JPH09243344A - Three-dimensional position measuring device - Google Patents

Three-dimensional position measuring device

Info

Publication number
JPH09243344A
JPH09243344A JP4621296A JP4621296A JPH09243344A JP H09243344 A JPH09243344 A JP H09243344A JP 4621296 A JP4621296 A JP 4621296A JP 4621296 A JP4621296 A JP 4621296A JP H09243344 A JPH09243344 A JP H09243344A
Authority
JP
Japan
Prior art keywords
pitch angle
distance
measuring device
dimensional position
yaw angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4621296A
Other languages
Japanese (ja)
Inventor
Shoji Moriyama
山 祥 二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP4621296A priority Critical patent/JPH09243344A/en
Publication of JPH09243344A publication Critical patent/JPH09243344A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional position measuring device which can easily measure three-dimensional positioning accuracy, the accuracy of a track during movement, and actual characteristics such as the resultant distance traveled and resultant speed at reduced cost. SOLUTION: This three-dimensional position measuring device includes a yaw-angle detecting encoder 11 for detecting the yaw angle of a subject 7 for measurement; a pitch-angle detecting encoder 12 supported against the rotating shaft 2 of the yaw angle detecting encoder to detect the pitch angle of the subject for measurement; a distance detecting encoder 6 supported against the rotating shaft 4 of the pitch angle detecting encoder to detect the distance traveled by the subject for measurement; and a computing unit for computing predetermined data on the basis of the detected yaw angle, pitch angle, and distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば工作機械や
産業用ロボット等の位置や速度等を計測し、特に三次元
計測において、位置決め精度の計測、移動中の軌跡の精
度、及び移動距離と合成速度などの全項目の測定を一回
の操作で行うことができる三次元位置計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures, for example, the position and speed of a machine tool, an industrial robot or the like, and particularly, in three-dimensional measurement, positioning accuracy measurement, accuracy of a moving path, and movement distance. The present invention relates to a three-dimensional position measuring device capable of measuring all items such as a synthetic speed with a single operation.

【0002】[0002]

【従来の技術】工作機械や産業用ロボット等の位置決め
制御を目的とする機械においては、その位置決め精度を
計測して検証する必要があり、また、その最終位置決め
点のみならずその移動中の軌跡の精度をも計測して検証
する必要があり、さらに、その他移動距離と合成速度な
どについても同様である。
2. Description of the Related Art In machines intended for positioning control such as machine tools and industrial robots, it is necessary to measure and verify the positioning accuracy, and not only the final positioning point but also the locus during its movement. It is also necessary to measure and verify the accuracy of, and the same applies to other moving distances and synthetic speeds.

【0003】例えば、工作機械の位置決め精度を計測す
る場合には、従来、機械の軸数分の計測作業が必要であ
り、機械の一次元ごとの計測作業が行われている。この
一次元の位置計測装置としては、例えば、レーザー光線
式のものが知られている。
For example, in the case of measuring the positioning accuracy of a machine tool, conventionally, it is necessary to perform the measurement work for the number of axes of the machine, and the measurement work is performed for each dimension of the machine. As this one-dimensional position measuring device, for example, a laser beam type is known.

【0004】また、工作機械等において合成速度を測定
して検証する場合には、一次元計測装置を用いて、この
一次元計測装置の測定結果から演算し、これを合成速度
として用いている。
Further, when measuring and verifying the composite speed in a machine tool or the like, a one-dimensional measuring device is used to calculate from the measurement result of the one-dimensional measuring device, and this is used as the composite speed.

【0005】さらに、多くの機械の場合、最終位置決め
点の精度のみならずその移動中の軌道精度も測定する必
要があるが、従来一次元計測装置では計測できないた
め、予め実際の加工作業を試行し、この結果得られた加
工物の加工精度を測定して軌道精度を想定している。
Further, in many machines, it is necessary to measure not only the accuracy of the final positioning point but also the accuracy of the trajectory during its movement, but since it cannot be measured by the conventional one-dimensional measuring device, the actual machining work is tried in advance. Then, the machining accuracy of the workpiece obtained as a result is measured and the trajectory accuracy is assumed.

【0006】一方、産業用ロボットの場合には、空間的
な三次元領域の位置決め精度を計測する必要があり、従
来、三次元位置計測装置が使用されている。
On the other hand, in the case of an industrial robot, it is necessary to measure the positioning accuracy of a spatial three-dimensional area, and a three-dimensional position measuring device has been conventionally used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たような一次元位置計測装置により工作機械の位置決め
精度を計測する場合には、非常に多くの労力を必要と
し、煩雑であるといったことがある。
However, when the positioning accuracy of the machine tool is measured by the one-dimensional position measuring device as described above, it requires a lot of labor and may be complicated.

【0008】また、移動中の軌道精度も測定する場合、
予め実際の加工作業を試行して得られた加工物の加工精
度を測定して軌道精度を想定しているが、この方法は、
コストと時間を必要以上に要し、また、加工条件などに
よっても左右されるといったことがある。
In addition, when measuring the trajectory accuracy during movement,
The orbit accuracy is assumed by measuring the processing accuracy of the workpiece obtained by trialing the actual processing work in advance, but this method
It may be more costly and time consuming than required, and may be affected by processing conditions.

【0009】さらに、産業用ロボットのように空間的な
三次元領域の位置決め精度の計測を行う場合、三次元位
置計測装置を用いているが、この三次元計測装置は非常
に高価であると共に操作も複雑であり煩雑であるといっ
たことがある。
Further, when measuring the positioning accuracy of a spatial three-dimensional area like an industrial robot, a three-dimensional position measuring device is used, but this three-dimensional measuring device is very expensive and operation is difficult. May be complicated and complicated.

【0010】本発明は、このような従来技術の欠点に鑑
みてなされたものであり、三次元位置決め精度の計測、
移動中の軌跡の精度、及び合成移動距離と合成速度など
の実特性の測定を簡易に行うことができると共に、コス
トも低廉である三次元位置計測装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art.
It is an object of the present invention to provide a three-dimensional position measuring device that can easily measure the accuracy of a trajectory during movement and actual characteristics such as a synthetic moving distance and a synthetic velocity, and is low in cost.

【0011】[0011]

【課題を解決するための手段】本発明に係る三次元位置
計測装置は、被計測対象のヨー角、ピッチ角、及び距離
を計測するための三次元位置計測装置であって、被計測
対象のヨー角を検出するためのヨー角検出手段と、この
ヨー角検出手段の回転軸に支持され、被計測対象のピッ
チ角を検出するためのピッチ角検出手段と、このピッチ
角検出手段の回転軸に支持され、被計測対象の移動距離
を検出するための距離検出手段と、これら検出されたヨ
ー角、ピッチ角、及び距離に基づいて、所定のデータを
演算する演算手段と、を具備することを特徴としてい
る。
A three-dimensional position measuring apparatus according to the present invention is a three-dimensional position measuring apparatus for measuring a yaw angle, a pitch angle and a distance of an object to be measured. A yaw angle detecting means for detecting a yaw angle, a pitch angle detecting means for detecting a pitch angle of an object to be measured, which is supported by a rotation axis of the yaw angle detecting means, and a rotation axis of the pitch angle detecting means. A distance detecting means for detecting the moving distance of the object to be measured, and a calculating means for calculating predetermined data on the basis of the detected yaw angle, pitch angle and distance. Is characterized by.

【0012】また、上記演算手段は、所定のデータとし
て、被計測対象の三次元位置、速度、移動距離、及び合
成速度の少なくとも一つを演算してもよい。
The calculating means may calculate, as the predetermined data, at least one of the three-dimensional position, speed, moving distance, and combined speed of the object to be measured.

【0013】このように構成されているため、被計測対
象である産業用ロボット等の作用点が移動されると、計
測装置の基準位置に対する被計測対象のヨー角、ピッチ
角及び移動距離が変化する。これらの角度の変化に追随
して、ヨー角検出手段の回転軸及びピッチ角検出手段の
回転軸が変化し、ヨー角検出手段により被測定対象のヨ
ー角が、ピッチ角検出手段により被測定対象のピッチ角
が、各々検出される。さらに、被計測対象の移動距離の
変化に追随して、距離検出手段により被測定対象の移動
距離が検出される。このような三次元的な検出データに
基づいて、被計測対象の三次元位置、速度、移動距離、
及び合成速度などが演算されるため、1回の計測で行う
ことができ、計測が簡易であると共に、正確に計測する
ことができ、しかも、そのコストも低廉にすることがで
きる。
With this configuration, when the point of action of the industrial robot or the like to be measured is moved, the yaw angle, pitch angle and movement distance of the measured object with respect to the reference position of the measuring device change. To do. Following the changes in these angles, the rotation axis of the yaw angle detection means and the rotation axis of the pitch angle detection means change, and the yaw angle of the measured object by the yaw angle detection means and the measured object by the pitch angle detection means. The pitch angle of each is detected. Further, the distance detecting means detects the moving distance of the measured object in accordance with the change in the moving distance of the measured object. Based on such three-dimensional detection data, the three-dimensional position of the measured object, speed, moving distance,
Since the composite speed and the like are calculated, the measurement can be performed once, and the measurement is simple and accurate, and the cost can be reduced.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態に係る三
次元位置計測装置を図面を参照しつつ説明する。
DETAILED DESCRIPTION OF THE INVENTION A three-dimensional position measuring apparatus according to an embodiment of the present invention will be described below with reference to the drawings.

【0015】図1に示すように、ヨー角検出用ハウジン
グ1が配設されており、このヨー角検出用ハウジング1
に回転自在に垂直に設けられたヨー角検出用回転軸2の
上に、ピッチ角検出用ハウジング3が配設されている。
このピッチ角検出用ハウジング3には、回転自在に水平
にピッチ角検出用回転軸4が設けられている。
As shown in FIG. 1, a yaw angle detecting housing 1 is provided, and the yaw angle detecting housing 1 is provided.
A pitch angle detecting housing 3 is disposed on a yaw angle detecting rotary shaft 2 which is rotatably provided vertically.
The pitch angle detecting housing 3 is provided rotatably horizontally with a pitch angle detecting rotary shaft 4.

【0016】図2に示すように、ヨー角検出用ハウジン
グ1の上壁には、ヨー角センサとしてのヨー角検出用エ
ンコーダ11が設けられ、ヨー角検出用回転軸2が回転
されると、後述する被計測対象のヨー角がヨー角検出用
エンコーダ11によって検出されるように構成されてい
る。さらに、図2に示すように、ピッチ角センサとして
のピッチ角検出用エンコーダ12がピッチ角検出用ハウ
ジング3の側壁に設けられ、ピッチ角検出用回転軸4が
回転されると、被計測対象のピッチ角がピッチ角検出用
エンコーダ12によって検出されるように構成されてい
る。
As shown in FIG. 2, a yaw angle detecting encoder 11 as a yaw angle sensor is provided on the upper wall of the yaw angle detecting housing 1, and when the yaw angle detecting rotary shaft 2 is rotated, The yaw angle of the object to be measured, which will be described later, is detected by the yaw angle detection encoder 11. Further, as shown in FIG. 2, a pitch angle detecting encoder 12 as a pitch angle sensor is provided on a side wall of the pitch angle detecting housing 3, and when the pitch angle detecting rotating shaft 4 is rotated, the measured object is measured. The pitch angle is configured to be detected by the pitch angle detecting encoder 12.

【0017】さらに、図2に示すように、ピッチ角検出
用回転軸4に、ブラケット5を介して距離検出手段とし
ての距離検出用エンコーダ6が設けられている。一方、
図1に示すように、被計測対象としての産業用ロボット
7の作用点8には、自在継手9が設けられている。距離
検出用エンコーダ6と、自在継手9との間には、ワイヤ
10が掛け渡されている。このようなワイヤ10を用い
る距離検出手段(エンコーダ6)としては、具体的に
は、ワイヤー引き出し式マイクロエンコーダであって、
ワイヤーの引き出し量に応じた直線位置を検出するもの
であり、カウンターと接続することによりカウンター表
示とすることもできる。この距離検出用エンコーダ6
は、ヨー角検出用回転軸2及びピッチ角検出用回転軸4
の回転の自在性により、ワイヤ10がその巻き込み力に
より真直に張られるように、その正面を自在継手9を介
して作用点8に向けるようになっている。
Further, as shown in FIG. 2, a pitch angle detecting rotary shaft 4 is provided with a distance detecting encoder 6 as a distance detecting means via a bracket 5. on the other hand,
As shown in FIG. 1, a universal joint 9 is provided at an action point 8 of an industrial robot 7 as an object to be measured. A wire 10 is stretched between the distance detecting encoder 6 and the universal joint 9. The distance detecting means (encoder 6) using such a wire 10 is specifically a wire pull-out type micro encoder,
It detects the linear position according to the amount of wire pulled out, and can also be used as a counter display by connecting to a counter. This distance detection encoder 6
Is a yaw angle detecting rotary shaft 2 and a pitch angle detecting rotary shaft 4
Due to the freedom of rotation of the wire, the front surface of the wire 10 is directed to the point of action 8 via the universal joint 9 so that the wire 10 is stretched straight by the winding force.

【0018】ここに、ワイヤ10は、図3の三次元座標
における基準点Aと作用点8(x,y,z)との間に対
応し、ヨー角検出用回転軸2はZ軸を中心として角度β
の方向に回転してピッチ角検出用回転軸4をXY平面内
で旋回させて直線aと直角に向け、ピッチ角検出用回転
軸4は角度αの方向に回転するように構成されている。
従って、産業用ロボット7の作用点8が移動すると、自
在継手9を介して、ワイヤ10が変位され、これに追随
して、ピッチ角検出用回転軸5及びヨー角検出用回転軸
2が変位され、これらの変位量が、各々、ヨー角検出用
エンコーダ11、ピッチ角検出用エンコーダ12、及び
距離検出用エンコーダ6により検知されて、演算装置に
一定周期で取り込まれる。
Here, the wire 10 corresponds between the reference point A and the action point 8 (x, y, z) in the three-dimensional coordinates of FIG. 3, and the yaw angle detecting rotary shaft 2 is centered on the Z axis. As angle β
Is rotated in the XY plane so that the pitch angle detecting rotary shaft 4 is swiveled to be perpendicular to the straight line a, and the pitch angle detecting rotary shaft 4 is rotated in the direction of the angle α.
Therefore, when the action point 8 of the industrial robot 7 moves, the wire 10 is displaced via the universal joint 9, and the pitch angle detecting rotary shaft 5 and the yaw angle detecting rotary shaft 2 are displaced accordingly. Then, these displacement amounts are detected by the yaw angle detection encoder 11, the pitch angle detection encoder 12, and the distance detection encoder 6, respectively, and are taken into the arithmetic unit at a constant cycle.

【0019】ここで、図3に示すように、距離検出用エ
ンコーダ6の長さをL、ピッチ角をα、ヨー角をβとす
ると、三次元座標におけるX,Y,Z軸とは、以下に示
すような関係が成立する。
Here, as shown in FIG. 3, when the length of the distance detecting encoder 6 is L, the pitch angle is α, and the yaw angle is β, the X, Y, and Z axes in the three-dimensional coordinates are as follows. The relationship shown in is established.

【0020】a=L×cosα X=a×cosβ=Lcosα×cosβ Y=a×sinβ=Lcosα×sinβ Z=Lsinα 従って、距離検出用エンコーダ6の長さL、ピッチ角
α、ヨー角βが各エンコーダにより検出されていると、
上記の関係式により作用点8の座標値(X,Y,Z)が
求められ、これにより、位置決め精度を演算することが
でき、また、各軸の速度、及び合成速度も単位時間当た
りの移動量から演算することができ、さらに、軌道精度
も一定周期毎の三次元座標値(X,Y,Z)から演算す
ることができる。
A = L × cos α X = a × cos β = L cos α × cos β Y = a × sin β = L cos α × sin β Z = L sin α Therefore, the length L of the distance detecting encoder 6, the pitch angle α, and the yaw angle β are respectively When detected by the encoder,
The coordinate value (X, Y, Z) of the action point 8 is obtained by the above relational expression, and the positioning accuracy can be calculated from this, and the velocity of each axis and the combined velocity can be moved per unit time. It can be calculated from the amount, and the trajectory accuracy can also be calculated from the three-dimensional coordinate values (X, Y, Z) at constant intervals.

【0021】このように、三次元座標値に基づいて、被
計測対象の三次元位置、速度、移動距離、及び合成速度
などを演算できるため、1回の計測で行うことができ、
計測が簡易であると共に、正確に計測することができ、
しかも、そのコストも低廉にすることができる。
As described above, since the three-dimensional position, speed, moving distance, combined speed and the like of the object to be measured can be calculated based on the three-dimensional coordinate values, the measurement can be performed once.
It is easy to measure and can be measured accurately,
Moreover, the cost can be reduced.

【0022】なお、本発明は、上述した実施形態に限定
されないのは勿論であり、種々変形可能である。特に、
距離検出手段としては、図4に示すように、磁気スケー
ルなどを用いたリニア測長器本体6Aをピッチ角検出用
回転軸4に取り付け、このリニア測長器本体6Aを貫通
して移動自在に伸びる磁気スケールなどのロッド10A
の先端を、自在継手9を介してロボット7の作用点8に
揺動自在に連結したり、また、図5に示すようにレーザ
ー式測長器本体6Bをピッチ角検出用回転軸4に取り付
け、このレーザー式測長器本体6Bを貫通して移動自在
に伸びるロッド10Bの先端を、自在継手9を介してロ
ボット7の作用点8に揺動自在に連結すると共に、ロッ
ド10Bの先端にレーザー光の反射鏡13を取り付けた
りすることにより、距離を検出するようにしてもよくこ
れらによれば、高精度な検出が可能になる。
The present invention is, of course, not limited to the above-mentioned embodiment, and can be variously modified. Especially,
As a distance detecting means, as shown in FIG. 4, a linear length measuring device main body 6A using a magnetic scale or the like is attached to the pitch angle detecting rotary shaft 4, and the linear length measuring device main body 6A is movably pierced. Rod 10A such as magnetic scale that extends
The tip of the is swingably connected to the action point 8 of the robot 7 via a universal joint 9, or the laser type length measuring machine main body 6B is attached to the pitch angle detecting rotary shaft 4 as shown in FIG. The tip of a rod 10B that extends movably through the laser length measuring device main body 6B is swingably connected to an action point 8 of a robot 7 via a universal joint 9, and a laser is attached to the tip of the rod 10B. The distance may be detected by attaching a light reflecting mirror 13 or the like, which enables highly accurate detection.

【0023】[0023]

【発明の効果】以上述べたように、本発明では、被計測
対象である産業用ロボット等の作用点が移動されると、
被計測対象の揺動角及び移動距離が変化し、これに追随
して、被測定対象のヨー角、ピッチ角、及び移動距離が
各々検出される。このような三次元的な検出データに基
づいて、被計測対象の三次元位置、速度、移動距離、及
び合成速度などが演算されるため、1回の計測で行うこ
とができ、計測が簡易であると共に、正確に計測するこ
とができ、しかも、そのコストも低廉にすることができ
る。
As described above, according to the present invention, when the action point of the industrial robot or the like to be measured is moved,
The swing angle and the movement distance of the measurement target change, and following the changes, the yaw angle, the pitch angle, and the movement distance of the measurement target are detected. Based on such three-dimensional detection data, the three-dimensional position, speed, moving distance, combined speed, and the like of the measurement target are calculated, so that the measurement can be performed once and the measurement is simple. In addition to the above, accurate measurement can be performed, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る三次元位置計測装置の
模式図。
FIG. 1 is a schematic diagram of a three-dimensional position measuring device according to an embodiment of the present invention.

【図2】図1に示す三次元位置計測装置の断面図。FIG. 2 is a sectional view of the three-dimensional position measuring device shown in FIG.

【図3】三次元座標と各エンコーダの回転軸との関係を
示す模式図。
FIG. 3 is a schematic diagram showing a relationship between three-dimensional coordinates and a rotation axis of each encoder.

【図4】本発明の他の実施形態に係る三次元位置計測装
置の模式図。
FIG. 4 is a schematic diagram of a three-dimensional position measuring device according to another embodiment of the present invention.

【図5】本発明のさらに他の実施形態に係る三次元位置
計測装置の模式図。
FIG. 5 is a schematic diagram of a three-dimensional position measuring apparatus according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ヨー角検出用ハウジング 2 ヨー角検出用回転軸 3 ピッチ角検出用ハウジング 4 ピッチ角検出用回転軸 5 ブラケット 6 距離検出用エンコーダ(距離検出用手段) 6A リニア測長器本体 6B レーザー式測長器本体 7 被計測対象 8 作用点 9 自在継手 10 ワイヤ 10A,10B ロッド 11 ヨー角検出用エンコーダ(ヨー角検出用手段) 12 ピッチ角検出用エンコーダ(ピッチ角検出用手
段) 13 反射鏡
1 Yaw angle detection housing 2 Yaw angle detection rotation shaft 3 Pitch angle detection housing 4 Pitch angle detection rotation shaft 5 Bracket 6 Distance detection encoder (distance detection means) 6A Linear length measuring device body 6B Laser type length measurement Instrument body 7 Measurement target 8 Action point 9 Universal joint 10 Wires 10A, 10B Rod 11 Yaw angle detection encoder (yaw angle detection means) 12 Pitch angle detection encoder (pitch angle detection means) 13 Reflector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被計測対象のヨー角、ピッチ角、及び距離
を計測するための三次元位置計測装置であって、 被計測対象のヨー角を検出するためのヨー角検出手段
と、 このヨー角検出手段の回転軸に支持され、被計測対象の
ピッチ角を検出するためのピッチ角検出手段と、 このピッチ角検出手段の回転軸に支持され、被計測対象
の移動距離を検出するための距離検出手段と、 これら検出されたヨー角、ピッチ角、及び距離に基づい
て、所定のデータを演算する演算手段と、を具備するこ
とを特徴とする三次元位置計測装置。
1. A three-dimensional position measuring device for measuring a yaw angle, a pitch angle, and a distance of an object to be measured, comprising yaw angle detecting means for detecting the yaw angle of the object to be measured. A pitch angle detecting means for detecting the pitch angle of the object to be measured, which is supported by the rotating shaft of the angle detecting means, and a rotating shaft of the pitch angle detecting means for detecting the moving distance of the object to be measured. A three-dimensional position measuring device comprising: distance detecting means; and calculating means for calculating predetermined data based on the detected yaw angle, pitch angle, and distance.
【請求項2】上記演算手段は、所定のデータとして、被
計測対象の三次元位置、速度、移動距離、及び合成速度
の少なくとも一つを演算することを特徴とする請求項1
に記載の三次元位置計測装置。
2. The calculation means calculates, as the predetermined data, at least one of a three-dimensional position, a speed, a moving distance, and a combined speed of the object to be measured.
The three-dimensional position measuring device described in.
JP4621296A 1996-03-04 1996-03-04 Three-dimensional position measuring device Pending JPH09243344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4621296A JPH09243344A (en) 1996-03-04 1996-03-04 Three-dimensional position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4621296A JPH09243344A (en) 1996-03-04 1996-03-04 Three-dimensional position measuring device

Publications (1)

Publication Number Publication Date
JPH09243344A true JPH09243344A (en) 1997-09-19

Family

ID=12740801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4621296A Pending JPH09243344A (en) 1996-03-04 1996-03-04 Three-dimensional position measuring device

Country Status (1)

Country Link
JP (1) JPH09243344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513259A (en) * 1999-11-03 2003-04-08 ブロックス,セオドルス ウィルヘルムス アントニウス コルネリス Measuring device with movable measuring probe
JP2014006080A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Tool position detection device and tool position detection method
JP2020056655A (en) * 2018-10-01 2020-04-09 日本放送協会 Distance measurement device and position calculation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513259A (en) * 1999-11-03 2003-04-08 ブロックス,セオドルス ウィルヘルムス アントニウス コルネリス Measuring device with movable measuring probe
JP2014006080A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Tool position detection device and tool position detection method
JP2020056655A (en) * 2018-10-01 2020-04-09 日本放送協会 Distance measurement device and position calculation system

Similar Documents

Publication Publication Date Title
JP5350216B2 (en) Processed product measuring apparatus and measuring method
JP2873404B2 (en) Method and apparatus for scanning the surface of a workpiece
JPH0384408A (en) Rotary table profiling control method for probe for coordinate measurement
CN107044837B (en) For demarcating the method, apparatus and control equipment of detection instrument coordinate system
CN110186400B (en) Friction welding coaxiality precision detection device and detection method thereof
CN111421226B (en) Pipe identification method and device based on laser pipe cutting equipment
US5071252A (en) Method for contactless profiling normal to a surface
CN110360959A (en) A kind of vision detection system for large-scale precision axial workpiece
JP2831610B2 (en) measuring device
CN209978840U (en) Friction welding coaxiality precision detection device
TWI754563B (en) Spatial accuracy error measurement method
CN110977612B (en) CNC (computer numerical control) machining online measurement error correction method and system
JPH03121754A (en) Noncontact tracing control device
JPH09243344A (en) Three-dimensional position measuring device
CN110966963A (en) Inertia friction welding coaxiality precision detection device and detection method thereof
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
JP2003121134A (en) Measuring method for geometric accuracy of motion
JPH01109058A (en) Contactless copy controller
JPH01123103A (en) Non-contact measuring system
JP2538287B2 (en) Origin adjustment method for horizontal joint robot
JP2860801B2 (en) Link mechanism for three-dimensional free-form surface control
JPH05164525A (en) Measuring head for laser type coordinate measuring apparatus
JP2572936B2 (en) Shape measuring instruments
JP2542615B2 (en) Machining line teaching method
JPH06114684A (en) Mechanical motion accuracy measuring device