JPH09241412A - Drawn polytetrafluoroethylene tube and its production - Google Patents

Drawn polytetrafluoroethylene tube and its production

Info

Publication number
JPH09241412A
JPH09241412A JP8080930A JP8093096A JPH09241412A JP H09241412 A JPH09241412 A JP H09241412A JP 8080930 A JP8080930 A JP 8080930A JP 8093096 A JP8093096 A JP 8093096A JP H09241412 A JPH09241412 A JP H09241412A
Authority
JP
Japan
Prior art keywords
tube
expanded
elastomer
stretched
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8080930A
Other languages
Japanese (ja)
Inventor
Fumihiro Hayashi
文弘 林
Shinichi Miyake
伸一 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8080930A priority Critical patent/JPH09241412A/en
Publication of JPH09241412A publication Critical patent/JPH09241412A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels

Abstract

PROBLEM TO BE SOLVED: To obtain a drawn polytetrafluoroethylene tube which has a specific fine fibrous tissue, specific values of radial elongation and Young's modulus and is useful as an artificial blood vessel or a filtration membrane maintaining antithrombotic properties and histocompatibility and having improved stretchability in the radial direction. SOLUTION: This tube has a fine fibrous tissue comprising fibers and nodes mutually connected with these fibers, when necessary, the tissue is coated with an elastomer. In addition, as for circumferential deformation, the elongation and Young's modulus due to tension load in the circumferential direction is adjusted to >=5% and <=2.0×10<5> Pa, respectively. This tube is prepared by expanding a drawn polytetrafluoroethylene tube having a prescribed fine fibrous tissue in the circumferential direction, then allowing the tube to shrink smaller then the diameter after the expansion and setting to the state that its dimension is unchanged and heating the tube at a temperature high than 150 deg.C, its transition point, and lower than its melting point of the molecular.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、円周方向(径方
向)への張力の負荷によって、その径が膨張し、その張
力を除去することによって元の径に復元可能な円周方向
変形性(径方向の伸縮性)を備えた延伸ポリテトラフル
オロエチレンチューブとその製造方法に関する。本発明
の延伸ポリテトラフルオロエチレンチューブは、人工血
管のような医療分野における使用に適しており、さらに
は、濾過膜等への工業分野にも応用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circumferential deformability in which a diameter is expanded by a load of tension in the circumferential direction (radial direction) and the original diameter can be restored by removing the tension. The present invention relates to a stretched polytetrafluoroethylene tube having (radial stretchability) and a method for producing the same. The expanded polytetrafluoroethylene tube of the present invention is suitable for use in the medical field such as artificial blood vessels, and further applicable to the industrial field such as filtration membranes.

【0002】[0002]

【従来の技術】ポリテトラフルオロエチレン(以下、P
TFEと略記)から作製された延伸PTFEチューブ
は、素材のPTFE自体が抗血栓性に優れていることに
加えて、延伸によって形成される繊維と該繊維によって
互いに連結された結節とからなる微細繊維状組織に基づ
く多孔質構造が生体適合性に優れているため、生体血管
の病変部位と置換したり、病変部位を迂回するようにバ
イパスを移植したりするなど、血行を維持するための代
用血管として用いられている。しかしながら、延伸PT
FEチューブからなる人工血管は、生体血管に比べて変
形能に乏しいため、拍動によって膨張と収縮を繰り返す
生体血管と径が充分にマッチングしない。そのため、生
体血管と当該人工血管との吻合部等で血液の流れが乱れ
て、血栓が形成され、閉塞を引き起こすことがある。ま
た、生体血管と当該人工血管との吻合部には、両者の弾
性率の相違によって応力の集中が生じるため、生体血管
が変性して吻合部で肥厚し、閉塞を引き起こすことがあ
る。
2. Description of the Related Art Polytetrafluoroethylene (hereinafter referred to as P)
An expanded PTFE tube made from TFE is a fine fiber composed of a fiber formed by drawing and a nodule connected to each other in addition to the fact that the material PTFE itself has excellent antithrombogenicity. Since the porous structure based on dendritic tissue has excellent biocompatibility, it can be used as a substitute blood vessel for maintaining blood circulation such as replacing a lesion site of a living blood vessel or implanting a bypass so as to bypass the lesion site. Is used as. However, stretched PT
Since the artificial blood vessel composed of the FE tube is poor in deformability as compared with the living blood vessel, the diameter of the living blood vessel that repeats expansion and contraction due to pulsation does not sufficiently match. Therefore, the blood flow may be disturbed at the anastomosis between the living blood vessel and the artificial blood vessel, and thrombus may be formed to cause occlusion. Further, stress is concentrated on the anastomosis portion between the living blood vessel and the artificial blood vessel due to the difference in elastic modulus between the two, so that the living blood vessel may be denatured and thickened at the anastomosis portion, causing occlusion.

【0003】従来より、延伸PTFEチューブに伸縮性
を付与するために、幾つかの方法が提案されている。例
えば、延伸PTFEチューブを長手方向に圧縮して固定
したまま加熱することにより、長手方向の速回復性を備
えた延伸PTFEチューブを製造する方法(特開平2−
645号公報)、長手方向に圧縮された延伸PTFEに
エラストマーをコーティングすることにより、長手方向
の伸張性を備えた人工血管を製造する方法(特開平5−
509236号公報)などが提案されている。しかしな
がら、何れの方法も、延伸PTFEチューブに長手方向
の伸縮性を付与するのみで、径方向への充分な伸縮性を
付与することはできない。
Heretofore, several methods have been proposed to impart stretchability to the expanded PTFE tube. For example, a method of producing a stretched PTFE tube having a fast recovery property in the longitudinal direction by heating the stretched PTFE tube while compressing it in the longitudinal direction and fixing it (JP-A-2-
No. 645), a method for producing an artificial blood vessel having extensibility in the longitudinal direction by coating stretched PTFE compressed in the longitudinal direction with an elastomer (Japanese Patent Application Laid-Open No. HEI 5-1951).
No. 509236) has been proposed. However, in any of the methods, only the stretched PTFE tube is stretchable in the longitudinal direction, and it is not possible to impart sufficient stretchability in the radial direction.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、延伸
PTFEチューブが本来有する抗血栓性や組織適合性を
保持させたまま、径方向の伸縮性を備えた延伸PTFE
チューブを提供することにある。本発明者らは、前記従
来技術の問題点を克服するために鋭意研究した結果、円
周方向(径方向)に膨張させた後、収縮させた延伸PT
FEチューブに、エラストマーの被覆及び/または熱処
理を行うことにより、ミクロな結節の配向状態を記憶さ
せることができ、それによって、円周方向変形性(即
ち、径方向への伸張及び収縮が可能な伸縮性)を備えた
延伸PTFEチューブの得られることを見いだした。本
発明は、これらの知見に基づいて完成するに至ったもの
である。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide expanded PTFE having radial stretchability while maintaining the original antithrombogenicity and tissue compatibility of expanded PTFE tube.
To provide a tube. The inventors of the present invention have conducted extensive studies to overcome the above-mentioned problems of the prior art, and as a result, expanded PT that was expanded in the circumferential direction (radial direction) and then contracted.
By coating the FE tube with an elastomer and / or heat-treating it, it is possible to memorize the orientation state of micro-nodules, which allows circumferential deformation (ie, radial expansion and contraction). It has been found that a stretched PTFE tube with (stretchability) can be obtained. The present invention has been completed based on these findings.

【0005】[0005]

【課題を解決するための手段】本発明によれば、以下の
各発明が提供される。 (1) 繊維と該繊維によって互いに連結された結節と
からなる微細繊維状組織を有する延伸ポリテトラフルオ
ロエチレンチューブであって、円周方向への張力の負荷
による伸びが5%以上で、かつ、ヤング率が2.0×1
5Pa以下の円周方向変形性を有することを特徴とす
る延伸ポリテトラフルオロエチレンチューブ。 (2) 繊維と該繊維によって互いに連結された結節と
からなる微細繊維状組織を有する延伸ポリテトラエチレ
ンチューブを、円周方向に膨張させ、次いで、膨張後の
径以下に収縮させることを特徴とする円周方向変形性を
有する延伸ポリテトラフルオロエチレンチューブの製造
方法。
According to the present invention, the following inventions are provided. (1) A stretched polytetrafluoroethylene tube having a fine fibrous structure composed of fibers and nodules connected to each other, the elongation being 5% or more due to the load of tension in the circumferential direction, and Young's modulus is 2.0 x 1
A drawn polytetrafluoroethylene tube having a circumferential deformability of 0 5 Pa or less. (2) A stretched polytetraethylene tube having a fine fibrous structure composed of fibers and nodules connected to each other is expanded in the circumferential direction, and then contracted to a diameter equal to or smaller than the expanded diameter. A method for producing a stretched polytetrafluoroethylene tube having circumferential deformability.

【0006】(3) 繊維と該繊維によって互いに連結
された結節とからなる微細繊維状組織を有する延伸ポリ
テトラフルオロエチレンチューブにエラストマーを複合
化させた後、円周方向に膨張させ。次いで、該エラスト
マーの復元力によって膨張後の径以下に収縮させ、しか
る後、該エラストマーを除去することを特徴とする円周
方向変形性を有する延伸ポリテトラフルオロエチレンチ
ューブの製造方法。 (4) 繊維と該繊維によって互いに連結された結節か
らなる微細繊維状組織を有する延伸ポリテトラエチレン
チューブを、円周方向に膨張させ、次いで、膨張後の径
以下に収縮させた後、該チューブを寸法が変わらない状
態に固定して、分子転移温度の150℃以上、融点以下
の温度に加熱することを特徴とする円周方向変形性を有
する延伸ポリテトラフルオロエチレンチューブの製造方
法。
(3) An elastomer is compounded with a stretched polytetrafluoroethylene tube having a fine fibrous structure composed of fibers and knots connected to each other, and then expanded in the circumferential direction. Next, a method for producing a stretched polytetrafluoroethylene tube having circumferential deformability, which comprises shrinking to a diameter after expansion by a restoring force of the elastomer and then removing the elastomer. (4) A stretched polytetraethylene tube having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers is expanded in the circumferential direction, and then contracted to a diameter equal to or smaller than the expanded diameter, and then the tube is expanded. Is fixed to a state in which the dimensions do not change, and is heated to a temperature of not less than 150 ° C. and not more than the melting point of the molecular transition temperature, the method for producing a stretched polytetrafluoroethylene tube having circumferential deformability.

【0007】[0007]

【発明の実施の形態】長手方向に一軸延伸を行って得ら
れた一軸延伸PTFEチューブは、繊維が長軸方向に配
向し、結節が円周方向に連なって配向した構造を有す
る。しかし、ミクロに見ると、結節は、基本的に円周方
向に配向してはいるが、直線状の配向状態ではなく、波
状の構造になっていることが分かる。この一軸延伸PT
FEチューブを円周方向(径方向)に膨張させると、結
節が直線状に配向することが判明した。この結果から、
延伸PTFEチューブは、結節の配向の変化により径方
向への膨張・収縮を行っていることが分かる。
BEST MODE FOR CARRYING OUT THE INVENTION A uniaxially stretched PTFE tube obtained by uniaxially stretching in the longitudinal direction has a structure in which fibers are oriented in the long axis direction and knots are oriented in a circumferential direction. However, when viewed microscopically, it is understood that the nodules are basically oriented in the circumferential direction but have a wavy structure instead of a linear orientation. This uniaxially stretched PT
It was found that when the FE tube was expanded in the circumferential direction (radial direction), the nodules were linearly oriented. from this result,
It can be seen that the expanded PTFE tube expands and contracts in the radial direction due to the change in the orientation of the nodule.

【0008】しかし、一軸延伸PTFEチューブを径方
向に膨張させるには、例えば、内径6mm、肉厚800
μm、平均繊維長30μmのチューブでは、150℃以
上の温度で105Pa程度、室温では5.0×105Pa
以上の力を必要とする。したがって、生体内でのこのよ
うな力の負荷は勿論のこと、通常の工業的使用環境下に
おいても、このような径方向への膨張は、簡単に行うこ
とができない。さらに、径方向への膨張のために内圧を
負荷すると、延伸PTFEチューブは、膨張するのみ
で、除負荷によって収縮することができない。
However, in order to expand the uniaxially expanded PTFE tube in the radial direction, for example, the inner diameter is 6 mm and the wall thickness is 800.
For a tube having a diameter of 30 μm and an average fiber length of 30 μm, a temperature of 150 ° C. or higher is about 10 5 Pa, and a room temperature is 5.0 × 10 5 Pa
Requires more power. Therefore, such expansion in the radial direction cannot be easily performed not only under such a load of force in the living body but also under a normal industrial use environment. Furthermore, when an internal pressure is applied for radial expansion, the expanded PTFE tube only expands and cannot contract by unloading.

【0009】延伸PTFEチューブを例えば血圧程度の
低負荷によって膨張するようにするためには、結節が波
状の配向を持ち、その結節が血圧程度の内圧で生じる円
周方向への張力の負荷によって、円周方向に直線状に配
向することが必要である。逆に、内圧の除去によって収
縮するようにするためには、円周方向への張力の除去に
よって、結節が元の波状の配向状態に復元する必要があ
る。即ち、延伸PTFEチューブが径方向に伸縮性を有
するには、無負荷の状態では結節は円周方向に弛緩し、
圧力負荷によって円周方向に伸張し、そして、除負荷に
よって元の弛緩した状態に復元しなければならない。
In order to expand the expanded PTFE tube under a low load such as blood pressure, the nodule has a wavy orientation, and the nodule is subjected to a circumferential tension load generated by an internal pressure such as blood pressure. It is necessary to orient linearly in the circumferential direction. On the contrary, in order to contract by removing the internal pressure, it is necessary to restore the nodule to the original wavy orientation state by removing the tension in the circumferential direction. That is, in order for the expanded PTFE tube to have elastic properties in the radial direction, the knot relaxes in the circumferential direction in the unloaded state,
It must be stretched circumferentially by pressure loading and then restored to its original relaxed state by unloading.

【0010】そのためには、予め径方向に膨張を行った
延伸PTFEチューブを再度収縮させた状態とし、結節
が完全に直線状に配向する状態と、収縮して元の波状に
配向した状態との中間の配向状態にして、その形状を記
憶させればよい。延伸PTFEチューブに前記のような
状態の形状を強制的に記憶させるには、膨張後に融点以
下の加熱を行う方法や、膨張前にエラストマーを複合化
しておき、膨張後にエラストマーの復元力により収縮さ
せた後、該エラストマーを除去する方法などがある。
To this end, the expanded PTFE tube that has been expanded in the radial direction is contracted again, and the knots are oriented in a completely straight line, and the knots are oriented in the original wavy form. It suffices to set the intermediate orientation state and memorize the shape. In order to forcibly memorize the shape of the above state in the expanded PTFE tube, there is a method of heating below the melting point after expansion, or an elastomer is compounded before expansion and contracted by the restoring force of the elastomer after expansion. And then removing the elastomer.

【0011】しかしながら、これらの方法では、その伸
縮可能な範囲(伸縮率)は限られており、高々数%にし
かすぎない。そこで、これ以上の伸縮率を必要とする場
合には、前記形状を記憶させた状態にしてエラストマー
を被覆することにより、伸縮性を持たせることも可能で
ある。この方法によれば、予め膨張を行った延伸PTF
Eチューブに、前記結節が完全に直線状に配向した状態
や、収縮した結節が元の波状に配向した状態においてエ
ラストマーを被覆しても、伸縮性を持たせることができ
る。このようにして、本発明によれば、円周方向に伸縮
可能な延伸PTFEチューブが提供される。
However, in these methods, the range of expansion and contraction (expansion and contraction rate) is limited, and is only a few percent at most. Therefore, when a higher expansion ratio is required, it is possible to impart elasticity by covering the shape with the elastomer and coating the elastomer. According to this method, expanded PTF that has been previously expanded
Even if the E tube is coated with an elastomer in a state where the nodules are oriented in a completely straight line or in a state where the contracted nodules are oriented in the original wavy shape, elasticity can be imparted. Thus, according to the present invention, there is provided a stretched PTFE tube that can expand and contract in the circumferential direction.

【0012】本発明では、延伸PTFEチューブを使用
する。延伸PTFEチューブの製造方法は、特に限定さ
れず、例えば、特公昭42−13560号公報等に記載
の方法などの常法によって作製することができる。具体
的には、先ず、PTFEの未燒結粉末に液状潤滑油を混
和し、ラム式押出機によってチューブ状に押し出す。こ
のチューブから液状潤滑油を除去し、あるいは除去せず
に、チューブを少なくとも管軸方向に延伸する。次に、
チューブ両端を収縮しないように固定して、チューブの
内表面と外表面の両側をPTFEの燒結温度である32
7℃以上に加熱する。これにより、繊維と該繊維によっ
て互いに連結された結節とからなる微細繊維多孔質構造
を有する延伸PTFEチューブを得ることができる。
In the present invention, expanded PTFE tube is used. The method for producing the expanded PTFE tube is not particularly limited, and it can be produced by a conventional method such as the method described in Japanese Patent Publication No. 42-13560. Specifically, first, a liquid lubricating oil is mixed with unsintered powder of PTFE and extruded into a tube shape by a ram type extruder. The tube is stretched at least in the tube axis direction with or without removing the liquid lubricating oil from the tube. next,
Both ends of the tube are fixed so as not to shrink, and both sides of the inner and outer surfaces of the tube are the sintering temperature of PTFE.
Heat to above 7 ° C. This makes it possible to obtain an expanded PTFE tube having a fine fiber porous structure composed of fibers and knots connected to each other by the fibers.

【0013】燒結する際、延伸PTFEチューブの内外
面間に連続的に温度勾配を与え、外表面の温度を内表面
の温度よりも50〜300℃程度高くすると、チューブ
の内表面から外表面に至るまでの間で繊維−結節構造の
再配列が起こり、処理前よりもさらに延伸されて長繊維
化した部分と処理前より短繊維化した部分を持つ延伸P
TFEチューブを得ることができる。
During sintering, when a temperature gradient is continuously applied between the inner and outer surfaces of the expanded PTFE tube and the temperature of the outer surface is made higher than the temperature of the inner surface by about 50 to 300 ° C., the inner surface of the tube changes to the outer surface. A fiber-nodular structure rearrangement occurs until the process, and a stretched P having a portion that has been further stretched to be a longer fiber than before the treatment and a portion that has a shorter fiber than that before the treatment.
TFE tubes can be obtained.

【0014】予め作製した延伸PTFEシートを用いて
チューブ状にすることもできる。延伸PTFEシートを
製造する方法は、特に限定されないが、例えば、特公平
2−18977号公報に記載の方法のように、液状潤滑
油を含むPTFEの未燒結粉末を細いロッド状に成型
し、次いで、液状潤滑油を除去した後、該ロッドを長さ
方向に延伸して多孔質構造としてもよい。あるいは、特
公昭60−3842号公報に記載の方法により、延伸P
TFEシートを製造してもよい。これらの方法により製
造した延伸PTFEシートは、例えば、該シートを金属
円筒管の周囲に巻き付けて固定し、次いで、加熱し、燒
結一体化して、延伸PTFEチューブとすることができ
る。長さ方向に一軸延伸した延伸PTFEチューブは、
前述のように、結節は波状の配向となっているため、こ
の一軸延伸PTFEチューブを用いることが望ましい
が、結節が完全な直線状配向とならない程度であれば、
強度等の向上のため、円周方向にも膨張を行った二軸延
伸PTFEチューブを用いてもよい。
It is also possible to use an expanded PTFE sheet prepared in advance to form a tube. The method for producing a stretched PTFE sheet is not particularly limited, but for example, as in the method described in Japanese Patent Publication No. 2-18977, an unsintered powder of PTFE containing a liquid lubricating oil is molded into a thin rod shape, and then, After removing the liquid lubricating oil, the rod may be stretched in the longitudinal direction to form a porous structure. Alternatively, by the method described in Japanese Examined Patent Publication No. S60-3842, stretching P
You may manufacture a TFE sheet. The expanded PTFE sheet produced by these methods can be made into an expanded PTFE tube, for example, by winding the sheet around a metal cylindrical tube and fixing it, then heating and sintering to integrate. The expanded PTFE tube uniaxially expanded in the length direction,
As described above, since the nodules have a wavy orientation, it is desirable to use this uniaxially expanded PTFE tube, but if the nodules do not have a perfect linear orientation,
A biaxially expanded PTFE tube that has also been expanded in the circumferential direction may be used to improve strength and the like.

【0015】上述のように製造された延伸PTFEチュ
ーブを、先ず、所望の径となるよう径方向への膨張を行
う。径方向への膨張は、融点以下の温度で、好ましくは
分子転移温度である150℃以下で行うことが望まし
い。膨張の方法は、特に限定されないが、例えば、膨張
させたい延伸PTFEチューブの外径(膨張予定外径)
と同じ内径を持つ円筒管中に延伸PTFEチューブをセ
ットし、チューブ内腔より水圧等の圧力を加えることに
よって径方向に膨張させる方法や、膨張させたい内径
(膨張予定内径)と同じ外径を持つ円筒管を延伸PTF
Eチューブ内腔に挿入して径方向に膨張させる方法など
がある。
The expanded PTFE tube manufactured as described above is first expanded in the radial direction so as to have a desired diameter. The expansion in the radial direction is desirably performed at a temperature equal to or lower than the melting point, preferably 150 ° C. or lower which is the molecular transition temperature. The expansion method is not particularly limited, but for example, the outer diameter of the expanded PTFE tube to be expanded (expected outer diameter)
Set a stretched PTFE tube in a cylindrical tube with the same inner diameter as the above, and expand it in the radial direction by applying pressure such as water pressure from the tube inner cavity, or set the outer diameter that is the same as the inner diameter to be expanded (expected inner diameter). Stretched PTF with a cylindrical tube
For example, there is a method of inserting it into the lumen of the E tube and expanding it in the radial direction.

【0016】径方向に膨張させた延伸PTFEチューブ
は、結節が伸びきって直線状に配向した状態となる。こ
の延伸PTFEチューブを、結節が弛緩して波状の配向
状態に戻るようにするには、分子転移温度の150℃以
上、融点以下の温度に加熱して、径方向に膨張させた延
伸PTFEチューブの径を収縮させる方法がある。この
方法によって、結節を波状の配向状態に戻すことが可能
であり、かつ、その状態を記憶させることができる。こ
のようにして製造された延伸PTFEチューブは、径方
向への張力によって容易に膨張が可能であり、また、径
方向への張力の負荷を除去することによって、収縮する
ことも可能となる。ただし、この場合の伸縮率は小さ
い。
In the expanded PTFE tube expanded in the radial direction, the knots are fully extended to be in a linearly oriented state. In order to allow the knots to relax and return to the wavy orientation state, this expanded PTFE tube is heated to a temperature of not lower than the molecular transition temperature of 150 ° C. and not higher than the melting point to expand the expanded PTFE tube in the radial direction. There is a method to shrink the diameter. By this method, the nodule can be returned to the wavy orientation state, and the state can be stored. The expanded PTFE tube thus produced can be easily expanded by a radial tension, and can be contracted by removing a load of the radial tension. However, the expansion / contraction rate in this case is small.

【0017】予め延伸PTFEチューブにエラストマー
を複合化しておき、この複合化延伸PTFEチューブを
径方向に膨張させると、膨張させた際には一時的に結節
は直線状の配向となるが、膨張のための力を除去すると
複合化したエラストマーの復元力によって収縮するた
め、元の波状の結節の配向状態に、あるいは元の配向状
態と直線状の配向状態の中間の波状の配向状態となる。
この状態のままで、複合化したエラストマーを除去すれ
ば、結節が波状の配向状態を記憶した延伸PTFEチュ
ーブが得られるため、径方向への張力負荷によって容易
に膨張が可能である。ただし、この場合には、径方向へ
の圧力の除負荷を行っても、完全に元の径にまでは収縮
しない。
When the elastomer is preliminarily compounded with the expanded PTFE tube and the compounded expanded PTFE tube is expanded in the radial direction, the knot temporarily becomes a linear orientation when expanded, but When the force is removed, the composite elastomer contracts due to the restoring force of the compounded elastomer, so that the original wavy nodular orientation state or an intermediate wavy orientation state between the original and linear orientation states is obtained.
If the compounded elastomer is removed in this state, a stretched PTFE tube in which the knotted state of the wavy orientation is memorized can be obtained, so that the tube can be easily expanded by a tensile load in the radial direction. However, in this case, even if the radial pressure is removed, the original diameter is not completely contracted.

【0018】延伸PTFEチューブに複合化するエラス
トマーとしては、基本的に弾性を持つポリマーであれば
特定のものに限定されず、例えば、シリコンゴム、ウレ
タンゴム、フッ素ゴム、熱可塑性エラストマーなどを挙
げることができる。延伸PTFEチューブにエラストマ
ーを複合化する方法も特に限定されることなく、例え
ば、エラストマーあるいは硬化前のエラストマー原料を
溶媒に溶解させた溶液中に延伸PTFEチューブを浸
し、多孔質構造中にエラストマーあるいは硬化前のエラ
ストマー原料を含浸させ、乾燥して溶媒を除去し、必要
があれば熱を加える等により硬化させて、エラストマー
を複合化することができる。また、結節が波状の配向を
した状態の記憶を大きくするために、その状態を固定し
て分子転移温度の150℃以上、融点以下の温度に加熱
することによって、径方向への張力の負荷と除負荷によ
り、伸縮可能な延伸PTFEチューブを得ることができ
る。
The elastomer compounded in the expanded PTFE tube is not particularly limited as long as it is a polymer having elasticity basically, and examples thereof include silicone rubber, urethane rubber, fluororubber and thermoplastic elastomer. You can The method of compounding the elastomer with the expanded PTFE tube is not particularly limited. For example, the expanded PTFE tube may be dipped in a solution prepared by dissolving the elastomer or an elastomer raw material before curing in a solvent to form an elastomer or a cured structure in the porous structure. The elastomer can be compounded by impregnating the above elastomer raw material, drying it to remove the solvent, and curing it by applying heat if necessary. Further, in order to increase the memory of the state in which the nodules have a wavy orientation, by fixing the state and heating it to a temperature of not less than 150 ° C. and not more than the melting point of the molecular transition temperature, a load of radial tension is By unloading, a stretchable expanded PTFE tube can be obtained.

【0019】上記のようにして製造された延伸PTFE
チューブは、径方向への延伸PTFE自身の弾性により
伸縮性を有しているが、径方向への張力が大きく膨張が
数%以上になると、完全には元の形状に戻らなくなる。
そこで、径方向への大きな伸縮性を与えようとする場合
には、エラストマーを被覆することが好ましい。被覆す
るエラストマーは、基本的に弾性を持つポリマーであれ
ば特定のものに限定されず、例えば、シリコンゴム、ウ
レタンゴム、フッ素ゴム、熱可塑性エラストマーなどを
あげることができるが、医療用材料として用いる場合に
は、医療用シリコンゴム、医療用ウレタンゴムなどが好
適である。
Expanded PTFE produced as described above
The tube has elasticity due to the elasticity of the expanded PTFE itself in the radial direction, but when the tensile force in the radial direction is large and the expansion is several percent or more, the tube cannot completely return to its original shape.
Therefore, it is preferable to coat with an elastomer when it is desired to provide great elasticity in the radial direction. The elastomer to be coated is not particularly limited as long as it is a polymer having elasticity, and examples thereof include silicone rubber, urethane rubber, fluororubber and thermoplastic elastomer, which are used as medical materials. In this case, medical silicone rubber, medical urethane rubber and the like are suitable.

【0020】延伸PTFEチューブにエラストマーを被
覆する際、延伸PTFEチューブにエラストマーをかぶ
せただけ、あるいは表面部分にエラストマーを被覆した
だけでは両者の接着性が悪いため、伸縮の際に両者の剥
離が起こり、伸縮性が保てなくなる。したがって、延伸
PTFEチューブにエラストマーを被覆する際には、エ
ラストマーを延伸PTFEチューブの多孔質構造内に侵
入させて固定化することが望ましい。延伸PTFEチュ
ーブにエラストマーを被覆し、固定化するには、例え
ば、エラストマーを含む溶液を延伸PTFEチューブの
肉厚方向の多孔質構造内に含浸させてた後、熱処理また
は硬化する方法がある。含浸方法としては、通常、延伸
PTFEチューブの多孔質構造内に保存されている空気
を、エラストマーを含む溶液によって置換する方法を採
用することができる。具体的には、次のような方法があ
る。
When the stretched PTFE tube is coated with the elastomer, if the stretched PTFE tube is covered with the elastomer, or if the surface portion is coated with the elastomer, the adhesiveness between the two is poor, so that the two may peel off during expansion and contraction. , Stretchability cannot be maintained. Therefore, when the expanded PTFE tube is coated with the elastomer, it is desirable to infiltrate and fix the elastomer into the porous structure of the expanded PTFE tube. In order to coat and fix the expanded PTFE tube with the elastomer, for example, there is a method in which a solution containing the elastomer is impregnated into the porous structure in the thickness direction of the expanded PTFE tube and then heat-treated or cured. As the impregnation method, usually, a method in which the air stored in the porous structure of the expanded PTFE tube is replaced with a solution containing an elastomer can be adopted. Specifically, there are the following methods.

【0021】(1)エラストマーを含む溶液中に延伸P
TFEチューブを浸し、溶液全体を減圧下に置くことに
より、延伸PTFEチューブの多孔質構造内に保持され
ている空気を脱気し、その後、常圧に戻してやると、エ
ラストマーを含む溶液は、多孔質構造内へ深く侵入する
ことができる。 (2)エラストマーを含む溶液中に延伸PTFEチュー
ブを浸し、延伸PTFEチューブ内腔を減圧することに
より、延伸PTFEチューブの多孔質構造内を脱気した
後、エラストマーを含む溶液を多孔質構造内に含浸させ
る。 (3)エラストマーを含む溶液を、延伸PTFEチュー
ブの外側から加圧注入する。
(1) Stretching P in a solution containing an elastomer
By immersing the TFE tube and placing the entire solution under reduced pressure, the air retained in the porous structure of the expanded PTFE tube is degassed, and then returned to normal pressure, the solution containing the elastomer becomes porous. Can penetrate deeply into quality structures. (2) The expanded PTFE tube is immersed in a solution containing an elastomer, and the lumen of the expanded PTFE tube is depressurized to degas the inside of the porous structure of the expanded PTFE tube, and then the solution containing the elastomer is introduced into the porous structure. Impregnate. (3) A solution containing an elastomer is injected under pressure from the outside of the expanded PTFE tube.

【0022】なお、延伸PTFEチューブを減圧条件下
に置く場合には、通常、その内腔にステンレス製円筒管
や所定部分に穴の開いたステンレス製円筒管等の剛性の
ある支持体を挿入しておき、変形しないようにする。エ
ラストマーとしては、重合反応完了物を用いることもで
きるが、エラストマーの種類によっては、低分子量の原
料を架橋剤や触媒と共に用い、多孔質構造内で硬化させ
てエラストマーにすることもできる。エラストマー溶液
は、固形物を適当な溶媒に溶かして調製する。場合によ
っては、加熱溶融状態のエラストマーや熱硬化性ポリマ
ーのように硬化前の液状のエラストマー材料を用いても
よい。
When the expanded PTFE tube is placed under a reduced pressure condition, usually, a rigid support such as a stainless steel cylindrical tube or a stainless steel cylindrical tube having a hole at a predetermined portion is inserted into its lumen. Make sure not to deform it. As the elastomer, a polymerization reaction completed product can be used, but depending on the type of the elastomer, a low molecular weight raw material can be used together with a crosslinking agent or a catalyst and cured in the porous structure to give an elastomer. The elastomer solution is prepared by dissolving the solid substance in a suitable solvent. Depending on the case, a liquid elastomer material before curing, such as a heat-melted elastomer or a thermosetting polymer, may be used.

【0023】延伸PTFEチューブの多孔質構造内にエ
ラストマーを固定するには、該多孔質構造内に含浸させ
た溶液を乾燥させて溶媒を除去した後、エラストマーの
融点以上であって327℃以下の温度に加熱する方法、
あるいは前述のように、多孔質構造内に含浸させた低分
子量のエラストマー原料を架橋反応または重合反応させ
て硬化させる方法がある。エラストマーやその原料を含
む溶液を調製する溶媒は、PTFEが耐溶媒性に優れて
いることから自由に選択できる。また、エラストマー原
料として低分子量のものを用いる場合には、必ずしも溶
媒を必要としない。延伸PTFEチューブに対して、径
方向への膨張・収縮処理を行うだけではなく、長さ方向
への収縮を行ったものを用いることによって、長さ方向
への張力を負荷することにより長さが伸びて径が収縮
し、張力を除去すると元の長さと径に戻る、長さ及び径
がともに伸縮可能な延伸PTFEチューブを作製するこ
ともできる。
To fix the elastomer in the porous structure of the expanded PTFE tube, the solution impregnated in the porous structure is dried to remove the solvent, and then the temperature is not lower than the melting point of the elastomer and not higher than 327 ° C. How to heat to temperature,
Alternatively, as described above, there is a method in which a low molecular weight elastomer raw material impregnated in the porous structure is crosslinked or polymerized to be cured. The solvent for preparing the solution containing the elastomer and its raw material can be freely selected because PTFE has excellent solvent resistance. Further, when a low molecular weight material is used as the elastomer raw material, a solvent is not always necessary. The expanded PTFE tube is not only subjected to expansion and contraction treatment in the radial direction, but is also subjected to contraction in the length direction, so that the length can be increased by applying tension in the length direction. It is also possible to produce a stretched PTFE tube that expands and contracts in diameter, returns to its original length and diameter when the tension is removed, and that can expand and contract in both length and diameter.

【0024】本発明の円周方向変形性を有する延伸PT
FEチューブは、円周方向への張力の負荷による伸びが
5%以上で、かつ、ヤング率が2.0×105Pa以下
の径方向の伸縮性を備えている。本発明の延伸PTFE
チューブは、円周方向への張力の負荷によって5%以上
の伸びを生じさせた場合、該張力の除負荷によって、通
常、3%以上の収縮が生じる。本発明の延伸PTFEチ
ューブは、エラストマーが被覆されているものであるこ
とが、伸縮性を向上させる上で好ましい。伸びは、径方
向に張力を負荷した場合における内径の増大率(%)で
あり、ヤング率は、チューブの厚さ、負荷の大きさ、及
び伸びより算出した値である。また、収縮率は、除負荷
を行った場合の内径の収縮の度合(%)である。
Stretched PT having circumferential deformability according to the present invention
The FE tube has an elongation of 5% or more due to the load of tension in the circumferential direction, and a radial elasticity of Young's modulus of 2.0 × 10 5 Pa or less. Expanded PTFE of the present invention
When the tube is stretched by 5% or more by the load of the tension in the circumferential direction, the unloading of the tension usually causes the shrinkage of 3% or more. The expanded PTFE tube of the present invention is preferably covered with an elastomer in order to improve stretchability. Elongation is the increase rate (%) of the inner diameter when tension is applied in the radial direction, and Young's modulus is the value calculated from the thickness of the tube, the magnitude of the load, and the elongation. The contraction rate is the degree (%) of contraction of the inner diameter when unloading.

【0025】本発明の延伸PTFEチューブを製造する
方法としては、前述の説明をまとめると、(1)延伸P
TFEチューブを、円周方向に膨張させ、次いで、膨張
後の径以下に収縮させる方法、(2)延伸PTFEチュ
ーブにエラストマーを複合化させた後、円周方向に膨張
させ。次いで、該エラストマーの復元力によって膨張後
の径以下に収縮させ、しかる後、該エラストマーを除去
する方法、(3)延伸PTFEチューブを円周方向に膨
張させ、次いで、膨張後の径以下に収縮させた後、該チ
ューブを寸法が変わらない状態に固定して、分子転移温
度の150℃以上、融点以下の温度に加熱する方法、及
び(4)これらの2種以上の方法を組み合わせた方法な
どがある。これらの方法によって、円周方向変形性(径
方向の伸縮性)を有する延伸PTFEチューブを得るこ
とができる。
The method for producing the expanded PTFE tube of the present invention is summarized as follows: (1) Expanded P
A method in which the TFE tube is expanded in the circumferential direction and then contracted to a diameter equal to or smaller than the expanded diameter, (2) After the elastomer is compounded with the expanded PTFE tube, it is expanded in the circumferential direction. Next, the elastomer is contracted to a diameter after expansion by a restoring force, and then the elastomer is removed, (3) expanded PTFE tube is expanded in the circumferential direction, and then contracted to a diameter after expansion. After that, the tube is fixed in a state where the dimensions do not change, and the tube is heated to a temperature of 150 ° C. or higher and a melting point or lower of the molecular transition temperature, and (4) a method combining two or more of these methods. There is. By these methods, a stretched PTFE tube having circumferential deformability (radial stretchability) can be obtained.

【0026】[0026]

【実施例】以下、本発明について、実施例及び比較例を
挙げて具体的に説明するが、本発明は、これらの実施例
に限定されるものではない。
The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0027】[実施例1]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、SSドライゾール(エッソ
社製オイル)24重量部を助剤として混合し、ダイス径
8mmφ、コアピン径7mmφで、ペースト押出機によ
ってチューブ状に成型した後に、SSドライゾールを5
0℃、5日間で乾燥除去した。このチューブを電気炉
中、炉温350℃、炉内滞在時間120秒の条件で加熱
しながら長さ方向に450%延伸し、厚さ500μm、
気孔率75%、平均繊維長30μm、内径6mmの一軸
延伸PTFEチューブを得た。この延伸PTFEチュー
ブの壁内全体にシリコンゴム(ダウコーニング、MDX
4−4210)を含浸させた後、60℃の恒温層に1晩
放置してシリコンゴムを硬化させた。このシリコンゴム
複合化延伸PTFEチューブをステンレス鋼製の内径2
4mmのケース内に入れ、チューブ内腔を水圧によって
膨張させた。水圧の負荷を除去するとシリコンゴムの復
元力によって、内径7.5mmまで収縮した。得られた
チューブの内腔に1.6×104Paの水圧を負荷する
と、内径が7%増大し、水圧の負荷を除去することによ
って、元の内径に復元した。このチューブの厚さ、内
圧、及び伸びより算出したヤング率は、2.0×105
Pa以下であった。
[Example 1] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) To 100 parts by weight, 24 parts by weight of SS DRYSOL (oil manufactured by Esso Co., Ltd.) was mixed as an auxiliary agent, and a die diameter of 8 mmφ and a core pin diameter of 7 mmφ were formed into a tube shape by a paste extruder, followed by SS dry. 5 sol
It was removed by drying at 0 ° C for 5 days. This tube was stretched 450% in the length direction while heating in an electric furnace under the conditions of a furnace temperature of 350 ° C. and a residence time in the furnace of 120 seconds, and a thickness of 500 μm.
A uniaxially stretched PTFE tube having a porosity of 75%, an average fiber length of 30 μm and an inner diameter of 6 mm was obtained. Silicone rubber (Dow Corning, MDX
4-4210) and then left overnight in a constant temperature layer at 60 ° C. to cure the silicone rubber. This silicone rubber composite expanded PTFE tube is made of stainless steel with an inner diameter of 2
It was placed in a 4 mm case and the tube lumen was expanded by hydraulic pressure. When the hydraulic load was removed, the restoring force of the silicone rubber caused it to shrink to an inner diameter of 7.5 mm. When the inner diameter of the obtained tube was loaded with water pressure of 1.6 × 10 4 Pa, the inner diameter was increased by 7%, and the original inner diameter was restored by removing the load of water pressure. The Young's modulus calculated from the thickness, internal pressure, and elongation of this tube was 2.0 × 10 5.
It was Pa or less.

【0028】[実施例2]実施例1と同様にして、内径
7.5mmのシリコンゴム含浸チューブを作製した後、
シリコンゴムを濃硫酸で分解・除去した。このチューブ
の内腔に1.6×104Paの水圧を負荷すると、内径
が15%増大した。
[Example 2] A silicon rubber-impregnated tube having an inner diameter of 7.5 mm was prepared in the same manner as in Example 1, and
Silicone rubber was decomposed and removed with concentrated sulfuric acid. Loading the lumen of this tube with water pressure of 1.6 × 10 4 Pa increased the inner diameter by 15%.

【0029】[実施例3]実施例2と同様にして、シリ
コンゴムを分解除去したチューブを作製し、次いで、外
径7.5mmのステンレス棒に固定して、320℃で5
分間加熱した。このチューブの内腔に1.6×104
aの水圧を負荷すると、内径が15%増大し、そして、
水圧の負荷を除去すると、元に比べて内径が3%増大し
た径にまで回復した。水圧の負荷・除去を2回、3回と
繰り返したところ、膨張径及び収縮径は、初回と同様で
あった。この延伸PTFEチューブの結節を電子顕微鏡
にて観察したところ、圧力の負荷がないときには、結節
は波状の配向をしており、圧力が負荷されたときには、
結節は直線状に配向していた。
[Example 3] In the same manner as in Example 2, a tube from which silicon rubber was decomposed and removed was prepared, and then fixed to a stainless rod having an outer diameter of 7.5 mm and heated at 320 ° C for 5 hours.
Heated for minutes. 1.6 × 10 4 P in the lumen of this tube
When the water pressure of a is applied, the inner diameter increases by 15%, and
When the hydraulic load was removed, the inner diameter recovered to a diameter increased by 3% compared to the original. When the load / removal of water pressure was repeated twice and three times, the expanded diameter and the contracted diameter were the same as the first time. When the nodule of this expanded PTFE tube was observed with an electron microscope, when the pressure was not applied, the nodule had a wavy orientation, and when pressure was applied,
The nodules were oriented linearly.

【0030】[比較例1]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、SSドライゾール(エッソ
社製オイル)24重量部を助剤として混合し、ダイス径
8mmφ、コアピン径7mmφで、ペースト押出機によ
ってチューブ状に成型した後に、SSドライゾールを5
0℃、5日間で乾燥除去した。このチューブを電気炉
中、炉温350℃、炉内滞在時間120秒の条件で加熱
しながら450%延伸し、厚さ500μm、気孔率75
%、平均繊維長30μm、内径6mmの延伸PTFEチ
ューブを得た。この延伸PTFEチューブの内腔に1.
6×104Paの水圧を負荷したところ、内径の変化は
認められなかった。
[Comparative Example 1] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) To 100 parts by weight, 24 parts by weight of SS DRYSOL (oil manufactured by Esso Co., Ltd.) was mixed as an auxiliary agent, and a die diameter of 8 mmφ and a core pin diameter of 7 mmφ were formed into a tube shape by a paste extruder, followed by SS dry. 5 sol
It was removed by drying at 0 ° C for 5 days. This tube was stretched 450% while being heated in an electric furnace under the conditions of a furnace temperature of 350 ° C. and a residence time in the furnace of 120 seconds, a thickness of 500 μm, and a porosity of 75.
%, An average fiber length of 30 μm, and an expanded PTFE tube having an inner diameter of 6 mm was obtained. In the lumen of this expanded PTFE tube, 1.
When a water pressure of 6 × 10 4 Pa was applied, no change in inner diameter was observed.

【0031】[0031]

【発明の効果】本発明によれば、延伸PTFEチューブ
が本来有する抗血栓性や組織適合性を保持したまま、径
方向の伸縮性を備えた延伸PTFEチューブが提供され
る。本発明の延伸PTFEチューブは、拍動によって膨
張・収縮を繰り返す生体血管と径が充分にマッチングす
るため、特に、人工血管として有用である。この他、本
発明の延伸PTFEチューブは、濾過膜等への広範な用
途に使用することができる。
EFFECTS OF THE INVENTION According to the present invention, there is provided an expanded PTFE tube having stretchability in the radial direction while maintaining the antithrombotic property and tissue compatibility that the expanded PTFE tube originally has. The expanded PTFE tube of the present invention is particularly useful as an artificial blood vessel because it has a sufficient diameter matching with a living blood vessel that repeatedly expands and contracts due to pulsation. In addition, the expanded PTFE tube of the present invention can be used in a wide range of applications such as filtration membranes.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 27:18 B29L 23:00 C08L 27:18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B29K 27:18 B29L 23:00 C08L 27:18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する延伸ポリテトラ
フルオロエチレンチューブであって、円周方向への張力
の負荷による伸びが5%以上で、かつ、ヤング率が2.
0×105Pa以下の円周方向変形性を有することを特
徴とする延伸ポリテトラフルオロエチレンチューブ。
1. A stretched polytetrafluoroethylene tube having a fine fibrous structure composed of fibers and knots connected to each other, the elongation being 5% or more due to the load of tension in the circumferential direction, And Young's modulus is 2.
A stretched polytetrafluoroethylene tube having a circumferential deformability of 0 × 10 5 Pa or less.
【請求項2】 円周方向への張力の負荷によって5%以
上の伸びを生じさせた場合、該張力の除負荷によって3
%以上の収縮が生じる請求項1記載の延伸ポリテトラエ
チレンチューブ。
2. When elongation of 5% or more is caused by the load of the tension in the circumferential direction, the unloading of the tension causes 3
The expanded polytetraethylene tube according to claim 1, wherein shrinkage of not less than% occurs.
【請求項3】 エラストマーが被覆されている請求項1
または2記載の延伸ポリテトラフルオロエチレンチュー
ブ。
3. An elastomer is coated.
Or the expanded polytetrafluoroethylene tube described in 2.
【請求項4】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する延伸ポリテトラ
エチレンチューブを、円周方向に膨張させ、次いで、膨
張後の径以下に収縮させることを特徴とする円周方向変
形性を有する延伸ポリテトラフルオロエチレンチューブ
の製造方法。
4. An expanded polytetraethylene tube having a fine fibrous structure composed of fibers and nodules connected to each other is expanded in the circumferential direction and then contracted to a diameter after expansion or less. A method for producing a stretched polytetrafluoroethylene tube having characteristic circumferential deformability.
【請求項5】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する延伸ポリテトラ
フルオロエチレンチューブにエラストマーを複合化させ
た後、円周方向に膨張させ。次いで、該エラストマーの
復元力によって膨張後の径以下に収縮させ、しかる後、
該エラストマーを除去することを特徴とする円周方向変
形性を有する延伸ポリテトラフルオロエチレンチューブ
の製造方法。
5. An elastomer is compounded with a stretched polytetrafluoroethylene tube having a fine fibrous structure composed of fibers and knots connected to each other, and then expanded in a circumferential direction. Then, by the restoring force of the elastomer, it is shrunk to a diameter or less after expansion, and thereafter,
A method for producing a stretched polytetrafluoroethylene tube having circumferential deformability, which comprises removing the elastomer.
【請求項6】 繊維と該繊維によって互いに連結された
結節からなる微細繊維状組織を有する延伸ポリテトラエ
チレンチューブを、円周方向に膨張させ、次いで、膨張
後の径以下に収縮させた後、該チューブを寸法が変わら
ない状態に固定して、分子転移温度の150℃以上、融
点以下の温度に加熱することを特徴とする円周方向変形
性を有する延伸ポリテトラフルオロエチレンチューブの
製造方法。
6. A stretched polytetraethylene tube having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers is expanded in the circumferential direction, and then contracted to a diameter after expansion or less, A method for producing a stretched polytetrafluoroethylene tube having circumferential deformability, which comprises fixing the tube in a state in which the dimensions do not change and heating the tube to a temperature of 150 ° C. or higher and a melting point or lower of a molecular transition temperature.
JP8080930A 1996-03-07 1996-03-07 Drawn polytetrafluoroethylene tube and its production Pending JPH09241412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8080930A JPH09241412A (en) 1996-03-07 1996-03-07 Drawn polytetrafluoroethylene tube and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8080930A JPH09241412A (en) 1996-03-07 1996-03-07 Drawn polytetrafluoroethylene tube and its production

Publications (1)

Publication Number Publication Date
JPH09241412A true JPH09241412A (en) 1997-09-16

Family

ID=13732169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8080930A Pending JPH09241412A (en) 1996-03-07 1996-03-07 Drawn polytetrafluoroethylene tube and its production

Country Status (1)

Country Link
JP (1) JPH09241412A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072894A1 (en) * 1999-05-31 2000-12-07 Sumitomo Electric Industries, Ltd. Prosthesis for blood vessel
JP2003049959A (en) * 2001-08-03 2003-02-21 Asahi Organic Chem Ind Co Ltd Pinch valve
JP2004340364A (en) * 2003-04-24 2004-12-02 Daikin Ind Ltd Polytetrafluoroethylene resin tube and its manufacturing method
WO2004111117A1 (en) * 2003-06-13 2004-12-23 Sumitomo Electric Industries, Ltd. Stretched polytetrafluoroethylene formed article, method for production thereof, and composite article
JP2006263144A (en) * 2005-03-24 2006-10-05 Mcrotech Kk Soft biotissue substitute grafting material and its production method
WO2007046348A1 (en) * 2005-10-17 2007-04-26 Kaneka Corporation Medical catheter tubes and process for production thereof
WO2007145283A1 (en) * 2006-06-15 2007-12-21 Japan Gore-Tex Inc. Stretch composite fabric and stretch porous polytetrafluoroethylene film
JP2008526317A (en) * 2004-12-31 2008-07-24 ボストン サイエンティフィック リミテッド Manufacturing method of ePTFE and structure including ePTFE such as vascular graft
US7879085B2 (en) 2002-09-06 2011-02-01 Boston Scientific Scimed, Inc. ePTFE crimped graft
KR20140099529A (en) * 2012-01-16 2014-08-12 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
JP2015530157A (en) * 2012-09-24 2015-10-15 アルテリウス リミテッド Method of manufacturing a tube for use in forming a stent and such a tube
US9445887B2 (en) 2012-01-16 2016-09-20 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US9737422B2 (en) 2011-01-14 2017-08-22 W. L. Gore & Associates, Inc. Stent
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
WO2020031418A1 (en) * 2018-08-09 2020-02-13 住友電工ファインポリマー株式会社 Porous tube and porous tube production method
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US10987234B2 (en) 2011-08-12 2021-04-27 W. L. Gore & Associates, Inc. Devices and methods for approximating the cross-sectional profile of vasculature having branches
US11129622B2 (en) 2015-05-14 2021-09-28 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
US11229512B2 (en) 2016-04-21 2022-01-25 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11457925B2 (en) 2011-09-16 2022-10-04 W. L. Gore & Associates, Inc. Occlusive devices
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US11950999B2 (en) 2012-07-25 2024-04-09 Edwards Lifesciences Corporation Everting transcatheter valve and methods

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072894A1 (en) * 1999-05-31 2000-12-07 Sumitomo Electric Industries, Ltd. Prosthesis for blood vessel
US6689160B1 (en) 1999-05-31 2004-02-10 Sumitomo Electric Industries, Ltd. Prosthesis for blood vessel
JP2003049959A (en) * 2001-08-03 2003-02-21 Asahi Organic Chem Ind Co Ltd Pinch valve
US7879085B2 (en) 2002-09-06 2011-02-01 Boston Scientific Scimed, Inc. ePTFE crimped graft
JP2004340364A (en) * 2003-04-24 2004-12-02 Daikin Ind Ltd Polytetrafluoroethylene resin tube and its manufacturing method
WO2004111117A1 (en) * 2003-06-13 2004-12-23 Sumitomo Electric Industries, Ltd. Stretched polytetrafluoroethylene formed article, method for production thereof, and composite article
JP2008526317A (en) * 2004-12-31 2008-07-24 ボストン サイエンティフィック リミテッド Manufacturing method of ePTFE and structure including ePTFE such as vascular graft
JP2011045757A (en) * 2004-12-31 2011-03-10 Boston Scientific Ltd METHOD FOR MAKING ePTFE AND STRUCTURE CONTAINING ePTFE SUCH AS VASCULAR GRAFT
JP4728349B2 (en) * 2004-12-31 2011-07-20 ボストン サイエンティフィック リミテッド Manufacturing method of ePTFE and structure including ePTFE such as vascular graft
JP2006263144A (en) * 2005-03-24 2006-10-05 Mcrotech Kk Soft biotissue substitute grafting material and its production method
WO2007046348A1 (en) * 2005-10-17 2007-04-26 Kaneka Corporation Medical catheter tubes and process for production thereof
JP5412013B2 (en) * 2005-10-17 2014-02-12 株式会社カネカ Medical catheter tube and manufacturing method thereof
US8377352B2 (en) 2005-10-17 2013-02-19 Kaneka Corporation Medical catheter tubes and process for production thereof
WO2007145283A1 (en) * 2006-06-15 2007-12-21 Japan Gore-Tex Inc. Stretch composite fabric and stretch porous polytetrafluoroethylene film
JP2007331228A (en) * 2006-06-15 2007-12-27 Japan Gore Tex Inc Stretch composite substrate and drawn porous polytetrafluoroethylene film
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10835397B2 (en) 2011-01-14 2020-11-17 W.L. Gore & Associates, Inc. Lattice
US9737422B2 (en) 2011-01-14 2017-08-22 W. L. Gore & Associates, Inc. Stent
US9795496B2 (en) 2011-01-14 2017-10-24 W. L. Gore & Associates, Inc. Stent
US11523919B2 (en) 2011-01-14 2022-12-13 W. L. Gore & Associates, Inc. Stent
US10828185B2 (en) 2011-01-14 2020-11-10 W. L. Gore & Associates, Inc. Lattice
US10335298B2 (en) 2011-01-14 2019-07-02 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US10507124B2 (en) 2011-01-14 2019-12-17 W. L. Gore & Associates, Inc. Lattice
US10993803B2 (en) 2011-04-01 2021-05-04 W. L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US10987234B2 (en) 2011-08-12 2021-04-27 W. L. Gore & Associates, Inc. Devices and methods for approximating the cross-sectional profile of vasculature having branches
US11457925B2 (en) 2011-09-16 2022-10-04 W. L. Gore & Associates, Inc. Occlusive devices
US9987395B2 (en) 2012-01-16 2018-06-05 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils having a discontinuous fluoropolymer layer thereon
KR20140099529A (en) * 2012-01-16 2014-08-12 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
JP2015509123A (en) * 2012-01-16 2015-03-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Articles containing expanded polytetrafluoroethylene membranes containing serpentine fibrils
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US9445887B2 (en) 2012-01-16 2016-09-20 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US11950999B2 (en) 2012-07-25 2024-04-09 Edwards Lifesciences Corporation Everting transcatheter valve and methods
JP2015530157A (en) * 2012-09-24 2015-10-15 アルテリウス リミテッド Method of manufacturing a tube for use in forming a stent and such a tube
US10299944B2 (en) 2012-09-24 2019-05-28 Arterius Limited Method of producing a tube for use in the formation of a stent, and such tube
US11357611B2 (en) 2012-11-13 2022-06-14 W. L. Gore & Associates, Inc. Elastic stent graft
US11116621B2 (en) 2012-11-13 2021-09-14 W. L. Gore & Associates, Inc. Elastic stent graft
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US11911537B2 (en) 2013-12-05 2024-02-27 W. L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US11129622B2 (en) 2015-05-14 2021-09-28 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
US11229512B2 (en) 2016-04-21 2022-01-25 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
WO2020031418A1 (en) * 2018-08-09 2020-02-13 住友電工ファインポリマー株式会社 Porous tube and porous tube production method
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element

Similar Documents

Publication Publication Date Title
JPH09241412A (en) Drawn polytetrafluoroethylene tube and its production
US5071609A (en) Process of manufacturing porous multi-expanded fluoropolymers
CA1140704A (en) Tubular organic prothesis and process for the production thereof
US4306318A (en) Tubular organic prosthesis
US11357611B2 (en) Elastic stent graft
US6780361B1 (en) Process of making polymer articles
US4321711A (en) Vascular prosthesis
RU2587183C2 (en) Articles, including membranes made from expanded polytetrafluoroethylene with winding thin fibres and containing discontinuous layer of fluoropolymer on membranes
US4655769A (en) Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4345414A (en) Shaping process
JPS6341544A (en) Porous highly expansible fluoropolymers and production thereof
EP0313263A2 (en) Rapid recoverable PTFE and a process for its manufacture
JP2005530549A (en) Elastically recoverable ePTFE for vascular grafts
EP0269449A2 (en) Porous flexible radially expanded fluoropolymers and process for producing the same
JPH09194609A (en) Ion-exchange membrane and its preparation
JPH10505266A (en) Asymmetric porous polytetrafluoroethylene molded article and method for producing the same
US4904272A (en) Crosslinked polyurethane medical prosthesis
WO1998019632A1 (en) Artificial tubular body organ grafts
WO1986002656A1 (en) Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
JPH1135716A (en) Production of porous polytetrafluoroethylene film
WO2004028581A1 (en) Vessel prostheses or patches made from biocompatible polymers
JPH10323923A (en) Porous tube of polytetrafluoroethylene and its manufacture
JPS647856B2 (en)
JPS6147547B2 (en)
US20050003011A1 (en) Porous polymer articles and methods of making the same