JPH09241808A - High manganese steel excellent in toughness as well as in wear resistance - Google Patents

High manganese steel excellent in toughness as well as in wear resistance

Info

Publication number
JPH09241808A
JPH09241808A JP8088896A JP8088896A JPH09241808A JP H09241808 A JPH09241808 A JP H09241808A JP 8088896 A JP8088896 A JP 8088896A JP 8088896 A JP8088896 A JP 8088896A JP H09241808 A JPH09241808 A JP H09241808A
Authority
JP
Japan
Prior art keywords
wear resistance
toughness
weight
content
manganese steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8088896A
Other languages
Japanese (ja)
Other versions
JP3070658B2 (en
Inventor
Susumu Matsuno
松野  進
Kiyoshi Arai
澂 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP8080888A priority Critical patent/JP3070658B2/en
Publication of JPH09241808A publication Critical patent/JPH09241808A/en
Application granted granted Critical
Publication of JP3070658B2 publication Critical patent/JP3070658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Crushing And Grinding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new material in which the wear resistance of a high manganese steel is increased by at least 30% of JIS SCMnH11 and also toughness equal to or higher than JIS SCMnH11 is provided. SOLUTION: This material has a composition consisting of, by weight, 1.5-1.7% C, 0.1-0.4% Si, 30.0-34.0% Mn, 1.0-3.0% Cr, and the balance Fe with inevitable impurities. The correlation between the wear resistance and C content of a high manganese steel is designated as the starting point of inspection. As to the conditions to reach the desired value, C content is regulated to 1.6wt.% and simultaneously particular attension is called to the behavior of Si in order to prevent deterioration in toughness while maintaining the wear resistance owing to this high C content. From the results of material testing and the coherency with microstructure, it is found that the amount of C entering into solid solution in a base material is increased with the decrease in Si content. As a result, the strengthening of a matrix contributes to the improvement of wear resistance and, on the other hand, the amount of carbides precipitating in crystalline grain boundaries is controlled and the function of preventing deterioration in toughness is positively produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種装置の摩耗部材
として使用する高マンガン鋼の改良に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in high manganese steel used as a wear member for various devices.

【0002】[0002]

【従来の技術】装置の中で他の材質の原材料や部材間の
激しい擦過と衝撃を通じて、その装置の機能を果たす場
合、摩耗に直面する部分については耐摩耗性の優れた材
質で部材を構成しなければ、その消耗を補うべき部材の
交換に時間を浪費し、装置自体の稼働効率を著しく劣化
することは言うまでもない。そのため、各用役に最も適
応した材質の部材を摩耗作用の発現する位置に装着し
て、耐用時間の延長を図るのが作業能率向上の要諦とさ
れている。
2. Description of the Related Art In a device, when the function of the device is achieved by violent rubbing and impact between other raw materials and members, the member facing the wear is made of a material having excellent wear resistance. It goes without saying that if not done, it will take time to replace the member that should compensate for the consumption, and the operating efficiency of the device itself will be significantly deteriorated. Therefore, it is essential to improve work efficiency by mounting a member made of a material most suitable for each purpose at a position where a wear action is exerted and extending the service life.

【0003】鉄鋼材料の耐摩耗性を向上する一般的手法
は、合金元素を添加し、かつ、適切な熱処理を施して高
硬度の組織に調整することである。そのためにNi,C
r,Mo,V,W,Bなどを添加した合金鋼の歴史は長
いが、比較的安価なMnを配合して硬度と靱性を兼備す
る部材の開発も多く実用化されている。たとえば、特開
昭51−40320号公報では、ブルトーザに装着され
るリッパポイントなど、岩盤の引裂き破砕に使用される
部品として高い強度と靱性の両立が必要であり、かつ6
00℃以上に加熱昇温される場合でも容易に軟化しない
熱抵抗性が求められる。このために重量%でC:0.2
5〜0.4,Mn:4.5〜7.0,Cr:3以下,S
i:1.6以下の成分のマンガン鋼を提示した。同じ用
途に対する提案として特開昭51−40319号公報も
ある。
A general method for improving the wear resistance of steel materials is to add an alloying element and perform an appropriate heat treatment to adjust the structure to have a high hardness. Therefore, Ni, C
Although alloy steels containing r, Mo, V, W, B, etc. have a long history, many members that combine relatively inexpensive Mn and have hardness and toughness have been put into practical use. For example, in Japanese Patent Laid-Open No. 51-40320, high strength and toughness are required to be compatible as parts used for tearing and crushing rock mass, such as a ripper point attached to a bulltozer, and 6
It is required to have thermal resistance that does not easily soften even when heated and heated to 00 ° C or higher. For this reason, in% by weight C: 0.2
5 to 0.4, Mn: 4.5 to 7.0, Cr: 3 or less, S
i: Manganese steel having a composition of 1.6 or less was presented. As a proposal for the same use, there is JP-A-51-40319.

【0004】前記従来技術の例よりもさらにMn配合量
を高めると、高マンガン鋼と総称されるオーステナイト
相を基地とする耐摩耗材となる。高マンガン鋼はハドフ
ィールド鋼とも呼ばれた往時から、代表的な耐摩耗性材
料として慣用的に使用され、特にレールクロッシング、
ドレッジャーバケット、破砕機の各種部品など今日に至
るまで他の材料では替え難い魅力的な材質として広く汎
用されている。たとえば破砕機の分野では、ジョークラ
ッシャーの歯板、ハンマークラッシャーのハンマー、イ
ンパクトクラッシャーの打撃刃など、ほとんど全ての破
砕用部材に適用され、長い操業の歴史を担ってきた。
If the Mn content is further increased as compared with the examples of the prior art described above, a wear resistant material based on an austenite phase, which is generically called high manganese steel, is obtained. High manganese steel, which is also called hadfield steel, has been conventionally used as a typical wear resistant material, especially for rail crossings,
Until today, it is widely used as an attractive material that is difficult to replace with other materials such as dredger buckets and various parts of crushers. For example, in the field of crushers, it has been applied to almost all crushing members such as tooth plates of jaw crushers, hammers of hammer crushers, and impact blades of impact crushers, and has a long history of operation.

【0005】他の耐摩耗材料の耐摩耗性はすべて摩耗に
作用に直面する表面層が高い硬度を具えることによって
発揮されるのに対し、高マンガン鋼の耐摩耗性は表面に
加わる衝撃力、破砕力などの外力を受けて現われる加工
硬化によるものであるから、そのメカニズムは根本的に
異なる。そのために破砕機などに組み入れて摩耗条件に
曝されると、表面に加工硬化層が生じ抜群の耐摩耗性が
発揮されるというきわめてユニークな材質の強化が進
み、摩耗の進行と硬化層の形成とがバランスしながら一
定の耐摩耗性を常に持続し、遂に寿命の尽きるまで変る
ことなく優れた機能を保証する特性が、現地作業の能率
向上の点で高く評価されて汎用化しているのである。
The wear resistance of all other wear resistant materials is exhibited by the high hardness of the surface layer which is subject to the action of wear, whereas the wear resistance of high manganese steel is the impact force applied to the surface. However, the mechanism is fundamentally different because it is due to work hardening that appears due to external force such as crushing force. Therefore, when it is installed in a crusher and exposed to wear conditions, a work-hardened layer is generated on the surface and excellent wear resistance is exhibited.Reinforcement of a very unique material progresses, progress of wear and formation of hardened layer While maintaining a good balance of wear resistance and the fact that it guarantees excellent functions until it reaches the end of its service life, it has been widely used and highly evaluated in terms of improving the efficiency of on-site work. .

【0006】尤も、他の金属材料と同様に、耐摩耗性に
優れた高マンガン鋼と謂えども、さらに優れた耐摩耗性
を求める需要者の声が一層高まる傾向は例外ではなく、
特に耐摩耗材料はその運転の記録を一瞥すれば、直ちに
耐摩耗性の優劣が鮮明に表示されるだけに、各産業分野
における高マンガン鋼の改良技術に対する熱意も高く、
その成果を報告した従来技術も少なくはない。
However, as with other metal materials, even high-manganese steel having excellent wear resistance, a so-called demand for even more excellent wear resistance, is no exception.
Especially for wear resistant materials, if you glance at the record of its operation, you can immediately see clearly the superiority and inferiority of wear resistance, and the enthusiasm for the improvement technology of high manganese steel in each industrial field is high,
There are many conventional technologies that reported the results.

【0007】特開昭54−104418号公報ではC量
を増やしてオーステナイトマトリックスのC濃度を高
め、さらにMn量を大きく設定して耐摩耗性と耐衝撃性
とを兼備させた衝撃刃などの部材用のオーステナイト系
耐衝撃耐摩耗性材を提示している。すなわち、JISに
規定するSCMnH鋼よりも高C−高Mnをベースと
し、C:1.20〜1.60,Mn:22.0〜26.
0,Cr:3.0〜6.0,(何れも重量%)の他にN
i,Mo,Vなどをそれぞれ3.0%以下程度含む成分
であり、オーステナイト相内へ従来技術よりも遥かに高
濃度のCを固溶させて耐摩耗性と耐衝撃性とを兼備させ
たと謳っている。なお、この従来技術ではSi:3.0
%以下と定め、実施例の5個の試験片ではほぼ0.6重
量%前後の配合量を示しているが、特に作用などに着目
した記述は見出せない。
In Japanese Patent Laid-Open Publication No. 54-104418, a member such as an impact blade having both wear resistance and impact resistance by increasing the C content to increase the C content of the austenite matrix and further setting the Mn content to a large value. Austenitic impact and wear resistant materials for automobiles are presented. That is, based on C-high Mn higher than SCNnH steel specified in JIS, C: 1.20 to 1.60, Mn: 22.0 to 26.
0, Cr: 3.0 to 6.0, (all in% by weight) and N
i, Mo, V, etc., each of which is a component containing about 3.0% or less, and having a much higher concentration of C dissolved in the austenite phase than in the conventional technique, has both wear resistance and impact resistance. I'm singing. In this prior art, Si: 3.0
% Or less, and the five test pieces of the examples show a compounding amount of about 0.6% by weight, but no description focusing on action or the like can be found.

【0008】特開昭60−248869号公報では、重
量%においてC:0.5〜2.0,Si:0.05〜
1.5,Mn:5.0〜15.0,Cr:10.0〜1
5.0,を主体とした耐摩耗性合金材を提起し、特に圧
延ロール材や中高温域の摺動摩擦材、たとえばシリンダ
ライナ材として好適であるとしている。尤も、この材料
の場合は従来の高C−高Cr材に代るべきロール材の開
発を主な目的に据え、高温下の耐酸化性の向上を第一義
的に捉えた材料であるから、基地をマルテンサイトと
し、残留オーステナイトの存在を忌避していることから
も、Mn配合量に一部の重複があったとしても、通常の
高マンガン鋼と基本的に異なるニーズから生れた高Cr
材質と見るべきである。
In JP-A-60-248869, C: 0.5-2.0 and Si: 0.05-in weight%.
1.5, Mn: 5.0 to 15.0, Cr: 10.0 to 1
A wear-resistant alloy material mainly composed of 5.0 is proposed, and it is particularly suitable as a rolling roll material or a sliding friction material in the medium to high temperature range, for example, a cylinder liner material. However, in the case of this material, the main purpose is to develop a roll material that should replace the conventional high C-high Cr material, and the improvement in oxidation resistance at high temperature is primarily considered. , The base is martensite and the presence of residual austenite is avoided, and even if there is some overlap in the Mn blending amount, high Cr produced from needs that are basically different from those of ordinary high manganese steel.
Should be seen as a material.

【0009】[0009]

【発明が解決しようとする課題】このように装置の果た
すべき特定の機能に応じて最適の材質の耐摩耗材を指向
した従来技術は多数に上るが、最も一般的な耐摩耗材と
して各所で慣用的に使用されている高マンガン鋼そのも
のに通じる一般的な耐摩耗性の向上手段に関しては、最
も直接的に有効な手段はC量を増やすことであり、この
点につていは誰しも異論を挟む余地のないところであ
る。Cを基地であるオーステナイト相に固溶することに
よって、基地自体の硬度が上がり強度も向上する一方、
C単独で、またはCrなどの添加成分と共に複合炭化物
を形成し、この炭化物が基地内に適当に分散して全体の
硬度を大きく上げる役割を果たすので、C量の増大はき
わめて有効である。しかし、同時にCの増強は材料自体
の脆化を促進する作用から逃れ難く、特に大型ジョーク
ラッシャーの歯板のように、単品で数トン、最大肉厚も
400mmに達するような大型部材であれば、鋳放し状
態で既に割れを生じているか、オーステナイト領域に加
熱した後の水焼入(水靱)の段階で破断するか、いずれ
にしても健全な良品を得ることが技術的にきわめて困難
であるという共通の課題に直面する。
Although there are many conventional techniques aiming at the wear resistant material of the optimum material according to the specific function to be performed by the apparatus, it is commonly used as the most general wear resistant material in various places. Regarding the general means for improving wear resistance that is related to the high manganese steel itself used in, the most directly effective means is to increase the amount of C, and everyone has an objection to this point. There is no room for it. By dissolving C in the austenite phase that is the base, the hardness of the base itself increases and the strength also increases, while
Increasing the amount of C is extremely effective, because it forms a complex carbide with C alone or with an additive component such as Cr, and this carbide appropriately disperses in the matrix to greatly increase the overall hardness. However, at the same time, the increase of C is difficult to escape from the action of promoting the embrittlement of the material itself, and especially if it is a large member such as a tooth plate of a large jaw crusher that can reach several tons with a maximum thickness of 400 mm. It is technically extremely difficult to obtain a sound good product in any case, whether it is already cracked in the as-cast state or is broken at the stage of water quenching (water toughness) after heating in the austenite region. Face the common challenge of being.

【0010】この結果、JISにおいて高マンガン鋼の
成分範囲は、ScMnH11として重量%にして、C:
0.90〜1.30,Si:0.80以下、Mn:1
1.0〜14.0,Cr:1.50〜2.50と規定
し、各業界で使用されている高マンガン鋼はすべてこの
範囲に準拠して製作され提供されているのである。しか
し、従来タイプの標準高マンガン鋼が各需要先から強い
改善と耐用期間の大幅延長を請求されていることは前記
の通りであり、耐摩耗性の向上と靱性の強化を同時に両
立させるニーズに如何に応えるかが深刻な課題として突
き付けられている。
As a result, the composition range of the high manganese steel in JIS is ScMnH11 in wt% and C:
0.90 to 1.30, Si: 0.80 or less, Mn: 1
It is defined as 1.0-14.0, Cr: 1.50-2.50, and all the high manganese steels used in each industry are manufactured and provided according to this range. However, as mentioned above, conventional type standard high-manganese steel has been demanded by each customer for strong improvement and significant extension of service life, and there is a need to simultaneously improve wear resistance and toughness at the same time. How to respond is a serious problem.

【0011】本発明は以上の課題を解決するために、現
行のJISに規定する標準品(前記のSCMnH11)
の具える耐摩耗性に対して少なくとも30%以上の高水
準を保証し、なお、でき得れば1.4倍の成績をも記録
できる耐摩耗性を具え、かつ、大型肉厚製品の製作も可
能であり、衝撃値も従来を遥かに凌駕する靱性を両立さ
せた新規の高マンガン鋼を目標として、各添加成分量を
段階的に検索し、特定した臨界的成分を探り当てて提供
することを目的とする。
In order to solve the above problems, the present invention is a standard product defined by the current JIS (the above-mentioned SCMnH11).
A high level of at least 30% of the wear resistance is guaranteed, and if possible, it is possible to record 1.4 times the results, and manufacture large-sized thick products. With the goal of a new high-manganese steel that has a toughness that far surpasses the conventional one, the impact value is searched step by step for each additive component amount, and the identified critical component is located and provided. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明に係る高マンガン
鋼は、重量%にしてC:1.5〜1.7,Si:0.1
〜0.4,Mn:30.0〜34.0,Cr:1.0〜
3.0を満足し、残部がFeおよび不可避的不純物から
なる材質が前記の目標とする耐摩耗性と靱性とを同時に
両立することを確認することによって前記課題の解決に
成功した。
The high manganese steel according to the present invention is made to have a weight percentage of C: 1.5 to 1.7 and Si: 0.1.
-0.4, Mn: 30.0-34.0, Cr: 1.0-
The above-mentioned problems were successfully solved by confirming that the material satisfying 3.0 and the balance of Fe and unavoidable impurities balance the target wear resistance and toughness at the same time.

【0013】前記本発明の添加成分に到達するまでの手
順や耐摩耗性、靱性の確認方法などは実施の形態の項で
詳細に述べるが、ここで簡単に経緯を総括すれば、高マ
ンガン鋼の耐摩耗性とC量との相関関係を検索の原点に
置き、目標値(JIS高マンガン鋼材の1.4倍)に達
する条件は、C:1.6重量%であることを確認した。
この高Cによる耐摩耗性を維持しつつも靱性の低下を如
何に阻止するかという点が材料としての成否を問う重要
な課題であるが、本発明では特にSiの挙動に着目し、
通常はあまり顧みられない低水準に限定したことを発明
の要旨とする点が特徴である。すなわち、材料試験の結
果やミクロ組織との整合性から、Si量の少ないほど母
材内へのCの固溶量が多くなり、基地の強化が耐摩耗性
向上に貢献する一方、結晶粒界に析出する炭化物量が抑
制されて靱性低下を防止する作用が明確に発揮されるこ
とを数値的に把握し、この作用を材質構成のすべてのベ
ースに据えたことが課題解決に繋がったのである。
The procedure for reaching the additive components of the present invention and the method for confirming wear resistance and toughness will be described in detail in the section of the embodiments. The correlation between the wear resistance and the C content was set as the origin of the search, and it was confirmed that the condition to reach the target value (1.4 times that of JIS high manganese steel) was C: 1.6% by weight.
How to prevent the deterioration of the toughness while maintaining the wear resistance due to the high C is an important issue to ask the success or failure of the material. In the present invention, attention is paid to the behavior of Si,
The feature is that the gist of the invention is to limit the level to a low level which is not usually neglected. That is, from the results of material tests and the consistency with the microstructure, the smaller the amount of Si, the larger the amount of C dissolved in the base metal, and the strengthening of the matrix contributes to the improvement of wear resistance, while the grain boundary Numerically grasping that the amount of carbides precipitated in the steel was suppressed and the effect of preventing deterioration of toughness was clearly demonstrated, and setting this effect as the basis of all material composition led to the solution of the problem. .

【0014】重量%にして1.6C−0.2Siという
基本的な骨格が成立したので、これをベースとして次に
Mn量の決定に入る。Mn重量%と、水靱処理による内
部割れ発生の有無と、ミクロ組織と、耐摩耗性および衝
撃値とを突き合わせた相関関係から、Mn:32重量%
が最適である解答に到達する。さらに重量%にして1.
6C−0.2Si−32MnをベースとしてCr量を変
えて検索し、Cr重量%と、水靱処理による内部割れ発
生の有無と、ミクロ組織と、耐摩耗性および衝撃値との
突き合わせでCr:2重量%が決定する。このような検
索と確認を積み重ねる手順を繰り返し、常に目標値と対
比しつつデータを有機的に複合し、重量%にして1.6
C−0.2Si−32Mn−2Crの基準成分の確定に
到達した。
Since the basic skeleton of 1.6C-0.2Si in terms of weight% was established, the Mn content is determined based on this basic skeleton. From the correlation of Mn wt%, occurrence of internal cracks due to water toughening treatment, microstructure, wear resistance and impact value, Mn: 32 wt%
Arrives at the best solution. Further by weight%, 1.
6C-0.2Si-32Mn was used as a base and the amount of Cr was changed to search for Cr weight%, presence or absence of internal cracking due to water toughening treatment, microstructure, wear resistance and impact value. 2% by weight is determined. The procedure of stacking such searches and confirmations is repeated, and the data is organically combined while always comparing with the target value, and the weight% is 1.6%.
The determination of the reference component of C-0.2Si-32Mn-2Cr has been reached.

【0015】[0015]

【発明の実施の形態】データベースとなる試験片は、溶
解炉によって各種検索条件に一致する成分の溶解金属を
肉厚80mmのYブロックに注湯して鋳放し品を得た。
この鋳放し品を長さ100mmに二分割し、そのうちの
一つをさらに1100℃×4時間保持のオーステナイト
領域から水焼入(水靱処理)した。水靱処理後、それぞ
れ必要なサイズに分断して試験片を作成するが、耐摩耗
性試験(衝撃摩耗)については、図2に示すような円筒
形のドラム1の内周面へ幾つかの反撥板2を円周方向に
配置し、さらにドラム1の中心軸を中心として外部の電
動機4の駆動を受け周速度14m/secで回転する回
転アーム3の回転端面にそれぞれ60×40×10mm
のサイズに仕上げた試験片Tを装着し、ドラム1内部に
装入した13〜27mmサイズの石英斑岩5と擦過させ
てその摩耗減量を測定する様式である。また、シャルピ
ー衝撃試験片はJIS3号の規格に基づいて作成した。
BEST MODE FOR CARRYING OUT THE INVENTION A test piece serving as a database was obtained by pouring molten metal having a component matching various retrieval conditions into a Y block having a thickness of 80 mm in a melting furnace to obtain an as-cast product.
This as-cast product was divided into two pieces having a length of 100 mm, and one of them was further water-quenched (water toughening treatment) from the austenite region held at 1100 ° C. for 4 hours. After the water toughness treatment, the test pieces are cut into pieces each having a required size. For the wear resistance test (impact wear), some test pieces are attached to the inner peripheral surface of the cylindrical drum 1 as shown in FIG. The repulsion plates 2 are arranged in the circumferential direction, and further 60 × 40 × 10 mm are respectively provided on the rotary end faces of the rotary arms 3 which are driven by an external electric motor 4 and rotate at a peripheral speed of 14 m / sec about the central axis of the drum 1.
This is a mode in which a test piece T finished in the size of 1 is mounted and rubbed against the 13-27 mm size quartz porphyry 5 loaded in the drum 1 to measure the wear loss thereof. Moreover, the Charpy impact test piece was created based on the JIS No. 3 standard.

【0016】各試験を通じて基本的な目標値はJISに
規定するSCMnH11を基準とし、耐摩耗性について
は同じ前記の図2に示す試験機による結果において1.
3倍が下限の条件に設定し、シャルピー衝撃値(Uノッ
チ)については20J/cm2以上であることを条件に
設定した。
Throughout each test, the basic target value is based on SCMnH11 specified in JIS, and the wear resistance is the same as the result of the tester shown in FIG.
The lower limit was set to 3 times, and the Charpy impact value (U notch) was set to 20 J / cm 2 or more.

【0017】図3は前記試験において得られたC重量%
と耐摩耗性との関係を図示したものであり、ここで適用
した試験片はすべてC量だけを変動し、その他の成分を
一定に維持したものであるが、公知技術から高Cの高耐
摩耗性を予見し、靱性回復の要件としてMn量はJIS
規格の11.0〜14.0重量%より遥かに高い18重
量%を予め設定した。高マンガン鋼の耐摩耗性がC重量
%にほぼ比例することが改めて確認され、JIS品を標
準としてその1.4倍の耐摩耗性を確保する上で、所要
のC量は1.6重量%であることが要件として確定され
るが、最低条件の同1.3倍を満たす条件から見れば、
C:1.5〜1.7重量%を以て成分範囲と定めること
ができる。
FIG. 3 shows the C% by weight obtained in the above test.
And the wear resistance are shown in the figure. In all the test pieces applied here, only the C content was changed and the other components were kept constant. Forecasting wear resistance, Mn content is JIS as a requirement for recovery of toughness.
18% by weight, which is much higher than the standard 11.0 to 14.0% by weight, was preset. It was reconfirmed that the wear resistance of high manganese steel is almost proportional to C% by weight, and in order to secure 1.4 times the wear resistance of JIS products as standard, the required amount of C is 1.6%. % Is confirmed as a requirement, but from the condition of 1.3 times the minimum requirement,
C: 1.5 to 1.7% by weight can be defined as the component range.

【0018】つぎにSiの調整を通じて高Cによって誘
起される脆性増加の救済を図る。そのため表1のように
1.4C−18Mn−2.4Cr−1Wをベースとして
Si重量%だけを上下に変動し、耐摩耗性とシャルピー
衝撃値、およびミクロ組織との相関を検知した。
Next, the increase of brittleness induced by high C is relieved by adjusting Si. Therefore, as shown in Table 1, only Si weight% was changed up and down based on 1.4C-18Mn-2.4Cr-1W, and the correlation between the wear resistance, the Charpy impact value, and the microstructure was detected.

【0019】[0019]

【表1】 [Table 1]

【0020】図4(A)は縦軸に対SCMnH11衝撃
耐摩耗係数、横軸にSi重量%をプロットした図であ
り、図4(B)は試験片中心部のシャルピー衝撃値(U
ノッチ,J/cm2)である。両図からSi重量%が
0.17から0.75の範囲では、Si量の増加するに
従って耐摩耗性は低下しているが、0.75重量%以上
ではあまり大きな変化がないこと、またSi重量%が増
加するほどシャルピー衝撃値が低下するが、0.54重
量%以上ではあまり大きな変化のないことが確かめられ
た。
FIG. 4A is a plot of SCMnH11 impact wear resistance coefficient on the ordinate and Si weight% on the abscissa. FIG. 4B shows the Charpy impact value (U) at the center of the test piece.
Notch, J / cm 2 ). From both figures, when the Si weight% is in the range of 0.17 to 0.75, the wear resistance decreases as the Si content increases, but when it is 0.75 weight% or more, there is not much change. It was confirmed that the Charpy impact value decreases as the weight% increases, but there is no significant change at 0.54 weight% or more.

【0021】図1はSi重量%の違いによるミクロ組織
の変遷を示したものであり、本発明の重要な要件の根拠
となるデータである。図1のうち、(A)はSi:0.
17重量%、(B)は同0.54重量%、(C)は同
0.75重量%、(D)は同0.94重量%であり、明
らかにSi重量%の増加と共に特に結晶粒界に析出する
炭化物量の増加することが明確に示されている。すなわ
ち、同一のC重量%であってもSi量の少ないほど母材
中へのCの固溶が多く、その結果、耐摩耗性とシャルピ
ー衝撃値が明らかに向上して高Cによる靱性への悪影響
を救済することを意味し、組織と物性値とが完全に整合
する。しかし、溶解技術や鋳造技術の限界(脱酸、溶湯
の流動性)や材料スクラップからの避け難い添加を考慮
して、事実上の標準目標を0.2重量%とし、Si量を
0.4重量%以下にすれば耐摩耗性とシャルピー衝撃値
はSi量が0.4重量%以上の時を上まわる事は図
(A)(B)より明らかなため、最低0.1〜最高0.
4重量%までの幅を許容範囲に設定する。
FIG. 1 shows the transition of the microstructure due to the difference in Si weight%, and is the data which is the basis of the important requirement of the present invention. In FIG. 1, (A) shows Si: 0.
17% by weight, (B) 0.54% by weight, (C) 0.75% by weight, and (D) 0.94% by weight. It is clearly shown that the amount of carbides precipitated in the boundary increases. That is, even with the same C% by weight, the smaller the amount of Si, the more the solid solution of C in the base material. As a result, the wear resistance and the Charpy impact value are obviously improved, and the toughness due to the high C is increased. Means to remedy adverse effects, and the tissue and physical property values are completely matched. However, in consideration of the limits of melting technology and casting technology (deoxidation, fluidity of molten metal) and inevitable addition from material scrap, the practical standard target is 0.2% by weight, and the Si content is 0.4. Since it is clear from FIGS. (A) and (B) that the wear resistance and the Charpy impact value exceed that when the Si content is 0.4% by weight or less, if the content is less than 10% by weight, the minimum value is 0.1 to the maximum value.
The width up to 4% by weight is set within the allowable range.

【0022】表2はMn量を確定するために作成した試
験片の成分であり、既に確定した1.6C−0.2Si
をベースとして一定に保ち、Mn量だけを増減してその
最適量を検索した。
Table 2 shows the components of the test piece prepared to determine the Mn content, and the already determined 1.6C-0.2Si.
Based on the above, the Mn amount was increased or decreased and the optimum amount was searched.

【0023】[0023]

【表2】 [Table 2]

【0024】図5(A)は縦軸に対SCMnH11衝撃
耐摩耗倍数、横軸にMn重量%をプロットした図であ
り、図4(B)は試験片中心部のシャルピー衝撃値(U
ノッチ,J/cm2)である。両図からMn重量%が増
加するにつれて耐摩耗性が増加すること、また、シャル
ピー衝撃値についてはMn:31.9重量%に最高点が
認められることが判明した。次に図6(A)〜(F)は
それぞれ表2の各試験片のミクロ組織を示したものであ
り、組織写真から言えることは、Mn:17.5〜2
9.4重量%の間はすべて結晶粒界に針状炭化物が析出
しているが、Mnが31.9重量%以上となると針状炭
化物はほとんど影を潜めてオーステナイト単相の組織に
なっている。この組織の変移と耐摩耗性、衝撃値間に相
関性のあることは明らかであり、32重量%が標準の目
標に設定される。そこで、特に厚肉大型製品のすべてに
亘って完全なオーステナイト化を保証し、加工硬化性を
堅持する点からも、Mn:30〜34重量%は必須の要
件となる。
FIG. 5 (A) is a plot of SCMnH11 impact wear resistance multiples on the vertical axis and Mn weight% on the horizontal axis. FIG. 4 (B) shows the Charpy impact value (U in the center of the test piece).
Notch, J / cm 2 ). From both figures, it was found that the wear resistance increased as the Mn weight% increased, and the highest point was found at the Mn: 31.9 weight% Charpy impact value. Next, FIGS. 6 (A) to 6 (F) show the microstructures of the test pieces in Table 2, respectively.
The needle-like carbides are precipitated in the grain boundaries in all the areas of 9.4 wt%, but when Mn is 31.9 wt% or more, the needle-like carbides almost hide shadows and form an austenite single-phase structure. There is. It is clear that there is a correlation between the displacement of the structure, the wear resistance, and the impact value, and 32% by weight is set as a standard target. Therefore, Mn: 30 to 34% by weight is an essential requirement from the viewpoint of ensuring complete austenitization and maintaining work hardenability especially in all thick and large products.

【0025】表3はCr量確定のための試験片の成分表
であり、ベースとなる基本成分は、既に確定した1.6
C−0.2Si−32Mnであり、Cr量だけを増減し
てその物性値とミクロ組織との相関から適性の添加量の
確定を図った。
Table 3 is a component table of the test piece for determining the Cr amount, and the basic component as the base is the already determined 1.6.
It was C-0.2Si-32Mn, and only the amount of Cr was increased or decreased to determine the appropriate addition amount from the correlation between the physical property value and the microstructure.

【0026】[0026]

【表3】 [Table 3]

【0027】図7(A)は縦軸に対SCMnH11衝撃
耐摩耗倍数、横軸にCr重量%をプロットした図であ
り、図7(B)は試験片中心部のシャルピー衝撃値(U
ノッチ,J/cm2)である。耐摩耗性についてはC
r:2.33重量%のときが最高を記録するが、シャル
ピー衝撃値についてはCr重量%の増加に伴って低下し
ていく。図8(A)〜(C)は、表3に示した各試験片
のミクロ組織の写真であり、Crの増加と共に炭化物が
増加し、とくに細かい粒状炭化物の増加が目に立つ。水
靱処理によって内部割れを発生しないことを条件に耐摩
耗性とシャルピー値の目標値を満足できるのは、Cr:
2重量%であり、前後の許容誤差を含めて1〜3重量%
までの範囲に限定することを確定する。
FIG. 7 (A) is a diagram in which the vertical axis is plotted against SCMnH11 impact wear resistance multiple, and the horizontal axis is Cr weight%, and FIG. 7 (B) is the Charpy impact value (U in the center of the test piece.
Notch, J / cm 2 ). C for wear resistance
The highest value is recorded when r: 2.33% by weight, but the Charpy impact value decreases with an increase in Cr% by weight. 8A to 8C are photographs of the microstructures of the test pieces shown in Table 3, in which carbides increase as Cr increases, and particularly fine granular carbides increase. The target values of the wear resistance and the Charpy value can be satisfied under the condition that internal cracking does not occur due to the water toughening treatment is Cr:
2% by weight, 1-3% by weight including the tolerance before and after
Confirm that the range is limited to.

【0028】[0028]

【実施例】最終的に本発明の要件を構築する手順を積み
上げて、表3における試験片No.12が本発明の実施
例として到達した一つの結果となるわけである。すなわ
ち、基本的な成分は1.6C−0.2Si−32.0M
n−2.0Crであり、それに溶解スクラップの自由度
や精製技術上の条件、湯流れなどの鋳造技術的な条件を
配慮して一定の前後幅を許容範囲として設定して請求項
の成分限定に達する。そして該実施例の耐摩耗性は図7
(A)(B)に例示されるようにJISに規格するSC
MnH11に対して1.39倍(重量比)の倍数を記録
し、またシャルピー衝撃値も26J/cm2と目標の2
0J/cm2を遥かに超える好成績を残したのである。
[Example] Finally, the procedures for constructing the requirements of the present invention are piled up, and the test piece No. 12 is one of the results reached as the embodiment of the present invention. That is, the basic component is 1.6C-0.2Si-32.0M.
n-2.0Cr, and a certain front and rear width is set as an allowable range in consideration of the degree of freedom of molten scrap, the conditions of refining technology, the conditions of casting technology such as molten metal flow, etc. Reach And the wear resistance of the embodiment is shown in FIG.
SC compliant with JIS as illustrated in (A) and (B)
It recorded a multiple of 1.39 times (weight ratio) to MnH11, and also had a Charpy impact value of 26 J / cm 2, which was a target of 2.
He left a good record, far exceeding 0 J / cm 2 .

【0029】[0029]

【発明の効果】本発明は以上に述べた通り、高マンガン
鋼のJIS標準品に対して少なくとも30%以上の耐摩
耗性の向上を保証し、しかも耐摩耗性向上に伴う靱性の
低下という過去の技術常識を打破して前記標準品と少な
くとも同等、またはそれ以上の耐衝撃性を維持する画期
的な材質を提供できるので、鉄道関係、砕石、製砂など
の土木原料部門、および直接その恩恵に浴する土建事業
など、国土を構築する基礎産業分野に貢献する効果は著
しいものがある。
As described above, the present invention guarantees at least 30% or more improvement in wear resistance with respect to JIS standard products of high-manganese steel, and the toughness decreases with the improvement in wear resistance. Since it is possible to provide an epoch-making material that breaks the technical common sense of No. 1 and maintains impact resistance that is at least equal to or higher than the standard product, it is possible to provide railway materials, crushed stone, sand engineering, etc. The effect of contributing to the basic industrial fields that build the national land, such as the earth-building business that benefits, is remarkable.

【0030】高マンガン鋼の耐摩耗性を向上する王道
は、周知のごとく高Cによる硬度の上昇であることは今
更言を待たないが、計画的で精緻な試験で追及した結
果、炭化物を基地内に分散させて硬度の増大を図るより
は、基地内へ固溶して基地自体の硬度アップを図る方が
より有効であり、その最も効果的な手法として従来はほ
とんどその意味では顧みることも希有であったSiの役
割に着目し、低レベルの成分範囲に限定することによっ
て、C固溶促進に伴う基地の強化、高耐摩耗性と高シャ
ルピー衝撃値の確保、オーステナイト結晶粒界に析出す
る炭化物の抑制と脆性の改善という全く新規な作用を誘
導したことが、従来の壁を破って優れた耐摩耗性と靱性
の同時成立を可能にした根源と言える。
As is well known, the royal road for improving the wear resistance of high-manganese steel is an increase in hardness due to high C, but it is awaiting further improvement. It is more effective to form a solid solution in the matrix to increase the hardness of the matrix itself, rather than to disperse it in the matrix to increase the hardness, and the most effective method heretofore is almost considered in that sense. Focusing on the role of Si, which was rare, and limiting it to a low-level component range, strengthening the matrix accompanying the promotion of C solid solution, ensuring high wear resistance and high Charpy impact value, and precipitating on austenite grain boundaries It can be said that the induction of a completely new effect of suppressing the formation of carbides and improving brittleness is the root that made it possible to simultaneously achieve excellent wear resistance and toughness by breaking conventional walls.

【0031】Siの前記特有の作用の詳細についてはな
お、不明の点も残されており、今後の冶金学的な研究に
待つところが多いが、耐熱金属材料第23委員会研究報
告・vol.26.No.2・昭和60年7月「9Cr
−2Mo−V−Nb耐熱鋼のクリープ破断強度と衝撃特
性に及ぼすSiの影響」において「Fe−Si−C系鋼
においてSi−C(置換型原子と侵入型原子)の結合は
見られず、Fe中にSiが固溶することによってCは表
面、あるいは結晶粒界から追いやられる」という記載が
見出される。高マンガン鋼においては、Siはフェライ
ト化促進元素であり、フェライトはオーステナイトに比
べてC固溶量が少ないため、Fe中でのSi量が低下す
るほど、母材の基地内へのCの固溶量が増進する傾向
は、理論的にも首肯されるところであり、妥当な見解と
見るべきである。
Details of the peculiar action of Si are still unclear, and there are many places waiting for future metallurgical research, but the heat-resistant metal material 23rd Committee research report, vol. 26. No. 2. July 1985 "9Cr
-2Mo-V-Nb heat-resistant steel creep rupture strength and the effect of Si on impact properties "in the" Fe-Si-C-based steel Si-C (substitution type atoms and interstitial atoms) bond is not seen, It is found that C is driven away from the surface or grain boundaries by the solid solution of Si in Fe. In high-manganese steel, Si is a ferritization-promoting element, and ferrite has a smaller amount of C solid solution than austenite. Therefore, the lower the amount of Si in Fe, the more solid C is in the matrix of the base material. The tendency of increasing the amount of solution is theoretically agreed and should be regarded as a reasonable view.

【図面の簡単な説明】[Brief description of drawings]

【図1】Si量の変動とミクロ組織の変遷を(A)〜
(D)で示す金属組織の顕微鏡写真である。(倍率:1
00,以下同じ)
FIG. 1 shows changes in the amount of Si and changes in the microstructure (A).
It is a microscope picture of the metal structure shown to (D). (Magnification: 1
00, same below)

【図2】本発明における衝撃摩耗試験機の縦断正面図で
ある。
FIG. 2 is a vertical sectional front view of an impact wear tester according to the present invention.

【図3】C量と耐摩耗性の関係図である。FIG. 3 is a diagram showing the relationship between the amount of C and wear resistance.

【図4】Si量と耐摩耗性の関係図(A)、およびシャ
ルピー衝撃値との関係図(B)である。
FIG. 4 is a relationship diagram (A) between a Si amount and wear resistance and a relationship diagram (B) between a Charpy impact value.

【図5】Mn量と耐摩耗性の関係図(A)、およびシャ
ルピー衝撃値との関係図(B)である。
FIG. 5 is a relationship diagram (A) between the amount of Mn and wear resistance and a relationship diagram (B) between the Charpy impact value.

【図6】Mn量の変動とミクロ組織の変遷を(A)〜
(F)で示す金属組織の顕微鏡写真である。
FIG. 6 shows changes in the amount of Mn and changes in the microstructure (A).
It is a microscope picture of the metal structure shown to (F).

【図7】Cr量と耐摩耗性の関係図(A)、およびシャ
ルピー衝撃値との関係図(B)である。
FIG. 7 is a relationship diagram (A) between a Cr amount and wear resistance and a relationship diagram (B) between a Charpy impact value.

【図8】Cr量の変動とミクロ組織の変遷を(A)〜
(C)で示す金属組織の顕微鏡写真である。
FIG. 8 shows changes in the Cr content and changes in the microstructure (A).
It is a microscope picture of the metal structure shown in (C).

【符号の説明】[Explanation of symbols]

1 ドラム 2 反撥板 3 回転アーム 4 電動機 5 石英斑岩 T 試験片 1 Drum 2 Repulsion Plate 3 Rotating Arm 4 Electric Motor 5 Quartz Porphyry T Test Piece

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%にしてC:1.5〜1.7,S
i:0.1〜0.4,Mn:30.0〜34.0,C
r:1.0〜3.0を満足し、残部がFeおよび不可避
的不純物からなる耐摩耗性に優れ、かつ靱性に富む高マ
ンガン鋼。
1. C: 1.5 to 1.7, S in terms of weight%
i: 0.1 to 0.4, Mn: 30.0 to 34.0, C
r: 1.0 to 3.0, a high manganese steel excellent in wear resistance and rich in toughness, the balance being Fe and inevitable impurities.
JP8080888A 1996-03-08 1996-03-08 High manganese steel with excellent wear resistance and high toughness Expired - Lifetime JP3070658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8080888A JP3070658B2 (en) 1996-03-08 1996-03-08 High manganese steel with excellent wear resistance and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8080888A JP3070658B2 (en) 1996-03-08 1996-03-08 High manganese steel with excellent wear resistance and high toughness

Publications (2)

Publication Number Publication Date
JPH09241808A true JPH09241808A (en) 1997-09-16
JP3070658B2 JP3070658B2 (en) 2000-07-31

Family

ID=13730898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8080888A Expired - Lifetime JP3070658B2 (en) 1996-03-08 1996-03-08 High manganese steel with excellent wear resistance and high toughness

Country Status (1)

Country Link
JP (1) JP3070658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121277A1 (en) * 2021-12-21 2023-06-29 주식회사 포스코 Welded steel pipe for slurry transporting and manufacturing method for same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862029B2 (en) 2013-03-15 2018-01-09 Kennametal Inc Methods of making metal matrix composite and alloy articles
US9346101B2 (en) 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
US10221702B2 (en) 2015-02-23 2019-03-05 Kennametal Inc. Imparting high-temperature wear resistance to turbine blade Z-notches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121277A1 (en) * 2021-12-21 2023-06-29 주식회사 포스코 Welded steel pipe for slurry transporting and manufacturing method for same

Also Published As

Publication number Publication date
JP3070658B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
CA2886286C (en) Method for producing cast steel having high wear resistance and steel having said characteristics
JP4648094B2 (en) High Cr cast iron with excellent fatigue crack resistance and method for producing the same
KR20050083913A (en) Method for making an abrasion resistant steel plate and plate obtained
JP2005256169A (en) Wear resistant steel sheet having excellent low temperature toughness and production method therefor
JP4366475B2 (en) High-alloy glen cast iron material for hot rolling rolls made by centrifugal casting
Okechukwu et al. Prominence of Hadfield steel in mining and minerals industries: A review
JP2007197810A (en) Wear resistant steel sheet
JP3545963B2 (en) High toughness super wear resistant cast steel and method for producing the same
JP2018204110A (en) Abrasion resistant thick steel plate
CN104120333A (en) Wear-resistant cast iron material, preparation method thereof and helical blade guard plate made from wear-resistant cast iron material
JP3348592B2 (en) Weathering steel and method of manufacturing the same
JP3070658B2 (en) High manganese steel with excellent wear resistance and high toughness
JPH06256896A (en) Wear-resistant steel excellent in surface property and its production
JP7135737B2 (en) Austenitic hot-rolled steel sheet, manufacturing method thereof, and wear-resistant parts
Kootsookos et al. Development of a white cast iron of fracture toughness 40 MPa√ m
JP2019127633A (en) Clad steel plate and method for producing the same
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
EP0205869B1 (en) Manganese steel
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JPH1161339A (en) High toughness super wear-resistant steel and its manufacture
JPS5925957A (en) High toughness chisel for breaker
JP2000345280A (en) Hypoeutectic high chromium cast iron material particularly suitable for large product and its production
JP3739924B2 (en) Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member
Opapaiboon et al. Solidification structure and heat treatment behavior of multi-alloyed white cast iron with extensive molybdenum content for applying to hot work rolls
Mandal et al. Microstructure, hardness, toughness and abrasive wear resistance of 16.0 wt.% chromium white iron after continuous and cyclic destabilisation treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term