamber, a roller, and a blade of an expansion mechanism section.

【図4】圧縮機構部の圧縮室、ローラ、ブレードの関係
を示した切断面図。
FIG. 4 is a cross-sectional view showing the relationship between a compression chamber of a compression mechanism section, a roller, and a blade.

【図5】ツインに形成された一方のシリンダ側の吸込ポ
ートの説明図。
FIG. 5 is an explanatory view of a suction port on one cylinder side formed in a twin shape.

【図6】ツインに形成された他方のシリンダ側の吸込ポ
ートの説明図。
FIG. 6 is an explanatory view of a suction port on the other cylinder side formed in a twin shape.

【図7】フライホイールの取付位置を、膨張機構部と圧
縮機構部の間に設けた図1と同様の概要切断面図。
FIG. 7 is a schematic cross-sectional view similar to FIG. 1 in which a flywheel mounting position is provided between an expansion mechanism section and a compression mechanism section.

【図8】フライホイールの取付位置を、膨張機構部の反
対側となる圧縮機構部の軸端側に設けた図1と同様の概
要切断面図。
FIG. 8 is a schematic sectional view similar to FIG. 1 in which the attachment position of the flywheel is provided on the shaft end side of the compression mechanism portion opposite to the expansion mechanism portion.

【符号の説明】[Explanation of symbols]

7 密閉ケース 9 膨張機構部 11 圧縮機構部 50 フライホイール 7 Airtight case 9 Expansion mechanism 11 Compression mechanism 50 Flywheel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齊藤 和夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Saito 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ランキンサイクルを構成する膨張機構部
と、膨張機構部からの回転動力により冷凍サイクルを構
成する圧縮機構部とを同一密閉ケース内に組込み、前記
膨張機構部を、高圧ガスによって起動時の回転動力を発
生させる回転動力が発生手段とする一方、前記膨張機構
部で発生するトルク変動を平準化するフライホイールを
備えていることを特徴とする流体機械。
1. An expansion mechanism section that constitutes a Rankine cycle and a compression mechanism section that constitutes a refrigeration cycle by rotational power from the expansion mechanism section are incorporated in the same sealed case, and the expansion mechanism section is started by high-pressure gas. A fluid machine is provided with a flywheel for equalizing torque fluctuations generated in the expansion mechanism unit, while using a rotational power for generating rotational power as a generating means.
【請求項2】 フライホイールを、圧縮機構部の反対側
となる膨張機構部の回転シャフト端部に設けた配置とす
ることを特徴とする請求項1記載の流体機械。
2. The fluid machine according to claim 1, wherein the flywheel is arranged at the end of the rotary shaft of the expansion mechanism opposite to the compression mechanism.
【請求項3】 フライホイールを、圧縮機構部と膨張機
構部の間で、圧縮機構部と膨張機構部とをつなぐ回転シ
ャフトに設けた配置することを特徴とする請求項1記載
の流体機械。
3. The fluid machine according to claim 1, wherein the flywheel is arranged on a rotary shaft connecting the compression mechanism section and the expansion mechanism section between the compression mechanism section and the expansion mechanism section.
【請求項4】 フライホイールを、膨張機構部の反対側
となる圧縮機構部の回転シャフト端部に設けた配置する
ことを特徴とする請求項1記載の流体機械。
4. The fluid machine according to claim 1, wherein the flywheel is arranged at the end of the rotary shaft of the compression mechanism opposite to the expansion mechanism.
JP5769896A 1996-03-14 1996-03-14 Fluid machine Pending JPH09250474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5769896A JPH09250474A (en) 1996-03-14 1996-03-14 Fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5769896A JPH09250474A (en) 1996-03-14 1996-03-14 Fluid machine

Publications (1)

Publication Number Publication Date
JPH09250474A true JPH09250474A (en) 1997-09-22

Family

ID=13063166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5769896A Pending JPH09250474A (en) 1996-03-14 1996-03-14 Fluid machine

Country Status (1)

Country Link
JP (1) JPH09250474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338912B1 (en) 1998-11-18 2002-01-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell system having common scroll type compressor and regenerator
US6361890B1 (en) 1998-11-09 2002-03-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell system having scroll type compressor and regenerator
US6425746B1 (en) 1999-09-28 2002-07-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor and regenerator for fuel cell
US6506512B1 (en) 1999-09-28 2003-01-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compression regenerative machine for fuel cell
US7104061B2 (en) 2003-04-22 2006-09-12 Denso Corporation Fluid machine
JP2007332974A (en) * 2007-09-10 2007-12-27 Daikin Ind Ltd Fluid machinery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361890B1 (en) 1998-11-09 2002-03-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell system having scroll type compressor and regenerator
US6338912B1 (en) 1998-11-18 2002-01-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell system having common scroll type compressor and regenerator
US6425746B1 (en) 1999-09-28 2002-07-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor and regenerator for fuel cell
US6506512B1 (en) 1999-09-28 2003-01-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compression regenerative machine for fuel cell
US7104061B2 (en) 2003-04-22 2006-09-12 Denso Corporation Fluid machine
JP2007332974A (en) * 2007-09-10 2007-12-27 Daikin Ind Ltd Fluid machinery

Similar Documents

Publication Publication Date Title
KR100850847B1 (en) Rotary fluid machine
JP3024706B2 (en) Rotary compressor
WO2005113985A1 (en) Rotary compressor
JPH0953590A (en) Rolling piston type expansion machine
JPH09250474A (en) Fluid machine
KR100225278B1 (en) Fluid machine
JPH0826865B2 (en) 2-cylinder rotary compressor
JPH09126171A (en) Fluid machine
JPS59110883A (en) Scroll fluid machine
WO2003054391A1 (en) Suction mechanism of rotary compressor
WO2009090888A1 (en) Rotary fluid machine
JPH0882296A (en) Rolling piston type expansion machine
KR100842301B1 (en) Combined scroll expander-compressor
JPH0972275A (en) Low vibration displacement type machine
JPH07208353A (en) Scroll oilless fluid machine
JP2919576B2 (en) Scroll compressor
RU2105885C1 (en) Vane-type blower
JPH09250482A (en) Fluid machine
JPH0842474A (en) Rotary compressor
JPH108916A (en) Fluid machinery
JPH0925882A (en) Fluid machinery with trochoid tooth form
JP2985453B2 (en) Scroll compressor
JP4830708B2 (en) Compressor
JPS6215513Y2 (en)
JP2008163835A (en) Rotary fluid machine