JPH09249951A - Production of aluminum forged product having fine structure - Google Patents

Production of aluminum forged product having fine structure

Info

Publication number
JPH09249951A
JPH09249951A JP8083330A JP8333096A JPH09249951A JP H09249951 A JPH09249951 A JP H09249951A JP 8083330 A JP8083330 A JP 8083330A JP 8333096 A JP8333096 A JP 8333096A JP H09249951 A JPH09249951 A JP H09249951A
Authority
JP
Japan
Prior art keywords
forging
weight
treatment
forged
forged product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8083330A
Other languages
Japanese (ja)
Inventor
Hidenobu Kawai
秀信 河合
Hajime Kamio
一 神尾
Shigeyuki Kobayashi
重幸 小林
Tatsu Yamada
達 山田
Hirotsugu Yunoki
裕嗣 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP8083330A priority Critical patent/JPH09249951A/en
Publication of JPH09249951A publication Critical patent/JPH09249951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a forged product having a structure after heat treatment in which recrystallized grains are finely controlled on the whole face only by forging without requiring spinning and flaring and free from anisotropy in mechanical properties. SOLUTION: An ingot of an aluminum alloy having a compsn. contg., by weight, 0.4 to 1.5% Si, 0.15 to 0.9%. Cu, 0.8 to 1.5% Mg and 0.04 to 0.9% Cr, and in which the content of Fe is regulated to 0.05 to 0.35% and that of Zn tok 0.25% is subjected to homogenizing treatment, is thereafter cut, is heated at 450 to 500 deg.C, is subjected to primary forging using a die held at 400 to 460 C, is again heated at 500 to 540 C, is subjected to secondary forging using a die heated at 400 to 460 C, is subjected to heat treatment in which it is subjected to solution treatment at 510 to 545 deg.C for 2 to 6hr, is water-cooled and is subsequently subjected to aging treatment at 160 to 190 deg.C for 4 to 12hr, and is machined into a product shape. The aluminum alloy to be used may contain 0.005 to 0.15% Ti, 0.0001 to 0.01% B, 0.2 to 0.6% Mn and 0.05 to 0.2% Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度に優れた車
両用ホイール等のアルミ鍛造製品を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a forged aluminum product such as a vehicle wheel having excellent mechanical strength.

【0002】[0002]

【従来の技術】車両用ホイールを例にとると、車両用の
アルミニウム合金製ホイール(以下、アルミホイールと
いう)は、鉄製ホイールに比較して軽量であり、且つ意
匠性,耐食性等に優れていることから、需要が年々増加
する傾向にある。アルミホイールは、製造方法に応じて
鋳造ホイールと鍛造ホイールに大別される。鋳造ホイー
ルは、一体成形が可能なことから工程数が少なく、また
複雑形状への成形も可能なため、低コストで提供され
る。しかし、鋳造により製造されることから、ポロシテ
ィ等に起因して内部品質が劣り、結果として各部を肉厚
にする必要がある。そのため、アルミニウム合金の軽量
性を活かし切れず、車両用として敬遠される重量増加を
招く原因となる。
2. Description of the Related Art Taking a wheel for a vehicle as an example, a wheel made of an aluminum alloy for a vehicle (hereinafter referred to as an aluminum wheel) is lighter in weight than an iron wheel, and is excellent in design and corrosion resistance. Therefore, demand tends to increase year by year. Aluminum wheels are roughly classified into cast wheels and forged wheels according to the manufacturing method. Since the casting wheel can be integrally molded, the number of steps is small, and since it can be molded into a complicated shape, it is provided at low cost. However, since it is manufactured by casting, the internal quality is poor due to porosity and the like, and as a result it is necessary to make each part thick. Therefore, the lightness of the aluminum alloy cannot be fully utilized, which causes an increase in weight that is avoided for vehicles.

【0003】鍛造ホイールは、ディスク部とリム部とを
一体成形した1ピースホイール,それぞれが独立した部
材からなる2ピースホイール,リム部を更に二分割した
3ピースホイールに分類される。1ピースホイールは、
構造面からすると最も剛性が高く、ビレット又は押出し
棒を所定形状に鍛造することにより製造されている。こ
の鍛造ホイールは、リム部にスピニング等の塑性加工を
施し、場合によってはフランジ部をフレアリング加工し
ている。たとえば、特開平1−273635号公報で
は、鍛造後のスピニング加工によってリアフランジ部を
形成している。また、特開平6−198382号公報で
は、鍛造後のフレアリング加工によりリアフランジ部を
形成している。
The forged wheels are classified into a one-piece wheel in which a disc portion and a rim portion are integrally formed, a two-piece wheel in which each is an independent member, and a three-piece wheel in which the rim portion is further divided into two. The one-piece wheel is
It has the highest rigidity in terms of structure and is manufactured by forging a billet or extruded rod into a predetermined shape. In this forged wheel, the rim portion is subjected to plastic working such as spinning, and in some cases, the flange portion is flared. For example, in JP-A-1-273635, the rear flange portion is formed by spinning after forging. Further, in Japanese Patent Laid-Open No. 6-198382, the rear flange portion is formed by flaring after forging.

【0004】[0004]

【発明が解決しようとする課題】鍛造ホイールは、鍛造
によって機械的強度が向上し、鋳造ホイールに比較して
薄肉軽量化できる。そのため、スピニングやフレアリン
グ等の工程が必要なことからコスト高になるにも拘ら
ず、高強度の一体構造であることを重視し、乗用車用ホ
イールの大型化,バス・トラックの軽量化に伴って生産
量が増加している。しかしながら、スピニング加工やフ
レアリング加工を省略し鍛造加工のみで所定のホイール
を製造できるようになると、鍛造製品の長所を活かした
ホイールを安価に提供できる。本発明は、このような要
求に応えるべく案出されたものであり、使用するアルミ
ニウム合金の組成,鍛造及び熱処理を特定された条件下
で組み合わせることにより、スピニング加工やフレアリ
ング加工の必要なく、全面微細な再結晶粒にコントロー
ルされた熱処理後の組織をもち、機械的性質に異方性の
ない鍛造ホイールを提供することを目的とする。また、
本発明の技術思想は、複雑形状の一般の鍛造製品につい
ても同様に適用できる。
The forged wheel has improved mechanical strength by forging and can be made thinner and lighter than a cast wheel. Therefore, despite the cost increase due to the need for processes such as spinning and flaring, we attach importance to the high-strength integrated structure, and with the increase in the size of passenger car wheels and the weight reduction of buses and trucks. Production is increasing. However, if it becomes possible to manufacture a predetermined wheel only by forging without omitting the spinning process and the flaring process, it is possible to inexpensively provide a wheel that takes advantage of the advantages of the forged product. The present invention has been devised in order to meet such a requirement, by combining the composition of the aluminum alloy used, forging and heat treatment under specified conditions, without the need for spinning or flaring, It is an object of the present invention to provide a forged wheel having a structure after heat treatment in which fine recrystallized grains are controlled over the entire surface and having no anisotropy in mechanical properties. Also,
The technical idea of the present invention can be similarly applied to a general forged product having a complicated shape.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、Si:0.4〜1.5重量%,
Cu:0.15〜0.9重量%,Mg:0.8〜1.5
重量%及びCr:0.04〜0.9重量%を含み、F
e:0.05〜0.35重量%,Zn:0.25重量%
以下に規制したアルミニウム合金の鋳塊を均質化処理し
た後、切断し、鍛造直後の素材温度が440〜500℃
となるように鍛造し、次いで510〜545℃×2〜6
時間の溶体化処理を施し、水冷後、160〜190℃×
4〜12時間の時効処理を施すことを特徴とする。ま
た、アルミ鍛造ホイール等の鍛造製品は、前述の組成を
もつアルミニウム合金の鋳塊を均質化処理した後、切断
し、一次鍛造直後の素材温度が440〜500℃となる
よう該切断鋳塊を450〜500℃に加熱し、400〜
460℃に保持した金型を使用して一次鍛造し、再度一
次鍛造品を500〜540℃に加熱し、二次鍛造直後の
素材温度が440〜500℃となるように400〜46
0℃に保持した金型を使用して形状の複雑な製品に二次
鍛造し、510〜545℃×2〜6時間の溶体化処理,
水冷後に160〜190℃×4〜12時間の時効処理を
施す熱処理を行い、製品形状に機械加工することにより
製造される。使用するアルミニウム合金は、Ti:0.
005〜0.15重量%,B:0.0001〜0.01
重量%及びMn:0.2〜0.6重量%含むことができ
る。更にZr:0.05〜0.2重量%を含むアルミニ
ウム合金も使用可能である。
In order to achieve the object, the manufacturing method of the present invention is: Si: 0.4 to 1.5% by weight,
Cu: 0.15-0.9 wt%, Mg: 0.8-1.5
% By weight and Cr: 0.04 to 0.9% by weight, F
e: 0.05 to 0.35% by weight, Zn: 0.25% by weight
The aluminum alloy ingot regulated below is homogenized, then cut, and the material temperature immediately after forging is 440 to 500 ° C.
Forged, and then 510-545 ° C x 2-6
After solution heat treatment for a period of time and cooling with water, 160-190 ℃ ×
The aging treatment is performed for 4 to 12 hours. Further, forged products such as aluminum forged wheels are obtained by homogenizing an ingot of an aluminum alloy having the above-mentioned composition and then cutting the ingot so that the material temperature immediately after primary forging is 440 to 500 ° C. Heat to 450-500 ℃, 400-
Primary forging is performed using a die held at 460 ° C, the primary forged product is again heated to 500 to 540 ° C, and 400 to 46 so that the material temperature immediately after the secondary forging is 440 to 500 ° C.
Secondary forging into a product with a complicated shape using a mold held at 0 ° C, and solution treatment at 510 to 545 ° C for 2 to 6 hours,
It is manufactured by performing a heat treatment of aging treatment at 160 to 190 ° C. for 4 to 12 hours after water cooling, and machining into a product shape. The aluminum alloy used is Ti: 0.
005 to 0.15% by weight, B: 0.0001 to 0.01
% By weight and Mn: 0.2-0.6% by weight. Further, an aluminum alloy containing Zr: 0.05 to 0.2% by weight can also be used.

【0006】本発明で使用するアルミニウム合金に含ま
れる合金元素及びその含有量は、次の通りである。 Si:0.4〜1.5重量% 析出効果によってアルミニウム合金の強度を向上させる
元素である。Mgと併用添加しているので、T6処理時
の時効処理によってMg2 Si系化合物が析出し、強度
向上作用が得られる。このようなSi添加の作用は、S
i含有量が0.4重量%以上で顕著となる。しかし、
1.5重量%を超える多量のSi含有は、Siの粒界析
出に伴う粒界脆化が生じやすく、押出し及び鍛造加工性
等を低下させる。 Cu:0.15〜0.9重量% マトリックスを固溶強化し、且つT6処理時の時効処理
によってCuAl2及びAl−Cu−Mg系金属間化合
物も析出し、Mg2 Si析出による強度改善作用を促進
させる上で有効な合金元素であり、0.15重量%以上
の含有量が必要とされる。しかし、0.9重量%を超え
る多量のCuを含有させると、焼入れ感受性が高くな
り、耐食性が劣化する。
The alloying elements contained in the aluminum alloy used in the present invention and their contents are as follows. Si: 0.4 to 1.5% by weight It is an element that improves the strength of the aluminum alloy by the precipitation effect. Since it is added together with Mg, the Mg 2 Si-based compound is precipitated by the aging treatment during the T6 treatment, and the strength improving action is obtained. The action of such Si addition is S
It becomes remarkable when the i content is 0.4% by weight or more. But,
When a large amount of Si is contained in excess of 1.5% by weight, grain boundary embrittlement easily occurs due to grain boundary precipitation of Si, and extrudability and forgeability are deteriorated. Cu: 0.15 to 0.9 wt% Matrix solid solution strengthening, and CuAl 2 and Al-Cu-Mg based intermetallic compound are also precipitated by the aging treatment at the time of T6 treatment, and strength improving action by Mg 2 Si precipitation It is an alloying element effective in promoting the above-mentioned phenomenon, and a content of 0.15% by weight or more is required. However, when a large amount of Cu exceeding 0.9% by weight is contained, the quenching sensitivity becomes high and the corrosion resistance deteriorates.

【0007】Mg:0.8〜1.5重量% T6処理時の時効処理によりSiと反応しMg2 Si系
化合物となってマトリックスに析出し、アルミニウム合
金の強度を向上させる。この析出効果を得るため、0.
8重量%以上のMg含有量が必要である。しかし、1.
5重量%を超えるMgを含有させると、析出硬化作用が
飽和するばかりでなく、焼入れ感受性が高くなる。 Cr:0.04〜0.9重量% Mnと共同して再結晶粒の粗大化を抑制する上で重要な
合金元素であり、0.04重量%以上の含有量が必要で
ある。Crが再結晶粒の成長を抑制する作用は、特に二
次鍛造及びその後のT6処理での溶体化処理時に発揮さ
れ、T6処理後の組織を全面微細な組織にする。しか
し、0.9重量%を超えてCrを含有させるとき、加工
性が低下する。
Mg: 0.8-1.5 wt% By aging treatment during T6 treatment, it reacts with Si to form a Mg 2 Si-based compound which precipitates in the matrix and improves the strength of the aluminum alloy. In order to obtain this precipitation effect, 0.
A Mg content of 8% by weight or more is required. However, 1.
When Mg is contained in an amount of more than 5% by weight, not only the precipitation hardening effect is saturated, but also the quenching sensitivity becomes high. Cr: 0.04 to 0.9% by weight It is an important alloying element for suppressing the coarsening of recrystallized grains in cooperation with Mn, and a content of 0.04% by weight or more is necessary. The effect of Cr suppressing the growth of recrystallized grains is exerted particularly during the secondary forging and the solution treatment in the subsequent T6 treatment, and makes the structure after T6 treatment a fine structure on the whole surface. However, when Cr is contained in an amount exceeding 0.9% by weight, workability is reduced.

【0008】Fe:0.05〜0.35重量% Feは、Al−Fe−Si系化合物となってマトリック
スに分散される。粗大なAl−Fe−Si系化合物は、
伸び及び耐食性に悪影響を与える。したがって、Fe含
有量の上限は0.35重量%にした。一方、0.05重
量%未満の場合は、鋳造割れが発生するので、下限を
0.05重量%にした。0.05〜0.35重量%の範
囲においては、Al−Fe−Si系化合物が鍛造品の溶
体化時に再結晶粒の粗大化を抑制する。 Zn:0.25重量%以下 Znは、アルミスクラップ等から混入してくる不可避的
な不純物であり、少ない方が望ましい。0.25重量%
を超えるZnは、応力腐食割れの原因となりやすいの
で、Zn含有量の上限を0.25重量%に規定した。
Fe: 0.05 to 0.35 wt% Fe becomes an Al-Fe-Si compound and is dispersed in the matrix. The coarse Al-Fe-Si compound is
It adversely affects elongation and corrosion resistance. Therefore, the upper limit of the Fe content is set to 0.35% by weight. On the other hand, if the content is less than 0.05% by weight, cracking in casting occurs, so the lower limit was made 0.05% by weight. In the range of 0.05 to 0.35% by weight, the Al-Fe-Si compound suppresses the coarsening of recrystallized grains during solution treatment of the forged product. Zn: 0.25 wt% or less Zn is an unavoidable impurity that is mixed in from aluminum scrap or the like, and it is desirable that the amount is small. 0.25% by weight
Zn exceeding 5 is likely to cause stress corrosion cracking, so the upper limit of the Zn content is defined as 0.25% by weight.

【0009】Ti:0.005〜0.15重量% 鋳造組織の微細化を図る上で、有効な合金元素である。
鋳造組織微細化作用は、Ti含有量が0.005重量%
を超えると顕著になる。また、Ti添加によって組織が
微細化されたアルミニウム合金は、ビレットに鋳造割れ
等の欠陥が発生するのを抑制している。しかし、多量の
Ti含有は、アルミニウム合金の靭性を劣化させるの
で、上限を0.15重量%に設定した。 B:0.0001〜0.01重量% Tiと同様に、鋳造組織の微細化に有効な合金元素であ
り、0.0001重量%以上の含有量でその効果がみら
れる。また、B含有量の上限は、Ti含有量と同様な理
由から0.01重量%に設定した。
Ti: 0.005 to 0.15% by weight It is an effective alloying element for refining the cast structure.
Ti content is 0.005% by weight for refining the cast structure.
It becomes remarkable when it exceeds. In addition, the aluminum alloy whose structure is refined by the addition of Ti suppresses the occurrence of defects such as casting cracks in the billet. However, the inclusion of a large amount of Ti deteriorates the toughness of the aluminum alloy, so the upper limit was set to 0.15% by weight. B: 0.0001 to 0.01 wt% Like Ti, it is an alloying element effective for refining the cast structure, and its effect is observed at a content of 0.0001 wt% or more. The upper limit of the B content was set to 0.01% by weight for the same reason as the Ti content.

【0010】Mn:0.2〜0.6重量% Crと同様に再結晶粒の成長を抑制し、T6処理での溶
体化処理時に再結晶粒の粗大化を抑制する上で有効な合
金元素であり、0.2重量%以上含有させることが要求
される。Mnが再結晶粒の成長を抑制する作用は、Cr
と併存するとき顕著な効果となって現れ、二次鍛造及び
T6処理の組織を全面微細な組織にする。しかし、0.
6重量%を超える多量のMnを含有させるとき、鍛造時
の加工性が悪くなる。 Zr:0.05〜0.2重量% Mn及びCrと共同して、再結晶粒の粗大化を抑制する
上で有効な合金元素であり、T6処理での溶体化処理時
に効果を発揮する。このようなZr添加の作用は、0.
05重量%以上のZr含有量で顕著になる。しかし、多
量のZr含有は加工性に悪影響を与えるので、Zrを添
加するときは、その上限を0.2重量%とした。
Mn: 0.2 to 0.6% by weight An alloy element effective in suppressing the growth of recrystallized grains similarly to Cr and suppressing coarsening of recrystallized grains during solution treatment in T6 treatment. Therefore, it is required to contain 0.2% by weight or more. The action of Mn to suppress the growth of recrystallized grains is
When it coexists, it appears as a remarkable effect, and the structure of secondary forging and T6 treatment becomes a fine structure throughout the surface. However, 0.
When a large amount of Mn exceeding 6% by weight is contained, the workability during forging becomes poor. Zr: 0.05 to 0.2% by weight It is an alloy element that is effective in suppressing coarsening of recrystallized grains in cooperation with Mn and Cr, and exerts an effect during solution treatment in T6 treatment. The effect of such Zr addition is 0.
It becomes remarkable at a Zr content of 05% by weight or more. However, if a large amount of Zr is contained, the workability is adversely affected. Therefore, when Zr is added, the upper limit is set to 0.2% by weight.

【0011】以上のように成分調整されたアルミニウム
合金は、通常の半連続鋳造法で円柱状断面をもつビレッ
ト等の鋳塊に鋳造される。鋳塊としては、最終製品に近
い形状が好ましい。たとえば、円形状のホイールでは、
円柱状ビレットが好ましい。次に、ビレットを520〜
560℃×5〜10時間の均質化処理を施した後、所定
の長さに切断する。 一次鍛造 一次鍛造工程に供する前に、切断された鋳造素材を加熱
炉に装入し、450〜500℃に加熱する。このときの
加熱温度は、最終製品であるホイールのT6処理後の組
織を微細にする上で重要である。加熱温度が、450〜
500℃の範囲にないと、T6処理後の再結晶組織が粗
粒化し、均一で微細な再結晶粒が得られない。加熱保持
は、温度の均一化を図るため、1時間程度行われる。
The aluminum alloy whose composition has been adjusted as described above is cast into an ingot such as a billet having a cylindrical cross section by a normal semi-continuous casting method. The ingot preferably has a shape close to that of the final product. For example, with a circular wheel,
Cylindrical billets are preferred. Next, billet 520-
After subjected to homogenization treatment at 560 ° C. for 5 to 10 hours, it is cut into a predetermined length. Primary Forging Before being subjected to the primary forging step, the cut casting material is charged into a heating furnace and heated to 450 to 500 ° C. The heating temperature at this time is important for making the structure of the final product wheel after the T6 treatment fine. Heating temperature is 450 ~
If it is not in the range of 500 ° C., the recrystallized structure after T6 treatment becomes coarse and uniform and fine recrystallized grains cannot be obtained. The heating and holding is performed for about 1 hour in order to make the temperature uniform.

【0012】一次鍛造では、金型を400〜460℃に
加熱している。この金型温度は、一次鍛造中の素材が過
度に冷却することを防止する上で重要である。一次鍛造
中の素材は、金型を400〜460℃に保持することに
よって、440〜500℃(好ましくは、450〜49
0℃)の温度範囲に維持される。440〜500℃(好
ましくは、450〜490℃)の温度範囲は、T6処理
後の再結晶粒の成長を抑制する上で重要である。このと
きの加熱温度が440℃よりも低いと変形抵抗が増し、
鍛造が困難になるばかりでなく、後述する熱処理時に結
晶粒の粗大化が発生し易い。逆に500℃以上の加熱温
度では、素材にバーニングが発生し易くなる。一次鍛造
では、450〜500℃に加熱された素材を自由鍛造法
によって上下方向に潰し、図1に示すような形状をもつ
一次鍛造品を製造する。このとき、上下方向の変形率
[(初期のビレット長さ−鍛造後のビレット長さ)×
(初期のビレット長さ)-1×100%]は、50〜70
%が好ましい。一次鍛造は、次のホイール形状に近い形
を成形するための工程であり、変形率が小さいと二次鍛
造が難しくなる。しかし、過度に大きな変形率では、鍛
造割れが生じるばかりでなく、二次鍛造による成形が困
難になる。この点、50〜70%の変形率でビレットを
鍛造すると、ビレットの鋳造組織が破壊され、またポロ
シティ等の鋳造欠陥が圧着されるため、高強度の最終製
品に有効な素材となる。
In the primary forging, the die is heated to 400 to 460 ° C. This mold temperature is important for preventing the material during primary forging from being excessively cooled. The material during the primary forging is 440 to 500 ° C. (preferably 450 to 49 ° C.) by holding the mold at 400 to 460 ° C.
0 ° C) temperature range is maintained. The temperature range of 440 to 500 ° C (preferably 450 to 490 ° C) is important for suppressing the growth of recrystallized grains after T6 treatment. If the heating temperature at this time is lower than 440 ° C, the deformation resistance increases,
Not only is forging difficult, but coarsening of crystal grains easily occurs during the heat treatment described later. On the contrary, if the heating temperature is 500 ° C. or higher, burning easily occurs in the material. In the primary forging, a raw material heated to 450 to 500 ° C. is crushed in the vertical direction by a free forging method to manufacture a primary forged product having a shape as shown in FIG. At this time, the vertical deformation rate [(initial billet length-billet length after forging) x
(Initial billet length) -1 x 100%] is 50 to 70
% Is preferred. Primary forging is a process for forming a shape close to the next wheel shape, and if the deformation rate is small, secondary forging becomes difficult. However, if the deformation ratio is excessively large, not only forging cracks will occur, but also forming by secondary forging becomes difficult. In this respect, when the billet is forged with a deformation rate of 50 to 70%, the casting structure of the billet is destroyed and casting defects such as porosity are pressure-bonded, so that it becomes an effective material for a high-strength final product.

【0013】二次鍛造 一次鍛造された素材は、二次鍛造に先立って500〜5
40℃に加熱される。加熱温度500〜540℃は、通
常の熱間鍛造温度と比較すると高い設定値であるが、フ
ランジ部をもつ複雑な形状の製品を鍛造によって作製す
るのに適している。このときの加熱温度が540℃を超
えると、二次鍛造品に割れが発生し易くなる。逆に、5
00℃に達しない加熱温度では、T6処理した後で最終
製品の再結晶粒が粗粒化する。二次鍛造では、一次鍛造
と同様に鍛造中の鍛造品が440〜500℃(好ましく
は、480〜490℃)になるように、金型温度を40
0〜460℃の範囲に維持する。金型温度は高い方が望
ましいが、金型温度が460℃を超えると、金型の寿命
が短くなることは勿論、潤滑剤のつきも悪くなり、結果
として鍛造割れ等の欠陥が生じやすくなる。逆に、45
0℃未満の金型温度では、二次鍛造品のT6処理後の再
結晶粒が粗大化する。
Secondary Forging The material that has been forged for primary is 500 to 5 prior to secondary forging.
Heat to 40 ° C. The heating temperature of 500 to 540 ° C. is a high set value as compared with the normal hot forging temperature, but it is suitable for producing a product having a complicated shape having a flange portion by forging. If the heating temperature at this time exceeds 540 ° C, the secondary forged product is likely to crack. Conversely, 5
At a heating temperature that does not reach 00 ° C, the recrystallized grains of the final product become coarse after T6 treatment. In the secondary forging, the die temperature is set to 40 so that the forged product under forging is 440 to 500 ° C. (preferably 480 to 490 ° C.) as in the primary forging.
Maintain in the range of 0-460 ° C. It is desirable that the mold temperature is high, but if the mold temperature exceeds 460 ° C., the life of the mold is shortened and the lubricant is also deteriorated, resulting in defects such as forging cracks. . Conversely, 45
At a mold temperature of less than 0 ° C., the recrystallized grains of the secondary forged product after the T6 treatment become coarse.

【0014】一次鍛造品は、50〜70%程度の変形率
で二次鍛造品に鍛造される。二次鍛造では、複雑な変形
をさせるため鍛造中の温度が高いほど変形抵抗が少なく
なる。具体的には、鍛造前の加熱温度を500〜540
℃と高く設定するとき、変形抵抗熱の発生と併せて金型
温度が400〜460℃と低くても、鍛造中の材料温度
が480〜490℃の範囲に維持される。二次鍛造工程
では、二次鍛造品を完成品に近いホイールに極力近付け
るため、図1に示すように左右に分割できる雌型を使用
する。組み立てた雌型の内部に一次鍛造品を収容し、雄
型を押し込むことにより鍛造する。これにより、複雑な
形状をもつ成形品であっても、1回の鍛造によって成形
することが可能となり、しかも成形品の型抜きも容易に
なる。そのため、リム部をスピニング加工で成形した
り、フランジ部をフレアリング加工等の曲げ加工で成形
することが不要になり、結果として製造コストの低減が
図られる。また、本発明では鍛造温度を比較的高く設定
しているので、これによっても複雑形状の成形が容易に
行われる。更に、この技術思想は、他の複雑形状な一般
の鍛造品についても同様に適用することが可能である。
The primary forged product is forged into a secondary forged product with a deformation rate of about 50 to 70%. In the secondary forging, since the deformation is complicated, the higher the temperature during forging, the less the deformation resistance. Specifically, the heating temperature before forging is set to 500 to 540.
When the temperature is set to be as high as 0 ° C, the material temperature during forging is maintained in the range of 480 to 490 ° C even if the die temperature is as low as 400 to 460 ° C together with the generation of deformation resistance heat. In the secondary forging step, in order to bring the secondary forged product as close as possible to the wheel close to the finished product, a female die that can be divided into left and right as shown in FIG. 1 is used. The primary forged product is housed inside the assembled female die and the male die is pushed in for forging. As a result, even a molded product having a complicated shape can be molded by a single forging, and the molded product can be easily demolded. Therefore, there is no need to form the rim portion by spinning or the flange portion by bending such as flaring, and as a result, the manufacturing cost can be reduced. Further, in the present invention, since the forging temperature is set to be relatively high, molding of a complicated shape can be easily performed also by this. Further, this technical idea can be similarly applied to other general forged products having complicated shapes.

【0015】熱処理 完成品に近い二次鍛造品は、510〜545℃×2〜6
時間加熱し、水冷した後で160〜190℃×4〜12
時間加熱する時効処理、いわゆるT6処理が施される。
510〜545℃×2〜6時間の加熱は、Mg,Si,
Cu等を固溶させる溶体化処理である。固溶したMg,
Siは、後の時効工程でMg2 Siとなって析出し、強
度を確保する。Cuは、固溶によってマトリックスを強
化すると共に、一部がCuAl2 及びAl−Cu−Mg
系の金属間化合物として時効処理時に析出し、強度を更
に向上させる。他方、Cr,Mn,Zr等の合金成分
は、ビレットの均質化処理によってすでに微細な金属間
化合物となって析出しており、溶体化処理によってもマ
トリックスに固溶せず、鍛造後の再結晶粒粗大化を防止
する働きを呈するものと考えられる。これら析出物の作
用は、鍛造温度や加工度により析出物の形態が異なって
おり、ある種の特定形態や特定分布の析出物が再結晶粒
の粗大化を阻止しているものと推察される。鍛造中の素
材温度が440〜500℃付近のとき、熱間加工中に導
入された歪みが冷却の途上で解放され、溶体化処理前
(鍛造製品)中に蓄積される歪みエネルギーが小さくな
る。このため、溶体化処理時に結晶成長に利用できるエ
ネルギーが小さく、Mn,Cr,Zr系粒子により再結
晶粒の粗大化を阻止できる。一方、440℃よりも低い
温度で鍛造を行うと、冷却終了後にも鍛造時に導入され
た歪が多く残存し、これが溶体化処理時の再結晶粒の成
長のエネルギーとなり、Mn,Cr,Zr系粒子が存在
しても、その粗大化を抑制することが不可能となる。逆
に500℃よりも高い温度で鍛造すると、バーニングの
発生により健全な製品ができない。溶体化処理された製
品は、水焼入れされ、160〜190℃で4〜12時間
加熱する時効処理が施される。この時効処理によりMg
2 Si,CuAl2 ,Al−Cu−Mg系金属間化合物
等が析出し、マトリックスの強度が確保される。 機械加工 熱処理された製品は、各部の板厚調整やネジ孔加工等の
ために機械加工される。機械加工された最終製品は、ホ
イール等に仕上げられる。
Heat treatment A secondary forged product close to the finished product is 510 to 545 ° C. × 2 to 6
After heating for an hour and cooling with water, 160-190 ° C x 4-12
An aging treatment of heating for a time, so-called T6 treatment is performed.
Heating at 510 to 545 ° C. for 2 to 6 hours is performed with Mg, Si,
This is a solution heat treatment for solid solution of Cu and the like. Solid solution Mg,
Si precipitates as Mg 2 Si in the subsequent aging step and secures the strength. Cu strengthens the matrix by solid solution, and partly CuAl 2 and Al-Cu-Mg.
Precipitates as an intermetallic compound of the system during aging treatment and further improves the strength. On the other hand, alloy components such as Cr, Mn, and Zr have already been precipitated as fine intermetallic compounds by the homogenization treatment of the billet, do not form a solid solution in the matrix even by solution treatment, and recrystallize after forging. It is considered to have a function of preventing grain coarsening. The effect of these precipitates is that the morphology of the precipitates differs depending on the forging temperature and the degree of processing, and it is speculated that certain specific morphologies and specific distributions of precipitates prevent coarsening of recrystallized grains. . When the material temperature during forging is around 440 to 500 ° C., the strain introduced during hot working is released during cooling, and the strain energy accumulated before the solution treatment (forged product) becomes small. Therefore, the energy that can be used for crystal growth during solution treatment is small, and coarsening of recrystallized grains can be prevented by Mn, Cr, and Zr-based grains. On the other hand, when forging is performed at a temperature lower than 440 ° C., a large amount of strain introduced during forging remains after cooling, and this serves as energy for the growth of recrystallized grains during solution treatment, and the Mn, Cr, Zr-based Even if particles exist, it becomes impossible to suppress the coarsening. On the contrary, if forged at a temperature higher than 500 ° C, a sound product cannot be produced due to the occurrence of burning. The solution-treated product is water-quenched and subjected to an aging treatment of heating at 160 to 190 ° C. for 4 to 12 hours. By this aging treatment, Mg
2 Si, CuAl 2, Al- Cu-Mg intermetallic compounds are precipitated, the strength of the matrix is ensured. Machining The heat-treated product is machined to adjust the plate thickness of each part and to process screw holes. The final machined product is finished into wheels and the like.

【0016】[0016]

【実施例】【Example】

実施例1:表1に示す成分・組成をもつアルミニウム合
金を半連続鋳造し、直径240mmのビレットを鋳造し
た。このビレットを540℃×8時間の均質化処理を施
した後、直径35mm,長さ90mmのテスト用鍛造素
材を切り出した。
Example 1: An aluminum alloy having the components and compositions shown in Table 1 was semi-continuously cast into a billet having a diameter of 240 mm. After subjecting this billet to homogenization treatment at 540 ° C. for 8 hours, a test forging material having a diameter of 35 mm and a length of 90 mm was cut out.

【0017】 [0017]

【0018】得られた鍛造素材に480℃×1時間の均
熱処理を施した後、直ちに金型温度430℃,素材各部
の変形率として平均変形率50%で長さ方向に対して垂
直な方向から鍛造し、図2の二次成形品に近い形状にま
ず成形した。この一次鍛造品を400℃及び520℃に
1時間加熱した後、金型温度430℃,平均変形率70
%で長さ方向に対して垂直な方向から二次鍛造し、図2
に示す二次鍛造品の形状に鍛造した。二次鍛造直後の素
材温度は、400℃加熱のときは380℃,520℃加
熱のときは490℃であった。二次鍛造素材の上下方向
断面のマクロ組織を観察すると、二次鍛造温度に関係な
く、図3,図4に示すように何れの鍛造素材も全面均一
で微細な組織をもっていた。各二次鍛造品に530℃×
3時間→水焼入れの処理を施した後、上下方向の断面マ
クロ組織を観察した。マクロ組織は、二次鍛造温度が4
00℃のとき、図5に示すように上下方向中央部を中心
にして再結晶粒が成長した組織となっていた。これに対
し、二次鍛造温度が520℃のものでは、図6に示すよ
うに全面が微細な再結晶組織となっており、再結晶粒の
成長が検出されなかった。図5から明らかなように、二
次鍛造温度が400℃の場合、中心部の再結晶粒は粗大
化している。これは、中心部の変形率が高いことにも原
因があり、変形率が高いと、鍛造温度が低い場合に蓄積
される歪みエネルギーが大きく、再結晶粒が粗大化する
ことを示している。他方、試料No.2,3は、試料No.
1に比較して中心部で再結晶粒の粗大化が進行していな
い。これは、Crの効果を狙った試料番号1に比べ、試
料No.2ではCr+Mnを、試料No.3ではCr+Mn
+Zrを複合添加した効果が顕著に発現されていること
を示している。なお、一次鍛造温度が400℃で二次鍛
造温度が520℃の場合、及び一次鍛造温度が400℃
で二次鍛造温度が400℃の場合には、何れも溶体化処
理後の再結晶組織は、中心部が粗大化していた。これに
より、鍛造中の温度が低い工程が入ると、溶体化処理に
より再結晶が粗大化することが判る。なお、時効処理で
は、再結晶粒が粗大化していなかった。
The obtained forged material was subjected to a soaking treatment at 480 ° C. for 1 hour, and immediately thereafter, at a mold temperature of 430 ° C., the deformation ratio of each part of the material was 50%, and the average deformation ratio was 50%. Then, it was first forged into a shape close to the secondary molded product of FIG. After heating this primary forged product at 400 ° C. and 520 ° C. for 1 hour, the mold temperature was 430 ° C. and the average deformation rate was 70.
Secondary forging from the direction perpendicular to the length direction in%, Fig. 2
Forged into the shape of the secondary forged product shown in. The material temperature immediately after the secondary forging was 380 ° C. when heating at 400 ° C. and 490 ° C. when heating at 520 ° C. When the macrostructure of the vertical cross section of the secondary forging material was observed, all the forging materials had a uniform and fine structure as shown in FIGS. 3 and 4, regardless of the secondary forging temperature. 530 ℃ for each secondary forging
After the water quenching treatment for 3 hours, the vertical cross-section macrostructure was observed. The macrostructure has a secondary forging temperature of 4
At 00 ° C., as shown in FIG. 5, the recrystallized grains were grown around the center in the vertical direction. On the other hand, when the secondary forging temperature was 520 ° C., the entire surface had a fine recrystallized structure as shown in FIG. 6, and the growth of recrystallized grains was not detected. As is clear from FIG. 5, when the secondary forging temperature is 400 ° C., the recrystallized grains in the central portion are coarse. This is also due to the high deformation rate of the central portion, and when the deformation rate is high, the strain energy accumulated when the forging temperature is low is large and the recrystallized grains become coarse. On the other hand, sample Nos. 2 and 3 are sample No.
Compared with No. 1, coarsening of recrystallized grains did not proceed in the central portion. Compared with the sample No. 1 aiming at the effect of Cr, the sample No. 2 contained Cr + Mn and the sample No. 3 contained Cr + Mn.
It is shown that the effect of the combined addition of + Zr is remarkably exhibited. In addition, when the primary forging temperature is 400 ° C. and the secondary forging temperature is 520 ° C., and the primary forging temperature is 400 ° C.
When the secondary forging temperature was 400 ° C., the recrystallized structure after the solution treatment was coarse in the central portion in all cases. From this, it is understood that when a process in which the temperature during forging is low is included, recrystallization is coarsened by the solution treatment. In the aging treatment, the recrystallized grains were not coarsened.

【0019】実施例2:表1に示した各組成のアルミニ
ウム合金から直径240mmのビレットを半連続鋳造法
で製造し、540℃×8時間の均質化処理を施した後、
直径240mm,長さ480mmのホイール用鍛造素材
をビレットから切り出した。鍛造用素材に480℃×1
時間の均熱処理を施し、上下方向に一次鍛造して、直径
420mm,厚さ170mmの一次鍛造品を製造した。
このときの変形率は65%,金型の予熱温度は410℃
であった。一次鍛造品を520℃に加熱し、割り型の中
にセットした後、変形率80%で二次鍛造した。二次鍛
造時の金型温度は、雄型を452℃,雌型を433℃に
設定した。鍛造前に520℃の高温に加熱されているこ
とから、塑性変形が円滑に行われ、リム部の湾曲した形
状も容易に成形することができた。
Example 2 A billet having a diameter of 240 mm was produced from the aluminum alloys having the respective compositions shown in Table 1 by a semi-continuous casting method, and after homogenizing treatment at 540 ° C. for 8 hours,
A forging material for wheels having a diameter of 240 mm and a length of 480 mm was cut out from the billet. 480 ℃ × 1 for forging material
After soaking for an hour, primary forging was performed in the vertical direction to produce a primary forged product having a diameter of 420 mm and a thickness of 170 mm.
The deformation rate at this time is 65%, and the die preheating temperature is 410 ° C.
Met. The primary forged product was heated to 520 ° C., set in a split mold, and then secondary forged with a deformation rate of 80%. The mold temperature during the secondary forging was set to 452 ° C for the male mold and 433 ° C for the female mold. Since it was heated to a high temperature of 520 ° C. before forging, plastic deformation was smoothly performed, and the curved shape of the rim portion could be easily formed.

【0020】二次鍛造品に540℃×2時間の溶体化処
理を施した後、水焼入れし、180℃×6時間の時効処
理を施し、放冷した。T6処理終了後の二次鍛造品を機
械加工し、ネジ部,飾り穴部,断面厚さ等を調整加工
し、最終製品である図7のホイールに仕上げた。このホ
イールからディスク部及びリム部を切り出し、T6処理
後のマクロ組織及び機械的性質を調査した。調査結果を
表2に示す。なお、表2では、組成が試料No.1のアル
ミニウム合金について一次鍛造温度及び二次鍛造温度を
変化させ、T6処理を本発明に従った条件下で行ったも
のを比較例として示した。
The secondary forged product was subjected to solution treatment at 540 ° C. for 2 hours, then water-quenched, subjected to aging treatment at 180 ° C. for 6 hours, and allowed to cool. The secondary forged product after the T6 treatment was machined to adjust the screw portion, the decorative hole portion, the cross-sectional thickness, etc., and finished into the final product wheel of FIG. 7. The disc portion and the rim portion were cut out from this wheel, and the macrostructure and mechanical properties after T6 treatment were investigated. Table 2 shows the survey results. In Table 2, as a comparative example, the aluminum alloy having the composition No. 1 was subjected to T6 treatment under the conditions according to the present invention while changing the primary forging temperature and the secondary forging temperature.

【0021】 [0021]

【0022】表2に示されているように、本発明に従っ
たものでは、ディスク部及びリム部共に引張強さが比較
例に比べて大幅に上昇しており、耐力も向上していた。
また、伸びは減少していた。これに対し、比較例では、
再結晶粒が成長していることから引張強さが減少してお
り、伸びが大きくなっていた。引張試験に供した試料
は、製品の長手方向に採取しているので、引張方向と再
結晶粒の成長方向が一致している。そのため、伸びが大
きくでたものと考えられるが、材料に異方性があること
から好ましいことではない。この点、本発明に従った試
験片では、全面が均一で微細な再結晶組織となっている
ので、機械的性質に異方性がなく、信頼性の高いホイー
ルとなる。また、再結晶粒が粗大化した位置は、比較的
変形率の高い部分であった。このような機械的性質の相
違は、マクロ組織の如何によるものである。たとえばホ
イールNo.1のリム部は、マクロ組織を図8に示すよう
に、全面が均一で微細な再結晶組織をもっていた。これ
に対し、ホイールNo.4は、図9に示すようにディスク
部及びリム部共に再結晶粒が粗大化した組織になってい
た。また、ホイールNo.5も、図10に示すように一部
に粗大化した再結晶粒が検出された。
As shown in Table 2, according to the present invention, the tensile strengths of both the disc portion and the rim portion were significantly higher than those of the comparative examples, and the yield strength was also improved.
Also, the growth was decreasing. In contrast, in the comparative example,
Since the recrystallized grains grew, the tensile strength decreased and the elongation increased. Since the sample used for the tensile test is taken in the longitudinal direction of the product, the tensile direction and the recrystallized grain growth direction are the same. Therefore, it is considered that the elongation was large, but it is not preferable because the material has anisotropy. In this respect, since the test piece according to the present invention has a uniform and fine recrystallized structure on the entire surface, the wheel has high anisotropy in mechanical properties and high reliability. Further, the position where the recrystallized grains became coarse was a portion having a relatively high deformation rate. This difference in mechanical properties is due to the macrostructure. For example, as shown in FIG. 8, the rim portion of the wheel No. 1 has a macro structure as shown in FIG. On the other hand, the wheel No. 4 had a structure in which recrystallized grains were coarsened in both the disc portion and the rim portion as shown in FIG. Further, in the wheel No. 5 as well, as shown in FIG. 10, partially recrystallized grains were detected.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、成分・組成及び鍛造を特定条件下で組み合わせるこ
とにより、溶体化処理後に再結晶粒の粗大化を抑制し、
全面が均一で微細な再結晶組織としている。そのため、
機械的性質に異方性がなく、信頼性の高い高強度鍛造ホ
イールが得られる。また、この方法は、スピニング加工
やフレアリング加工を必要とせず、鍛造のみで必要形状
に成形できるため、製造コストの低減も図られる。
As described above, in the present invention, by combining the components / compositions and forging under specific conditions, coarsening of recrystallized grains after solution treatment is suppressed,
The entire surface is uniform and has a fine recrystallized structure. for that reason,
Highly reliable high-strength forged wheels with no anisotropy in mechanical properties can be obtained. In addition, this method does not require spinning or flaring and can be formed into a required shape only by forging, so that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った製造工程を示すフローFIG. 1 is a flow chart showing a manufacturing process according to the present invention.

【図2】 実施例1で製造したテスト用二次鍛造品FIG. 2 Secondary forging for test manufactured in Example 1

【図3】 二次鍛造温度400℃の二次鍛造を終了した
テスト用二次鍛造品のマクロ組織を示す写真
FIG. 3 is a photograph showing a macrostructure of a test forged product that has undergone secondary forging at a secondary forging temperature of 400 ° C.

【図4】 二次鍛造温度520℃の二次鍛造を終了した
テスト用二次鍛造品のマクロ組織を示す写真
FIG. 4 is a photograph showing the macrostructure of a test forged product that has undergone secondary forging at a secondary forging temperature of 520 ° C.

【図5】 二次鍛造温度400℃で二次鍛造した製品を
溶体化処理したテスト用二次鍛造品のマクロ組織を示す
写真
FIG. 5 is a photograph showing a macrostructure of a test secondary forged product obtained by subjecting a product secondary forged at a secondary forging temperature of 400 ° C. to a solution treatment.

【図6】 二次鍛造温度520℃で二次鍛造した製品を
溶体化処理したテスト用二次鍛造品のマクロ組織を示す
写真
FIG. 6 is a photograph showing a macrostructure of a test secondary forged product obtained by subjecting a product secondary forged at a secondary forging temperature of 520 ° C. to a solution treatment.

【図7】 実施例2で製造したホイールの断面図FIG. 7 is a cross-sectional view of the wheel manufactured in Example 2.

【図8】 ホイールNo.1のホイール断面のマクロ組織
を示す写真
FIG. 8 is a photograph showing a macro structure of a wheel cross section of wheel No. 1.

【図9】 ホイールNo.4のホイール断面のマクロ組織
を示す写真
FIG. 9 is a photograph showing a macro structure of a wheel cross section of wheel No. 4.

【図10】 ホイールNo.5のホイール断面のマクロ組
織を示す写真
FIG. 10 is a photograph showing a macro structure of a wheel cross section of wheel No. 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 重幸 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 柚木 裕嗣 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeyuki Kobayashi 1-34-1, Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture, Japan Group Technology Center, Japan Light Metal Co., Ltd. 34-1-1, Nippon Light Metal Co., Ltd. Group Technical Center (72) Inventor Yuuji Yuki, 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.4〜1.5重量%,Cu:
0.15〜0.9重量%,Mg:0.8〜1.5重量%
及びCr:0.04〜0.9重量%を含み、Fe:0.
05〜0.35重量%,Zn:0.25重量%以下に規
制したアルミニウム合金の鋳塊を均質化処理した後、切
断し、鍛造直後の素材温度が440〜500℃となるよ
うに鍛造し、次いで510〜545℃×2〜6時間の溶
体化処理を施し、水冷後、160〜190℃×4〜12
時間の時効処理を施すことにより溶体化処理時の再結晶
粒の粗大成長を抑制したアルミ鍛造製品の製造方法。
1. Si: 0.4 to 1.5% by weight, Cu:
0.15-0.9 wt%, Mg: 0.8-1.5 wt%
And Cr: 0.04 to 0.9 wt%, Fe: 0.
Aluminum alloy ingot regulated to 05 to 0.35 wt% and Zn: 0.25 wt% or less is homogenized, cut, and forged so that the material temperature immediately after forging is 440 to 500 ° C. Then, solution treatment is performed at 510 to 545 ° C. for 2 to 6 hours, and after water cooling, 160 to 190 ° C. for 4 to 12
A method for manufacturing an aluminum forged product in which coarse crystallization of recrystallized grains during solution treatment is suppressed by performing time aging treatment.
【請求項2】 Si:0.4〜1.5重量%,Cu:
0.15〜0.9重量%,Mg:0.8〜1.5重量%
及びCr:0.04〜0.9重量%を含み、Fe:0.
05〜0.35重量%,Zn:0.25重量%以下に規
制したアルミニウム合金の鋳塊を均質化処理した後、切
断し、一次鍛造直後の素材温度が440〜500℃とな
るよう該切断鋳塊を450〜500℃に加熱し、400
〜460℃に保持した金型を使用して一次鍛造し、再度
一次鍛造品を500〜540℃に加熱し、二次鍛造直後
の素材温度が440〜500℃となるように400〜4
60℃に保持した金型を使用して形状の複雑な製品に二
次鍛造し、510〜545℃×2〜6時間の溶体化処
理、水冷後に160〜190℃×4〜12時間の時効処
理を施す熱処理を行うアルミ鍛造製品の製造方法。
2. Si: 0.4 to 1.5% by weight, Cu:
0.15-0.9 wt%, Mg: 0.8-1.5 wt%
And Cr: 0.04 to 0.9 wt%, Fe: 0.
Aluminum alloy ingot regulated to 05 to 0.35 wt% and Zn: 0.25 wt% or less is homogenized and then cut, and the cutting is performed so that the material temperature immediately after primary forging is 440 to 500 ° C. The ingot is heated to 450 to 500 ° C., and 400
Primary forging is performed using a mold held at 460 ° C., the primary forged product is heated again to 500 to 540 ° C., and 400 to 4 so that the material temperature immediately after the secondary forging is 440 to 500 ° C.
Secondary forging into a product with a complicated shape using a mold held at 60 ° C, solution treatment at 510 to 545 ° C for 2 to 6 hours, and aging treatment at 160 to 190 ° C for 4 to 12 hours after water cooling. A method for manufacturing an aluminum forged product, in which heat treatment is performed.
【請求項3】 更にTi:0.005〜0.15重量
%,B:0.0001〜0.01重量%及びMn:0.
2〜0.6重量%を含むアルミニウム合金を使用する請
求項1又は2記載のアルミ鍛造製品の製造方法。
3. Further, Ti: 0.005 to 0.15% by weight, B: 0.0001 to 0.01% by weight, and Mn: 0.
The method for manufacturing an aluminum forged product according to claim 1, wherein an aluminum alloy containing 2 to 0.6% by weight is used.
【請求項4】 更にZr:0.05〜0.2重量%を含
むアルミニウム合金を使用する請求項1〜3の何れかに
記載のアルミ鍛造製品の製造方法。
4. The method for manufacturing an aluminum forged product according to claim 1, wherein an aluminum alloy further containing Zr: 0.05 to 0.2% by weight is used.
JP8083330A 1996-03-12 1996-03-12 Production of aluminum forged product having fine structure Pending JPH09249951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8083330A JPH09249951A (en) 1996-03-12 1996-03-12 Production of aluminum forged product having fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8083330A JPH09249951A (en) 1996-03-12 1996-03-12 Production of aluminum forged product having fine structure

Publications (1)

Publication Number Publication Date
JPH09249951A true JPH09249951A (en) 1997-09-22

Family

ID=13799429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083330A Pending JPH09249951A (en) 1996-03-12 1996-03-12 Production of aluminum forged product having fine structure

Country Status (1)

Country Link
JP (1) JPH09249951A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195759A (en) * 2000-12-27 2002-07-10 Asahi Tec Corp Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
JP2002348630A (en) * 2001-05-18 2002-12-04 Nissan Motor Co Ltd Aluminum forged component and manufacturing method therefor
JP2003001357A (en) * 2001-06-20 2003-01-07 Asahi Tec Corp Manufacturing method of aluminum cast and forged product
JP2007210017A (en) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd Forged road wheel made of aluminum alloy, and manufacturing method therefor
EP2003219A2 (en) * 2006-03-31 2008-12-17 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
JP2009079299A (en) * 2008-10-31 2009-04-16 Showa Denko Kk Automotive parts
JP2009274135A (en) * 2008-04-16 2009-11-26 Washi Kosan Co Ltd Forged wheel made of light alloy and method for producing the same
WO2010026779A1 (en) * 2008-09-05 2010-03-11 ワシ興産株式会社 Method for producing wheel and wheel
WO2010067626A1 (en) * 2008-12-11 2010-06-17 ワシマイヤー株式会社 Wheel and method of manufaturing thereof
WO2010067465A1 (en) * 2008-12-11 2010-06-17 ワシマイヤー株式会社 Forged billet and wheel
JP2011068994A (en) * 2010-11-05 2011-04-07 Showa Denko Kk Aluminum alloy ingot for plastic working
KR101044899B1 (en) * 2009-09-11 2011-06-28 주식회사 센트랄 Forging method for aluminum
WO2011096212A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, process for production of forged billet, and process for production of wheel
WO2011096178A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, wheel made from light metal, and processes for production of those products
JP2012036504A (en) * 2011-09-29 2012-02-23 Showa Denko Kk Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic worked article, and aluminum alloy plastic worked article
JP2014025149A (en) * 2013-09-10 2014-02-06 Showa Denko Kk Aluminum alloy plastic worked product
CN103658475A (en) * 2013-11-28 2014-03-26 江西洪都航空工业集团有限责任公司 Airplane two-seater canopy framework integral-forging method
EP2811042A4 (en) * 2012-02-02 2016-06-08 Kobe Steel Ltd Forged aluminum alloy material and method for producing same
CN106623743A (en) * 2016-12-01 2017-05-10 西北工业大学 GH4738 alloy die forging and preparation method thereof
CN108555223A (en) * 2017-12-13 2018-09-21 陕西宏远航空锻造有限责任公司 A kind of GH901 alloys diskware manufacturing method
CN109622844A (en) * 2018-12-25 2019-04-16 昆山惠众机电有限公司 A kind of forging technology of the pump housing for vent gas treatment
CN110180981A (en) * 2019-06-25 2019-08-30 航桥新材料科技(滨州)有限公司 A kind of method of aluminium alloy spring hydraulic operating mechanism working cylinder forging molding
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN111218591A (en) * 2020-02-28 2020-06-02 福建祥鑫股份有限公司 Preparation method of high-strength and high-toughness 7XXX aluminum alloy section for new energy automobile power system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195759A (en) * 2000-12-27 2002-07-10 Asahi Tec Corp Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
JP4699605B2 (en) * 2000-12-27 2011-06-15 旭テック株式会社 Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
JP2002348630A (en) * 2001-05-18 2002-12-04 Nissan Motor Co Ltd Aluminum forged component and manufacturing method therefor
JP2003001357A (en) * 2001-06-20 2003-01-07 Asahi Tec Corp Manufacturing method of aluminum cast and forged product
JP2007210017A (en) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd Forged road wheel made of aluminum alloy, and manufacturing method therefor
EP2003219A4 (en) * 2006-03-31 2011-05-18 Kobe Steel Ltd Aluminum alloy forging member and process for producing the same
EP2003219A2 (en) * 2006-03-31 2008-12-17 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
US8152940B2 (en) 2006-03-31 2012-04-10 Kobe Steel, Ltd. Aluminum alloy forging member and process for producing the same
JP2009274135A (en) * 2008-04-16 2009-11-26 Washi Kosan Co Ltd Forged wheel made of light alloy and method for producing the same
WO2010026778A1 (en) * 2008-09-05 2010-03-11 ワシ興産株式会社 Forged billet and wheel
WO2010026780A1 (en) * 2008-09-05 2010-03-11 ワシ興産株式会社 Method for producing wheel by extrusion and wheel
WO2010026779A1 (en) * 2008-09-05 2010-03-11 ワシ興産株式会社 Method for producing wheel and wheel
JP2009079299A (en) * 2008-10-31 2009-04-16 Showa Denko Kk Automotive parts
WO2010067626A1 (en) * 2008-12-11 2010-06-17 ワシマイヤー株式会社 Wheel and method of manufaturing thereof
WO2010067465A1 (en) * 2008-12-11 2010-06-17 ワシマイヤー株式会社 Forged billet and wheel
JP2010137257A (en) * 2008-12-11 2010-06-24 Washimaiyaa Kk Forged billet and wheel
JP4562810B2 (en) * 2008-12-11 2010-10-13 ワシマイヤー株式会社 Wheel and manufacturing method thereof
JPWO2010067626A1 (en) * 2008-12-11 2012-05-17 ワシマイヤー株式会社 Wheel and manufacturing method thereof
KR101044899B1 (en) * 2009-09-11 2011-06-28 주식회사 센트랄 Forging method for aluminum
WO2011096212A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, process for production of forged billet, and process for production of wheel
WO2011096178A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, wheel made from light metal, and processes for production of those products
JP2011177785A (en) * 2010-02-02 2011-09-15 Washi Kosan Co Ltd Forged billet, wheel made from light metal, and processes for production of those products
JP2011068994A (en) * 2010-11-05 2011-04-07 Showa Denko Kk Aluminum alloy ingot for plastic working
JP2012036504A (en) * 2011-09-29 2012-02-23 Showa Denko Kk Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic worked article, and aluminum alloy plastic worked article
EP2811042A4 (en) * 2012-02-02 2016-06-08 Kobe Steel Ltd Forged aluminum alloy material and method for producing same
EP2811042B1 (en) 2012-02-02 2017-06-21 Kabushiki Kaisha Kobe Seiko Sho ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
JP2014025149A (en) * 2013-09-10 2014-02-06 Showa Denko Kk Aluminum alloy plastic worked product
CN103658475A (en) * 2013-11-28 2014-03-26 江西洪都航空工业集团有限责任公司 Airplane two-seater canopy framework integral-forging method
CN106623743A (en) * 2016-12-01 2017-05-10 西北工业大学 GH4738 alloy die forging and preparation method thereof
CN106623743B (en) * 2016-12-01 2018-08-14 西北工业大学 A kind of GH4738 alloy die forgings and preparation method thereof
CN108555223A (en) * 2017-12-13 2018-09-21 陕西宏远航空锻造有限责任公司 A kind of GH901 alloys diskware manufacturing method
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN111770840A (en) * 2018-01-12 2020-10-13 阿库莱德公司 Aluminum wheel and method of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN111770840B (en) * 2018-01-12 2023-04-07 阿库莱德公司 Aluminum wheel and method of manufacture
CN109622844A (en) * 2018-12-25 2019-04-16 昆山惠众机电有限公司 A kind of forging technology of the pump housing for vent gas treatment
CN110180981A (en) * 2019-06-25 2019-08-30 航桥新材料科技(滨州)有限公司 A kind of method of aluminium alloy spring hydraulic operating mechanism working cylinder forging molding
CN111218591A (en) * 2020-02-28 2020-06-02 福建祥鑫股份有限公司 Preparation method of high-strength and high-toughness 7XXX aluminum alloy section for new energy automobile power system
CN111218591B (en) * 2020-02-28 2020-09-15 福建祥鑫股份有限公司 Preparation method of high-strength and high-toughness 7XXX aluminum alloy section for new energy automobile power system

Similar Documents

Publication Publication Date Title
JPH09249951A (en) Production of aluminum forged product having fine structure
CA2797446C (en) Damage tolerant aluminium material having a layered microstructure
JPH06172949A (en) Member made of magnesium alloy and its production
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
JPH0860285A (en) Bumper reinforcement made of aluminum alloy and its production
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JPH111737A (en) Heat treated type 7000 series aluminum alloy with excellent corrosion resistance and high strength, and its production
TW202031909A (en) Aluminum alloy forged wheel, method of making the same, and billet for forming forged wheel having light weight, toughness, high rigidity and high thermal resistance
JP4822324B2 (en) Aluminum alloy forged road wheel and manufacturing method thereof
JP4774630B2 (en) Manufacturing method of aluminum forged parts
JPH11286758A (en) Production of forged product using aluminum casting material
JPH09249949A (en) Production of aluminum extruded material forged product
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH11286759A (en) Production of forged product using aluminum extruded material
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH09249953A (en) Production of aluminum extruded material forged product
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JP3687505B2 (en) Aluminum alloy for casting forging and method for producing casting forging
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JPH09249952A (en) Production of aluminum forged product