JPH09236565A - Apparatus for measuring corrosion of embedded pipe - Google Patents

Apparatus for measuring corrosion of embedded pipe

Info

Publication number
JPH09236565A
JPH09236565A JP7139096A JP7139096A JPH09236565A JP H09236565 A JPH09236565 A JP H09236565A JP 7139096 A JP7139096 A JP 7139096A JP 7139096 A JP7139096 A JP 7139096A JP H09236565 A JPH09236565 A JP H09236565A
Authority
JP
Japan
Prior art keywords
corrosion
pipe
value
microcomputer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7139096A
Other languages
Japanese (ja)
Inventor
Hideaki Okuma
秀明 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Pressure Gas Safety Institute of Japan
Original Assignee
High Pressure Gas Safety Institute of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Pressure Gas Safety Institute of Japan filed Critical High Pressure Gas Safety Institute of Japan
Priority to JP7139096A priority Critical patent/JPH09236565A/en
Publication of JPH09236565A publication Critical patent/JPH09236565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Pipeline Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the corrosion speed of metal embedded piping simply and precisely by compact constitution by arranging a power supply, a potentiometer, an ammeter, a microcomputer or the like in a casing. SOLUTION: A power supply, a potentiometer, an ammeter, a microcomputer or the like are arranged in a casing and terminal parts for respective cables, an operation part and a display part are provided on the upper surface thereof. The current supply change width of objective metal embedded piping is calculated from the respective actually measured values measured through a current supply cable measuring the pipe earth potential value of the piping, a cable equipped with a reference electrode and a cable equipped with a current supply rod on the basis of formula and this calculated value is compared with the correlation between the current supply change width and max. corrosion speed preset to the microcomputer to measure a corrosion speed. By performing these calculation processings by the automatic processing means due to the microcomputer, measurement and calculation processing can be accurately and rapidly performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、埋設金属配管の腐
食測定装置及び方法に関し、より詳しくはC/S間すな
わちコンクリート(Concrete)と土壌(Soi
l)との間にまたがって、或いはそれらを通して埋設さ
れた金属製配管に生じるマクロセル腐食を測定するため
の装置及びこの腐食測定装置を用いる腐食測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring corrosion of buried metal pipes, and more particularly, between C / S, that is, concrete and soil.
The present invention relates to an apparatus for measuring macro cell corrosion that occurs in a metal pipe buried in or through the above l) and a corrosion measuring method using this corrosion measuring apparatus.

【0002】[0002]

【従来の技術】LPG等のガス配管は、ボンベ等のガス
貯槽から、各種施設等を構成するコンクリート中へ埋
設、土壌から各種施設等を構成するコンクリート中へ
埋設、或いはこれら及びの複合形式による埋設そ
の他種々の形式で敷設され、ガスはこれら配管を通じて
バーナーその他の燃焼器や暖房機器等へ供給される。こ
のガス配管は通常鋼管等の金属製で構成されるが、例え
ばその鋼管が土壌中に配設されたものである場合、その
周囲の土壌が均質な状態であるときは腐食の進行は緩慢
であり、このため腐食孔が短期間に発生することは通常
有り得ない。しかし最近の腐食事例によると、その配管
の敷設時から数年以内に腐食孔が発生している例が数多
く報告されている。
2. Description of the Related Art Gas pipes such as LPG are buried from a gas storage tank such as a cylinder into concrete constituting various facilities, or from soil into concrete constituting various facilities, or a combination thereof. It is laid in various forms such as buried, and gas is supplied to burners and other combustors and heating equipment through these pipes. This gas pipe is usually made of metal such as steel pipe.For example, when the steel pipe is arranged in soil, the progress of corrosion is slow when the surrounding soil is homogeneous. Yes, it is therefore unlikely that corrosion pitting will occur in the short term. However, according to recent corrosion cases, there are many cases in which corrosion holes are generated within a few years after the pipe is laid.

【0003】これらの腐食は、濃淡電池作用、異種金属
の接触作用、迷走電流の作用、バクテリアの作用、或い
はこれらの複合作用その他各種の原因によるものであ
る。これら各種原因のうちでも特に迷走電流によるもの
が最も激しい腐食を起すが、これに次ぐものとして、異
種金属の接触作用の一種である鉄筋コンクリート中の鉄
筋とガス配管等の配管との接触による地中埋設管の腐食
が指摘されている。ガス管等の配管の自然腐食には大き
く分けてマクロセル腐食とミクロセル腐食とがある。こ
のうちマクロセル腐食は、異種の金属間や環境が異なる
同種の金属間に電池作用により電流が流れるマクロセル
すなわち巨視的電池現象により生じ、このセルで負極と
なっている側の金属に発生する。
[0003] These corrosions are due to various causes such as concentration cell action, contact action of dissimilar metals, action of stray current, action of bacteria, and complex action thereof. Of these various causes, stray current causes the most severe corrosion, but the second most is the contact action between dissimilar metals, which is a kind of contact action between reinforcing bars in reinforced concrete and pipes such as gas pipes. Corrosion of buried pipes is pointed out. Natural corrosion of pipes such as gas pipes is roughly divided into macro cell corrosion and micro cell corrosion. Of these, macro cell corrosion occurs due to a macro cell phenomenon in which a current flows between cells of different metals or between metals of the same type having different environments due to a battery action, that is, a metal on the side of the negative electrode in this cell.

【0004】これを土壌中に埋設され、そこからコンク
リート中へ配設された鋼管によるガス配管についてみる
と、コンクリート中の鋼管の電位は、中性土壌中の鋼管
の電位より貴であり、このためコンクリート中の鋼管と
土壌中の鋼管とがつながっている配管では電池が形成さ
れ、これによって電位的に卑である土壌中に埋設された
部分が腐食することになる。そしてその鋼管が鉄筋コン
クリート中への埋設管である場合、鉄筋コンクリート中
の鉄筋との接触作用だけでなく、コンクリートは、それ
自体強いアルカリ性(通常pH=12程度)を示し、こ
れがその中に埋め込まれた鉄筋や鋼管の電位を貴とする
ように作用する。図1は、埋設金属管におけるそのよう
な腐食現象を模式的に示した図である。
[0004] Looking at the gas pipes made of steel pipes buried in the soil and arranged in the concrete therefrom, the electric potential of the steel pipe in the concrete is nobler than that of the steel pipe in the neutral soil. Therefore, a battery is formed in the pipe where the steel pipe in the concrete and the steel pipe in the soil are connected, and this causes corrosion of the portion buried in the soil which is base in potential. When the steel pipe is an embedded pipe in reinforced concrete, not only the contact action with the rebar in the reinforced concrete but also the concrete itself has strong alkalinity (usually pH = about 12), which is embedded in it. It acts to make the electric potential of reinforcing bars and steel pipes noble. FIG. 1 is a diagram schematically showing such a corrosion phenomenon in a buried metal pipe.

【0005】このため、ガス用鋼管等の配管を土壌から
コンクリート内へと設置すると、高い電位をもつコンク
リート内の鋼管から、地中に埋設した低い電位をもつ鋼
管へ向けて電流が流れ、この電流が地中に埋設した鋼管
の表面から地中に流れ出し、土壌を通ってコンクリート
内の鋼管へ戻り、これにより地中に埋設された鋼管の表
面から地中に電流が流れ出る部分が腐食を起こすことに
なる。この場合コンクリート中に埋め込まれた鋼管の面
積が小さければ、腐食電流は少量で腐食の進行は弱く、
腐食上の問題が短期間に生じることはないが、腐食電流
は、埋め込まれた鋼管の面積が大きいほど大きく、腐食
の進行が激しくなり、そして上記コンクートが鉄筋コン
クリートである場合、その鉄筋とガス管とが接触してい
れば、コンクリートの中に大量の鋼管を埋め込んだこと
と同じことになってしまう。
Therefore, when a pipe such as a steel pipe for gas is installed from the soil into the concrete, an electric current flows from the steel pipe in the concrete having a high electric potential to the steel pipe having a low electric potential buried in the ground. Electric current flows from the surface of the steel pipe buried in the ground into the ground, returns to the steel pipe in the concrete through the soil, which causes corrosion in the part where the current flows from the surface of the steel pipe buried in the ground to the ground. It will be. In this case, if the area of the steel pipe embedded in the concrete is small, the corrosion current is small and the progress of corrosion is weak,
Corrosion problems do not occur in the short term, but the corrosion current is greater for larger embedded steel pipe areas, the corrosion progresses more rapidly, and if the concrete is reinforced concrete, its reinforcement and gas pipe If and are in contact, it would be the same as embedding a large amount of steel pipes in concrete.

【0006】以上のように、鉄製等の金属製埋設ガス配
管におけるマクロセルの形成は配管腐食の要因として重
要であり、したがってこのセルの形成は事前に回避され
なければならないが、このためにはその配管についてそ
のような腐食の原因となるマクロセルの有無を予め察知
し、その量的割合についても予め予測できれば、対策を
講じてこのマクロセルに起因する腐食を未然に防ぐこと
ができる。
As described above, the formation of macrocells in a metal buried gas pipe made of iron or the like is important as a factor of pipe corrosion. Therefore, the formation of this cell must be avoided in advance, but for that purpose, If the presence or absence of macrocells that cause such corrosion in piping can be detected in advance and the quantitative proportion thereof can be predicted in advance, it is possible to prevent corrosion caused by the macrocells by taking measures.

【0007】本発明者は、このような観点から、各種金
属製ガス埋設管の腐食に係る実測・実態調査を広範囲に
実施してきているが、その一環として実施した通電試験
において、そのガス配管が白管(配管用炭素鋼鋼管のう
ち、亜鉛めっきを施した管)等の金属製の配管である場
合、電位の変化を通電電流で除した値すなわち通電変化
幅と最大腐食速度の実測値との間に高い相関性があるこ
とを見い出し、この事実を基にした金属製埋設配管のC
/Sマクロセル腐食の腐食測定法及び装置を先に開発し
出願している(特願平6ー23760号)。
From this point of view, the present inventor has extensively carried out actual measurement and fact-finding surveys on corrosion of various metal gas buried pipes. For metal pipes such as white pipes (galvanized carbon steel pipes among pipes), the value obtained by dividing the change in potential by the applied current, that is, the measured change width and maximum corrosion rate It was found that there is a high correlation between
/ S Macro cell corrosion measurement method and device for corrosion have been previously developed and filed (Japanese Patent Application No. 6-23760).

【0008】ここで上記「通電変化幅(mV/mA)」
とは、金属製埋設管の管対地電位分布の測定において、
ガス管が引き込まれる建屋側に近い埋設管の電位値(m
V)から、通電時の電位値(mV)を差し引き、これで
得られた電位の差をその通電時の通電電流値(mA)で
除したものであり、下記の式(I)で示されるものであ
る。
Here, the above "current change width (mV / mA)"
Is the measurement of the pipe-to-ground potential distribution of a buried metal pipe,
Potential value (m of the buried pipe near the building side where the gas pipe is drawn in (m
V) is subtracted from the electric potential value (mV) during energization, and the difference between the electric potentials thus obtained is divided by the energizing current value (mA) during energization, which is represented by the following formula (I). It is a thing.

【数 2】 [Equation 2]

【0009】図2は、全国各所で実測して得たこの通電
変化幅(mV/mA)と最大腐食速度の実測値との関係
の一例を示したものである。その腐食速度の実測値は
「mm/yr」すなわち年(yr)当たりの腐食深さを
ミリメートル(mm)単位で表示している。図2中、実
測値を●(黒丸)印でプロットし、添え数字は各実測対
象住宅等に付した整理番号である。図2に示すとおり、
通電変化幅の値が小さくなるに従い、最大腐食速度の実
測値が相対的に大きくなる傾向が認められ、この両者間
に一定の強い相対的関係があることが分かる。
FIG. 2 shows an example of the relationship between the current change width (mV / mA) obtained by actual measurement at various locations throughout the country and the actual measured value of the maximum corrosion rate. The measured value of the corrosion rate is "mm / yr", that is, the corrosion depth per year (yr) is displayed in millimeters (mm). In Fig. 2, the measured values are plotted with ● (black circles), and the subscripts are reference numbers assigned to each measured object house. As shown in Figure 2,
It is recognized that the measured value of the maximum corrosion rate tends to become relatively large as the value of the change width of the electric current becomes small, and there is a certain strong relative relationship between them.

【0010】上記先の開発に係る発明では、通電変化幅
(mV/mA)と最大腐食速度の実測値との間における
このような強い相関関係を利用し、これを基準ないし目
安に金属製埋設配管の通電変化幅と最大腐食速度の実測
値との相関関係を予め設定した後、対象とする金属製埋
設配管の電位値、通電時の電位値及び通電時の電流値を
計測し、これらの計測値を基に通電変化幅を算出し、こ
の算出値を上記実測に基づき予め設定した通電変化幅と
最大腐食速度との相関関係と対比させることによりその
金属製埋設配管の腐食速度を測定することを特徴として
いる。
In the invention according to the above-mentioned development, such a strong correlation between the change width of electric current (mV / mA) and the actually measured value of the maximum corrosion rate is utilized, and the metal burial is used as a standard or standard. After presetting the correlation between the width of change in the energization of the pipe and the measured value of the maximum corrosion rate, measure the potential value of the target metal buried pipe, the potential value during energization, and the current value during energization. The corrosion rate of the buried metal pipe is measured by calculating the energization change width based on the measured value and comparing the calculated value with the correlation between the energization change width and the maximum corrosion rate that are preset based on the actual measurement. It is characterized by that.

【0011】図3は、上記発明に係るC/Sマクロセル
腐食測定装置の概略を示すものである。図3中、1は建
屋(の壁)・コンクリート、2は土壌であり、3は金属
製のガス配管である。この金属製配管3は建屋1のコン
クリート1から土壌2へと通して配設されている。また
4は電位計(電圧計)、5は電流計、6は基準電極、7
は通電電極、8は可変抵抗、9は電源、10は通電スイ
ッチであり、これらは図示のとおりに配線される。この
うち通電電極7は土壌2中へ設置され、一方電位計(電
圧計)4は、配線11により配管3の建屋への立上がり
部に接続されている。また、図3中、12は通電電極7
への導線、13はそれら電位及び電流の測定値の信号伝
達用の導線である。
FIG. 3 schematically shows a C / S macrocell corrosion measuring device according to the above invention. In FIG. 3, 1 is a building (wall) / concrete, 2 is soil, and 3 is a metal gas pipe. This metal pipe 3 is arranged from the concrete 1 of the building 1 to the soil 2. Further, 4 is an electrometer (voltmeter), 5 is an ammeter, 6 is a reference electrode, 7
Is an energizing electrode, 8 is a variable resistor, 9 is a power source, and 10 is an energizing switch, and these are wired as shown. The current-carrying electrode 7 is installed in the soil 2, while the electrometer (voltmeter) 4 is connected to the rising portion of the pipe 3 to the building by the wiring 11. Further, in FIG. 3, reference numeral 12 is a current-carrying electrode 7.
, 13 is a conductor for transmitting the measured values of the potential and the current.

【0012】電圧計4及び電流計5により測定された値
は上記導線12によりマイクロコンピュータ(=マイコ
ン)14へ送られ、ここで埋設配管の電位(管対地電
位)、通電時の電位及び通電時の電流の各測定値(電位
=mV、電流=mA)を基に前記式(I)に従い「通電
変化幅(mV/mA)」を算出し、また図2に示される
ような算出「通電変化幅(mV/mA)」に対応する腐
食速度を測定する。このためマイコン14には、予めこ
れらの処理を行う記憶機能、計算機能、比較機能等を内
蔵、セットしてある。なお、「マイクロコンピュータ」
については、本明細書中適宜「マイコン」と略称する。
The values measured by the voltmeter 4 and the ammeter 5 are sent to the microcomputer (= microcomputer) 14 by the above-mentioned lead wire 12, where the potential of the buried pipe (pipe potential to ground), the potential at the time of energization, and the potential at the time of energization. “Electrical change width (mV / mA)” is calculated according to the above formula (I) based on each measured value of electric current (potential = mV, electric current = mA), and the calculated “electric change” shown in FIG. The corrosion rate corresponding to "width (mV / mA)" is measured. For this reason, the microcomputer 14 has a built-in storage function, a calculation function, a comparison function and the like for performing these processes in advance. In addition, "microcomputer"
Will be abbreviated as "microcomputer" in this specification as appropriate.

【0013】以上の構成を備える金属配管のC/Sマク
ロセル腐食測定装置を使用して、測定が必要な配管(す
なわち測定の対象とする金属製配管)について、各必要
測定値すなわち埋設配管の電位、通電時の電位及び通電
時の電流を測定し、これらによって通電変化幅(mV/
mA)を求め、対応する腐食速度を測定するが、以下こ
の過程について説明する。まず図2に示すような各所で
得た実測値に基づき、「通電変化幅(mV/mA)」
と、これに対応する金属配管のC/Sマクロセル腐食の
最大腐食速度との相関関係を予め設定し、これで設定し
た両者の相関関係をマイコン14に記憶させておく。
Using the C / S macrocell corrosion measuring device for metal pipes having the above-mentioned configuration, each required measurement value, that is, the potential of the buried pipe, is measured for the pipe that needs to be measured (that is, the metal pipe to be measured). , The potential during energization and the current during energization were measured, and the range of energization change (mV /
mA) is determined and the corresponding corrosion rate is measured and this process is described below. First, based on the actual measurement values obtained at various places as shown in Fig. 2, the "current change width (mV / mA)"
And the corresponding correlation with the maximum corrosion rate of the C / S macrocell corrosion of the metal pipe are set in advance, and the set correlation is stored in the microcomputer 14.

【0014】次いで、この装置をC/Sマクロセル腐食
速度の測定が必要な又はその測定を意図する既設の金属
製導管に図3のようにセットした後、通電スイッチ10
をオフ(off)とし、基準電極6を基準に埋設配管の
電位を計測し、その値を「埋設配管電位値」としてマイ
コン14へ送信して記憶させる。引続き通電スイッチ1
0をオン(on)とし、通電電極7と配管3との間に電
流を流し、基準電極6を基準に埋設配管3の電位を計測
して「通電時電位値」とするとともに、導線11、配管
3、土壌2、通電電極7及び導線12間に流れる電流を
測定し、この値を「通電時電流値」として導線13を通
じてマイコン14へ送信する。
Next, this apparatus is set on an existing metal conduit for which the C / S macrocell corrosion rate is required to be measured or intended to be measured as shown in FIG.
Is turned off, the potential of the buried pipe is measured with the reference electrode 6 as a reference, and the value is transmitted to the microcomputer 14 and stored as the “buried pipe potential value”. Continuing power switch 1
0 is turned on, a current is passed between the current-carrying electrode 7 and the pipe 3, and the potential of the buried pipe 3 is measured with the reference electrode 6 as a reference to obtain the "potential value during current supply". The current flowing between the pipe 3, the soil 2, the energizing electrode 7 and the conducting wire 12 is measured, and this value is transmitted to the microcomputer 14 through the conducting wire 13 as the "current value during energization".

【0015】マイコン14において、それら「埋設配管
電位値」、「通電時電位値」及び「通電時電流値」の各
実測値を基に通電変化幅(mV/mA)を算出し、この
値をマイコン14により、これに予め記憶させた前記通
電変化幅とC/Sマクロセル腐食の最大腐食速度との相
互関係と対比させることにより、その通電変化幅に対応
する当該金属配管のC/Sマクロセル腐食の最大腐食速
度を打ち出し、当該既設金属製配管のC/Sマクロセル
腐食の速度を予測する。
In the microcomputer 14, the energization change width (mV / mA) is calculated based on the measured values of the "buried pipe potential value", the "energized potential value" and the "energized current value", and this value is calculated. The microcomputer 14 compares the current change width and the maximum corrosion rate of the C / S macrocell corrosion stored in advance by the microcomputer 14 to compare the correlation with the C / S macrocell corrosion of the metal pipe corresponding to the current change width. The maximum corrosion rate of is determined and the rate of C / S macrocell corrosion of the existing metal pipe is predicted.

【0016】[0016]

【発明が解決しようとする課題】本発明は、先の開発に
係る上記測定装置をさらに改良、改善して、現実に具体
化させるものであり、その主要部分をケーシング内に収
納するとともに、その上面に端子部、操作部及び表示部
を備え、マクロセル腐食に係る電位値、通電時の電位値
及び通電時の電流値を実測し、そして予め実測値に基づ
き設定した通電変化幅と最大腐食速度との相関関係を目
安にすることにより、コンパクトでしかも簡易且つ精密
に金属製埋設配管の腐食速度を測定することができるL
PGガス等用の金属製埋設管の腐食測定装置並びに該装
置による腐食測定方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is to further improve and improve the above-mentioned measuring device according to the above-mentioned development so that the measuring device can be actually embodied. Equipped with a terminal section, operating section and display section on the top surface, the potential value related to macrocell corrosion, the potential value during energization and the current value during energization are measured, and the energization change width and the maximum corrosion rate are set in advance based on the measured values. By using the correlation with, as a guide, it is possible to measure the corrosion rate of a metal buried pipe compactly and easily and precisely.
An object of the present invention is to provide an apparatus for measuring corrosion of a buried metal pipe for PG gas and the like and a method for measuring corrosion by the apparatus.

【0017】[0017]

【課題を解決するための手段】本発明は、ケーシング内
に電源、電位計、電流計及びマイコン等を内蔵するとと
もに、その上面に下記(A)〜(C)の各ケーブル用端
子部、操作部及び表示部を有し、実測値に基づき予め設
定した通電変化幅と最大腐食速度との相関関係をマイコ
ンに記憶させ、これら(A)〜(C)のケーブルを通し
て計測された各実測値から下記式(I)を基にマイコン
により金属製埋設配管の通電変化幅を算出し、この算出
値を上記予め設定した通電変化幅と最大腐食速度との相
関関係と対比させることにより腐食速度を測定するよう
にしてなることを特徴とする金属製埋設配管の腐食測定
装置を提供する。 (A)腐食測定の対象とする金属製埋設配管の管対地電
位値を計測するための通電ケーブル (B)基準電極を備えるケーブル (C)通電棒を備えるケーブル
According to the present invention, a casing is provided with a power source, an electrometer, an ammeter, a microcomputer, etc., and a terminal portion for each of the following cables (A) to (C) on the upper surface of the casing, and an operation. It has a display part and a display part, stores the correlation between the maximum corrosion rate and the energization change width that is preset based on the measured values, and from each measured value measured through these (A) to (C) cables. The corrosion rate is measured by calculating the energization change width of the metal buried pipe with a microcomputer based on the following formula (I) and comparing the calculated value with the preset correlation between the energization change width and the maximum corrosion rate. A corrosion measuring apparatus for buried metal pipes is provided. (A) A current-carrying cable for measuring the pipe-to-ground potential value of the buried metal pipe to be subjected to corrosion measurement (B) A cable with a reference electrode (C) A cable with a current-carrying rod

【数 3】 [Equation 3]

【0018】また本発明は、上記腐食測定装置におい
て、その端子部の各端子孔に(A)〜(C)のケーブル
用端子を嵌挿、セットした後、(1)まずロータリース
イッチを通電する電圧の位置にセットして、測定開始指
令用スイッチをオンにし、管対地電位を検出して表示部
に記録した後、(2)電圧を所要通電電圧にセットする
のと同時に測定時間をセットし、セット時間終了時点で
の管対地の電位と電流とを検出して表示部に記録し、
(3)次いで(1)による管対地電位値と(2)による
管対地電位値及び管対地電流値を基に通電変化幅(mV
/mA)を算出し、(4)さらに、(3)で得られた通
電変化幅値を予め設定した通電変化幅と最大腐食速度の
実測値との相関関係と対比させて最大腐食速度を判定
し、表示部に表示することを特徴とする金属製埋設配管
の腐食測定方法を提供する。
Further, according to the present invention, in the above corrosion measuring apparatus, after the cable terminals (A) to (C) are fitted and set in the respective terminal holes of the terminal portion, (1) first, the rotary switch is energized. Set to the voltage position, turn on the measurement start command switch, detect the tube ground potential and record it on the display, then (2) set the voltage to the required energizing voltage and set the measurement time at the same time. , The potential and current of the tube ground at the end of the set time is detected and recorded on the display unit,
(3) Next, based on the tube-to-ground potential value according to (1) and the tube-to-ground potential value and tube-to-ground current value according to (2), the energization change width (mV)
/ MA) is calculated, and the maximum corrosion rate is determined by comparing (4) the current variation width value obtained in (3) with the correlation between the preset current variation width and the actual measured maximum corrosion rate. The present invention also provides a method for measuring corrosion of a buried metal pipe, which is characterized by displaying on a display unit.

【0019】[0019]

【発明の実施の形態】本発明に係る上記金属製埋設配管
の腐食測定装置においては、まず測定対象とする金属製
埋設配管の電位(管対地電位)、通電時の電位(通電時
管対地電位)及び通電時の電流(通電時管対地電流)を
計測し、これらの計測値を基にマイコンにより前記式
(I)に基づき通電変化幅を算出する。そしてこの算出
値をマイコンに予め記憶させた通電変化幅と最大腐食速
度の実測値との相関関係と対比させ、腐食速度を検知す
る処理をマイコンによる自動処理手段により行うことに
より、その測定及び算出処理を的確かつ迅速に実施する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the above-mentioned apparatus for measuring corrosion of a buried metal pipe according to the present invention, first, the potential of the buried metal pipe to be measured (pipe ground potential), the potential when energized (pipe potential when energized). ) And the current during energization (tube-to-ground current during energization), and the energization change width is calculated by the microcomputer based on these measured values based on the above equation (I). Then, this calculated value is compared with the correlation between the width of change in energization stored in the microcomputer in advance and the actual measured value of the maximum corrosion rate, and the processing for detecting the corrosion rate is performed by the automatic processing means by the microcomputer to measure and calculate the value. The processing can be performed accurately and quickly.

【0020】以下、図面に従い本発明をさらに詳しく説
明するが、本発明はこれら基本的事項の範囲内で各種態
様をとり得ることは勿論である。図4は、本発明に係る
金属製埋設管腐食測定装置のブロックダイヤグラムであ
る。図4中15は基準電極、16は埋設配管、17は通
電電極であり、18、19及び20は、それぞれ基準電
極15、埋設配管16及び通電電極17へ通じるケーブ
ル(導線)である。21はそれらケーブルの(又はそれ
らケーブルへの)入力切換えスイッチであり、ここには
電圧計及び電流計も配置されている。スイッチ21の切
り換えは図4中CPU(処理ユニット)として示すマイ
コン本体からの指令により行われる。
Hereinafter, the present invention will be described in more detail with reference to the drawings, but it goes without saying that the present invention can take various forms within the scope of these basic matters. FIG. 4 is a block diagram of a metal buried pipe corrosion measuring apparatus according to the present invention. In FIG. 4, reference numeral 15 is a reference electrode, 16 is a buried pipe, 17 is a conducting electrode, and 18, 19 and 20 are cables (conductors) leading to the reference electrode 15, the buried pipe 16 and the conducting electrode 17, respectively. Reference numeral 21 is an input changeover switch of (or to) the cables, and a voltmeter and an ammeter are also arranged here. Switching of the switch 21 is performed by a command from a microcomputer main body shown as a CPU (processing unit) in FIG.

【0021】また入力切換えスイッチ21とCPUとの
間には図示のとおりA/D変換器が配置され、各導線1
8、19及び20からの各測定値信号はここでA/D変
換されCPUへ伝達される。22は電源、23はそのた
めのスイッチである。本発明における操作電圧として
は、別途高電圧は必要とせず、高々6V程度で十分であ
り、このため電源22としては乾電池等を使用すること
ができる。操作用電力はここからロータリースイッチ2
4やCPUその他の各部品に供給されるが、符号25は
それら各部品への電力供給系を示している。
An A / D converter is arranged between the input changeover switch 21 and the CPU as shown in the drawing, and each conductor 1
Each measured value signal from 8, 19, and 20 is A / D converted here and transmitted to the CPU. Reference numeral 22 is a power source, and 23 is a switch therefor. As an operating voltage in the present invention, a high voltage is not required separately, and a voltage of about 6 V is sufficient at most. Therefore, a dry battery or the like can be used as the power source 22. Power for operation is from here rotary switch 2
4 and the CPU and other components, the reference numeral 25 represents a power supply system for these components.

【0022】また26は導通用ブザー、27は電圧監視
器、28は測定スイッチであり、このうち導通用ブザー
26は管対地の電位(通電電位)及び電流(通電電流)
の測定、検出時に作動し、電圧監視器27はCPUによ
って制御されるもので、これにより電源22における有
効電圧の有無が監視される。またマイコン本体CPUに
は、ROM(プログラム記憶ユニット)及びRAM(デ
ータ記憶ユニット)が連結、配置され、さらに表示器2
9が連結、配置されている。
Further, 26 is a conduction buzzer, 27 is a voltage monitor, and 28 is a measuring switch. Among them, the conduction buzzer 26 is a pipe ground potential (conduction potential) and a current (conduction current).
The voltage monitor 27 is operated by the CPU when it is measured and detected, and the presence or absence of an effective voltage in the power supply 22 is monitored by this. Further, a ROM (program storage unit) and a RAM (data storage unit) are connected and arranged to the CPU of the microcomputer body, and the display 2
9 are connected and arranged.

【0023】図5は、本発明に係る埋設管腐食測定装置
Tを示し、図4と共通する部分には同一の符号を付して
いる。30はケーシングであり、ケーシング30内には
電源(乾電池等、図4の符号22)、切換えスイッチ、
電圧計及び電流計(図4の符号21)、測定時間等をセ
ットするタイマー、A/D変換器、CPU、ROM、R
AM等が内蔵、配置されている。また埋設管腐食測定装
置Tの上表面には端子部、操作部及び表示部が配置され
ている。
FIG. 5 shows a buried pipe corrosion measuring device T according to the present invention, and the same parts as those in FIG. 4 are designated by the same reference numerals. Reference numeral 30 denotes a casing. Inside the casing 30, a power source (dry battery or the like, reference numeral 22 in FIG. 4), a changeover switch,
Voltmeter and ammeter (21 in FIG. 4), timer for setting measurement time, A / D converter, CPU, ROM, R
AM, etc. are built in and arranged. Further, a terminal portion, an operation portion and a display portion are arranged on the upper surface of the buried pipe corrosion measuring device T.

【0024】まず、上記端子部は、図5に示すようにそ
の上表面の上方部に配置されるが、31は測定対象とな
る埋設配管16に連結されるケーブル19用の端子孔、
32は土壌に突っ込み、土壌に導通される通電棒17と
連結されるケーブル20用の端子孔、33は基準電極1
5と連結されるケーブル18用の端子孔である。これら
各ケーブルは埋設管腐食測定装置Tと別体として構成さ
れ、埋設管腐食測定装置Tの使用時に上記各端子孔に嵌
挿、セットされる。なお上記ケーブル19の埋設配管1
6に対する連結、係止は、鋏形式の金具等適宜の手段に
より行うことができる。
First, the terminal portion is arranged on the upper portion of the upper surface thereof as shown in FIG. 5, and 31 is a terminal hole for the cable 19 connected to the buried pipe 16 to be measured,
Numeral 32 is a terminal hole for the cable 20 which is inserted into the soil and is connected to the current-carrying rod 17 which is conducted to the soil, and 33 is the reference electrode 1.
5 is a terminal hole for the cable 18 that is connected to the cable 5. Each of these cables is configured as a separate body from the buried pipe corrosion measuring device T, and is inserted and set in each of the above terminal holes when the buried pipe corrosion measuring device T is used. The buried pipe 1 of the cable 19
The connection and locking with respect to 6 can be performed by an appropriate means such as scissors-type metal fittings.

【0025】次に、操作部については、符号23は電源
スイッチ、28は各測定の開始指令をするスイッチであ
り、図示の態様ではプッシュ形式のものを使用してい
る。また24は導通試験及び通電試験の電圧を設定する
ロータリースイッチであり、各試験時において、このロ
ータリースイッチ24の操作により導通試験か、通電試
験(1.5V、3V、6V)か、にセットされる。
Next, regarding the operation unit, reference numeral 23 is a power switch, 28 is a switch for issuing a start command for each measurement, and in the illustrated mode, a push type is used. Reference numeral 24 is a rotary switch for setting the voltage of the continuity test and the energization test. At each test, the rotary switch 24 is operated to set the continuity test or the energization test (1.5V, 3V, 6V). It

【0026】このうち導通試験は、C/Sマクロセルの
防食対策として電気的絶縁継手を施工した場合の良否を
みるもので、符号Lはその導通時(施工不良)の点滅ラ
ンプであり、点滅ランプLは導通ブザー26と連動する
ようにしても差し支えない。さらに、表示部29は例え
ば液晶表示により表示される。この表示部29に、測定
された管対地電位、通電電位及び通電電流、これら測定
値を基に計算された通電変化幅及びこの通電変化幅によ
って予測される腐食速度値が表示される。
Among these, the continuity test is to check the quality of the case where an electrically insulating joint is installed as a corrosion protection measure for the C / S macrocell, and the symbol L is a blinking lamp at the time of continuity (construction failure). It does not matter if L is linked with the conduction buzzer 26. Further, the display unit 29 is displayed by a liquid crystal display, for example. On the display unit 29, the measured pipe-to-ground potential, energization potential and energization current, the energization change width calculated based on these measured values, and the corrosion rate value predicted by the energization change width are displayed.

【0027】図6は、以上図4〜5に示す腐食測定装置
Tを使用する態様を示す図で、図6中図4〜5と共通す
る部分には同一の符号を用いている。34は建屋の壁
(含:コンクリート)、35は土壌である。金属製の埋
設配管16は建屋34のコンクリートから土壌35へと
通して配設されている。配管16には通電ケーブル19
が係止され、また基準電極15としては例えば飽和硫酸
銅が使用される。前述のとおり各ケーブル18、19、
20は腐食測定装置Tの本体とは別体として構成され、
腐食測定装置Tの使用時に各ケーブルの端子を各端子孔
に嵌入、セットすることにより図6のとおりに接続され
る。
FIG. 6 is a view showing a mode in which the corrosion measuring device T shown in FIGS. 4 to 5 is used, and the same reference numerals are used for the portions common to FIGS. 4 to 5. Reference numeral 34 is a building wall (including concrete), and 35 is soil. The buried pipe 16 made of metal is arranged from the concrete in the building 34 to the soil 35. A power cable 19 is installed in the pipe 16.
, And saturated copper sulfate, for example, is used as the reference electrode 15. As mentioned above, each cable 18, 19,
20 is configured as a separate body from the body of the corrosion measuring device T,
When the corrosion measuring device T is used, the terminals of the respective cables are fitted and set in the respective terminal holes to be connected as shown in FIG.

【0028】図7は、腐食測定装置Tを図6のようにセ
ットした後、腐食測定を行う手順を説明するための概略
図である。以下図4〜図6をも参照して説明するが、図
7中矢印(→)は操作、測定手順の経時的流れを示して
いる。(1)まずロータリースイッチ24を通電試験
(1.5〜6V)の位置にセットし、測定開始指令用ス
イッチ23をオンにセットすると、管対地電位が測定、
検出され表示部29に記録される。この測定、記録は短
時間に行われ、通常2秒程度で終了する。
FIG. 7 is a schematic diagram for explaining a procedure for performing corrosion measurement after setting the corrosion measuring apparatus T as shown in FIG. As will be described below with reference to FIGS. 4 to 6, the arrow (→) in FIG. 7 indicates a temporal flow of the operation and measurement procedure. (1) First, the rotary switch 24 is set to the position of the energization test (1.5 to 6 V), and the measurement start command switch 23 is set to ON.
It is detected and recorded on the display unit 29. This measurement and recording are carried out in a short time, and usually finish in about 2 seconds.

【0029】(2)次いでロータリースイッチ24でセ
ットした通電電圧1.5V、3V、6Vのうちの何れか
の電位で通電を開始し、同時に通電開始時以降の測定時
間を3〜60秒程度に設定する。しかし数多くの予備実
験の結果によれば、実際上は3〜5秒程度で十分である
ので、タイマーを例えば4秒とセットする。引続き直ち
に開始指令スイッチ28をプッシュし(オンとし)、測
定検出動作中には、腐食測定装置Tの表示部29の検出
動作の項目(例えば、表示部29に示す通電電位や通電
電流の項目)を点滅させるとともに、導通ブザー26を
鳴らす。
(2) Next, the energization is started at any of the energization voltages 1.5V, 3V, and 6V set by the rotary switch 24, and at the same time, the measurement time after the start of the energization is set to about 3 to 60 seconds. Set. However, according to the results of many preliminary experiments, 3 to 5 seconds is practically sufficient, so the timer is set to 4 seconds, for example. Subsequently, the start command switch 28 is immediately pushed (turned on), and during the measurement detection operation, the items of the detection operation of the display unit 29 of the corrosion measuring device T (for example, the items of energization potential and energization current shown on the display unit 29). Blinks and the continuity buzzer 26 sounds.

【0030】(3)、(2)におけるセット時間の終了
時点で、管対地の電位(通電電位)と電流(通電電流)
とが測定、検出され表示部29に記録される。(4)次
いで(1)による管対地電位値と(3)による管対地の
電位値及び管対地の電流値とを基に前記式(I)により
通電変化幅(mV/mA)を算出する。(5)さらに
(4)で得られた通電変化幅値を予め設定した通電変化
幅と最大腐食速度の実測値との相関関係と対比して最大
腐食速度を判定し、測定装置の表示部29にその結果を
表示する。以上の測定検出や対比、或いは表示指令等は
すべてケーシング30内に内蔵されたマイコン(CP
U、ROM、RAM)により行われる。
At the end of the set time in (3) and (2), the electric potential (conducting electric potential) and the current (conducting electric current) of the tube-ground.
And are measured and detected and recorded on the display unit 29. (4) Then, based on the tube-to-ground potential value according to (1), the tube-to-ground potential value and the tube-to-ground current value according to (3), the energization change width (mV / mA) is calculated by the formula (I). (5) Furthermore, the maximum corrosion rate is determined by comparing the energization change width value obtained in (4) with the correlation between the preset energization change width and the actual measurement value of the maximum corrosion rate, and the display unit 29 of the measuring device is determined. The result is displayed on. The above-mentioned measurement detection, comparison, display command, etc. are all carried out by the microcomputer (CP
U, ROM, RAM).

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば、マクロ
セル腐食に係る電位値、通電時の電位値及び通電時の電
流値を実測し、この実測値と実際の配管の腐食量を計測
したデータとの相関関係を目安に用いるマクロセル腐食
測定装置において、その主要部分をケーシング内に収納
するとともに、その上面に端子部、操作部及び表示部を
備えるようにしたため、装置自体をコンパクトとするこ
とができるとともに、金属製埋設配管の腐食速度を簡易
且つ精密に測定することができる。また本発明の腐食測
定装置及び方法は、LPG等のガス配管とは限らず、金
属製埋設管であれば適用できるものである。
As described above, according to the present invention, the potential value related to macrocell corrosion, the potential value during energization, and the current value during energization were measured, and the measured value and the actual corrosion amount of the pipe were measured. In the macro cell corrosion measuring device that uses the correlation with the data as a guide, the main part is housed in the casing, and the terminal part, the operating part, and the display part are provided on the upper surface, so the device itself should be compact. In addition, it is possible to easily and precisely measure the corrosion rate of the buried metal pipe. Further, the corrosion measuring apparatus and method of the present invention is not limited to gas piping such as LPG and can be applied to any metal buried pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】埋設金属管における腐食現象を模式的に示す
図。
FIG. 1 is a diagram schematically showing a corrosion phenomenon in a buried metal pipe.

【図2】金属製埋設配管に対する実測値から得た通電変
化幅(mV/mA)と最大腐食速度の実測値との関係を
示す図。
FIG. 2 is a diagram showing a relationship between an energization change width (mV / mA) obtained from an actual measurement value for a metal buried pipe and an actual measurement value of a maximum corrosion rate.

【図3】先の提案に係るC/Sマクロセル腐食測定装置
の概略を示す図。
FIG. 3 is a diagram showing an outline of a C / S macrocell corrosion measuring device according to the above proposal.

【図4】本発明に係る埋設管腐食測定装置のブロックダ
イヤグラムを示す図。
FIG. 4 is a diagram showing a block diagram of a buried pipe corrosion measuring apparatus according to the present invention.

【図5】本発明に係る埋設管腐食測定装置を示す図。FIG. 5 is a view showing a buried pipe corrosion measuring device according to the present invention.

【図6】本発明に係る埋設管腐食測定装置の使用態様を
示す図。
FIG. 6 is a diagram showing a usage mode of the buried pipe corrosion measuring apparatus according to the present invention.

【図7】本発明に係る埋設管腐食測定装置による測定手
順を示す図。
FIG. 7 is a diagram showing a measurement procedure by the buried pipe corrosion measuring apparatus according to the present invention.

【符号の説明】 15 基準電極 16 埋設配管 17 通電電極 18、19、20 導線(ケーブル) 21 入力切換えスイッチ(含:電圧計及び電流計) 22 乾電池等からなる電源 23 スイッチ 24 ロータリースイッチ 26 導通用ブザー 27 電圧監視器 28 測定スイッチ T 腐食測定装置 29 表示器 30 ケーシング L 点滅ランプ 31 ケーブル19用の端子 32 20用の端子 33 ケーブル18用の端子 34 建屋の壁(含:コンクリート) 35 土壌[Explanation of symbols] 15 reference electrode 16 buried pipe 17 energizing electrode 18, 19, 20 conducting wire (cable) 21 input changeover switch (including: voltmeter and ammeter) 22 power source composed of dry battery 23 switch 24 rotary switch 26 for conduction Buzzer 27 Voltage monitor 28 Measuring switch T Corrosion measuring device 29 Display 30 Casing L Flashing lamp 31 Terminal for cable 19 32 Terminal for 20 33 Terminal for cable 18 34 Building wall (including concrete) 35 Soil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ケーシング内に電源、電位計、電流計及び
マイコン等を内蔵するとともに、その上面に下記(A)
〜(C)の各ケーブル用端子部、操作部及び表示部を有
し、実測値に基づき予め設定した通電変化幅と最大腐食
速度との相関関係をマイコンに記憶させ、これら(A)
〜(C)のケーブルを通して計測された各実測値から下
記式(I)を基にマイコンにより金属製埋設配管の通電
変化幅を算出し、この算出値を上記予め設定した通電変
化幅と最大腐食速度との相関関係と対比させることによ
り腐食速度を測定するようにしてなることを特徴とする
金属製埋設配管の腐食測定装置。 (A)腐食測定の対象とする金属製埋設配管の管対地電
位値を計測するための通電ケーブル (B)基準電極を備えるケーブル (C)通電棒を備えるケーブル 【数 1】
1. A casing is equipped with a power source, an electrometer, an ammeter, a microcomputer and the like, and the following (A) is provided on the upper surface thereof.
Each of the cable terminals (1) to (C) has an operating portion and a display portion, and the microcomputer stores the correlation between the preset change width and the maximum corrosion rate based on the measured value.
From the measured values measured through the cables of (C) to (C), the variation width of energization of the metal-embedded pipe is calculated by the microcomputer based on the following formula (I), and the calculated value is the preset variation width and maximum corrosion. An apparatus for measuring corrosion of a buried metal pipe, wherein the corrosion rate is measured by comparing it with the correlation with the speed. (A) A current-carrying cable for measuring the pipe-to-ground potential value of the buried metal pipe to be subjected to corrosion measurement (B) A cable with a reference electrode (C) A cable with a current-carrying rod [Equation 1]
【請求項2】請求項1の腐食測定装置において、その端
子部の各端子孔に(A)〜(C)のケーブル用端子を嵌
挿、セットした後、(1)まずロータリースイッチを通
電する電圧の位置にセットして、測定開始指令用スイッ
チをオンにし、管対地電位を検出して表示部に記録した
後、(2)電圧を所要通電電圧にセットするのと同時に
測定時間をセットし、セット時間終了時点での管対地の
電位と電流とを検出して表示部に記録し、(3)次いで
(1)による管対地電位値と(2)による管対地電位値
及び管対地電流値を基に通電変化幅(mV/mA)を算
出し、(4)さらに、(3)で得られた通電変化幅値を
予め設定した通電変化幅と最大腐食速度の実測値との相
関関係と対比させて最大腐食速度を判定し、表示部に表
示することを特徴とする金属製埋設配管の腐食測定方
法。
2. The corrosion measuring apparatus according to claim 1, wherein after the cable terminals (A) to (C) are fitted and set in the respective terminal holes of the terminal portion, (1) first, the rotary switch is energized. Set to the voltage position, turn on the measurement start command switch, detect the tube ground potential and record it on the display, then (2) set the voltage to the required energizing voltage and set the measurement time at the same time. , The electric potential and current of the pipe to ground at the end of the set time are detected and recorded in the display unit, and (3) then the pipe to ground potential value according to (1) and the pipe to ground potential value and pipe to ground current value according to (2). Based on, the energization change width (mV / mA) is calculated, and (4) Furthermore, the energization change width value obtained in (3) is correlated with the preset energization change width and the actual measured value of the maximum corrosion rate. The feature is that the maximum corrosion rate is judged by comparison and displayed on the display. Corrosion measurement method of metal buried piping.
【請求項3】上記(1)及び(2)の通電電圧が1.5
〜6Vの範囲であり、(2)の測定時間が3〜5秒の範
囲である請求項2記載の金属製埋設配管の腐食測定方
法。
3. The energizing voltage of the above (1) and (2) is 1.5.
The method for measuring corrosion of a buried metal pipe according to claim 2, wherein the measurement time in (2) is in the range of 3 to 5 seconds.
JP7139096A 1996-03-01 1996-03-01 Apparatus for measuring corrosion of embedded pipe Pending JPH09236565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7139096A JPH09236565A (en) 1996-03-01 1996-03-01 Apparatus for measuring corrosion of embedded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7139096A JPH09236565A (en) 1996-03-01 1996-03-01 Apparatus for measuring corrosion of embedded pipe

Publications (1)

Publication Number Publication Date
JPH09236565A true JPH09236565A (en) 1997-09-09

Family

ID=13459151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7139096A Pending JPH09236565A (en) 1996-03-01 1996-03-01 Apparatus for measuring corrosion of embedded pipe

Country Status (1)

Country Link
JP (1) JPH09236565A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060259A (en) * 2002-01-08 2003-07-16 심욱서 Current counter of anti-corroded object in an electric anti-corrosion system
KR100496142B1 (en) * 2002-11-12 2005-06-20 한국가스공사연구개발원 Data logger for use in telemetry system
KR100721251B1 (en) * 2005-12-02 2007-05-22 엘에스산전 주식회사 Monitoring system of underground power line
CN100425996C (en) * 2005-07-29 2008-10-15 陶亮 Electrical measurement method for safety theft prevention of oil/gas pipe line
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
RU2723004C1 (en) * 2019-11-29 2020-06-08 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Monitoring device for rate of pipeline corrosion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060259A (en) * 2002-01-08 2003-07-16 심욱서 Current counter of anti-corroded object in an electric anti-corrosion system
KR100496142B1 (en) * 2002-11-12 2005-06-20 한국가스공사연구개발원 Data logger for use in telemetry system
CN100425996C (en) * 2005-07-29 2008-10-15 陶亮 Electrical measurement method for safety theft prevention of oil/gas pipe line
KR100721251B1 (en) * 2005-12-02 2007-05-22 엘에스산전 주식회사 Monitoring system of underground power line
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
RU2723004C1 (en) * 2019-11-29 2020-06-08 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Monitoring device for rate of pipeline corrosion

Similar Documents

Publication Publication Date Title
CN112430817B (en) Split type device and method for buried metal pipeline corrosion parameter test probe
CN110261680B (en) Method, device and system for detecting resistance parameters of grounding system and monitoring network
JPH0749327A (en) Method and equipment for measuring true electrochemical potential of structure in electrolyte
JPH09236565A (en) Apparatus for measuring corrosion of embedded pipe
JP2008196947A (en) Abnormal low grounding spot detection method and detection system of buried metal pipeline
Zhang et al. Development of an electrochemical in situ detection sensor for grounding grid corrosion
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP4599203B2 (en) Embedded pipe corrosion diagnosis system and buried pipe corrosion diagnosis method
JPH07209238A (en) Method and apparatus of c/s macrocell corrosion measurement for metal pipe
JP2535177B2 (en) Deterioration determination method for reinforced concrete structure
JP5086287B2 (en) Soundness measurement evaluation method of plastic coating in buried metal pipeline
JP2848850B2 (en) Corrosion protection system for steel pipes for gas transport
JPH0423748B2 (en)
JP4522289B2 (en) Corrosion estimation method
KR100508877B1 (en) method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy
JPH0367219B2 (en)
JP2002180276A (en) Electrode for monitoring corrosion prevention and method of monitoring corrosion prevention
JP2554340Y2 (en) Reinforcement corrosion meter in concrete
JPH09318571A (en) Electrode for measuring ac impedance
JPH03197858A (en) Inspecting method for corrosion state of body buried underground
JP7489047B2 (en) Equipment for detecting corrosion in rebars in concrete
JP6291295B2 (en) Inspection method of laying pipe
JP3315189B2 (en) Corrosion spot detection method for cast iron pipes buried in soil
JP2006053072A (en) Method and system for inspecting insulated state
JPS60231154A (en) Measurement of metal corrosion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Effective date: 20040305

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518