JPH09250428A - Fuel injection valve of variable swirl flow strength type - Google Patents

Fuel injection valve of variable swirl flow strength type

Info

Publication number
JPH09250428A
JPH09250428A JP6290296A JP6290296A JPH09250428A JP H09250428 A JPH09250428 A JP H09250428A JP 6290296 A JP6290296 A JP 6290296A JP 6290296 A JP6290296 A JP 6290296A JP H09250428 A JPH09250428 A JP H09250428A
Authority
JP
Japan
Prior art keywords
fuel
hole
cylinder
swirl
swirl flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6290296A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6290296A priority Critical patent/JPH09250428A/en
Publication of JPH09250428A publication Critical patent/JPH09250428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optimum spraying angle according to a pressure inside a cylinder by varying swirl flow strength. SOLUTION: A valve seat 5, which is opened or closed by a needle valve element 3, is disposed upstream of an injection hole 4 on a fuel passage 11. A swirl generating chamber 13 is formed on the outer periphery of the valve element 3 upstream of the valve seat 5. In a fuel introducing-in hole 14 for forming a swirl flow for supplying the fuel to the swirl generating chamber 13 from a fuel supply path 12, a fuel inlet hole 15 is formed on a stationary cylinder 2 provided on the outer periphery of the swirl generating chamber 13. A fuel outlet hole 16 of the fuel introducing-in hole 14 is formed on a movable cylinder 9 disposed on the outer periphery of the swirl generating chamber 13. When a pressure sensor (an interlocking sensor 18 or the like) senses a pressure inside the cylinder so that the movable cylinder 9 is turned, a cross-sectional area of a communication opening S defined between the fuel inlet hole 15 and the fuel outlet hole 16 is changed, so that a pressure loss of the fuel introducing-in hole 14 is varied according to a difference in cross-sectional area of the communication opening S, thus varying swirl flow strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、内燃機関のシリ
ンダ燃焼室内に燃料を直接噴射する燃料噴射弁におい
て、噴霧角(噴射燃料の拡がり角)を筒内圧力(燃焼室
内圧力)に応じて変更する可変手段に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve for directly injecting fuel into a cylinder combustion chamber of an internal combustion engine, in which the spray angle (spread angle of injected fuel) is changed according to the cylinder pressure (combustion chamber pressure). The present invention relates to a variable means for controlling.

【0002】[0002]

【従来の技術】従来、一般的に使用されているエンジン
においては、燃料噴射弁からの燃料が吸気ポートに噴射
され、燃焼室には燃料と空気との均質混合気が予め供給
される。かかるエンジンでは、アクセル操作に連動する
スロットル弁によって吸気通路が開閉され、この開閉に
より、エンジンの燃焼室に供給される吸入空気量(結果
的には燃料と空気とが均質に混合された気体の量)が調
整され、もってエンジン出力が制御される。
2. Description of the Related Art Conventionally, in a commonly used engine, fuel from a fuel injection valve is injected into an intake port, and a homogeneous mixture of fuel and air is previously supplied to a combustion chamber. In such an engine, an intake passage is opened and closed by a throttle valve linked to an accelerator operation, and by this opening and closing, the amount of intake air supplied to a combustion chamber of the engine (consequently, a gas mixture in which fuel and air are homogeneously mixed). ) Is adjusted, thereby controlling the engine output.

【0003】しかし、上記のいわゆる均質燃焼による技
術では、スロットル弁の絞り動作に伴って大きな吸気負
圧が発生し、ポンピングロスが大きくなって燃焼効率が
低くなる。これに対し、スロットル弁の絞りを小さく
し、燃焼室に直接燃料を供給することにより、点火プラ
グの近傍に可燃混合気を存在させて当該部分の空燃比を
高め、着火性を向上させるようにした「成層燃焼」とい
う技術が知られている。
However, in the above-mentioned technique based on so-called homogeneous combustion, a large intake negative pressure is generated due to the throttle operation of the throttle valve, the pumping loss increases and the combustion efficiency decreases. On the other hand, by reducing the throttle of the throttle valve and supplying fuel directly to the combustion chamber, a combustible air-fuel mixture is made to exist near the spark plug to increase the air-fuel ratio in that portion and improve the ignitability. A technology called "stratified combustion" is known.

【0004】例えば、この「成層燃焼」にかかる技術で
は、燃焼室内に直接燃料を噴射させるとともに、電子制
御式のスロットル弁を適宜制御することにより、成層燃
焼が行われている。すなわち、低・中負荷及び低・中回
転領域においては、スロットル弁の絞りを抑え、可燃混
合気を点火プラグの近傍に存在させることにより、成層
燃焼が実行される。このとき、電子制御式のスロットル
弁は所定開度に保持されるように制御される。また、高
負荷・高回転領域においては、上記成層燃焼に代えて、
均質燃焼が実行される。このため、そのときどきの負荷
回転に応じた燃焼が実行されることとなり、特に、「成
層燃焼」により燃費の向上が図られる。
[0004] For example, in the technique relating to "stratified combustion", the fuel is directly injected into the combustion chamber and the electronically controlled throttle valve is appropriately controlled to perform the stratified combustion. That is, in the low / medium load and low / medium speed regions, stratified charge combustion is executed by suppressing the throttle valve throttle and allowing the combustible mixture to exist near the spark plug. At this time, the electronically controlled throttle valve is controlled so as to be held at a predetermined opening. Further, in the high load / high rotation range, instead of the above stratified charge combustion,
Homogeneous combustion is carried out. For this reason, combustion is executed according to the load rotation at that time, and in particular, "stratified combustion" improves fuel efficiency.

【0005】例えば、高負荷時に吸気行程(低い筒内圧
力状態)で噴射し、低負荷時に圧縮行程後期(高い筒内
圧力状態)で噴射する燃料噴射時期制御を行った場合、
筒内直接噴射式燃料噴射弁による噴霧角(噴射燃料の拡
がり角)が筒内圧力に関係なく一定であると、各行程と
も同一容積の燃焼室内で燃料が同じ範囲に分布され、混
合気の過濃及び過薄が生じる。従って、高負荷時に噴霧
角が小さ過ぎると、多くの燃料が燃焼室内で過度に集中
し過ぎてスモークが増大し、低負荷時に噴霧角が大き過
ぎると、少ない燃料が同一容積の燃焼室内で拡散して着
火性が悪化するとともに未燃燃料が増大する問題点があ
る。
For example, when fuel injection timing control is performed in which fuel is injected in the intake stroke (low in-cylinder pressure state) at high load and injected in the latter stage of compression stroke (high in-cylinder pressure state) at low load,
If the spray angle (spread angle of the injected fuel) by the direct injection type fuel injection valve is constant regardless of the cylinder pressure, the fuel is distributed in the same range in the combustion chamber of the same volume in each stroke, Thickening and thinning occur. Therefore, if the spray angle is too small at high load, a large amount of fuel will be excessively concentrated in the combustion chamber and smoke will increase.If the spray angle is too large at low load, less fuel will diffuse in the combustion chamber of the same volume. As a result, ignitability deteriorates and unburned fuel increases.

【0006】そこで、特開平3ー275944号公報に
かかる筒内直接噴射式燃料噴射弁においては、筒内圧力
を検出し、その検出筒内圧に基づきアクチュエータによ
り噴射ノズルを所定回転角だけ回転させて噴射角を変更
している。
Therefore, in the in-cylinder direct injection type fuel injection valve disclosed in Japanese Patent Laid-Open No. 3-275944, the in-cylinder pressure is detected, and the actuator rotates the injection nozzle by a predetermined rotation angle based on the detected in-cylinder pressure. The injection angle is changed.

【0007】[0007]

【発明が解決しようとする課題】この噴射角変更制御に
おいては、筒内圧力が小さい運転状態で噴霧角が小さく
なり筒内圧力が大きい運転状態で噴霧角が大きくなる傾
向にあることに鑑み、いずれの状態でも、燃料噴射弁か
らの噴霧と点火プラグとの位置関係を最適なものにする
ことは可能である。しかし、前記問題点を解消すべく燃
料噴射時に噴霧角を最適なものにすることは難しい。
In the injection angle changing control, in consideration of the tendency that the spray angle becomes small under the operating condition where the in-cylinder pressure is small and the spray angle tends to become large under the operating condition where the in-cylinder pressure is large, In any state, it is possible to optimize the positional relationship between the spray from the fuel injection valve and the spark plug. However, it is difficult to optimize the spray angle at the time of fuel injection in order to solve the above problems.

【0008】本発明は、筒内圧力に応じて最適な噴霧角
を得ることを目的にしている。
An object of the present invention is to obtain an optimum spray angle according to the cylinder pressure.

【0009】[0009]

【課題を解決するための手段】本発明にかかる燃料噴射
弁は、弁体により開閉される燃料通過路にスワール発生
室を有し、この燃料通過路のスワール発生室で発生した
スワール燃料をノズルの噴射孔から噴射させるものであ
って、前記燃料通過路でスワール発生室への燃料導入孔
を有し、この燃料導入孔の開口面積を筒内圧力に応じて
変更する可変手段を備えている。この開口面積差に応じ
て、燃料導入孔の圧力損失が変わり、スワール流強度を
変更することができる。
A fuel injection valve according to the present invention has a swirl generating chamber in a fuel passage which is opened and closed by a valve body, and a swirl fuel generated in the swirl generating chamber of the fuel passage is a nozzle. The fuel injection hole is provided in the swirl generating chamber in the fuel passage, and the opening area of the fuel introduction hole is changed according to the in-cylinder pressure. . The pressure loss of the fuel introduction hole changes according to the difference in the opening area, and the swirl flow intensity can be changed.

【0010】[0010]

【発明の実施形態】以下、本発明の一実施形態に係る燃
料噴射弁を図1〜4を参照して説明する。 〔スワール流強度可変手段を備えた燃料噴射弁の構成〕
図1に示すように、ノズルボデー1内に固定筒2が取着
され、この固定筒2内にニードル弁体3が摺動可能に嵌
合されている。このニードル弁体3の軸心線3a上でノ
ズルボデー1の先端中央部に噴射孔4が貫設され、この
噴射孔4の内端部でノズルボデー1の内底部に弁シート
部5が形成されている。このニードル弁体3の先端部に
形成されたシート面6がノズルボデー1の弁シート部5
に対し弁ばね(図示せず)により圧接されている。ノズ
ルボデー1の内底部に対応する固定筒2の端部には支持
筒部7とフランジ部8とが形成され、このフランジ部8
がノズルボデー1の内底部に載置されている。このフラ
ンジ部8の内側で支持筒部7内に可動筒9(可変体)が
ニードル弁体3の軸心線3aを中心にして回動可能に嵌
合され、この可動筒9の端部に形成されたフランジ部1
0が固定筒2のフランジ部8とノズルボデー1の内底部
との間で挟持されている。
DETAILED DESCRIPTION OF THE INVENTION A fuel injection valve according to an embodiment of the present invention will be described below with reference to FIGS. [Configuration of fuel injection valve provided with swirl flow intensity varying means]
As shown in FIG. 1, a fixed cylinder 2 is attached in the nozzle body 1, and a needle valve element 3 is slidably fitted in the fixed cylinder 2. An injection hole 4 is formed at the center of the tip of the nozzle body 1 on the axis 3a of the needle valve body 3, and a valve seat portion 5 is formed at the inner bottom of the nozzle body 1 at the inner end of the injection hole 4. There is. The seat surface 6 formed at the tip of the needle valve body 3 is the valve seat portion 5 of the nozzle body 1.
Is pressed against a valve spring (not shown). A support cylinder portion 7 and a flange portion 8 are formed at an end portion of the fixed cylinder 2 corresponding to the inner bottom portion of the nozzle body 1, and the flange portion 8
Is mounted on the inner bottom of the nozzle body 1. A movable cylinder 9 (variable body) is fitted inside the flange portion 8 in the support cylinder portion 7 so as to be rotatable around an axis 3a of the needle valve body 3, and the movable cylinder 9 is attached to the end portion of the movable cylinder 9. Formed flange part 1
0 is sandwiched between the flange portion 8 of the fixed barrel 2 and the inner bottom portion of the nozzle body 1.

【0011】燃料通過路11は、前記ノズルボデー1の
内周面と固定筒2の外周面との間に形成された燃料供給
路12と、前記可動筒9の内周面とニードル弁体3の外
周面との間に形成されたスワール発生室13と、図2に
示すように前記固定筒2の支持筒部7及び可動筒9に9
0度間隔で形成された四個の燃料導入孔14とからな
る。このスワール発生室13と前記噴射孔4とは、前記
ニードル弁体3が弁シート部5に対し圧接されて閉じて
いる状態で遮断され、ニードル弁体3が電磁力により弁
ばね(図示せず)の弾性力に抗して開くと連通する。前
記各燃料導入孔14は、固定筒2の支持筒部7に形成さ
れた断面円形状の燃料流入孔部15(スワール流形成
孔)と、可動筒9に形成された断面円形状の燃料流出孔
部16(スワール流形成孔)とからなり、この燃料流入
孔部15が前記燃料供給路12に連通しているととも
に、この燃料流出孔部16が前記スワール発生室13に
連通している。この燃料流入孔部15と燃料流出孔部1
6とは互いに重合して連通し、それらの中心線(燃料移
動方向線)はニードル弁体3の円形外周面に対する接線
方向へ延設されている。
The fuel passage 11 includes a fuel supply passage 12 formed between the inner peripheral surface of the nozzle body 1 and the outer peripheral surface of the fixed cylinder 2, the inner peripheral surface of the movable cylinder 9 and the needle valve body 3. As shown in FIG. 2, the swirl generating chamber 13 formed between the outer peripheral surface and the swirl generating chamber 13 is provided in the support cylinder portion 7 and the movable cylinder 9 of the fixed cylinder 2.
It is composed of four fuel introduction holes 14 formed at intervals of 0 degree. The swirl generating chamber 13 and the injection hole 4 are shut off when the needle valve element 3 is pressed against the valve seat 5 and closed, and the needle valve element 3 is electromagnetically actuated to a valve spring (not shown). ) Open to resist the elastic force of. Each of the fuel introduction holes 14 has a circular cross-section fuel inflow hole portion 15 (swirl flow forming hole) formed in the support cylinder portion 7 of the fixed cylinder 2, and a circular cross-section fuel flow outlet formed in the movable cylinder 9. The fuel inflow hole portion 15 communicates with the fuel supply passage 12, and the fuel outflow hole portion 16 communicates with the swirl generating chamber 13. The fuel inlet 15 and the fuel outlet 1
6 and 6 communicate with each other so that their center lines (fuel movement direction lines) extend in a tangential direction to the circular outer peripheral surface of the needle valve body 3.

【0012】図3に示すように、前記固定筒2のフラン
ジ部8が載置されたノズルボデー1の内底部に切欠き部
17が形成されているとともに、前記可動筒9のフラン
ジ部10から突設された連動感知部18がこの切欠き部
17に挿入され、この連動感知部18により切欠き部1
7が基準圧力感知室19と筒内圧力感知室20とに区画
されている。この基準圧力感知室19は、ノズルボデー
1に形成された基準圧感知孔21(大気圧感知孔または
吸気管内圧感知孔など)に連通している。この筒内圧力
感知室20は、ノズルボデー1の内底部に形成された筒
内圧感知孔22に連通している。この基準圧力感知室1
9には弾性体23(圧縮コイルばね)が挿嵌されて連動
感知部18を圧接している。このように構成された圧力
感知部においては、基準圧力感知室19で大気圧力等と
弾性体23による押圧力とが連動感知部18に付与され
るとともに、筒内圧力感知室20で筒内圧力が連動感知
部18に付与され、連動感知部18はこの両感知室1
9,20の圧力バランスが取れたところで停止する。筒
内圧力の変化に応じて連動感知部18が切欠き部17内
で移動すると、可動筒9が回動し、前記各燃料導入孔1
4にあって固定筒2の燃料流入孔部15と可動筒9の燃
料流出孔部16との間の連通開口S(図4参照)の断面
積(燃料移動方向線に直交する平面で区切られる開口面
積)が変更される。この連通開口Sの断面積が所定筒内
圧力に応じて最適なものになるように、前記両感知室1
9,20の圧力バランスが設定されている。
As shown in FIG. 3, a cutout portion 17 is formed in the inner bottom portion of the nozzle body 1 on which the flange portion 8 of the fixed barrel 2 is placed, and the flange portion 10 of the movable barrel 9 is projected. The interlocking sensing portion 18 provided is inserted into the notch portion 17, and the interlocking sensing portion 18 causes the notch portion 1
7 is divided into a reference pressure sensing chamber 19 and a cylinder pressure sensing chamber 20. The reference pressure sensing chamber 19 communicates with a reference pressure sensing hole 21 (such as an atmospheric pressure sensing hole or an intake pipe internal pressure sensing hole) formed in the nozzle body 1. The in-cylinder pressure sensing chamber 20 communicates with an in-cylinder pressure sensing hole 22 formed in the inner bottom portion of the nozzle body 1. This reference pressure sensing chamber 1
An elastic body 23 (compression coil spring) is inserted into 9 and presses the interlocking sensing unit 18. In the pressure sensing unit configured as described above, the reference pressure sensing chamber 19 applies atmospheric pressure and the like and the pressing force of the elastic body 23 to the interlocking sensing unit 18, and the in-cylinder pressure sensing chamber 20 controls the in-cylinder pressure. Is given to the interlocking sensing unit 18, and the interlocking sensing unit 18 is
Stop when pressure balance between 9 and 20 is achieved. When the interlocking sensing unit 18 moves in the notch 17 according to the change in the cylinder pressure, the movable cylinder 9 rotates, and each of the fuel introduction holes 1
4, the cross-sectional area of the communication opening S (see FIG. 4) between the fuel inflow hole portion 15 of the fixed cylinder 2 and the fuel outflow hole portion 16 of the movable cylinder 9 (partitioned by a plane orthogonal to the fuel movement direction line). The opening area) is changed. Both the sensing chambers 1 are set so that the cross-sectional area of the communication opening S becomes optimum according to the predetermined in-cylinder pressure.
A pressure balance of 9 and 20 is set.

【0013】〔前記開口面積可変手段を備えた燃料噴射
弁の作用〕前記ニードル弁体3のシート面6が弁シート
部5に対し開くと、燃料供給路12内の燃料は、各燃料
導入孔14(スワール流形成孔)を通ってスワール発生
室13に流出し、スワール流となって噴射孔4から噴射
され、その遠心力により円錐状に拡がる。
[Operation of Fuel Injection Valve Equipped with Opening Area Changing Means] When the seat surface 6 of the needle valve element 3 is opened with respect to the valve seat portion 5, the fuel in the fuel supply passage 12 is fed into each fuel introduction hole. It flows out into the swirl generation chamber 13 through 14 (swirl flow forming hole), becomes a swirl flow, is injected from the injection hole 4, and spreads conically by the centrifugal force.

【0014】図5に示す圧力損失発生部位別の割合のう
ち、燃料導入孔14(スワール流形成孔)の圧力損失が
大きいと、その圧力損失にかかる圧力エネルギーが速度
エネルギーに変換され、スワール流が強くなってその遠
心力が大きくなるので、噴射燃料の拡がり角(噴霧角)
も大きくなる。従って、この噴霧角を大きくするには、
燃料導入孔14の連通開口Sの断面積を小さくしてその
圧力損失を大きくするか、または、噴射孔4の断面積を
大きくしてその圧力損失を小さくすればよい。
If the pressure loss of the fuel introduction hole 14 (swirl flow forming hole) is large among the ratios of the pressure loss generation portions shown in FIG. 5, the pressure energy applied to the pressure loss is converted into velocity energy, and the swirl flow is generated. Becomes stronger and its centrifugal force becomes larger, so the spread angle (spray angle) of the injected fuel
Also increases. Therefore, to increase this spray angle,
The cross-sectional area of the communication opening S of the fuel introduction hole 14 may be reduced to increase its pressure loss, or the cross-sectional area of the injection hole 4 may be increased to reduce its pressure loss.

【0015】本実施形態は、燃料導入孔14の連通開口
Sの断面積を変更してその圧力損失を変更したものであ
る。図5に示すように、筒内圧力感知室20の筒内圧力
が低い領域にある場合、連動感知部18が筒内圧力感知
室20側へ基準圧力感知室19及び弾性体23の圧力に
より可動筒9とともに回動し、前記連通開口Sの断面積
が小さくなる。従って、燃料導入孔14の圧力損失が大
きくなってスワール流が強くなり、噴霧角αが大きくな
る。
In this embodiment, the cross-sectional area of the communication opening S of the fuel introduction hole 14 is changed to change the pressure loss thereof. As shown in FIG. 5, when the in-cylinder pressure of the in-cylinder pressure sensing chamber 20 is in a low region, the interlocking sensing unit 18 is moved to the in-cylinder pressure sensing chamber 20 side by the pressure of the reference pressure sensing chamber 19 and the elastic body 23. By rotating together with the tube 9, the cross-sectional area of the communication opening S becomes smaller. Therefore, the pressure loss in the fuel introduction hole 14 becomes large, the swirl flow becomes strong, and the spray angle α becomes large.

【0016】図5に示すように、筒内圧力感知室20の
筒内圧力が高い領域にある場合、連動感知部18が基準
圧力感知室19側へ同感知室19及び弾性体23の圧力
に抗して可動筒9とともに回動し、前記連通開口Sの断
面積が大きくなる。従って、燃料導入孔14の圧力損失
が小さくなってスワール流が弱くなり、噴霧角αが小さ
くなる。
As shown in FIG. 5, when the in-cylinder pressure of the in-cylinder pressure sensing chamber 20 is in a high region, the interlocking sensing unit 18 shifts the pressure of the sensing chamber 19 and the elastic body 23 to the reference pressure sensing chamber 19 side. By rotating against the movable barrel 9, the cross-sectional area of the communication opening S increases. Therefore, the pressure loss in the fuel introduction hole 14 becomes small, the swirl flow becomes weak, and the spray angle α becomes small.

【0017】図5に示す燃料噴射時期THは高負荷時に
吸気行程で噴射した状態であり、燃料噴射時期TLは低
負荷時に圧縮行程後期で噴射した状態である。前記燃料
噴射時期THでは、着火可能な均質混合気を筒内全体に
分布させることが必要である。筒内圧力が低いため、前
記連通開口Sの断面積が小さい領域になり、燃料導入孔
14の圧力損失が最大となってスワール流が最も強くな
り、噴霧角αが最も大きくなる。その結果、燃料過濃部
が少なくなってスモークが抑制され、広い範囲で活発な
燃料の蒸発が行われて吸気冷却が促進され、体積効率が
向上してエンジン出力が大きくなる。
The fuel injection timing TH shown in FIG. 5 is a state in which fuel is injected in the intake stroke when the load is high, and the fuel injection timing TL is a state in which fuel is injected in the latter stage of the compression stroke when the load is low. At the fuel injection timing TH, it is necessary to distribute an ignitable homogeneous mixture throughout the cylinder. Since the in-cylinder pressure is low, the cross-sectional area of the communication opening S is small, the pressure loss in the fuel introduction hole 14 becomes maximum, the swirl flow becomes the strongest, and the spray angle α becomes the largest. As a result, the fuel rich portion is reduced, smoke is suppressed, active fuel evaporation is performed in a wide range, intake air cooling is promoted, volume efficiency is improved, and engine output is increased.

【0018】前記燃料噴射時期TLでは、点火プラグ近
傍に着火可能な濃度の混合気が分散せずに存在している
うちに点火しなければエンジンの運転は継続しない。筒
内圧力は噴射開始時に前記燃料噴射時期THの場合より
もある程度高く噴射中に大きく上昇して高くなるため、
その上昇につれて前記連通開口Sの断面積は噴射開始時
に前記燃料噴射時期THの場合よりもある程度大きく噴
射終了時にかなり大きくなる。従って、燃料導入孔14
の圧力損失が小さくなってスワール流が弱くなり、噴霧
角αが前記燃料噴射時期THの場合よりも小さくなり、
その後徐々に小さくなる。その結果、噴射初期の燃料が
適当な拡がりで分布するため、空気利用率が良好にな
る。また、噴射後期の燃料が点火直前に点火プラグ近傍
に集中して濃い混合気が形成され、着火性が向上する。
そして、その混合気が火種となって噴射初期の燃料を残
すことなく燃焼させ、安定した運転と未燃燃焼ガスの少
ない燃焼を実現することができる。
At the fuel injection timing TL, the operation of the engine is not continued unless ignition is performed while the air-fuel mixture having a concentration capable of ignition exists in the vicinity of the spark plug without being dispersed. Since the in-cylinder pressure is somewhat higher at the time of injection start than in the case of the fuel injection timing TH and greatly increases during the injection and becomes high,
As the temperature rises, the cross-sectional area of the communication opening S is somewhat larger at the start of injection than at the fuel injection timing TH, and considerably larger at the end of injection. Therefore, the fuel introduction hole 14
The pressure loss becomes smaller, the swirl flow becomes weaker, and the spray angle α becomes smaller than that at the fuel injection timing TH.
Then it becomes smaller gradually. As a result, the fuel at the initial stage of injection is distributed with an appropriate spread, so that the air utilization rate is improved. Further, the fuel in the latter stage of injection concentrates in the vicinity of the spark plug immediately before ignition, and a rich air-fuel mixture is formed, so that the ignitability is improved.
Then, the air-fuel mixture becomes a flame and burns without leaving the fuel at the initial stage of injection, and stable operation and combustion with less unburned combustion gas can be realized.

【0019】なお、前記基準圧力感知室19内の弾性体
23が最も収縮した状態では、図5に示すように前記連
通開口Sの断面積が最大になる。本実施形態は下記
(イ)の特徴(後記する他の技術的思想以外)を有す
る。
When the elastic body 23 in the reference pressure sensing chamber 19 is most contracted, the cross-sectional area of the communication opening S is maximized as shown in FIG. This embodiment has the following characteristics (a) (other than other technical ideas described later).

【0020】(イ) 燃料通過路11においてスワール
発生室13へ燃料供給路12から燃料を供給するスワー
ル流形成用燃料導入孔14で、その開口Sの断面積を筒
内圧力に応じて変更することができる。そのため、開口
Sの断面積差に応じて、燃料導入孔14の圧力損失が変
わり、スワール流強度を変更することができる。従っ
て、筒内圧力に応じた最適な噴霧角αを得ることができ
る。ひいては、高負荷時におけるスモークの増大や、低
負荷時における着火性の悪化及び未燃燃料の増大を防止
することができる。
(A) In the fuel passage 11, the swirl flow forming fuel introducing hole 14 for supplying fuel from the fuel supply passage 12 to the swirl generating chamber 13 changes the cross-sectional area of the opening S in accordance with the in-cylinder pressure. be able to. Therefore, the pressure loss of the fuel introduction hole 14 changes according to the difference in cross-sectional area of the opening S, and the swirl flow strength can be changed. Therefore, it is possible to obtain the optimum spray angle α according to the cylinder pressure. As a result, it is possible to prevent an increase in smoke under a high load, deterioration of ignitability under a low load, and an increase in unburned fuel.

【0021】前記実施形態以外にも下記(イ)のように
構成してもよい。 (イ) 筒内圧力を検出し、その検出筒内圧に基づきア
クチュエータにより前記可動筒9を所定回動角だけ回動
させて、燃料導入孔14の連通開口Sの面積を変更す
る。
In addition to the above embodiment, the following configuration (a) may be adopted. (A) The cylinder pressure is detected, and the movable cylinder 9 is rotated by a predetermined rotation angle by the actuator based on the detected cylinder pressure to change the area of the communication opening S of the fuel introduction hole 14.

【0022】〔他の技術的思想〕各実施形態から把握で
きる技術的思想(請求項以外)を効果と共に記載する。 (イ) 請求項1において、燃料導入孔14は互いに重
合して連通する燃料流入孔部15と燃料流出孔部16と
を有し、この燃料流入孔部15と燃料流出孔部16との
うち少なくとも一方の孔部16は可変体(可動筒9)に
設けられ、筒内圧力に応じた可変体の動きにより、燃料
流入孔部15と燃料流出孔部16との連通開口Sの面積
を変更可能にした。
[Other technical ideas] The technical ideas (other than the claims) that can be grasped from each embodiment are described together with the effects. (A) In claim 1, the fuel introduction hole 14 has a fuel inflow hole portion 15 and a fuel outflow hole portion 16 which are overlapped with each other and communicate with each other. Of the fuel inflow hole portion 15 and the fuel outflow hole portion 16, At least one hole 16 is provided in the variable body (movable cylinder 9), and the area of the communication opening S between the fuel inflow hole 15 and the fuel outflow hole 16 is changed by the movement of the variable body in accordance with the cylinder pressure. Made possible

【0023】(ロ) 上記(イ)において、燃料通過路
11で、噴射孔4よりも上流側には弁体3により開閉さ
れる弁シート部5を設けているとともに、この弁シート
部5よりも上流側の弁体3外周にスワール発生室13を
設け、燃料導入孔14の燃料流入孔部15は、スワール
発生室13の外周に設けた固定筒2に形成され、燃料導
入孔14の燃料流出孔部16は、スワール発生室13の
外周に設けた可変体としての可動筒9に形成され、この
可動筒9は、圧力感知部で筒内圧力を受けて回動し、燃
料流入孔部15と燃料流出孔部16との連通開口Sの面
積を変更する。従って、既存の部品を有効利用した簡単
な構造のもとで、スワール流形成用燃料導入孔14の開
口Sの断面積を筒内圧力に応じて変更することができ
る。
(B) In the above (a), a valve seat portion 5 that is opened and closed by the valve body 3 is provided in the fuel passage 11 upstream of the injection hole 4, and the valve seat portion 5 Also, the swirl generating chamber 13 is provided on the outer periphery of the valve element 3 on the upstream side, and the fuel inflow hole portion 15 of the fuel introducing hole 14 is formed on the fixed cylinder 2 provided on the outer periphery of the swirl generating chamber 13, and the fuel of the fuel introducing hole 14 is The outflow hole portion 16 is formed in the movable cylinder 9 as a variable body provided on the outer periphery of the swirl generating chamber 13, and the movable cylinder 9 is rotated by receiving the in-cylinder pressure at the pressure sensing portion to rotate the fuel inflow hole portion. The area of the communication opening S between 15 and the fuel outflow hole portion 16 is changed. Therefore, the cross-sectional area of the opening S of the swirl flow forming fuel introduction hole 14 can be changed according to the in-cylinder pressure under a simple structure that effectively uses existing parts.

【0024】(ハ) 上記(ロ)において、圧力感知部
は、基準圧力感知室19と筒内圧力感知室20とを有
し、基準圧力に対抗する筒内圧力の変化により可動筒9
を回動させる連動感知部18を有している。そのため、
筒内圧力の変化が連動感知部18に直接伝達されて可動
筒9が回動する。従って、開口Sの断面積を筒内圧力に
応じて正確に変更することができる。
(C) In the above (b), the pressure sensing portion has the reference pressure sensing chamber 19 and the in-cylinder pressure sensing chamber 20, and the movable cylinder 9 is changed by the variation of the in-cylinder pressure against the reference pressure.
It has an interlocking sensing unit 18 for rotating. for that reason,
The change in the in-cylinder pressure is directly transmitted to the interlocking sensing unit 18, and the movable cylinder 9 rotates. Therefore, the cross-sectional area of the opening S can be changed accurately according to the cylinder pressure.

【0025】[0025]

【発明の効果】本実施形態にかかるスワール流強度可変
式燃料噴射弁によれば、スワール発生室へ燃料を供給す
るスワール流形成用燃料導入孔の開口面積を筒内圧力に
応じて変更できるので、スワール流強度を変更して筒内
圧力に応じた最適な噴霧角を得ることができ、ひいては
良好な燃焼状態を得ることができる。
According to the swirl flow intensity variable type fuel injection valve of the present embodiment, the opening area of the swirl flow forming fuel introduction hole for supplying the fuel to the swirl generating chamber can be changed according to the in-cylinder pressure. By changing the swirl flow intensity, it is possible to obtain the optimum spray angle according to the in-cylinder pressure, and thus it is possible to obtain a good combustion state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施形態に係る燃料噴射弁のノズルを示す
部分断面図である。
FIG. 1 is a partial cross-sectional view showing a nozzle of a fuel injection valve according to this embodiment.

【図2】 図1のXーX線部分断面図である。FIG. 2 is a partial sectional view taken along line XX of FIG.

【図3】 図1のYーY線部分断面図である。3 is a partial cross-sectional view taken along the line YY of FIG.

【図4】 図1,2における燃料導入孔の開口を示す部
分図である。
FIG. 4 is a partial view showing an opening of a fuel introduction hole in FIGS.

【図5】 筒内圧力と噴霧角とスワール流形成用燃料導
入孔の開口面積と燃料供給圧力損失とスワール流強度と
をクランク角の変化に応じて示したグラフである。
FIG. 5 is a graph showing in-cylinder pressure, spray angle, opening area of swirl flow forming fuel introduction holes, fuel supply pressure loss, and swirl flow intensity according to changes in crank angle.

【符号の説明】[Explanation of symbols]

1…ノズルボデー、3…ニードル弁体、4…噴射孔、1
1…燃料通過路、13…スワール発生室、14…燃料導
入孔、S…燃料導入孔開口。
1 ... Nozzle body, 3 ... Needle valve body, 4 ... Injection hole, 1
1 ... Fuel passage, 13 ... Swirl generation chamber, 14 ... Fuel introduction hole, S ... Fuel introduction hole opening.

【手続補正書】[Procedure amendment]

【提出日】平成8年5月10日[Submission date] May 10, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】[0025]

【発明の効果】本発明にかかるスワール流強度可変式燃
料噴射弁によれば、スワール発生室へ燃料を供給するス
ワール流形成用燃料導入孔の開口面積を筒内圧力に応じ
て変更できるので、スワール流強度を変更して筒内圧力
に応じた最適な噴霧角を得ることができ、ひいては良好
な燃料状態を得ることができる。
According to the swirl flow intensity variable type fuel injection valve of the present invention , the opening area of the swirl flow forming fuel introduction hole for supplying the fuel to the swirl generating chamber can be changed according to the in-cylinder pressure. The swirl flow intensity can be changed to obtain the optimum spray angle according to the in-cylinder pressure, and thus a good fuel state can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁体により開閉される燃料通過路にスワ
ール発生室を有し、この燃料通過路のスワール発生室で
発生したスワール燃料をノズルの噴射孔から噴射させる
燃料噴射弁において、 前記燃料通過路でスワール発生室への燃料導入孔を有
し、この燃料導入孔の開口面積を筒内圧力に応じて変更
する可変手段を備えたことを特徴とするスワール流強度
可変式燃料噴射弁。
1. A fuel injection valve having a swirl generating chamber in a fuel passage that is opened and closed by a valve body, and injecting swirl fuel generated in the swirl generating chamber of the fuel passage from an injection hole of a nozzle. A swirl flow intensity variable type fuel injection valve having a fuel introduction hole to a swirl generation chamber in a passage, and a variable means for changing an opening area of the fuel introduction hole according to an in-cylinder pressure.
JP6290296A 1996-03-19 1996-03-19 Fuel injection valve of variable swirl flow strength type Pending JPH09250428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6290296A JPH09250428A (en) 1996-03-19 1996-03-19 Fuel injection valve of variable swirl flow strength type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290296A JPH09250428A (en) 1996-03-19 1996-03-19 Fuel injection valve of variable swirl flow strength type

Publications (1)

Publication Number Publication Date
JPH09250428A true JPH09250428A (en) 1997-09-22

Family

ID=13213656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290296A Pending JPH09250428A (en) 1996-03-19 1996-03-19 Fuel injection valve of variable swirl flow strength type

Country Status (1)

Country Link
JP (1) JPH09250428A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045860A1 (en) * 2000-12-05 2002-06-13 Robert Bosch Gmbh Fuel injection valve
WO2002050428A1 (en) * 2000-12-19 2002-06-27 Robert Bosch Gmbh Fuel injection valve
WO2002050429A1 (en) * 2000-12-19 2002-06-27 Robert Bosch Gmbh Fuel injection valve
WO2003072930A1 (en) * 2002-02-26 2003-09-04 Robert Bosch Gmbh Fuel injection system
US7032845B2 (en) 2002-02-26 2006-04-25 Robert Bosch Gmbh Fuel injection valve
US7685993B2 (en) 2008-03-31 2010-03-30 Cummins Inc. Low cost variable swirl
JP2012112246A (en) * 2010-11-19 2012-06-14 Toyota Motor Corp Internal combustion engine control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045860A1 (en) * 2000-12-05 2002-06-13 Robert Bosch Gmbh Fuel injection valve
WO2002050428A1 (en) * 2000-12-19 2002-06-27 Robert Bosch Gmbh Fuel injection valve
WO2002050429A1 (en) * 2000-12-19 2002-06-27 Robert Bosch Gmbh Fuel injection valve
US6766968B2 (en) 2000-12-19 2004-07-27 Robert Bosch Gmbh Fuel injection valve
WO2003072930A1 (en) * 2002-02-26 2003-09-04 Robert Bosch Gmbh Fuel injection system
US7032845B2 (en) 2002-02-26 2006-04-25 Robert Bosch Gmbh Fuel injection valve
US7685993B2 (en) 2008-03-31 2010-03-30 Cummins Inc. Low cost variable swirl
JP2012112246A (en) * 2010-11-19 2012-06-14 Toyota Motor Corp Internal combustion engine control device

Similar Documents

Publication Publication Date Title
EP0276193B1 (en) Internal combustion engine
JPH11513461A (en) Combined cycle engine
US6651616B1 (en) Method for operating a four-stroke reciprocating internal combustion engine with alternating compression ignition and externally supplied ignition
US4185598A (en) Internal combustion engine
JPH09250428A (en) Fuel injection valve of variable swirl flow strength type
JP3900210B2 (en) Ignition device
JPH0478812B2 (en)
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
US10718257B1 (en) Dual-fuel combustion method and system
JPS633129B2 (en)
JPS63248938A (en) Stratified combustion controller for engine
JP3586963B2 (en) Engine intake system
JPS6116248A (en) Fuel injection device for engine
JPS6035115A (en) Laminar charging engine
JPS6030416A (en) Stratiform charging engine
JP2689100B2 (en) Stratified charge engine
JPS5990719A (en) Intake device for engine
JPH05321795A (en) Fuel supplying device for engine
JP2774779B2 (en) Car lean burn engine
CA1119100A (en) Internal combustion engine
JP2881470B2 (en) Combustion chamber of internal combustion engine
JPS6133248Y2 (en)
JP2840603B2 (en) Stratified charge engine
JP3794051B2 (en) Direct cylinder injection spark ignition engine
JPH07293257A (en) Intake device of internal combustion engine