JPH09233740A - Stacked iron core of rotary electric machine - Google Patents

Stacked iron core of rotary electric machine

Info

Publication number
JPH09233740A
JPH09233740A JP3646496A JP3646496A JPH09233740A JP H09233740 A JPH09233740 A JP H09233740A JP 3646496 A JP3646496 A JP 3646496A JP 3646496 A JP3646496 A JP 3646496A JP H09233740 A JPH09233740 A JP H09233740A
Authority
JP
Japan
Prior art keywords
slit
core
electric machine
iron core
rotary electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3646496A
Other languages
Japanese (ja)
Inventor
Noritada Nishijima
島 令 宰 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3646496A priority Critical patent/JPH09233740A/en
Publication of JPH09233740A publication Critical patent/JPH09233740A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a rotary electric machine which copes with the speedup and the promotion of large capacity and is highly efficient and economical and excellent in maintainability by forming a slit running in circumferential direction at the foot of each electric iron plate facing the gap of a rotary electric machine. SOLUTION: A circumferential slit 20 with a depth equivalent to the depth of the penetration of the pulsating magnetic flux is made at the foot facing the gap 18 of each electric iron plate 1 constituting a stacked rotor iron core 2. The mechanical influence by the existence of this slit 20 can be evaluated by the mechanical stress by working centrifugal force. But, since the rotor iron core 2 is at the section of high stress, the inside diameter difference of the iron core which decides the sectional area of the member concerned with the stress of the rotor iron core 2 amounts to several mm on one side actually, so even if a slit 20 with a depth of, for example, 1mm is made at the periphery, the difference with the case of no slit is only 1% or under, and this is an order which can be ignored utterly. Hereby, this can cope with speedup and promotion of large capacity, and this can have high performance and excellent economical efficiency and maintainability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転電機の積層鉄
心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated core of a rotary electric machine.

【0002】[0002]

【従来の技術】従来から、回転電機、例えば同期電動機
においては、始動特性の良好性や多頻度始動に適してい
る等の理由から、回転子鉄心に多相巻線を装着した回転
子を有する巻線形回転電機が汎用されている。
2. Description of the Related Art Conventionally, a rotating electric machine, for example, a synchronous motor, has a rotor having a multi-phase winding attached to a rotor iron core because of its good starting characteristics and suitability for frequent starting. Wire-wound rotary electric machines are widely used.

【0003】一方、今日のパワーエレクトロニクス技術
の発展に伴い、交流電動機においても比較的広範囲の速
度制御が容易に実現できるようになり、その利点を活か
して種々の機器に適用されるようになった。この場合も
同様に回転子鉄心に多相巻線を装着した回転子構造が用
いられる。
On the other hand, with the development of today's power electronics technology, it has become possible to easily realize a relatively wide range of speed control even in AC motors, and it has come to be applied to various devices by taking advantage of its advantages. . In this case as well, a rotor structure in which multi-phase windings are mounted on the rotor core is used in the same manner.

【0004】巻線形回転電機の典型的な構造例を、図3
および図4を参照して説明する。図3は一般的な巻線形
回転電機の要部の縦断面図であり、図4は図3の回転電
機における鉄心の端面図である。多数の回転子電気鉄板
1を軸方向に積層してなる回転子鉄心2の外周面に形成
した回転子スロット4に、回転子巻線3を構成するコイ
ル3Aおよび3Bを収納し、スロット楔5で固定してい
る。ここで、コイル3Aは回転子上コイルであり、コイ
ル3Bは回転子下コイルである。回転子鉄心2の軸方向
外部に突出した回転子コイルエンド6の接続部7で電気
的に接続し、絶縁処理を施す。さらに回転子コイルエン
ド6に作用する放射方向の遠心力を支持するため、回転
子コイルエンド6全体を周回して1本化したバインド帯
8を巻き付け回転子17を構成する。回転子17は空隙
18を介して固定子19に対向する。
A typical structural example of a wire-wound electric machine is shown in FIG.
This will be described with reference to FIG. FIG. 3 is a vertical cross-sectional view of a main part of a general winding type rotary electric machine, and FIG. 4 is an end view of an iron core in the rotary electric machine of FIG. Coils 3A and 3B forming the rotor winding 3 are housed in a rotor slot 4 formed on the outer peripheral surface of a rotor core 2 formed by stacking a large number of rotor electric iron plates 1 in the axial direction, and a slot wedge 5 It is fixed at. Here, the coil 3A is a rotor upper coil, and the coil 3B is a rotor lower coil. The rotor core 2 is electrically connected at the connecting portion 7 of the rotor coil end 6 that projects to the outside in the axial direction, and insulation processing is performed. Further, in order to support the radial centrifugal force acting on the rotor coil end 6, the entire rotor coil end 6 is orbited to wind the integrated binding band 8 to form the rotor 17. The rotor 17 faces the stator 19 via a gap 18.

【0005】固定子19側においても同様に、多数の固
定子電気鉄板9を軸方向に積層して固定した固定子鉄心
10の内周面に形成した固定子スロット12に、固定子
巻線11のコイル11Aおよび11Bを収納し、スロッ
ト楔13で固定する。ここで、コイル11Aは固定子上
コイルであり、コイル11Bは固定子下コイルである。
固定子鉄心10の軸方向外部に突出した固定子コイルエ
ンド14の接続部15で電気的に接続し、絶縁処理を施
す。さらに固定子コイルエンド14に作用する電磁力お
よび機械力を支持するため、固定子外周側に配した固定
子コイル支え16を介して相互に固定し、固定子19を
構成する。
Similarly, on the stator 19 side, a stator winding 12 is inserted in a stator slot 12 formed on the inner peripheral surface of a stator core 10 in which a large number of stator electric iron plates 9 are axially laminated and fixed. The coils 11A and 11B are stored and fixed by the slot wedge 13. Here, the coil 11A is a stator upper coil, and the coil 11B is a stator lower coil.
The stator core 10 is electrically connected at the connecting portion 15 of the stator coil end 14 that protrudes to the outside in the axial direction, and an insulating process is performed. Further, in order to support the electromagnetic force and mechanical force acting on the stator coil end 14, they are fixed to each other via a stator coil support 16 arranged on the outer peripheral side of the stator to form a stator 19.

【0006】このようにして構成された回転電機を運転
した場合、固定子19と回転子17との間で電磁気的作
用を介してエネルギーの授受が行われ、回転電機として
の機能を果たす。
When the rotating electric machine constructed as described above is operated, energy is transferred between the stator 19 and the rotor 17 through an electromagnetic action, and functions as a rotating electric machine.

【0007】この種の回転電機の運転にあたっては各種
の損失が生ずる。特にここでは、スロットを有する鉄心
が他の鉄心に対し相対運動をする場合にスロットの脈動
磁束によって生ずる渦電流損に着目する。この損失は鉄
心表面の限られた範囲のみに生ずるため表面損と呼ば
れ、この表面損Wf は、たとえば電気学会大学講座「電
機設計概論」によれば次の(1)式で表される。
Various losses occur in the operation of this type of rotary electric machine. In particular, here, attention is paid to the eddy current loss caused by the pulsating magnetic flux of the slot when the iron core having the slot moves relative to other iron cores. This loss is called surface loss because it occurs only in a limited area of the iron core surface, and this surface loss W f is expressed by the following equation (1) according to "Introduction to Electrical Machinery Design" by the Institute of Electrical Engineers of Japan, for example. .

【0008】 Wf =k0 (N・n・10-41.5 ×(10・B0 ・t)2 [W・m-2] …(1) ここで、k0 :鉄心材種および板厚で決まる定数。板厚
が薄い程小さくなる。 B0 :(Bmax −Bmin )/2=脈動磁束密度[T] Bmax :スロット歯部中央平面での最大磁束密度[T] Bmin :スロット中央平面での最小磁束密度[T] t :スロットピッチ[cm] N・n:スロットの存在による脈動周波数[ min-1] N :スロット数 n :回転速度[ min-1] 図5は、ある鉄心歯部を静止した位置から相対して運動
するスロット12を有する固定子鉄心10を見た場合の
磁束脈動を示す説明図である。例えば、静止系の鉄心か
ら見た場合、運動系の鉄心のスロット中心位置と歯部中
心位置とでは、その磁気抵抗の差により磁束密度がそれ
ぞれ最小値Bmin 、最大値Bmax の、理論的には正弦波
となり、運動系のスロット数Nを回転速度n倍した周波
数で脈動し、脈動分の波高値B0 は、B0 =(Bmax
min )/2 となる。
W f = k 0 (N · n · 10 −4 ) 1.5 × (10 · B 0 · t) 2 [W · m −2] (1) where k 0 : iron core material type and plate A constant determined by the thickness. The smaller the plate thickness, the smaller it becomes. B 0 : (B max −B min ) / 2 = pulsating magnetic flux density [T] B max : maximum magnetic flux density [T] at slot tooth center plane B min : minimum magnetic flux density [T] t at slot center plane : Slot pitch [cm] N · n: Pulsation frequency due to the existence of slots [min -1 ] N: Number of slots n: Rotational speed [min -1 ] It is explanatory drawing which shows the magnetic flux pulsation at the time of seeing the stator core 10 which has the slot 12 which moves. For example, when viewed from a stationary iron core, the theoretical values of the magnetic flux densities of the minimum value B min and the maximum value B max at the slot center position and the tooth center position of the motion system iron core, respectively, due to the difference in their magnetic resistances. Becomes a sine wave and pulsates at a frequency obtained by multiplying the number N of slots of the motion system by the rotation speed n, and the peak value B 0 of the pulsation is B 0 = (B max
B min ) / 2.

【0009】この表面損Wf による熱的影響は局部に限
定されるため、冷却方法の強化のみでは対処できず、鉄
心材は支持構造材としての機能も兼ね備える必要があ
り、特性の大幅改善を望むことは困難である。そのため
従来は表面損の発生因子に係る諸元、例えば鉄心材種、
スロット数N、回転速度n、磁束密度B0 、スロットピ
ッチtを的確に選択し、表面損Wf が過度なレベルに達
しないように設計段階で配慮する必要があった。
Since the thermal effect due to the surface loss W f is limited to a local area, it cannot be dealt with only by strengthening the cooling method, and the iron core material also needs to have a function as a supporting structure material, which greatly improves the characteristics. It is difficult to hope. Therefore, conventionally, specifications relating to factors causing surface loss, such as iron core material type,
It was necessary to properly select the number of slots N, the rotation speed n, the magnetic flux density B 0 , and the slot pitch t, and consider at the design stage so that the surface loss W f does not reach an excessive level.

【0010】[0010]

【発明が解決しようとする課題】近年、回転電機が高速
化・大容量化する傾向が顕著である。高速化というのは
回転速度nの増加を意味し、大容量化はスロット数Nの
増加およびコイル寸法の増加につながる。コイル寸法の
増加はさらにスロット寸法の増加、脈動磁束密度B0
増加につながる。このようにして近年ますます表面損の
問題が重要なものになってきた。
In recent years, there has been a marked tendency for rotating electric machines to become faster and have a larger capacity. Increasing the speed means increasing the rotation speed n, and increasing the capacity leads to an increase in the number N of slots and an increase in coil size. An increase in coil size leads to an increase in slot size and an increase in pulsating magnetic flux density B 0 . Thus, in recent years, the problem of surface loss has become more and more important.

【0011】鉄心材の特性改善の観点から、その鉄板の
板厚をより薄くしたり、硅素分の含有量調整による損失
の低減はある程度可能である。図6に前述の文献による
鉄板の板厚と定数k0 の関係を示す。ある一定の範囲内
では、定数k0 は板厚にほぼ比例すると言える。しか
し、定数k0 を低減するために板厚を薄くしようとすれ
ば製造コストの限界を越える領域になり、技術的には鉄
鋼メーカーの素材製造コスト、抜板枚数の増大により、
鉄心抜板の製造管理コストおよび鉄心に組立てる組立コ
ストが大幅に増加するという難点があり、(1)式の定
数k0 の大幅低減は期待できない。
From the viewpoint of improving the characteristics of the iron core material, it is possible to reduce the thickness of the iron plate or reduce the loss to some extent by adjusting the silicon content. FIG. 6 shows the relationship between the plate thickness of the iron plate and the constant k 0 according to the above-mentioned document. It can be said that the constant k 0 is substantially proportional to the plate thickness within a certain range. However, if it is attempted to reduce the plate thickness in order to reduce the constant k 0 , it will be an area in which the manufacturing cost will be exceeded, and technically due to the increase in the material manufacturing cost and the number of blanks of steel manufacturers,
There is a drawback that the manufacturing management cost of the iron core blank and the assembling cost for assembling the iron core are significantly increased, and it is not expected that the constant k 0 in the equation (1) is significantly reduced.

【0012】したがって結果的に大型で大重量の機械を
選択せざるを得ず、相対的に固定損が大きく、効率等の
性能が必ずしも良好でなく、機械のコスト、付属の補機
コスト、維持コスト、および据付スペース、クレーン容
量増加に伴う建屋の建設コストの増加を招き、保守点検
に長期間を要することになる。
Therefore, as a result, a large and heavy machine has to be selected, the fixing loss is relatively large, the performance such as efficiency is not always good, and the cost of the machine, the cost of the attached auxiliary machine, and the maintenance This will increase the cost and the construction cost of the building due to the increase in the installation space and crane capacity, and it will take a long time for maintenance and inspection.

【0013】このように主機の高速化・大容量化には性
能、経済性、保守性が損なわれるという難点があった。
特に水力発電設備(水力発電所)向けの回転電機の場
合、直結される水車の特性、例えば定格回転速度の1.
5〜2.0倍に達する無拘束速度を許容し、水車ランナ
を押し下げる力すなわち水推力およびランナ重量を含め
回転電機側の軸受で支える重要な責務を果たすため、材
料強度や構造面でもさらに厳しい条件が課せられること
になる。
As described above, there has been a problem that performance, economical efficiency and maintainability are impaired in increasing the speed and capacity of the main machine.
In particular, in the case of a rotating electric machine for a hydroelectric power generation facility (hydroelectric power plant), the characteristics of the turbine directly connected, for example, 1.
Tolerate unrestrained speeds of 5 to 2.0 times and fulfill the important responsibilities of bearings on the rotating electric machine side, including the force to push down the turbine runner, that is, the water thrust and the weight of the runner. Conditions will be imposed.

【0014】また、回転電機を水車と直結した場合、要
求される軸系全体の危険速度を考慮する上で以上のよう
な機械のコンパクト化を疎外する要因が重畳する場合に
は、回転電機自体が成立しないこともあり、時代の要請
に十分応えられないという問題に直面することになっ
た。
Further, when the rotary electric machine is directly connected to the water turbine, in consideration of the required critical speed of the entire shaft system, if the factors that make the machine compact as described above are excluded, the rotary electric machine itself is considered. In some cases, it was not established, and we faced the problem of not being able to fully meet the demands of the times.

【0015】したがって本発明は、以上の問題点を考慮
し、高速化および大容量化に対応し、より高性能で経済
性および保守性に優れた回転電機を提供することを目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a rotating electric machine which takes into consideration the above problems and copes with high speed and large capacity, and which has higher performance and is excellent in economical efficiency and maintainability.

【0016】[0016]

【課題を解決するための手段】上記課題を達成するため
に請求項1記載の発明は、巻線を装着するスロットを形
成した電気鉄板を積層してなる回転電機の積層鉄心にお
いて、回転電機の空隙に面する各電気鉄板の歯部に、周
方向に走るスリットを形成したことを特徴とするもので
ある。
In order to achieve the above object, the invention as set forth in claim 1 is a laminated core of a rotating electric machine in which electric iron plates having slots for mounting windings are laminated. It is characterized in that a slit running in the circumferential direction is formed in the tooth portion of each electric iron plate facing the void.

【0017】請求項2記載の発明は、請求項1記載の積
層鉄心において、個々の電気鉄板に複数条のスリットを
形成したことを特徴とするものである。
According to a second aspect of the invention, in the laminated iron core according to the first aspect, a plurality of slits are formed in each electric iron plate.

【0018】請求項3記載の発明は、請求項1または2
に記載の積層鉄心において、回転子鉄心として用いられ
るものであり、スリットが回転子鉄心の外周面に形成さ
れていることを特徴とする。
The third aspect of the present invention is the first or second aspect.
In the laminated core described in (1), the laminated core is used as a rotor core, and a slit is formed on the outer peripheral surface of the rotor core.

【0019】請求項4記載の発明は、請求項1または2
に記載の積層鉄心において、固定子鉄心として用いられ
るものであり、スリットが固定子鉄心の内周面に形成さ
れていることを特徴とする。
The invention according to claim 4 is the first or second invention.
In the laminated core described in (1), the laminated core is used as a stator core, and a slit is formed on the inner peripheral surface of the stator core.

【0020】請求項5記載の発明は、請求項1ないし4
のいずれかに記載の積層鉄心において、回転電機が同期
機であることを特徴とする。
The present invention as defined in claim 5 is any one of claims 1 to 4.
In the laminated iron core according to any one of items 1 to 3, the rotary electric machine is a synchronous machine.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。本発明は表面損の発生メカニズムと
その部位に着目し、スロットの存在に伴って生ずる脈動
磁束の鉄心表面からの浸透深さに相当する位置まで、電
気鉄板の歯部に、周方向に走るスリットを形成するもの
である。これにより、電気鉄板の表面損が発生する部位
だけ等価的により薄い板厚を積層した構造とし、そこに
生ずる表面損を低減するようにしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The present invention focuses on the generation mechanism of surface loss and its portion, and a slit running in the circumferential direction on the tooth portion of the electric iron plate up to a position corresponding to the penetration depth from the iron core surface of the pulsating magnetic flux generated due to the presence of the slot. Is formed. As a result, only the portion of the electric iron plate where the surface loss is generated is equivalently laminated with a thinner plate thickness, and the surface loss generated there is reduced.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<第1の実施の形態> (構成)本発明の一実施の形態に係る回転電機の積層鉄
心を図1および図2に示す。図1は鉄心端面部の縦断面
図であり。図2は図1の回転電機の回転子鉄心2をその
外周面から見た正面図である。ここでは、積層形の回転
子鉄心2を構成する各電気鉄板1の歯部に脈動磁束の浸
透深さ相当の深さの周方向に走るスリット20を形成し
ている。ここで回転電機は例えば同期発電機もしくは同
期電動機であり得る。
First Embodiment (Structure) FIGS. 1 and 2 show a laminated iron core of a rotary electric machine according to an embodiment of the present invention. FIG. 1 is a vertical sectional view of an end surface portion of an iron core. FIG. 2 is a front view of the rotor core 2 of the rotating electric machine of FIG. 1 viewed from the outer peripheral surface thereof. Here, slits 20 running in the circumferential direction having a depth corresponding to the penetration depth of the pulsating magnetic flux are formed in the tooth portion of each electric iron plate 1 constituting the laminated rotor core 2. Here, the rotating electric machine may be, for example, a synchronous generator or a synchronous motor.

【0023】いま一例として、12極、定格300MV
A、500rpm級の回転電機を考え、固定子鉄心10
のスロット数を216、空隙18の長さ(空隙長)を1
0mmに選択するものとする。電気鉄板1の材料として、
2.0mm厚さの高張力電磁鋼板を使用し、回転子鉄心2
を構成する各電気鉄板1の歯部の軸方向中央に、軸心に
直角な平面に平行に幅0.2mm、深さ1.0mmのスリッ
ト20を1条、周方向に沿って形成したものとする。 (作用)空隙18の脈動磁束密度B0 の周波数f=N・
nは100kHz 程度の高周波に達する場合があり、こ
のような表皮的な現象に対し考慮すべき表面からの磁束
浸透深さdは、電気学会大学講座「電気磁気学」によれ
ば次の(2)式で表される。
As an example, 12 poles, rated 300 MV
Considering a rotating electric machine of A, 500 rpm class, the stator core 10
The number of slots is 216, and the length of the void 18 (void length) is 1
0mm shall be selected. As a material of electric iron plate 1,
Rotor core 2 using high-strength electromagnetic steel plate with a thickness of 2.0 mm
A slit 20 having a width of 0.2 mm and a depth of 1.0 mm is formed along the circumferential direction in the axial center of the tooth portion of each electric iron plate 1 constituting the And (Function) Frequency f = N · of the pulsating magnetic flux density B 0 of the air gap 18
n may reach a high frequency of about 100 kHz, and the magnetic flux penetration depth d from the surface that should be considered for such a skin-like phenomenon is according to the following (2 ) Is represented by the formula.

【0024】 d=1/{(ω・K・μ)1/2 }[m] …(2) ここで、ω:2πf 角速度 f:周波数[Hz ] K:導電率[Ω-1/m] μ:透磁率=μs ・μ0 [H/m] μs :比透磁率 μ0 :真空中の透磁率 因みに、一般構造用鋼板SS400を例にして磁束浸透
深さdを試算すると、1kHz でd=0.15[mm]、
100kHz でd=0.015[mm]となり、スリット
20の深さは0.2[mm]以上あれば十分有効と言え
る。また、スリット20の幅はもちろん狭いに越したこ
とはないが、金属加工技術からして0.2〜0.3[m
m]は十分実現できる寸法と考えられる。
D = 1 / {(ω · K · μ) 1/2 } [m] (2) where ω: 2πf angular velocity f: frequency [Hz] K: conductivity [Ω −1 / m] μ: Permeability = μ s · μ 0 [H / m] μ s : Relative permeability μ 0 : Permeability in vacuum By the way, when the magnetic flux penetration depth d is calculated using the general structural steel sheet SS400 as an example, 1 kHz And d = 0.15 [mm],
At 100 kHz, d = 0.015 [mm], and it can be said that it is sufficiently effective if the depth of the slit 20 is 0.2 [mm] or more. In addition, the width of the slit 20 is of course narrow, but due to metal processing technology, it is 0.2-0.3 [m
m] is considered to be a dimension that can be sufficiently realized.

【0025】このような極めて細くて浅いスリット20
を電気鉄板1の局部表面に形成することにより、回転子
鉄心2の機械強度や回転子鉄心2と固定子鉄心10との
間で授受する主磁束や他の特性に全く影響を及ぼすこと
なく、表面損Wf の低減を達成することができる。その
結果得られた余裕は機械をコンパクト化する要素、例え
ば(1)式においてスロットNを増したり、脈動磁束密
度B0 を高めに設定したりすることに反映することがで
きるので、高性能で経済性および保守性の優れた回転電
機の積層鉄心を得ることができる。
Such an extremely thin and shallow slit 20
Is formed on the local surface of the electric iron plate 1, without affecting the mechanical strength of the rotor core 2 or the main magnetic flux transferred between the rotor core 2 and the stator core 10 or other characteristics at all. A reduction in surface loss W f can be achieved. The resulting margin can be reflected in factors that make the machine compact, for example, by increasing the slot N in equation (1) or setting the pulsating magnetic flux density B 0 high, so that high performance is achieved. It is possible to obtain a laminated iron core of a rotary electric machine that is excellent in economy and maintainability.

【0026】以上のように構成し、着眼している表面損
f を決める各要素をスリット20の有無で比較する
と、次の通りである。
The respective elements having the above-described structure and determining the surface loss W f focused on are compared with the presence or absence of the slit 20 as follows.

【0027】[0027]

【表1】 脈動磁束密度B0 の回転子鉄心2への浸透深さd1 は、 ω=2πf=2π×108×103 K=1/(16×10-8)[Ω-1/m] μ=μs ・μ0 =103 ×4π×10-7 として、 d1 =1/{(ω・K・μ)1/2 } ={(16×10-8)/(2π×108×103 ×10
3 ×4π×10-7)}1/2 =0.14[mm] となるので、深さ1.0mmのスリット20を電気鉄板1
の表面に形成することにより、脈動磁束はスリット20
の加工面と電気鉄板1の表面の間に止まり、結果的に電
気鉄板1の板厚が2.0mmから、(2.0−0.2)/
2=0.9mmになったのと同じ挙動を示すことになり、
図6の板厚と定数k0 との関係から、スリットありの場
合の定数k0 ′は4.2となる。
[Table 1] The penetration depth d 1 of the pulsating magnetic flux density B 0 into the rotor core 2 is ω = 2πf = 2π × 108 × 10 3 K = 1 / (16 × 10 -8 ) [Ω −1 / m] μ = μ s · μ 0 = 10 3 × 4π × 10 −7 , d 1 = 1 / {(ω · K · μ) 1/2 } = {(16 × 10 −8 ) / (2π × 108 × 10 3 × 10
Since 3 × 4π × 10 −7 )} 1/2 = 0.14 [mm], the slit 20 having a depth of 1.0 mm is formed on the electric iron plate 1
By forming it on the surface of the
Stops between the machined surface and the surface of the electric iron plate 1, resulting in a thickness of the electric iron plate 1 of 2.0 mm to (2.0-0.2) /
The same behavior as when 2 = 0.9 mm is reached,
From the relationship between the plate thickness and a constant k 0 in FIG. 6, the constant k 0 in the case of there slit 'becomes 4.2.

【0028】次に、スリットありの場合の主磁束等への
影響であるが、これはカータ係数で評価することができ
る。カータ係数をkg とすれば、カータ係数kg は、 kg =t0 /(t0 −γ・Sw ) …(3) γ=(Sw /g)2 /(5+Sw /g) …(4) ここで、t0 :板厚 Sw :スリット幅 g :空隙長 で求められ、板厚t0 =2.0mm、スリット幅Sw
0.2mm、空隙長g=10mm とすれば、 γ=(0.2/10)2 /(5+0.2/10)=0.8×10-4g =2.0/(2.0−0.8×10-4×0.2)=1.000 となり、結局、磁気抵抗の増加は無視でき、主磁束や励
磁電流等には影響しないことが分かる。
Next, regarding the influence on the main magnetic flux and the like when there is a slit, this can be evaluated by the Carter coefficient. If the Carter coefficient k g, Carter coefficient k g is, k g = t 0 / ( t 0 -γ · S w) ... (3) γ = (S w / g) 2 / (5 + S w / g) (4) where, t 0 : plate thickness S w : slit width g: void length, plate thickness t 0 = 2.0 mm, slit width S w =
If 0.2 mm and the gap length g = 10 mm, then γ = (0.2 / 10) 2 /(5+0.2/10)=0.8×10 −4 kg = 2.0 / (2.0 −0.8 × 10 −4 × 0.2) = 1.000, which means that the increase in the magnetic resistance can be neglected and the main magnetic flux and the exciting current are not affected.

【0029】次に、スリット20の存在による機械的影
響であるが、これは作用する遠心力による機械的応力で
評価することができる。ただし、回転子鉄心2は高応力
の部位にあるため、回転子鉄心2の応力に係る部材の断
面積を決める鉄心の内径差は現実に片側で数百mmにも達
するので、たとえ深さ1mmのスリットを外周面に形成し
たとしても、スリットなしの場合との差はたかだか1%
未満であり、全く無視できるオーダーである。
Next, regarding the mechanical influence due to the existence of the slit 20, this can be evaluated by the mechanical stress due to the centrifugal force acting. However, since the rotor core 2 is in a high stress area, the inner diameter difference of the core that determines the cross-sectional area of the member related to the stress of the rotor core 2 actually reaches several hundred mm on one side, so even if the depth is 1 mm. Even if the slit is formed on the outer peripheral surface, the difference from the case without slit is at most 1%
It is less than the order, which is completely negligible.

【0030】したがって、電気鉄板1にスリット20を
形成することによる表面損以外のパラメータへの悪影響
は全く無いということができ、表面損Wf がスリットな
しの場合に対し、スリットありの場合は、 100×4.2/8.6=49% と大幅に低減できる効果がある。 (効果)以上のように表面損Wf を大幅に低減できるこ
とになる結果、表面損Wf を表す(1)式から分かるよ
うに、回転速度nおよび鉄心外径を固定して考えると、
表面損Wf の減少余裕分を、機械をコンパクト化するた
め、スロット数Nを増やすことや脈動磁束密度B0 を高
めに設定することに反映させることができる。スロット
数Nを増やすことにより、必要主磁束が減少するため、
磁束密度を固定し、スロットピッチtを一定として、表
面損Wf のパラメータに着目すると、(1/0.49)
-1.5=1.6倍まで理論的にスロット数Nを増やすこと
ができる。同じことを鉄心長で評価すると、1.6の逆
数をとって、1/1.6=0.63となり、ほぼ30%
以上の短縮化を図ることができる。また、脈動磁束密度
0を高めに設定することによっても同様に、0.49
0.5 =0.7からして鉄心長で30%以上の短縮化を図
ることができる。
Therefore, it can be said that the formation of the slits 20 in the electric iron plate 1 has no adverse effect on the parameters other than the surface loss. Compared to the case where the surface loss W f has no slit, the case where the surface loss W f has a slit is as follows. There is an effect that it can be greatly reduced to 100 × 4.2 / 8.6 = 49%. (Effect) above the surface loss W f becomes possible to greatly reduce the result represents the surface loss W f (1) As can be seen from the equation, given by fixing the rotational speed n and the core outer diameter,
The reduction allowance of the surface loss W f can be reflected in increasing the number of slots N and setting the pulsating magnetic flux density B 0 higher in order to make the machine compact. By increasing the number of slots N, the required main magnetic flux decreases,
Focusing on the parameter of the surface loss W f with the magnetic flux density fixed and the slot pitch t fixed, (1 / 0.49)
The number of slots N can be theoretically increased up to -1.5 = 1.6 times. When the same thing is evaluated by the iron core length, taking the reciprocal of 1.6, 1 / 1.6 = 0.63, which is almost 30%.
The above shortening can be achieved. Similarly, by setting the pulsating magnetic flux density B 0 to be higher, 0.49
Since 0.5 = 0.7, the core length can be shortened by 30% or more.

【0031】したがって、従来設計上の重要な検討要素
であった表面損のパラメータが大幅に改善されるので、
他の設計検討要素による評価・判断で設計することがで
き、コンパクト化された機械を実現することができる効
果がある。 <第2の実施の形態>本発明の要旨を変更しない範囲で
種々の変形例が考えられる。例えば、1枚の電気鉄板1
に、互いに平行な複数のスリットを形成することにより
表面損Wf のさらなる低減を図ることができる。
Therefore, the parameter of the surface loss, which has been an important factor in the conventional design, is greatly improved.
It is possible to design by evaluation / judgment using other design consideration factors, and it is possible to realize a compact machine. <Second Embodiment> Various modifications are conceivable within the scope of the present invention. For example, one electric iron plate 1
Further, by forming a plurality of slits parallel to each other, it is possible to further reduce the surface loss W f .

【0032】また、板厚のより厚い電気鉄板1を使用
し、スリットの寸法と数を適宜設定することにより、表
面損Wf を意図した適切なレベルに調整することができ
る。これにより電気鉄板1の総製作枚数を低減し、製造
コストおよび鉄心積み厚等の組立コストの低減を図り、
経済性をさらに向上させることができる。
Further, by using the electric iron plate 1 having a larger plate thickness and appropriately setting the size and the number of slits, the surface loss W f can be adjusted to an intended and appropriate level. As a result, the total number of electric iron plates 1 to be manufactured can be reduced, and the manufacturing cost and the assembly cost such as the core thickness can be reduced.
The economic efficiency can be further improved.

【0033】さらに表面損Wf は回転子鉄心2に限られ
るものではなく、回転子鉄心2に対向する固定子鉄心1
0にも発生する現象であり、必要に応じ固定子鉄心10
を構成する電気鉄板9にもスリット20と同様のスリッ
トを形成することにより、回転子鉄心2の場合と同様の
表面損Wf の低減効果を固定子鉄心10においても得る
ことができる。
Further, the surface loss W f is not limited to the rotor core 2, but the stator core 1 facing the rotor core 2
It is a phenomenon that occurs even in 0, and if necessary, the stator core 10
By forming slits similar to the slits 20 on the electric iron plate 9 constituting the above, the same effect of reducing the surface loss W f as that of the rotor core 2 can be obtained in the stator core 10.

【0034】[0034]

【発明の効果】近年、需要が高まりつつある主機の高速
化・大容量化、特に水力プラント向け可変速発電電動機
の実用化開発は早急に解決すべき技術的課題であった
が、本発明によれば、積層鉄心を構成する各電気鉄板の
歯部に、周方向に走るスリットを形成することにより、
主機の性能向上、経済性および保守性の優れた回転電機
を提供することができる。
EFFECTS OF THE INVENTION In recent years, there has been a technical problem to be solved urgently for the purpose of increasing the speed and capacity of a main engine, which has been increasing in demand in recent years. According to this, by forming a slit running in the circumferential direction on the tooth portion of each electric iron plate forming the laminated iron core,
It is possible to provide a rotating electric machine that is excellent in the performance of the main engine, economical, and maintainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による回転電機の積層鉄心の一実施の形
態における鉄心端面部を示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing an end face portion of an iron core in an embodiment of a laminated iron core of a rotating electric machine according to the present invention.

【図2】図1の回転子鉄心をその外周面から見た展開平
面図。
FIG. 2 is a developed plan view of the rotor core of FIG. 1 viewed from the outer peripheral surface thereof.

【図3】公知の巻線形回転電機の鉄心端面部を示す縦縦
断面図。
FIG. 3 is a vertical and vertical cross-sectional view showing an end surface portion of an iron core of a known wire-wound rotary electric machine.

【図4】図3における鉄心の端面図。4 is an end view of the iron core in FIG.

【図5】スロットを有する鉄心の磁束脈動を説明するた
めの説明図。
FIG. 5 is an explanatory diagram for explaining magnetic flux pulsation of an iron core having slots.

【図6】鉄心材の板厚と表面損に係る定数k0 との関係
を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a plate thickness of an iron core material and a constant k 0 related to surface loss.

【符号の説明】[Explanation of symbols]

1 回転子電気鉄板 2 回転子鉄心 3 回転子巻線 4 回転子スロット 5 回転子スロット楔 6 回転子コイルエンド 7 回転子コイルエンド接続部 8 バインド帯 9 固定子電気鉄板 10 固定子鉄心 11 固定子巻線 12 固定子スロット 13 固定子スロット楔 14 固定子コイルエンド 15 固定子コイルエンド接続部 16 固定子コイル支え 17 回転子 18 空隙 19 固定子 20 スリット 1 Rotor Electric Iron Plate 2 Rotor Iron Core 3 Rotor Winding 4 Rotor Slot 5 Rotor Slot Wedge 6 Rotor Coil End 7 Rotor Coil End Connection 8 Bind Band 9 Stator Electric Iron Plate 10 Stator Iron Core 11 Stator Winding 12 Stator slot 13 Stator slot wedge 14 Stator coil end 15 Stator coil end connection 16 Stator coil support 17 Rotor 18 Void 19 Stator 20 Slit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】巻線を装着するスロットを形成した電気鉄
板を積層してなる回転電機の積層鉄心において、前記回
転電機の空隙に面する各電気鉄板の歯部に、周方向に走
るスリットを形成したことを特徴とする回転電機の積層
鉄心。
1. A laminated iron core of a rotary electric machine, comprising a stack of electric iron plates having slots for mounting windings, wherein a slit running in the circumferential direction is formed in a tooth portion of each electric iron plate facing a gap of the rotary electric machine. A laminated iron core of a rotating electric machine characterized by being formed.
【請求項2】個々の電気鉄板に複数条のスリットを形成
したことを特徴とする請求項1記載の回転電機の積層鉄
心。
2. The laminated core of a rotary electric machine according to claim 1, wherein a plurality of slits are formed in each electric iron plate.
【請求項3】回転子鉄心として用いられるものであり、
前記スリットが前記回転子鉄心の外周面に形成されてい
ることを特徴とする請求項1または2に記載の回転電機
の積層鉄心。
3. Used as a rotor core,
The laminated core of a rotary electric machine according to claim 1, wherein the slit is formed on an outer peripheral surface of the rotor core.
【請求項4】固定子鉄心として用いられるものであり、
前記スリットが前記固定子鉄心の内周面に形成されてい
るることを特徴とする請求項1または2に記載の回転電
機の積層鉄心。
4. Used as a stator core,
The laminated core of a rotary electric machine according to claim 1, wherein the slit is formed on an inner peripheral surface of the stator core.
【請求項5】前記回転電機が同期機であることを特徴と
する請求項1ないし4のいずれかに記載の積層鉄心。
5. The laminated core according to claim 1, wherein the rotary electric machine is a synchronous machine.
JP3646496A 1996-02-23 1996-02-23 Stacked iron core of rotary electric machine Pending JPH09233740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3646496A JPH09233740A (en) 1996-02-23 1996-02-23 Stacked iron core of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3646496A JPH09233740A (en) 1996-02-23 1996-02-23 Stacked iron core of rotary electric machine

Publications (1)

Publication Number Publication Date
JPH09233740A true JPH09233740A (en) 1997-09-05

Family

ID=12470539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3646496A Pending JPH09233740A (en) 1996-02-23 1996-02-23 Stacked iron core of rotary electric machine

Country Status (1)

Country Link
JP (1) JPH09233740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138806A (en) * 2004-11-15 2006-06-01 Tamagawa Seiki Co Ltd Brushless rotation detector
JP2012010572A (en) * 2009-08-12 2012-01-12 Seiko Epson Corp Coreless electric machinery
JP2012217291A (en) * 2011-04-01 2012-11-08 Fuji Electric Co Ltd Embedded magnet rotary electric machine and method for manufacturing rotor therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138806A (en) * 2004-11-15 2006-06-01 Tamagawa Seiki Co Ltd Brushless rotation detector
JP2012010572A (en) * 2009-08-12 2012-01-12 Seiko Epson Corp Coreless electric machinery
JP2012217291A (en) * 2011-04-01 2012-11-08 Fuji Electric Co Ltd Embedded magnet rotary electric machine and method for manufacturing rotor therefor

Similar Documents

Publication Publication Date Title
JP4311643B2 (en) Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
US7619332B2 (en) Permanent magnet type electric rotating machine and wind turbine electric power generation system
US8154167B2 (en) Induction motor lamination design
EP1643613A2 (en) Electric motor in which the stator laminations are of different thickness and/or material to the rotor laminations
JP5179193B2 (en) Reduction of harmonics in electric motors
CA2316708C (en) Cage-type induction motor for high rotational speeds
US6794791B2 (en) Motor/generator with energized reluctance and coil in the air gap
JPH10164779A (en) Axial gap synchronizer
US11258342B2 (en) Electrical machine
Kiyota et al. Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications
EP3011662B1 (en) Rotor for a rotating electrical machine
JP2960128B2 (en) Reluctance rotating machine
JP4303579B2 (en) Three-dimensional stator structure rotating machine
JPH09233740A (en) Stacked iron core of rotary electric machine
US3023330A (en) Axial air-gap dynamoelectric machine
Larsson et al. Design and evaluation of high-speed induction machine
Balasubramanian et al. Design Guidelines for Synchronous Machine Topologies with High Torque and Wide Field Weakening Demands
Msekela et al. Development of a homopolar electrical machine for high power density high speed applications
CN112072881A (en) Motor and compressor
AU3686799A (en) Alternator for an automotive vehicle
JPS5829359A (en) Rotor with permanent magnet
WO2019111145A1 (en) Electronically controlled high efficiency induction motor
JP2020137151A (en) Squirrel-cage induction motor and squirrel-cage rotator
CN113708527B (en) Non-salient pole type electro-magnetic wound rotor and synchronous motor thereof
US11770035B2 (en) Laminated core for an electric machine