JPH0923590A - Charging apparatus - Google Patents

Charging apparatus

Info

Publication number
JPH0923590A
JPH0923590A JP7172324A JP17232495A JPH0923590A JP H0923590 A JPH0923590 A JP H0923590A JP 7172324 A JP7172324 A JP 7172324A JP 17232495 A JP17232495 A JP 17232495A JP H0923590 A JPH0923590 A JP H0923590A
Authority
JP
Japan
Prior art keywords
voltage
charging
cells
field effect
unit cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7172324A
Other languages
Japanese (ja)
Inventor
Mamoru Suzuki
守 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7172324A priority Critical patent/JPH0923590A/en
Publication of JPH0923590A publication Critical patent/JPH0923590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To successfully charge a secondary battery formed of a plurality of cells connected in series by controlling a control element via an isolation means with an error voltage of an error voltage detecting means. SOLUTION: When charging is started, a detected voltage is obtained in the output side depending on the voltage across the cells 1a and 1b and this detected voltage is compared with the preset voltage in the error voltage detecting circuit 4a and 4b. When the detected voltage is lower than the preset voltage, the transistors 11a, 11b have no continuation, light emitting diodes 13a, 13b do not emit the light and charging is continued. When the detected voltage becomes higher than the preset voltage, the transistor 11 have continuation light emitting diodes 13a, 13b emit the light, the field effect transistors 7a, 7b have continuation and a charging DC current flows as a bias current in this field effect transistors 7a, 7b. Thereby, the same driving condition may be set for the control element o the cells 1a and 1b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えばリチウムイオ
ン電池やニッケルカドミウム電池等の単電池を複数個直
列接続したバッテリーパック、組電池等の二次電池を充
電する充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for charging a secondary battery such as a battery pack or an assembled battery in which a plurality of single cells such as a lithium ion battery and a nickel cadmium battery are connected in series.

【0002】[0002]

【従来の技術】先にリチウムイオン電池やニッケルカド
ミウム電池等の単電池を複数個直列接続したバッテリー
パックや組電池等の二次電池を充電する充電装置とし
て、図2に示す如きものが提案されている。
2. Description of the Related Art Previously, as a charging device for charging a secondary battery such as a battery pack or an assembled battery in which a plurality of cells such as a lithium-ion battery and a nickel-cadmium battery are connected in series, one shown in FIG. 2 has been proposed. ing.

【0003】図2において、1は複数個例えば2個のリ
チウムイオン電池の単電池1a,1bが直列接続された
組電池の二次電池を示し、斯る組電池1の各々の単電池
1a及び1bを充電するのに図2に示す如き構成で行わ
れていた。
In FIG. 2, reference numeral 1 denotes a secondary battery of an assembled battery in which a plurality of, for example, two lithium ion battery cells 1a and 1b are connected in series. The configuration shown in FIG. 2 was used to charge 1b.

【0004】即ち、図2において、2は充電用の直流電
流を発生する直流電流源を示し、この直流電流源2の正
極側を組電池1の正極端子に接続すると共にこの直流電
流源2の負極側をこの組電池1の負極端子に接続する。
That is, in FIG. 2, reference numeral 2 denotes a direct current source for generating a direct current for charging. The positive side of the direct current source 2 is connected to the positive terminal of the battery pack 1 and the direct current source 2 is connected. The negative electrode side is connected to the negative electrode terminal of this assembled battery 1.

【0005】また、之等単電池1a及び1bの夫々の正
極端子を夫々電圧検出回路を構成する差動増幅器より成
る演算増幅器3a及び3bの夫々の非反転入力端子+に
接続すると共に之等単電池1a及び1bの夫々の負極端
子を夫々この演算増幅器3a及び3bの夫々の反転入力
端子−に接続する。
Further, the positive terminals of the cells 1a and 1b are connected to the respective non-inverting input terminals + of the operational amplifiers 3a and 3b, which are differential amplifiers constituting the voltage detection circuit, respectively. The negative terminals of the batteries 1a and 1b are connected to the inverting input terminals-of the operational amplifiers 3a and 3b, respectively.

【0006】この演算増幅器3a及び3bの夫々の出力
側に得られる単電池1a及び1bの夫々の両極間電圧に
応じた検出電圧を夫々誤差電圧検出回路を構成する演算
増幅器4a及び4bの夫々の非反転入力端子+に供給す
ると共にこの誤差電圧検出回路を構成する演算増幅器4
a及び4bの夫々の反転入力端子−に夫々単電池1a及
び1bの満充電電圧を設定する設定電圧を発生する設定
電圧発生回路5a及び5bからの設定電圧を供給する。
この場合、この設定電圧発生回路5a及び5bにおいて
はこの設定電圧を任意に可変できる如くする。
The detection voltages corresponding to the respective inter-electrode voltages of the unit cells 1a and 1b obtained at the respective output sides of the operational amplifiers 3a and 3b are respectively detected by the operational amplifiers 4a and 4b constituting the error voltage detection circuit. Operational amplifier 4 which supplies this to the non-inverting input terminal + and constitutes this error voltage detection circuit
The inverting input terminals of a and 4b are supplied with set voltages from set voltage generating circuits 5a and 5b for generating set voltages for setting the full charge voltage of the cells 1a and 1b, respectively.
In this case, in the set voltage generating circuits 5a and 5b, the set voltage can be changed arbitrarily.

【0007】この誤差電圧検出回路を構成する演算増幅
器4a及び4bの夫々の出力側に得られる誤差電圧を夫
々加算回路6a及び6bの夫々の一方の入力端子に供給
し、またこの加算回路6aの他方の入力端子に単電池1
aの負極側即ち単電池1a及び1bの接続点の電圧を供
給し、またこの加算回路6bの他方の入力端子に単電池
1bの負極側の電圧を供給する。
The error voltage obtained at the output side of each of the operational amplifiers 4a and 4b constituting this error voltage detection circuit is supplied to one input terminal of each of the addition circuits 6a and 6b, and the addition circuit 6a Single cell at the other input terminal
The voltage on the negative side of a, that is, the voltage at the connection point of the cells 1a and 1b is supplied, and the voltage on the negative side of the cell 1b is supplied to the other input terminal of the adding circuit 6b.

【0008】この加算回路6a及び6bの夫々の出力信
号を夫々n形の電界効果トランジスタ7a及び7bの夫
々のゲートに供給し、この電界効果トランジスタ7aの
ドレインを直流電流源2及び単電池1aの接続点に接続
し、この電界効果トランジスタ7aのソースを単電池1
a及び1bの接続点に接続し、また電界効果トランジス
タ7bのドレインを単電池1a及び1bの接続点に接続
し、この電界効果トランジスタ7bのソースを単電池1
b及び直流電流源2の接続点に接続する。
The output signals of the adder circuits 6a and 6b are supplied to the gates of the n-type field effect transistors 7a and 7b, respectively, and the drains of the field effect transistor 7a are connected to the direct current source 2 and the unit cell 1a. The source of the field effect transistor 7a is connected to the connection point and the unit cell 1
a and 1b are connected to each other, the drain of the field effect transistor 7b is connected to a connection point of the unit cells 1a and 1b, and the source of the field effect transistor 7b is connected to the unit cell 1.
b and the connection point of the direct current source 2.

【0009】この図2において、直流電流源2より直流
電流を流すと、単電池1a及び1bにこの直流電流が流
れ、この単電池1a及び1bの充電が開始される。
In FIG. 2, when a direct current is made to flow from the direct current source 2, this direct current flows in the unit cells 1a and 1b, and charging of the unit cells 1a and 1b is started.

【0010】この充電が開始されると、電圧検出回路を
構成する演算増幅器3a及び3bの夫々の出力側には単
電池1a及び1bの夫々の両極間電圧に応じた検出電圧
が得られ、この検出電圧が夫々誤差電圧検出回路を構成
する演算増幅器4a及び4bに夫々供給され、この誤差
電圧検出回路4a及び4bでこの検出電圧と設定電圧と
が比較され、この差の誤差電圧が加算回路6a及び6b
に夫々供給される。
When this charging is started, a detection voltage corresponding to the voltage between both electrodes of the unit cells 1a and 1b is obtained at the output side of each of the operational amplifiers 3a and 3b which constitute the voltage detection circuit. The detected voltage is supplied to the operational amplifiers 4a and 4b, respectively, which form the error voltage detection circuit, and the detected voltage is compared with the set voltage by the error voltage detection circuits 4a and 4b, and the error voltage of this difference is added to the addition circuit 6a. And 6b
Respectively.

【0011】この誤差電圧は単電池1a,1bの両極間
電圧である検出電圧が設定電圧より低いときには負の電
圧であり、このときは加算回路6a,6bの出力電圧即
ち電界効果トランジスタ7a,7bのゲート電圧はこの
ソース電圧よりも低いので、この電界効果トランジスタ
7a,7bは不導通であり、充電用の直流電流は単電池
1a,1bを通して流れる。
This error voltage is a negative voltage when the detection voltage, which is the voltage between both electrodes of the unit cells 1a and 1b, is lower than the set voltage, and at this time, the output voltage of the adder circuits 6a and 6b, that is, the field effect transistors 7a and 7b. Since its gate voltage is lower than its source voltage, the field effect transistors 7a and 7b are non-conductive, and the direct current for charging flows through the unit cells 1a and 1b.

【0012】その後、充電が進み、この検出電圧が設定
電圧よりも高くなったときにはこの誤差電圧は正の電圧
となり、このときはこの加算回路6a,6bの出力電圧
即ち電界効果トランジスタ7a,7bのゲート電圧はこ
のソース電圧よりも高くなり、この電界効果トランジス
タ7a,7bは導通し、この電界効果トランジスタ7
a,7bに充電用の直流電流がバイパス電流として流れ
る。このバイパス電流を流すことにより、単電池1a,
1bへの充電用の直流電流を小さくし、この単電池1
a,1bを過充電することなく、この単電池1a,1b
の両極電圧を一定に保つことができる。
Thereafter, when charging progresses and the detected voltage becomes higher than the set voltage, this error voltage becomes a positive voltage, and at this time, the output voltage of the adder circuits 6a, 6b, that is, the field effect transistors 7a, 7b. The gate voltage becomes higher than the source voltage, the field effect transistors 7a and 7b become conductive, and the field effect transistor 7a
A direct current for charging flows in a and 7b as a bypass current. By passing this bypass current, the unit cells 1a,
1b to reduce the DC current for charging
Without overcharging a and 1b, this single cell 1a and 1b
It is possible to keep the voltage of both electrodes constant.

【0013】またこの図2例では各々の単電池1a及び
1bに充電用の直流電流の制御用の電界効果トランジス
タ7a及び7bを夫々別々に制御するので、各単電池1
a及び1bの夫々の過充電を夫々防止できると共に各単
電池1a及び1bを夫々バラツキなく安全に満充電する
ことができる。
In the example shown in FIG. 2, the field effect transistors 7a and 7b for controlling the direct current for charging are separately controlled in each of the cells 1a and 1b.
It is possible to prevent overcharging of a and 1b, respectively, and to fully charge each of the cells 1a and 1b safely without variation.

【0014】また、この図2例では各単電池1a及び1
b毎に別々に充電を制御するので、全ての単電池1a,
1bが満充電となるまで一貫して充電を継続することが
でき、組電池1の充電時間を短縮化することができる。
Further, in the example of FIG. 2, each of the unit cells 1a and 1a
Since the charging is controlled separately for each b, all the unit cells 1a,
Charging can be continuously continued until 1b is fully charged, and the charging time of the assembled battery 1 can be shortened.

【0015】[0015]

【発明が解決しようとする課題】然しながら、斯る図2
に示す如き充電装置においては、複数個例えば2個の直
列接続された単電池1a,1bの各単電池1a及び1b
に夫々並列に接続した電界効果トランジスタ7a及び7
bは、その単電池の負極の電位(直列接続されている1
個下位の単電池の正極の電位)によって、駆動状態が決
まり、この電位は、その単電池より下位の単電池の電圧
の和とはなり電界効果トランジスタ7a,7bの全てが
異なっているので、図2例では加算回路6a,6bを設
け、この電界効果トランジスタ7a,7bを夫々同一の
駆動状態にしているので、それだけ構成が煩雑となる不
都合があった。
However, such a problem as shown in FIG.
In the charging device as shown in FIG. 1, a plurality of, for example, two unit cells 1a and 1b connected in series are provided in each unit cell 1a and 1b.
Field-effect transistors 7a and 7 connected in parallel to
b is the potential of the negative electrode of the unit cell (1 connected in series
The driving state is determined by the positive electrode potential of the unit cell lower than the unit cell, and this potential is the sum of the voltages of the unit cells lower than the unit cell, and all the field effect transistors 7a and 7b are different, In the example of FIG. 2, since the adder circuits 6a and 6b are provided and the field effect transistors 7a and 7b are in the same drive state, there is a disadvantage that the configuration becomes complicated accordingly.

【0016】また加算回路6a,6b等の電源をこの組
電池1より得るようにしたときには、この加算回路6
a,6bは出力がこの組電池1の両極間電圧例えば10
0Vまで振れるものでなければ最上位の電界効果トラン
ジスタ7aの駆動ができなくなる不都合があった。
When the power source for the adder circuits 6a, 6b, etc. is obtained from the battery pack 1, the adder circuit 6
The outputs a and 6b have a voltage between both electrodes of the assembled battery 1, for example, 10
If it does not swing to 0 V, there is a disadvantage that the highest field effect transistor 7a cannot be driven.

【0017】本発明は斯る点に鑑み上述の加算回路を使
用することなく、単電池を複数個直列接続したバッテリ
ーパック、組電池等の二次電池を良好に充電することが
できる充電装置を提案せんとするものである。
In view of the above, the present invention provides a charging device capable of satisfactorily charging a secondary battery such as a battery pack or an assembled battery in which a plurality of unit cells are connected in series without using the above-mentioned addition circuit. It is a proposal.

【0018】[0018]

【課題を解決するための手段】本発明充電装置は複数個
の単電池が直列接続された二次電池を充電する充電装置
であって、この複数個の単電池の直列接続より成る二次
電池に充電用直流電流を供給する直流電流源を設けると
共にこの複数個の各単電池に対して、夫々の電圧を検出
する電圧検出手段と、この電圧検出手段の検出電圧と設
定電圧との誤差電圧を検出する誤差電圧検出手段と、こ
の各単電池に並列に接続され、この各単電池に供給する
充電用直流電流を制御する制御素子とを設け、この誤差
電圧検出手段の誤差電圧によりアイソレート手段を介し
て、この制御素子を制御するようにしたものである。
SUMMARY OF THE INVENTION A charging device according to the present invention is a charging device for charging a secondary battery in which a plurality of cells are connected in series, the secondary battery comprising a plurality of cells connected in series. Is provided with a direct current source for supplying a charging direct current to each of the plurality of cells, and voltage detection means for detecting the respective voltages, and an error voltage between the detection voltage of the voltage detection means and the set voltage. Is provided in parallel with each unit cell, and a control element for controlling the charging DC current supplied to each unit cell is provided. This control element is controlled by means of means.

【0019】本発明によれば誤差電圧検出手段の誤差電
圧によりアイソレート手段を介して、この制御素子を制
御するようにしたので、従来の加算回路を使用すること
なく、各単電池の制御素子の駆動状態を同一にすること
ができると共に、この制御素子を制御する回路を充電し
ようとする二次電池とアイソレートすることができる。
According to the present invention, the control element is controlled by the error voltage of the error voltage detection means through the isolation means. Therefore, the control element of each unit cell can be used without using the conventional adder circuit. It is possible to make the driving state of the same, and to isolate the circuit for controlling the control element from the secondary battery to be charged.

【0020】[0020]

【発明の実施の形態】以下、図1を参照して本発明充電
装置の一実施例につき説明しよう。この図1において図
2に対応する部分には同一符号を付し、その詳細説明は
省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the charging device of the present invention will be described below with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0021】本例は、複数個例えば2個のリチウムイオ
ン電池の単電池1a及び1bが直列接続された組電池1
の二次電池を充電する充電装置である。図1において
は、充電用の直流電流を発生する直流電流源2の正極側
を組電池1の正極端子に接続すると共にこの直流電流源
2の負極側をこの組電池1の負極端子に接続する。
In this example, a plurality of, for example, two lithium-ion battery cells 1a and 1b are connected in series to form an assembled battery 1
Is a charging device for charging the secondary battery of. In FIG. 1, the positive electrode side of a direct current source 2 that generates a direct current for charging is connected to the positive electrode terminal of the battery pack 1, and the negative electrode side of the direct current source 2 is connected to the negative electrode terminal of the battery pack 1. .

【0022】また、之等単電池1a及び1bの夫々の正
極端子を夫々電圧検出回路を構成する差動増幅器より成
る演算増幅器3a及び3bの夫々の非反転入力端子+に
接続すると共に之等単電池1a及び1bの夫々の負極端
子を夫々この演算増幅器3a及び3bの夫々の反転入力
端子−に接続する。
The positive terminals of the cells 1a and 1b are connected to the respective non-inverting input terminals + of the operational amplifiers 3a and 3b, which are differential amplifiers constituting the voltage detection circuit, and the cells are connected to each other. The negative terminals of the batteries 1a and 1b are connected to the inverting input terminals-of the operational amplifiers 3a and 3b, respectively.

【0023】この演算増幅器3a及び3bの夫々の出力
側に得られる単電池1a及び1bの夫々の両極間電圧に
応じた検出電圧を夫々誤差電圧検出回路を構成する演算
増幅器4a及び4bの夫々の非反転入力端子+に供給す
ると共に、この誤差電圧検出回路を構成する演算増幅器
4a及び4bの夫々の反転入力端子−に夫々単電池1a
及び1bの満充電電圧を設定する設定電圧を発生する設
定電圧発生回路5a及び5bからの設定電圧を供給す
る。この場合、この設定電圧発生回路5a及び5bにお
いてはこの設定電圧を任意に可変できる如くする。
The detected voltages corresponding to the voltages between both electrodes of the unit cells 1a and 1b obtained at the respective output sides of the operational amplifiers 3a and 3b are respectively detected by the operational amplifiers 4a and 4b constituting the error voltage detection circuit. The unit cell 1a is supplied to the non-inverting input terminal + and to the inverting input terminal − of each of the operational amplifiers 4a and 4b constituting the error voltage detecting circuit.
And the setting voltage from the setting voltage generation circuits 5a and 5b for generating the setting voltage for setting the full charge voltage of 1b is supplied. In this case, in the set voltage generating circuits 5a and 5b, the set voltage can be changed arbitrarily.

【0024】この誤差電圧検出回路を構成する演算増幅
器4a及び4bの夫々の出力側に得られる誤差電圧を夫
々抵抗器10a及び10bを介してnpn形トランジス
タ11a及び11bの夫々のベースに供給し、このトラ
ンジスタ11a及び11bのコレクタをフォトカプラ1
2a及び12bを夫々構成する発光ダイオード13a及
び13bと抵抗器14a及び14bとの直列回路を介し
て夫々電源端子15a及び15bに夫々接続し、このト
ランジスタ11a及び11bのエミッタを夫々接地す
る。
The error voltage obtained at the output side of each of the operational amplifiers 4a and 4b constituting this error voltage detection circuit is supplied to the respective bases of the npn transistors 11a and 11b via the resistors 10a and 10b, respectively. The collectors of the transistors 11a and 11b are connected to the photocoupler 1
2a and 12b are respectively connected to power supply terminals 15a and 15b through a series circuit of light emitting diodes 13a and 13b and resistors 14a and 14b, respectively, and the emitters of the transistors 11a and 11b are grounded.

【0025】また、このフォトカプラ12a及び12b
を夫々構成するフォトトランジスタ16a及び16bの
夫々のコレクタを抵抗器17a及び17bを夫々介して
単電池1a及び1bの夫々の正極に接続し、このフォト
トランジスタ16a及び16bの夫々のエミッタを制御
素子を構成するn形の電界効果トランジスタ7a及び7
bの夫々のゲートに接続すると共にこのフォトトランジ
スタ16a及び16bの夫々エミッタを抵抗器18a及
び18bを夫々介して単電池1a及び1bの夫々の負極
に接続する。
The photocouplers 12a and 12b are also provided.
The collectors of the phototransistors 16a and 16b, respectively, are connected to the positive electrodes of the cells 1a and 1b via resistors 17a and 17b, respectively, and the emitters of the phototransistors 16a and 16b are connected to control elements. Constituting n-type field effect transistors 7a and 7
The gates of the phototransistors 16a and 16b are connected to the respective gates of the cells b, and the emitters of the phototransistors 16a and 16b are connected to the negative electrodes of the cells 1a and 1b through the resistors 18a and 18b, respectively.

【0026】また電界効果トランジスタ7a及び7bの
夫々のドレインを夫々単電池1a及び1bの夫々の正極
に接続すると共にこの電界効果トランジスタ7a及び7
bの夫々のソースを夫々単電池1a及び1bの夫々の負
極に接続する。
The drains of the field-effect transistors 7a and 7b are connected to the positive electrodes of the cells 1a and 1b, respectively, and the field-effect transistors 7a and 7b are connected.
The respective sources of b are connected to the negative electrodes of the cells 1a and 1b, respectively.

【0027】本例は上述の如く構成されているので、直
線電流源2より充電用の直流電流を流すと単電池1a及
び1bにこの直流電流が流れ、この単電池1a及び1b
の充電が開始される。
Since this example is constructed as described above, when a direct current for charging is supplied from the linear current source 2, this direct current flows in the unit cells 1a and 1b, and the unit cells 1a and 1b.
Is started.

【0028】この充電が開始されると、電圧検出回路を
構成する演算増幅器3a及び3bの夫々の出力側には単
電池1a及び1bの夫々の両極間電圧に応じた検出電圧
が得られ、この検出電圧が夫々誤差電圧検出回路を構成
する演算増幅器4a及び4bに夫々供給され、この誤差
電圧検出回路4a及び4bでこの検出電圧と設定電圧と
が比較され、この差の誤差電圧が夫々抵抗器10a及び
10bを介して夫々トランジスタ11a及び11bのベ
ースに夫々供給される。
When this charging is started, a detection voltage corresponding to the voltage between both electrodes of the unit cells 1a and 1b is obtained at the output side of each of the operational amplifiers 3a and 3b constituting the voltage detection circuit. The detection voltages are supplied to operational amplifiers 4a and 4b, respectively, which form an error voltage detection circuit, and the detection voltages are compared with the set voltage by the error voltage detection circuits 4a and 4b. It is supplied to the bases of the transistors 11a and 11b, respectively, via 10a and 10b.

【0029】この誤差電圧は単電池1a,1bの両極間
電圧である検出電圧が設定電圧より低いときには負の電
圧であり、このときはトランジスタ11a,11bは不
導通であり、発光ダイオード13a,13bは発光せず
電界効果トランジスタ7a,7bは不導通であり、充電
用の直流電流は単電池1a,1bを通して流れ、充電が
継続される。
This error voltage is a negative voltage when the detection voltage, which is the voltage between both electrodes of the unit cells 1a and 1b, is lower than the set voltage. At this time, the transistors 11a and 11b are non-conductive, and the light emitting diodes 13a and 13b. Does not emit light, the field effect transistors 7a and 7b are non-conducting, the direct current for charging flows through the unit cells 1a and 1b, and the charging is continued.

【0030】その後、充電が進み、この検出電圧が設定
電圧よりも高くなったときには、この誤差電圧は正の電
圧となり、このときはトランジスタ11a,11bは導
通となり、発光ダイオード13a,13bが発光し、フ
ォトトランジスタ16a,16bは導通し、電界効果ト
ランジスタ7a,7bは導通し、この電界効果トランジ
スタ7a,7bに充電用の直流電流が、バイパス電流と
して流れる。
After that, when charging progresses and the detected voltage becomes higher than the set voltage, this error voltage becomes a positive voltage, at which time the transistors 11a and 11b become conductive and the light emitting diodes 13a and 13b emit light. The phototransistors 16a and 16b are rendered conductive, the field effect transistors 7a and 7b are rendered conductive, and a DC current for charging flows in the field effect transistors 7a and 7b as a bypass current.

【0031】このバイパス電流を流すことにより、単電
池1a,1bへの充電用の直流電流を小さくし、この単
電池1a,1bを過充電することなく、この単電池1
a,1bの両極間電圧を一定に保つことができる。
By passing this bypass current, the direct current for charging the unit cells 1a and 1b is reduced, and the unit cells 1a and 1b are not overcharged and the unit cells 1a and 1b are not overcharged.
The voltage between the electrodes a and 1b can be kept constant.

【0032】また本例においては各々の単電池1a及び
1bに充電用の直流電流の制御用の電界効果トランジス
タ7a及び7bを夫々別々に制御するようにしたので、
各単電池1a及び1bの夫々の過充電を夫々防止できる
と共に各単電池1a及び1bを夫々バラツキなく安全に
満充電することができる。
Further, in this example, the field effect transistors 7a and 7b for controlling the direct current for charging are individually controlled in each of the cells 1a and 1b.
It is possible to prevent overcharge of each of the unit cells 1a and 1b, respectively, and to fully charge each of the unit cells 1a and 1b safely without variation.

【0033】また本例では各単電池1a及び1b毎に別
々に充電を制御するので、全ての単電池1a,1bが満
充電となるまで一貫して充電を継続することができ、組
電池1の充電時間を短縮化することができる。
Further, in this example, since the charging is controlled separately for each of the unit cells 1a and 1b, it is possible to continue the charging consistently until all the unit cells 1a and 1b are fully charged. The charging time of can be shortened.

【0034】本例によれば誤差電圧検出回路4a,4b
の誤差電圧によりフォトカプラ12a,12bを介して
電界効果トランジスタ7a,7bを制御しているので、
従来の加算回路を使用することなく、各単電池1a,1
bの電界効果トランジスタ7a,7bの駆動状態を同一
にすることができる利益があると共に、この電界効果ト
ランジスタ7a,7bを制御する回路3a,3b,4
a,4b,5a,5b,11a,11bを充電しようと
する組電池1とアイソレートすることができ、組電池1
の両端電圧(単電池1a,1bの全加算電圧)例えば1
00Vとは関係なく、この電界効果トランジスタ7a,
7bを制御することができる利益がある。
According to this example, the error voltage detection circuits 4a and 4b are provided.
Since the field effect transistors 7a and 7b are controlled via the photocouplers 12a and 12b by the error voltage of
Without using a conventional adder circuit, each unit cell 1a, 1a
It is possible to make the driving states of the field effect transistors 7a, 7b of b the same, and the circuits 3a, 3b, 4 for controlling the field effect transistors 7a, 7b.
a, 4b, 5a, 5b, 11a, 11b can be isolated from the assembled battery 1 to be charged, and the assembled battery 1
Across voltage (total added voltage of cells 1a and 1b), eg 1
This field effect transistor 7a, regardless of 00V,
There is a benefit of being able to control 7b.

【0035】尚、上述実施例においては、アイソレート
手段として、フォトカプラを使用したが、この代わりに
トランス等その他のアイソレート手段が使用できること
は勿論である。また上述実施例においては制御素子とし
て電界効果トランジスタを使用したが、この代わりにそ
の他の制御素子が使用できることは勿論である。
In the above embodiment, the photocoupler is used as the isolation means, but it goes without saying that other isolation means such as a transformer can be used instead. Further, although the field effect transistor is used as the control element in the above-mentioned embodiments, it goes without saying that other control elements can be used instead.

【0036】また本発明は上述実施例に限らず本発明の
要旨を逸脱することなく、その他種々の構成が採り得る
ことは勿論である。
Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】本発明によれば、誤差電圧検出手段の誤
差電圧によりアイソレート手段を介して、制御素子を制
御するようにしたので、従来の加算回路を使用すること
なく、各単電池の制御素子の駆動状態を同一にすること
ができる利益がある。
According to the present invention, since the control element is controlled by the error voltage of the error voltage detection means through the isolation means, the conventional adder circuit is not used, and each unit cell is There is the advantage that the drive states of the control elements can be the same.

【0038】また本発明によればアイソレート手段を介
して制御素子を制御するので、この制御素子を制御する
回路を充電しようとする組電池等の二次電池とアイソレ
ートすることができ、この二次電池の両端電圧(単電池
の全加算電圧)とは関係なく、制御素子を制御すること
ができる利益がある。
Further, according to the present invention, since the control element is controlled through the isolation means, the circuit for controlling the control element can be isolated from the secondary battery such as the assembled battery which is going to be charged. There is an advantage that the control element can be controlled regardless of the voltage across the secondary battery (total added voltage of the single battery).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明充電装置の一実施例を示す構成図であ
る。
FIG. 1 is a configuration diagram showing an embodiment of a charging device of the present invention.

【図2】従来の充電装置の例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a conventional charging device.

【符号の説明】[Explanation of symbols]

1 組電池 1a,1b 単電池 2 直流電流源 3a,3b 電圧検出回路 4a,4b 誤差電圧検出回路 5a,5b 設定電圧発生回路 7a,7b 電界効果トランジスタ 11a,11b トランジスタ 12a,12b フォトカプラ 13a,13b 発光ダイオード 16a,16b フォトトランジスタ 1 assembled battery 1a, 1b single battery 2 direct current source 3a, 3b voltage detection circuit 4a, 4b error voltage detection circuit 5a, 5b set voltage generation circuit 7a, 7b field effect transistor 11a, 11b transistor 12a, 12b photocoupler 13a, 13b Light emitting diode 16a, 16b Phototransistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の単電池が直列接続された二次電
池を充電する充電装置であって、 前記複数個の単電池の直列接続より成る二次電池に充電
用直列電流を検出する直流電流源を設けると共に前記複
数個の各単電池に対して、夫々の電圧を検出する電圧検
出手段と、 該電圧検出手段の検出電圧と設定電圧との誤差電圧を検
出する誤差電圧検出手段と、 前記各単電池に並列に接続され、前記各単電池に供給す
る充電用直流電流を制御する制御素子とを設け、 前記誤差電圧検出手段の誤差電圧によりアイソレート手
段を介して前記制御素子を制御するようにしたことを特
徴とする充電装置。
1. A charging device for charging a secondary battery in which a plurality of unit cells are connected in series, wherein a direct current for detecting a charging series current in a secondary battery formed by connecting the plurality of unit cells in series. A voltage detecting means for detecting a voltage of each of the plurality of cells and a voltage detecting means for detecting an error voltage between the detected voltage of the voltage detecting means and the set voltage; A control element that is connected in parallel to each of the unit cells and that controls a charging DC current supplied to each of the unit cells; and controls the control element via an isolation unit by an error voltage of the error voltage detection unit. Charging device characterized in that
【請求項2】 請求項1記載の充電装置において、前記
アイソレート手段がフォトカプラであることを特徴とす
る充電装置。
2. The charging device according to claim 1, wherein the isolation means is a photocoupler.
JP7172324A 1995-07-07 1995-07-07 Charging apparatus Pending JPH0923590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172324A JPH0923590A (en) 1995-07-07 1995-07-07 Charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172324A JPH0923590A (en) 1995-07-07 1995-07-07 Charging apparatus

Publications (1)

Publication Number Publication Date
JPH0923590A true JPH0923590A (en) 1997-01-21

Family

ID=15939804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172324A Pending JPH0923590A (en) 1995-07-07 1995-07-07 Charging apparatus

Country Status (1)

Country Link
JP (1) JPH0923590A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005697A (en) * 2003-05-09 2008-01-10 Ricoh Co Ltd Capacitor charging circuit and semiconductor device used for same
JP2008220167A (en) * 1997-07-25 2008-09-18 3M Co Equalizer system and method for series connected energy storage device
JP2015023698A (en) * 2013-07-19 2015-02-02 スパンション エルエルシー Semiconductor device, discharge control system, and control method
JP2018129902A (en) * 2017-02-07 2018-08-16 株式会社オートネットワーク技術研究所 Equalization control device and on-vehicle power supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220167A (en) * 1997-07-25 2008-09-18 3M Co Equalizer system and method for series connected energy storage device
JP2008005697A (en) * 2003-05-09 2008-01-10 Ricoh Co Ltd Capacitor charging circuit and semiconductor device used for same
JP2015023698A (en) * 2013-07-19 2015-02-02 スパンション エルエルシー Semiconductor device, discharge control system, and control method
JP2018129902A (en) * 2017-02-07 2018-08-16 株式会社オートネットワーク技術研究所 Equalization control device and on-vehicle power supply device
WO2018147091A1 (en) * 2017-02-07 2018-08-16 株式会社オートネットワーク技術研究所 Balancing control device and in-vehicle power supply device
US11110817B2 (en) 2017-02-07 2021-09-07 Autonetworks Technologies, Ltd. Equalization control device and in-vehicle power supply device

Similar Documents

Publication Publication Date Title
KR100352408B1 (en) Charge/discharge control circuit and chargeable electric power source apparatus
US5783322A (en) Secondary battery pack
US5789900A (en) Device for protecting a secondary battery from overcharge and overdischarge
JP4627588B2 (en) Battery pack and its inspection device
US5932990A (en) Charging control system for uniformly charging a series connected battery array
JP4407641B2 (en) Secondary battery device
JP3121963B2 (en) battery pack
JP2001513318A (en) Multiple storage battery switching circuit
US6791297B2 (en) Battery charger
JP2002078218A (en) Charging circuit, charging/discharging circuit and battery pack
JPH10191574A (en) Charging equipment
KR970024434A (en) Combined Battery Charger and Control Method
JP2002010509A (en) Charge and discharge control circuit and secondary battery device
JPH0795733A (en) Battery charger
JP3439506B2 (en) Charge / discharge control circuit and rechargeable power supply
JPH09163623A (en) Power supply control equipment
JPH08140281A (en) Charger
JPH0923590A (en) Charging apparatus
JP2019134661A5 (en)
JPH07227045A (en) Charged type power unit
JPH08190936A (en) Charge/discharge protecting device of secondary battery
JP3434760B2 (en) Charge / discharge control circuit and rechargeable power supply
JP3177955B2 (en) Rechargeable battery charging method and charging system
JPH10225005A (en) Circuit for equalizing potential difference of secondary cell
GB2090084A (en) Photovoltaic Battery Charging System