JPH09245810A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH09245810A
JPH09245810A JP8054698A JP5469896A JPH09245810A JP H09245810 A JPH09245810 A JP H09245810A JP 8054698 A JP8054698 A JP 8054698A JP 5469896 A JP5469896 A JP 5469896A JP H09245810 A JPH09245810 A JP H09245810A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
electrode
molded body
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8054698A
Other languages
Japanese (ja)
Inventor
Hiroaki Taira
浩明 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8054698A priority Critical patent/JPH09245810A/en
Publication of JPH09245810A publication Critical patent/JPH09245810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To widen the effective electrode surface area to enhance power generating performance. SOLUTION: In the manufacturing process of a solid electrolyte fuel cell, mixed slurry of a fuel electrode material and solid electrolyte material coarse powder or fuel electrode material coarse powder is prepared, the mixed slurry is formed in a fuel electrode ceramic molding body 2a having roughened surface, and a solid electrolyte film ceramic molding body 1b is arranged on the surface of the fuel electrode ceramic molding body 2a having roughened surface. An air electrode ceramic molding body 3a is arranged on the surface of a solid electrolyte ceramic molding body 1c to form a stacked body, then the stacked body is baked. The mean particle size of the coarse powder is 10μm or more but does not exceed the thickness of the fuel electrode ceramic molding body 2a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、燃料極、固体
電解質膜及び空気極の各層を互いに配置、積層して3層
を構成し、これを燃料電池の発電部として、外部から燃
料極に燃料ガスを供給し、空気極に空気を供給して、電
気を発生させるものである。
2. Description of the Related Art In a solid oxide fuel cell, each layer of a fuel electrode, a solid electrolyte membrane and an air electrode is arranged on each other and laminated to form three layers. Fuel gas is supplied and air is supplied to the air electrode to generate electricity.

【0003】そして、平板型の固体電解質型燃料電池
は、燃料極、固体電解質膜及び空気極の各層が平板状で
あり、それぞれ平坦な面を相互に積層したものである。
なお、空気極を酸素極と呼んでこれに酸素ガスを供給す
る場合もある。
In the flat plate type solid oxide fuel cell, each layer of the fuel electrode, the solid electrolyte membrane and the air electrode has a flat plate shape, and flat surfaces are laminated on each other.
The air electrode may be called an oxygen electrode and oxygen gas may be supplied to the air electrode.

【0004】[0004]

【発明が解決しようとする課題】この固体電解質型燃料
電池における電極反応は、固体電解質と各電極と気相と
の三相界面で起こると考えられており、固体電解質型燃
料電池の発電性能を向上させるためには、三相界面の面
積を広くすることが必要である。
The electrode reaction in this solid oxide fuel cell is considered to occur at the three-phase interface between the solid electrolyte, each electrode, and the gas phase, and the power generation performance of the solid oxide fuel cell is improved. In order to improve, it is necessary to widen the area of the three-phase interface.

【0005】このために、従来より、電極材料に粒径の
小さい粒子を採用し、電極を微細構造化して実効電極面
積を広くする方法が知られているが、発電性能はまだ満
足の行くものではなかった。
For this reason, conventionally, a method has been known in which particles having a small particle diameter are adopted as an electrode material to make the electrode finely structured to widen the effective electrode area, but the power generation performance is still satisfactory. Was not.

【0006】そこで本発明の目的は、実効電極面積をよ
り広くして発電性能を向上させることができる固体電解
質型燃料電池の製造方法を提供することにある。
[0006] Therefore, an object of the present invention is to provide a method for manufacturing a solid oxide fuel cell, which can increase the effective electrode area and improve the power generation performance.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1にお
いて、固体電解質型燃料電池の製造方法は、燃料極材料
と固体電解質材料の粗粉または燃料極材料の粗粉との混
合スラリーを準備し、該混合スラリーを成形して表面を
粗面化した燃料極用セラミック成形体とし、該粗面化し
た燃料極用セラミック成形体表面に固体電解質膜用セラ
ミック成形体を配置し、さらに該固体電解質膜用セラミ
ック成形体表面に空気極用セラミック成形体を配置して
積層体を形成し、その後該積層体を焼成することを特徴
とする。
According to a first aspect of the present invention, in a method for manufacturing a solid oxide fuel cell, a mixed slurry of a fuel electrode material and a coarse powder of a solid electrolyte material or a coarse powder of a fuel electrode material is prepared. Prepared, the mixed slurry is molded into a roughened surface of the fuel electrode ceramic molded body, the roughened surface of the fuel electrode ceramic molded body is disposed with a solid electrolyte membrane ceramic molded body, and further It is characterized in that the ceramic molded body for an air electrode is arranged on the surface of the ceramic molded body for a solid electrolyte membrane to form a laminated body, and then the laminated body is fired.

【0008】また、請求項2において、前記粗粉は平均
粒径が10μm以上で燃料極用セラミック成形体の厚み
を超えないことを特徴とする。
In the second aspect, the coarse powder has an average particle size of 10 μm or more and does not exceed the thickness of the fuel electrode ceramic compact.

【0009】上記のように、燃料極材料と固体電解質材
料の粗粉または燃料極材料の粗粉とを混合したスラリー
にて燃料極となるセラミック成形体を作り、これを用い
た固体電解質型燃料電池を製造すると、燃料極と固体電
解質膜との積層界面を容易に粗面化することができるの
で、燃料極と固体電解質膜を平坦な面で積層する場合よ
りも電極の実効電極面積を広くすることができる。
As described above, a ceramic molded body to be a fuel electrode is made from a slurry obtained by mixing the fuel electrode material and the coarse powder of the solid electrolyte material or the coarse powder of the fuel electrode material, and the solid electrolyte fuel using this is formed. When a cell is manufactured, the stacking interface between the fuel electrode and the solid electrolyte membrane can be easily roughened, so the effective electrode area of the electrode is wider than when stacking the fuel electrode and the solid electrolyte membrane on a flat surface. can do.

【0010】[0010]

【発明の実施の形態】以下、本発明にかかる固体電解質
型燃料電池の製造方法の実施例につき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for manufacturing a solid oxide fuel cell according to the present invention will be described below.

【0011】(実施例1)この実施例は、燃料極材料粉
末と固体電解質材料の粗粉とを混合してスラリーを作
り、これを成形することにより、燃料極と固体電解質膜
との積層界面を粗面化して固体電解質型燃料電池を作製
した例である。
(Example 1) In this example, a fuel electrode material powder and a coarse powder of a solid electrolyte material are mixed to form a slurry, and this slurry is molded to form a laminated interface between the fuel electrode and the solid electrolyte membrane. This is an example of producing a solid oxide fuel cell by roughening.

【0012】まず、燃料極用セラミックグリーンシート
の製造方法について説明する。
First, a method of manufacturing a ceramic green sheet for a fuel electrode will be described.

【0013】平均粒径1μmの粉末状の酸化ニッケルと
イットリア安定化ジルコニアの混合物に対して、結合剤
(例えば、ポリビニルブチラール系バインダ)及び溶剤
(エタノール及びトルエン)を所定量加えてスラリー化
した。そして、成形直前にこのスラリーに、平均粒径3
0μmのイットリア安定化ジルコニアからなる固体電解
質セラミック材料の粗粉を所定量添加して十分に混合し
た。
A predetermined amount of a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) was added to a mixture of powdery nickel oxide having an average particle diameter of 1 μm and yttria-stabilized zirconia to make a slurry. Immediately before molding, the slurry has an average particle size of 3
A predetermined amount of coarse powder of a solid electrolyte ceramic material composed of 0 μm yttria-stabilized zirconia was added and sufficiently mixed.

【0014】次に、ドクターブレード法によって、この
スラリーから厚さ50μmの燃料極用セラミックグリー
ンシートを成形した。得られた燃料極用セラミックグリ
ーンシートは、スラリーに固体電解質セラミック材料の
粗粉を混ぜたことにより、セラミックグリーンシートの
表面が、スラリーに混ぜた粗粉の大きさと量に応じた凹
凸が生じ、粗面化されていた。
Next, a 50 μm thick ceramic green sheet for fuel electrode was formed from this slurry by the doctor blade method. The obtained fuel electrode ceramic green sheet, by mixing the coarse powder of the solid electrolyte ceramic material in the slurry, the surface of the ceramic green sheet, unevenness according to the size and amount of the coarse powder mixed in the slurry, It was roughened.

【0015】一方、固体電解質膜用セラミックグリーン
シートを作製するため、平均粒径1μmの粉末状のイッ
トリア安定化ジルコニアに、結合剤(例えば、ポリビニ
ルブチラール系バインダ)及び溶剤(エタノール及びト
ルエン)を所定量加えてスラリー化した。
On the other hand, in order to prepare a ceramic green sheet for a solid electrolyte membrane, a powdery yttria-stabilized zirconia having an average particle size of 1 μm, a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added. A fixed amount was added to form a slurry.

【0016】続いて、このスラリーを用いて、前記粗面
化された燃料極用セラミックグリーンシートの表面上
に、ドクターブレード法により、厚さ50μmの固体電
解質のセラミックグリーンシートを成形した。
Subsequently, using this slurry, a solid electrolyte ceramic green sheet having a thickness of 50 μm was formed on the surface of the roughened fuel electrode ceramic green sheet by a doctor blade method.

【0017】次に、平坦な積層界面を持つ固体電解質膜
と空気極の積層成形体を作製した。
Next, a laminated molded body of a solid electrolyte membrane having a flat laminated interface and an air electrode was produced.

【0018】すなわち、まず、固体電解質膜を作製する
ため、平均粒径1μmのイットリア安定化ジルコニアに
対して、結合剤(例えば、ポリビニルブチラール系バイ
ンダ)及び溶剤(エタノール及びトルエン)を所定量加
えてスラリー化した。
That is, first, in order to prepare a solid electrolyte membrane, a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added in a predetermined amount to yttria-stabilized zirconia having an average particle diameter of 1 μm. It was made into a slurry.

【0019】そして、ドクターブレード法によって、こ
のスラリーから厚さ50μmの固体電解質のセラミック
グリーンシートを成形した。
Then, a 50 μm thick solid electrolyte ceramic green sheet was formed from this slurry by the doctor blade method.

【0020】また、空気極用セラミックグリーンシート
を作製するため、平均粒径1μmの粉末状のランタンマ
ンガナイトに結合剤(例えば、ポリビニルブチラール系
バインダ)及び溶剤(エタノール及びトルエン)を所定
量加えてスラリー化した。
In order to prepare a ceramic green sheet for an air electrode, a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added in a predetermined amount to powdered lanthanum manganite having an average particle size of 1 μm. It was made into a slurry.

【0021】そして、このスラリーを用いて、ドクター
ブレード法により、厚さ50μmの空気極用セラミック
グリーンシートを成形した。
Using this slurry, a ceramic green sheet for an air electrode having a thickness of 50 μm was formed by a doctor blade method.

【0022】得られた固体電解質のセラミックグリーン
シートと空気極用セラミックグリーンシートを互いに積
層して成形体を作製した。
The obtained solid electrolyte ceramic green sheet and the air electrode ceramic green sheet were laminated on each other to prepare a molded body.

【0023】このようにして得た各一対のグリーンシー
ト積層体、すなわち、固体電解質セラミック材料の粗粉
により粗面化された積層界面を持つ、固体電解質のセラ
ミックグリーンシートと燃料極用セラミックグリーンシ
ートの積層体と、平坦な積層界面を持つ固体電解質のセ
ラミックグリーンシートと空気極用セラミックグリーン
シートの積層体を、それぞれ固体電解質のセラミックグ
リーンシートが向き合うようにして配置し、その間に、
粗粉を含まない追加の固体電解質のセラミックグリーン
シートを数枚挿入して重ね合わせた。
Each pair of green sheet laminates thus obtained, that is, a solid electrolyte ceramic green sheet and a fuel electrode ceramic green sheet having a lamination interface roughened by a coarse powder of a solid electrolyte ceramic material , A solid electrolyte ceramic green sheet having a flat laminated interface and a laminated body of air electrode ceramic green sheets are arranged so that the solid electrolyte ceramic green sheets face each other, and in between,
Several additional solid electrolyte ceramic green sheets without coarse powder were inserted and stacked.

【0024】そして、この燃料極、固体電解質膜及び空
気極の各セラミックグリーンシートよりなる積層体をプ
ラスチック製の袋にいれ、袋の中を真空状態にし、温間
静水圧プレス機を用いて圧着し、燃料極、固体電解質膜
及び空気極の3層膜積層体を得た。
Then, the laminated body consisting of the ceramic green sheets of the fuel electrode, the solid electrolyte membrane and the air electrode is put in a plastic bag, the inside of the bag is evacuated, and pressure bonding is performed using a warm isostatic press. Then, a three-layer film laminate of the fuel electrode, the solid electrolyte membrane and the air electrode was obtained.

【0025】この結果、第1図の断面図に示すように、
固体電解質膜のセラミック成形体層1aのうち、固体電
解質膜のセラミック成形体1bは、粗面化された燃料極
用セラミック成形体2aの表面の凹凸に沿って成形され
たので、固体電解質膜のセラミック成形体1bと燃料極
用セラミック成形体2aの積層界面4aが凹凸状態とな
り、また、もう一方の固体電解質膜のセラミック成形体
1cと空気極用セラミック成形体3aの積層界面4bは
平坦な状態で得られた。なお、1dは追加挿入した固体
電解質膜のセラミック成形体を示す。
As a result, as shown in the sectional view of FIG.
Since the ceramic molded body 1b of the solid electrolyte membrane of the ceramic molded body layer 1a of the solid electrolyte membrane is molded along the unevenness of the surface of the roughened fuel electrode ceramic molded body 2a, The laminated interface 4a of the ceramic molded body 1b and the fuel electrode ceramic molded body 2a is in an uneven state, and the laminated interface 4b of the other solid electrolyte membrane ceramic molded body 1c and the air electrode ceramic molded body 3a is flat. Obtained in. In addition, 1d shows the ceramic molded body of the solid electrolyte membrane additionally inserted.

【0026】この圧着後、プラスチック製の袋から取り
出し、燃料極、固体電解質膜及び空気極の3層の積層体
を1300℃の温度で2時間焼成した。
After the pressure bonding, the laminate was taken out from the plastic bag, and the three-layer laminate of the fuel electrode, the solid electrolyte membrane and the air electrode was fired at a temperature of 1300 ° C. for 2 hours.

【0027】こうして得られた電極付き固体電解質膜を
備えた3層の固体電解質型燃料電池を、図2に示すよう
に結線し発電特性を測定した。
The three-layer solid oxide fuel cell having the solid electrolyte membrane with electrodes thus obtained was connected as shown in FIG. 2 and the power generation characteristics were measured.

【0028】図2において、1eは固体電解質膜、2b
は燃料極、3bは空気極、6は固体電解質型燃料電池で
ある。また、7は燃料ガス供給管、8は空気供給管、9
は白金線、10は可変抵抗器、11はオシロスコープ、
12は電流計、13は水銀スイッチである。
In FIG. 2, 1e is a solid electrolyte membrane, 2b.
Is a fuel electrode, 3b is an air electrode, and 6 is a solid oxide fuel cell. Further, 7 is a fuel gas supply pipe, 8 is an air supply pipe, and 9
Is a platinum wire, 10 is a variable resistor, 11 is an oscilloscope,
12 is an ammeter and 13 is a mercury switch.

【0029】そして、固体電解質型燃料電池6を100
0℃の温度に保持しながら、燃料ガス供給管7と空気供
給管8を通して、燃料ガスと空気をそれぞれ燃料極2
b、空気極3bに供給し、固体電解質膜1eを介して電
極反応を起こさせた。そして、電流計12で観察しなが
ら、300mA/cm2 の電流が流れる状態における燃
料極2bの分極による電圧降下を、カレントインターラ
プト法によりオシロスコープ11で測定した。
Then, the solid oxide fuel cell 6 is set to 100
While maintaining the temperature at 0 ° C., the fuel gas and the air are respectively fed through the fuel gas supply pipe 7 and the air supply pipe 8 to the fuel electrode 2
b, supplied to the air electrode 3b, and caused an electrode reaction through the solid electrolyte membrane 1e. Then, while observing with the ammeter 12, the voltage drop due to the polarization of the fuel electrode 2b in the state where the current of 300 mA / cm 2 flows was measured with the oscilloscope 11 by the current interrupt method.

【0030】この測定結果を表1に示す。The results of this measurement are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】また、比較例として、それぞれ粗粉を含ま
ず表面が滑らかな固体電解質のセラミックグリーンシー
ト、燃料極用セラミックグリーンシ−ト及び空気極用セ
ラミックグリーンシートを別々に成形して、これらを積
層したもので作製した固体電解質型燃料電池、すなわ
ち、固体電解質膜と各電極の積層界面が平坦な固体電解
質型燃料電池の測定結果も併せて示す。
As a comparative example, a solid electrolyte ceramic green sheet which does not contain coarse powder and has a smooth surface, a fuel electrode ceramic green sheet and an air electrode ceramic green sheet are separately molded, and these are prepared. The measurement results of a solid oxide fuel cell manufactured by stacking, that is, a solid oxide fuel cell in which the solid electrolyte membrane and each electrode have a flat laminated interface are also shown.

【0033】(実施例2)この実施例は、燃料極材料粉
末と燃料極材料の粗粉とを混合してスラリーを作り、こ
れを成形することにより、燃料極と固体電解質膜との積
層界面を粗面化し、固体電解質型燃料電池を作製した例
である。
(Embodiment 2) In this embodiment, a fuel electrode material powder and a coarse powder of the fuel electrode material are mixed to form a slurry, which is then molded to form a laminated interface between the fuel electrode and the solid electrolyte membrane. It is an example of producing a solid oxide fuel cell by roughening.

【0034】まず、実施例1で用いた固体電解質材料の
粗粉に代えて、酸化ニッケルとイットリア安定化ジルコ
ニアの混合物からなる平均粒径30μmの燃料極材料の
粗粉を添加すること以外は、実施例1と同様にして、こ
の粗粉によりその表面に凹凸が生じて粗面化された燃料
極用セラミックグリーンシートを得た。
First, instead of the coarse powder of the solid electrolyte material used in Example 1, coarse powder of a fuel electrode material having an average particle diameter of 30 μm made of a mixture of nickel oxide and yttria-stabilized zirconia was added. In the same manner as in Example 1, a ceramic green sheet for a fuel electrode was obtained in which the surface of the powder was roughened by the rough powder and roughened.

【0035】続いて、実施例1と同様にして、前記粗面
化された燃料極用セラミックグリーンシートの表面上
に、固体電解質のセラミックグリーンシートを成形し
た。
Then, in the same manner as in Example 1, a solid electrolyte ceramic green sheet was formed on the surface of the roughened fuel electrode ceramic green sheet.

【0036】次に、同じく実施例1と同様にして、平坦
な積層界面を持つ固体電解質膜と空気極の積層成形体を
作製した。
Next, in the same manner as in Example 1, a laminated molded body of a solid electrolyte membrane having a flat laminated interface and an air electrode was produced.

【0037】このようにして得た各一対のセラミックグ
リーンシート積層体を、実施例1と同様にして重ね合わ
せ、この積層体を圧着して、燃料極、固体電解質膜及び
空気極の3層膜積層体を得た。
The pair of ceramic green sheet laminates thus obtained were stacked in the same manner as in Example 1, and the laminates were pressure-bonded to form a three-layer film of a fuel electrode, a solid electrolyte membrane and an air electrode. A laminated body was obtained.

【0038】この結果、実施例1と同様に、固体電解質
膜のセラミック成形体は、粗面化された燃料極用セラミ
ック成形体の表面の凹凸に沿って成形されたので、固体
電解質膜のセラミック成形体と燃料極用セラミック成形
体の積層界面が凹凸状態になって得られた。また、もう
一方の固体電解質膜のセラミック成形体と空気極用セラ
ミック成形体の積層界面は平坦であった。
As a result, as in Example 1, the solid electrolyte membrane ceramic molded body was molded along the irregularities on the surface of the roughened fuel electrode ceramic molded body. The laminated interface between the molded body and the ceramic molded body for fuel electrode was obtained in an uneven state. Further, the laminated interface between the other ceramic solid electrolyte membrane molded body and the air electrode ceramic molded body was flat.

【0039】この圧着後、実施例1と同様にして、燃料
極、固体電解質膜及び空気極の3層の積層体を焼成し
た。
After this pressure bonding, a three-layer laminate of a fuel electrode, a solid electrolyte membrane and an air electrode was fired in the same manner as in Example 1.

【0040】こうして得られた電極付き固体電解質膜を
備えた3層の固体電解質型燃料電池を、実施例1と同
様、図2に示すように結線し発電特性を測定した。そし
て、この測定においても結果は実施例1と同じ傾向を示
した。
The three-layer solid electrolyte type fuel cell provided with the solid electrolyte membrane with electrodes thus obtained was connected as shown in FIG. The result also showed the same tendency as in Example 1 in this measurement.

【0041】次に、この測定結果について考察する。Next, the measurement results will be considered.

【0042】この分極による電圧降下の値が小さいほ
ど、電極の実効面積が広く、かつ、燃料電池としての性
能も優れていることになる。表1によれば、実施例品が
比較例品よりも分極による電圧降下の値が小さいことが
示され、したがって、実施例品が比較例品よりも実効電
極面積が広いことがわかる。
The smaller the value of the voltage drop due to the polarization, the larger the effective area of the electrode and the better the performance as a fuel cell. Table 1 shows that the example product has a smaller value of voltage drop due to polarization than the comparative example product. Therefore, it is understood that the example product has a larger effective electrode area than the comparative example product.

【0043】また、図1に示した断面図に基づいて、積
層界面4aの実効電極面積を計算すると、積層面が平坦
である場合の約1.2倍となる。ところが、表1に示さ
れた実施例品の分極による電圧降下は、比較例品の1/
2程度まで下がっている。これは、積層界面の凹凸によ
り、固体電解質膜と燃料極の接触面積が広くなって密着
力が強くなり、それにより固体電解質型燃料電池の内部
インピーダンスが低くなったためであると考えられる。
Further, when the effective electrode area of the laminated interface 4a is calculated based on the sectional view shown in FIG. 1, it is about 1.2 times as large as that when the laminated surface is flat. However, the voltage drop due to polarization of the example product shown in Table 1 is 1/100 of that of the comparative product.
It has dropped to about 2. It is considered that this is because the contact area between the solid electrolyte membrane and the fuel electrode was widened and the adhesion was strengthened due to the unevenness of the stacking interface, and the internal impedance of the solid oxide fuel cell was thereby lowered.

【0044】なお、電極反応は、固体電解質材料、燃料
極、気相の三相の界する点で起こるため、この点が多い
ほど発電性能が上がる。燃料極中の固体電解質セラミッ
ク粒子相互のつながり、または、固体電解質セラミック
中の燃料極セラミック材料粒子相互のつながり状況によ
り、電極反応点の存在範囲は固体電解質と燃料極の界面
から10μm程度の範囲に制限されることがわかってい
る。電極反応点を増やすためには、固体電解質セラミッ
ク粒子や燃料極セラミック材料粒子を小さくする方法が
あるほかに、本願発明のように固体電解質と燃料極との
界面を粗面化する方法がある。粗面のピッチが10μm
より細かいと効果は小さく、また、ピッチがはるかに粗
いと効果は小さい。したがって、界面を粗面化する粗粉
の平均粒径は、実際に燃料極中の反応に関与する部分が
電解質層との界面から約10μmの範囲にあるところか
ら、10μmを下限値とし、燃料極用セラミック成形体
の厚みを超えない範囲を上限値とした。
Since the electrode reaction takes place at the point where the three phases of the solid electrolyte material, the fuel electrode, and the gas phase meet, the higher this point, the higher the power generation performance. Depending on the connection state of the solid electrolyte ceramic particles in the fuel electrode or the connection state of the fuel electrode ceramic material particles in the solid electrolyte ceramic, the existence range of the electrode reaction point is about 10 μm from the interface between the solid electrolyte and the fuel electrode. I know it will be limited. In order to increase the number of electrode reaction points, there is a method of reducing the size of the solid electrolyte ceramic particles and the fuel electrode ceramic material particles, and a method of roughening the interface between the solid electrolyte and the fuel electrode as in the present invention. Rough surface pitch is 10 μm
Finer results are less effective, and much coarser pitches are less effective. Therefore, since the average particle size of the coarse powder for roughening the interface is in the range of about 10 μm from the interface with the electrolyte layer, which is actually involved in the reaction in the fuel electrode, the lower limit is 10 μm, The upper limit was defined as the range that does not exceed the thickness of the ceramic product for special use.

【0045】このように本発明は、固体電解質膜と燃料
極との界面を容易に粗面化することができるので、従来
のように固体電解質膜と燃料極とを平坦な面で積層した
場合よりも、実効電極面積を広くすることできる。
As described above, according to the present invention, since the interface between the solid electrolyte membrane and the fuel electrode can be easily roughened, when the solid electrolyte membrane and the fuel electrode are laminated on a flat surface as in the conventional case. The effective electrode area can be made wider than that.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、固体電
解質膜と燃料極との積層界面を容易に粗面化することが
できるので、従来のように平面で積層した場合よりも、
電極の実効面積を広くすることができる。この結果、固
体電解質型燃料電池の発電性能を向上させることが可能
になる。
As described above, according to the present invention, it is possible to easily roughen the stacking interface between the solid electrolyte membrane and the fuel electrode.
The effective area of the electrode can be increased. As a result, the power generation performance of the solid oxide fuel cell can be improved.

【0047】また、固体電解質と燃料極の接触面積が広
くなって密着力が強くなり、燃料電池の内部インピーダ
ンスを低くすることができる。そしてこの内部インピ−
ダンスの低下も、燃料電池の発電性能の向上に寄与する
という副次的な効果がある。
Further, the contact area between the solid electrolyte and the fuel electrode is widened, the adhesion is strengthened, and the internal impedance of the fuel cell can be lowered. And this internal impedance
The decrease in the dance also has the secondary effect of contributing to the improvement of the power generation performance of the fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電極成形体を両面に
設けた固体電解質膜セラミック成形体の断面図である。
FIG. 1 is a cross-sectional view of a solid electrolyte membrane ceramic molded body provided with electrode molded bodies on both surfaces according to an embodiment of the present invention.

【図2】固体電解質型燃料電池の発電特性を測定するた
めの結線図である。
FIG. 2 is a connection diagram for measuring power generation characteristics of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1a 固体電解質膜のセラミック成形体層 1b,1c 固体電解質膜のセラミック成形体 1d 追加挿入した固体電解質膜のセラミック成
形体 1e 固体電解質膜 2a 燃料極用セラミック成形体 2b 燃料極 3a 空気極用セラミック成形体 3b 空気極 6 固体電解質型燃料電池
1a Solid Electrolyte Membrane Ceramic Molded Layer 1b, 1c Solid Electrolyte Membrane Ceramic Molded Body 1d Solid Electrolyte Membrane Ceramic Molded Body 1e Solid Electrolyte Membrane 2a Fuel Electrode Ceramic Molded Body 2b Fuel Electrode 3a Air Electrode Ceramic Molded Body Body 3b Air electrode 6 Solid oxide fuel cell

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料極材料と固体電解質材料の粗粉また
は燃料極材料の粗粉との混合スラリーを準備し、該混合
スラリーを成形して表面を粗面化した燃料極用セラミッ
ク成形体とし、該粗面化した燃料極用セラミック成形体
表面に固体電解質膜用セラミック成形体を配置し、さら
に該固体電解質膜用セラミック成形体表面に空気極用セ
ラミック成形体を配置して積層体を形成し、その後該積
層体を焼成することを特徴とする固体電解質型燃料電池
の製造方法。
1. A mixed slurry of a fuel electrode material and a coarse powder of a solid electrolyte material or a coarse powder of a fuel electrode material is prepared, and the mixed slurry is molded to obtain a ceramic molded body for a fuel electrode having a roughened surface. A laminate is formed by disposing a ceramic molded body for a solid electrolyte membrane on the surface of the roughened ceramic molded body for a fuel electrode, and further disposing a ceramic molded body for an air electrode on the surface of the ceramic molded body for a solid electrolyte membrane. And then firing the laminate, a method for producing a solid oxide fuel cell.
【請求項2】 前記粗粉は平均粒径が10μm以上で、
燃料極用セラミック成形体の厚みを超えないことを特徴
とする請求項1記載の固体電解質型燃料電池の製造方
法。
2. The coarse powder has an average particle size of 10 μm or more,
The method for producing a solid oxide fuel cell according to claim 1, wherein the thickness of the fuel electrode ceramic molded body is not exceeded.
JP8054698A 1996-03-12 1996-03-12 Manufacture of solid electrolyte fuel cell Pending JPH09245810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054698A JPH09245810A (en) 1996-03-12 1996-03-12 Manufacture of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054698A JPH09245810A (en) 1996-03-12 1996-03-12 Manufacture of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH09245810A true JPH09245810A (en) 1997-09-19

Family

ID=12978033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054698A Pending JPH09245810A (en) 1996-03-12 1996-03-12 Manufacture of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH09245810A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045237B2 (en) * 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
KR20150035457A (en) * 2013-09-27 2015-04-06 주식회사 엘지화학 Method for manufacturing anode support of solid oxide fuel cell and anode support of solid oxide fuel cell
JP2016501435A (en) * 2012-12-18 2016-01-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Powder mixture for layers in solid oxide fuel cells
US9368809B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
WO2017034334A1 (en) * 2015-08-26 2017-03-02 주식회사 엘지화학 Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module comprising same
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045237B2 (en) * 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US10784521B2 (en) 2011-11-17 2020-09-22 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9570769B2 (en) 2011-11-18 2017-02-14 Bloom Energy Corporation Fuel cell interconnect
US9196909B2 (en) 2011-11-18 2015-11-24 Bloom Energy Corporation Fuel cell interconnect heat treatment method
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US10505206B2 (en) 2012-03-01 2019-12-10 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
US11705557B2 (en) 2012-08-29 2023-07-18 Bloom Energy Corporation Interconnect for fuel cell stack
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9368810B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9368809B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
JP2016501435A (en) * 2012-12-18 2016-01-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Powder mixture for layers in solid oxide fuel cells
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9853298B2 (en) 2013-05-16 2017-12-26 Bloom Energy Corporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
KR20150035457A (en) * 2013-09-27 2015-04-06 주식회사 엘지화학 Method for manufacturing anode support of solid oxide fuel cell and anode support of solid oxide fuel cell
US10505198B2 (en) 2013-09-27 2019-12-10 Lg Chem, Ltd. Method for manufacturing fuel electrode support for solid oxide fuel cell and fuel electrode support for solid oxide fuel cell
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11417894B2 (en) 2014-01-09 2022-08-16 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11786970B2 (en) 2014-01-09 2023-10-17 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10553879B2 (en) 2014-04-24 2020-02-04 Bloom Energy Corporation Fuel cell interconnect with metal or metal oxide contact layer
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10658677B2 (en) 2015-08-26 2020-05-19 Lg Chem, Ltd. Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module comprising same
CN107210470A (en) * 2015-08-26 2017-09-26 株式会社Lg化学 SOFC manufacture method, SOFC and the battery module including it
KR20170024758A (en) * 2015-08-26 2017-03-08 주식회사 엘지화학 Method for manufacturing solid oxide fuel cell, solid oxide fuel cell and battery module comprising the solid oxide fuel cell
WO2017034334A1 (en) * 2015-08-26 2017-03-02 주식회사 엘지화학 Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module comprising same
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof

Similar Documents

Publication Publication Date Title
JP3267034B2 (en) Method for manufacturing solid oxide fuel cell
JPH09245811A (en) Manufacture of solid electrolyte fuel cell
JPH09245810A (en) Manufacture of solid electrolyte fuel cell
JPH09223506A (en) Manufacture of solid electrolyte fuel cell
JP4006020B2 (en) Fabrication of devices containing thin ceramic layers.
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JPH09199143A (en) Manufacture of solid-electrolyte fuel cell
JP2008538449A5 (en)
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
WO2003027041A1 (en) Laminated ceramic sintered compact, method for producing laminated ceramic sintered compact, electrochemical cell, electroconductive joining member for electrochemical cell, and electrochemical device
EP1096588A2 (en) Solid oxide fuel cell with sintered air electrode
JP3478080B2 (en) Method for manufacturing solid oxide fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JP2001035505A (en) Fuel cell stack and method and member for joining same
JP2004158313A (en) Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these
JP5547188B2 (en) Manufacturing method of electrolyte / electrode assembly
WO2004109827A1 (en) Substrate for electrochemical cell and electrochemical cell
JP2001283876A (en) Unit cell of solid electrolytic fuel battery
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JPH1012247A (en) Solid electrolyte fuel cell and manufacture therefor
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A02