JPH09232787A - Radio-wave absorber - Google Patents

Radio-wave absorber

Info

Publication number
JPH09232787A
JPH09232787A JP8039500A JP3950096A JPH09232787A JP H09232787 A JPH09232787 A JP H09232787A JP 8039500 A JP8039500 A JP 8039500A JP 3950096 A JP3950096 A JP 3950096A JP H09232787 A JPH09232787 A JP H09232787A
Authority
JP
Japan
Prior art keywords
film
wave absorber
cellulose
absorber
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8039500A
Other languages
Japanese (ja)
Inventor
Yoko Honma
陽子 本間
Kensho Oshima
憲昭 大島
Mitsuo Endo
三男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP8039500A priority Critical patent/JPH09232787A/en
Publication of JPH09232787A publication Critical patent/JPH09232787A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To contrive reduction in the thickness of a radio-wave absorber without reducing the radio-wave absorption characteristics of the absorber even in a short- wavelength frequency range by a method wherein a cellulose derivative is used as a dielectric layer and a metallic oxide film, a metallic nitride film or a thin film containing the mixture of these of a metallic oxide and a metallic nitride is formed on at least one surface of this dielectric layer as a resistor film. SOLUTION: As a cellulose derivate which is used as a dielectric layer 1, a cellulose ester and a cellulose ether, which are obtained by esterifying and etherifying a cellulose hydroxyl group, for example, are respectively used. The orientation of the cellulose derivate is controlled by a Pauling treatment using an electric field, whereby the specific dielectric constant of this derivative is made to enhance and a thin radio-wave absorber can be obtained. As a metallic oxide film and a metallic nitride film, which are used as a resistor film 2, an ITO film, a tin oxide film, a zinc oxide film, a titanium oxide film and the like, for example, can be illustrated. The absorber is formed into a laminated structure, wherein the film 2 is formed on at least one surface of the layer 1 and both surfaces of this absorber are respectively protected with protective films 4 and 5, and the reduction in the thickness of the absorber is contrived.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ギガヘルツ帯の高
周波に対するEMC・EMI対策として利用される電波
吸収体に関するものであり、セルロース誘導体を誘電体
層とした電波吸収体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber used as an EMC / EMI countermeasure against high frequencies in the GHz band, and more particularly to a radio wave absorber having a cellulose derivative as a dielectric layer.

【0002】[0002]

【従来の技術】近年、通信技術の発達により電波の利用
が進み、これに伴い電波障害による誤作動等の問題が発
生している。これらの問題の対策として、様々な薄型電
波吸収体が利用されている。薄型電波吸収体は30MH
z〜30GHzにおいて実用化されている。最近では、
より短波長領域の30GHz〜300GHz(EHF帯
域)において使用可能な電波吸収体の必要性が高まって
きている。しかし、このようなEHF帯域における電波
吸収体は、例えば、カーボンや金属などの導電性フィ
ラーを高分子材料中に分散配合された皮膜を用いたも
の、導電性繊維を一定間隔で格子状に配置した抵抗皮
膜を用いたもの、ポリカーボネート、ポリメチルメタ
クリレート等の樹脂板を誘電体層としたもの、が提案さ
れている。しかしながら、はフィラーの分散状態や膜
厚分布のバラツキのため短波長領域で電波吸収性能が劣
化する問題があり、は導電性繊維の格子間に隙間があ
るため短波長領域では格子間隙間から電波が漏れること
により動作しなくなるという問題があり、は使用した
誘電体層の比誘電率が低いため誘電体の膜厚が厚くなる
問題がある。
2. Description of the Related Art In recent years, the use of radio waves has progressed due to the development of communication technology, and along with this, problems such as malfunctions due to radio interference have occurred. Various thin electromagnetic wave absorbers are used as measures against these problems. 30 MH for thin electromagnetic wave absorber
It has been put to practical use at z to 30 GHz. recently,
There is an increasing need for radio wave absorbers that can be used in the shorter wavelength range of 30 GHz to 300 GHz (EHF band). However, such an electromagnetic wave absorber in the EHF band uses, for example, a film in which a conductive filler such as carbon or metal is dispersed and mixed in a polymer material, and conductive fibers are arranged in a grid pattern at regular intervals. There have been proposed those using the above resistance film, and those using a resin plate such as polycarbonate and polymethylmethacrylate as a dielectric layer. However, there is a problem that the radio wave absorption performance deteriorates in the short wavelength region due to the dispersion of the filler and the variation in the film thickness distribution. However, there is a problem in that the dielectric layer used does not operate, and the dielectric layer used has a low relative permittivity, which causes a problem that the film thickness of the dielectric becomes large.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、短波
長周波数域においても電波の吸収特性が低下しない、従
来より薄型の電波吸収体を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a radio wave absorber which is thinner than conventional ones and which does not deteriorate radio wave absorption characteristics even in a short wavelength frequency range.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記課題を
解決するため、鋭意検討を重ねた結果、セルロース誘導
体を電波吸収体の誘電体層として用いることを見出し、
本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, found that a cellulose derivative is used as a dielectric layer of a radio wave absorber,
The present invention has been completed.

【0005】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0006】本発明は、セルロース誘導体を誘電体層と
し、この誘電体層の少なくとも片表面上に抵抗被膜とし
て、金属酸化物、金属窒化物あるいはこれらの混合体を
含む薄膜を形成してなることを特徴とする電波吸収体で
ある。
According to the present invention, a cellulose derivative is used as a dielectric layer, and a thin film containing a metal oxide, a metal nitride or a mixture thereof is formed as a resistance coating on at least one surface of the dielectric layer. It is a radio wave absorber characterized by.

【0007】本発明において誘電体層として使用される
セルロース誘導体は、公知の方法により得られるセルロ
ースの誘導体であれば特に限定するものではなく、例え
ば、セルロースの水酸基をエステル化、エーテル化する
ことにより、それぞれセルロースエステルとセルロース
エーテルが得られる。セルロースエステルとしては、例
えば、アセチルセルロース、プロピオン酸セロルース、
酪酸セルロース、ニトロセルロース、硫酸セルロース、
リン酸セルロース等が挙げられ、セルロースエーテルと
しては、例えば、メチルセルロース、エチルセルロー
ス、ベンジルセルロース、トリチルセルロース、シアノ
エチルセルロース、カルボキシメチルセルロース、カル
ボキシエチルセルロース、アミノエチルセルロース、オ
キシエチルセルロース等が挙げられる。この内、セルロ
ースの水酸基をシアノ基で置換したシアノエチルセルロ
ースのようなセルロース誘導体は、極性の大きなシアノ
基を側鎖に有する構造をもつため、これが電界中に置か
れると大きな双極子モーメントを形成し、高い誘電率を
示すことになり好ましい。
The cellulose derivative used as the dielectric layer in the present invention is not particularly limited as long as it is a cellulose derivative obtained by a known method. For example, a cellulose hydroxyl group is esterified or etherified. , And cellulose ester and cellulose ether are obtained, respectively. Examples of the cellulose ester include acetyl cellulose, cellulosic propionate,
Cellulose butyrate, nitrocellulose, cellulose sulfate,
Examples thereof include cellulose phosphate, and examples of the cellulose ether include methyl cellulose, ethyl cellulose, benzyl cellulose, trityl cellulose, cyanoethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, aminoethyl cellulose, oxyethyl cellulose and the like. Among them, a cellulose derivative such as cyanoethyl cellulose in which the hydroxyl group of cellulose is substituted with a cyano group has a structure having a cyano group with a large polarity in its side chain, and therefore when it is placed in an electric field, a large dipole moment is formed. It is preferable because it shows a high dielectric constant.

【0008】これらのセルロース誘導体に加工助剤等を
添加しても問題はなく、例えば、高誘電率可塑剤を添加
し加工性を向上することも可能である。このような可塑
剤としては、誘電率の高いものであれば特に限定される
ものではなく、例えば、信越化学工業(株)製のCR−
U、CR−O等が例示できる。また、これらのセルロー
ス誘導体の強度を出すために、架橋剤等を添加してもな
んら差し支えない。
There is no problem even if a processing aid or the like is added to these cellulose derivatives, and for example, it is possible to add a high dielectric constant plasticizer to improve the workability. Such a plasticizer is not particularly limited as long as it has a high dielectric constant, and for example, CR- manufactured by Shin-Etsu Chemical Co., Ltd.
Examples include U and CR-O. Further, in order to enhance the strength of these cellulose derivatives, a crosslinking agent or the like may be added.

【0009】本発明におけるセルロース誘導体は、電界
によるポーリング処理で配向を制御することで、この比
誘電率を向上させ、従来より薄型の電波吸収体を得るこ
とが可能となる。ポーリング処理とは、電圧を印加する
ことにより、ポリマーを構成している分子の双極子モー
メントの配向を制御する方法である。本発明におけるセ
ルロース誘導体の加工方法は、特に限定するものではな
く、通常の方法により成形すればよく、例えば、カレン
ダー成形、押出成形、キャスト成形等により、目的とす
る成形物、例えば、シート、フィルム、板等に加工すれ
ばよい。従来より薄型の電波吸収体を得るためには、例
えば、シート、フィルム等を用いれば良い。
By controlling the orientation of the cellulose derivative in the present invention by poling treatment by an electric field, it is possible to improve the relative permittivity and obtain a radio wave absorber thinner than before. The poling treatment is a method of controlling the orientation of the dipole moment of the molecules constituting the polymer by applying a voltage. The processing method of the cellulose derivative in the present invention is not particularly limited, and may be formed by an ordinary method, for example, calender molding, extrusion molding, cast molding, and the like, the desired molded article, for example, sheet, film. It may be processed into a plate or the like. In order to obtain a thinner electromagnetic wave absorber, a sheet, a film, or the like may be used, for example.

【0010】本発明における抵抗皮膜として用いる金属
酸化物、金属窒化物としては、特に限定されないが、例
えば、ITO(酸化インジウム/酸化錫)、酸化錫、酸
化亜鉛、酸化チタンなどが例示できる。この抵抗被膜の
形成方法は、通常の薄膜形成方法であればなんら制限さ
れることなく、例えば、イオンプレーティング法、蒸着
法、スパッタ法等使用可能であり、この抵抗皮膜の厚さ
は、効果、生産性等の点から0.01〜0.6ミクロン
が好ましい。本発明では、この抵抗皮膜は誘電体層の少
なくとも片表面上に形成すればよく、両面に形成しても
何等問題はない。抵抗皮膜を誘電体層の両面に形成した
場合、透明な電波吸収体を得ることが可能である。
The metal oxide and metal nitride used as the resistance film in the present invention are not particularly limited, but examples thereof include ITO (indium oxide / tin oxide), tin oxide, zinc oxide, titanium oxide and the like. The method of forming the resistance film is not limited as long as it is a normal thin film forming method, and for example, an ion plating method, a vapor deposition method, a sputtering method, or the like can be used. From the viewpoint of productivity, etc., 0.01 to 0.6 μm is preferable. In the present invention, this resistive film may be formed on at least one surface of the dielectric layer, and there is no problem even if it is formed on both surfaces. When the resistance film is formed on both surfaces of the dielectric layer, a transparent electromagnetic wave absorber can be obtained.

【0011】本発明において抵抗被膜を形成していない
面に積層される金属としては、電波を反射できる金属で
あれば特に限定されるものではなく、例えばアルミニウ
ム、ニッケル、銅、鉄、金、銀等の金属及び合金等が例
示できる。この金属の積層方法は、通常の薄膜形成方法
であれば何等制限されることなく、例えば、イオンプレ
ーティング法、蒸着法、スパッタ法等が使用可能であ
り、この抵抗皮膜の厚さは、効果、生産性等の点から
0.01〜0.6ミクロンが好ましい。本発明では、こ
の抵抗皮膜は誘電体層の少なくとも片表面上に形成すれ
ばよく、両面に形成しても何等問題はない。抵抗皮膜を
誘電体層の両面に形成した場合、透明な電波吸収体を得
ることが可能である。
In the present invention, the metal laminated on the surface on which the resistance coating is not formed is not particularly limited as long as it is a metal capable of reflecting radio waves, and for example, aluminum, nickel, copper, iron, gold, silver. Examples thereof include metals and alloys. The method of laminating this metal is not particularly limited as long as it is an ordinary thin film forming method, and, for example, an ion plating method, a vapor deposition method, a sputtering method, or the like can be used. From the viewpoint of productivity, etc., 0.01 to 0.6 μm is preferable. In the present invention, this resistive film may be formed on at least one surface of the dielectric layer, and there is no problem even if it is formed on both surfaces. When the resistance film is formed on both surfaces of the dielectric layer, a transparent electromagnetic wave absorber can be obtained.

【0012】本発明における誘電体層の抵抗皮膜、金属
層の表面は、有機高分子フィルムあるいはシートにより
ラミネート等するか又は有機塗料等によりコーティング
する等の方法で保護膜を形成することが好ましい。本保
護膜がない場合、電波吸収体の取り扱い時に擦れにより
傷ついたりあるいは長期間放置することにより金属の腐
食等が進行し、電波吸収体の特性劣化を招く恐れがあ
る。本発明における保護膜は、物理的擦傷や腐食に対す
る保護能等から1〜60ミクロンの膜厚が好ましい。保
護膜として用いる有機高分子としては、特に限定するも
のではなく、例えば、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ポリエチレン、ポリスチレ
ン、酢酸ビニル樹脂、AS樹脂(アクリロニトリル・ス
チレン共重合体)等が挙げられ、それらの加工方法は特
に限定するものではなく、例えば、カレンダー成形、押
出成形、キャスト成形等によりフィルム又はシートにす
ればよい。また、有機塗料としては、特に限定するもの
ではなく、例えば、フェノール樹脂塗料、塩化ビニル樹
脂塗料、ブチラール樹脂塗料、スチレンブタジエン樹脂
塗料、熱硬化型アクリル樹脂塗料、エポキシ樹脂塗料、
ポリウレタン樹脂塗料等が挙げられる。
In the present invention, it is preferable to form a protective film on the surface of the resistance film of the dielectric layer or the metal layer by laminating with an organic polymer film or sheet or coating with an organic paint or the like. Without this protective film, the electromagnetic wave absorber may be damaged by rubbing or left for a long time when it is handled, and metal corrosion may progress, resulting in deterioration of the characteristic of the electromagnetic wave absorber. The protective film in the present invention preferably has a film thickness of 1 to 60 μm in view of its ability to protect against physical scratches and corrosion. The organic polymer used as the protective film is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene, polystyrene, vinyl acetate resin, AS resin (acrylonitrile-styrene copolymer), and the like. The processing method of is not particularly limited, and for example, it may be formed into a film or sheet by calender molding, extrusion molding, cast molding or the like. The organic coating material is not particularly limited, and examples thereof include phenol resin coating material, vinyl chloride resin coating material, butyral resin coating material, styrene butadiene resin coating material, thermosetting acrylic resin coating material, epoxy resin coating material,
Examples include polyurethane resin paints.

【0013】本発明の電波吸収体は、セルロース誘導体
を誘電体層とし、この誘電体層の少なくとも片表面上に
抵抗皮膜を形成し、この両面を保護層で保護する積層構
造を有することにより、従来より薄型の電波吸収体を提
供することができる。
The radio wave absorber of the present invention has a laminated structure in which a cellulose derivative is used as a dielectric layer, a resistive film is formed on at least one surface of this dielectric layer, and both surfaces are protected by protective layers. It is possible to provide a thinner electromagnetic wave absorber than before.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施例により詳細
に説明するが、本発明はこれらの実施例にのみ限定され
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

【0015】図1に本実施例の電波吸収体の断面の模式
図を示す。図中1は誘電体層、2は抵抗皮膜、3は抵抗
皮膜又は金属層、4、5は保護膜である。
FIG. 1 shows a schematic view of a cross section of the radio wave absorber of this embodiment. In the figure, 1 is a dielectric layer, 2 is a resistance film, 3 is a resistance film or a metal layer, and 4 and 5 are protective films.

【0016】実施例1 信越化学工業(株)製のシアノレジンCR−S(シアノ
エチルセルロース)を溶媒(アセトン:ジメチルフォル
ムアミド=9:1重量比)に35%濃度になるように溶
解し、キャスト法により20×7×0.1mmのキャス
トフィルムを得、これを試験片とした。この試験片の両
側に5×5mmの銀の電極を取り付け、比誘電率を測定
した結果、得られた比誘電率は15であった。目的とす
る周波数において本発明のフィルムの厚さを従来のポリ
メチルメタクリレート(PMMA)の1/2.2にする
ことができた。
EXAMPLE 1 Cyanoresin CR-S (cyanoethyl cellulose) manufactured by Shin-Etsu Chemical Co., Ltd. was dissolved in a solvent (acetone: dimethylformamide = 9: 1 weight ratio) to a concentration of 35% and cast. Thus, a cast film of 20 × 7 × 0.1 mm was obtained, which was used as a test piece. Silver electrodes of 5 × 5 mm were attached to both sides of this test piece, and the relative permittivity was measured. As a result, the obtained relative permittivity was 15. At the target frequency, the thickness of the film of the present invention could be 1 / 2.2 that of conventional polymethylmethacrylate (PMMA).

【0017】このフィルムからなる誘電体膜に、抵抗皮
膜としてスパッタリング法でITOを0.03ミクロン
積層し、抵抗皮膜の反対側の誘電体層に反射層としてア
ルミニウム0.5ミクロンを積層した。次に、抵抗皮膜
と反射層を保護するためにサラン樹脂からなる厚さ50
ミクロンのフィルムをラミネート加工し、電波吸収体を
作製した。
On the dielectric film made of this film, ITO was laminated by 0.03 micron as a resistance film by the sputtering method, and 0.5 micron of aluminum was laminated as a reflective layer on the dielectric layer on the opposite side of the resistance film. Next, in order to protect the resistance film and the reflection layer, a thickness 50 of saran resin
A micron film was laminated to produce a radio wave absorber.

【0018】このようにして形成した積層フィルムを、
密閉箱の窓にセットして周波数−透過特性を測定した。
この測定は図2に示した測定系で行った。図中6はスペ
クトラム・アナライザー、7はトラッキングジュネレー
ター、8は増幅器、9は近磁界プローブ、10は磁界発
生源アンテナ、11は被試験密閉箱、12は被測定電波
吸収体をそれぞれ示す。
The laminated film thus formed is
It was set in the window of a closed box and the frequency-transmission characteristic was measured.
This measurement was performed by the measurement system shown in FIG. In the figure, 6 is a spectrum analyzer, 7 is a tracking generator, 8 is an amplifier, 9 is a near magnetic field probe, 10 is a magnetic field source antenna, 11 is a sealed box to be tested, and 12 is an electromagnetic wave absorber to be measured.

【0019】図3に周波数(GHz)と透過減衰量(d
B)の関係を示した。被測定電波吸収体の有無による、
近磁界プローブで検出される信号レベルの差をとって透
過減衰量としている。良好な電波吸収体が得られた。
FIG. 3 shows the frequency (GHz) and the transmission attenuation (d
The relationship of B) is shown. Depending on the presence or absence of the measured electromagnetic wave absorber,
The transmission attenuation is obtained by taking the difference between the signal levels detected by the near magnetic field probe. A good electromagnetic wave absorber was obtained.

【0020】実施例2 実施例1のキャスト法により得られたフィルムに110
℃に加熱しながら500ボルトの直流電界を印加し、1
0分後に50℃に冷却することでポーリング処理を行っ
た。この電極を利用して比誘電率を測定し,得られた比
誘電率は20.0であった。その結果、目的とする周波
数において本発明のフィルムの厚さを従来のPMMAの
1/2.5にすることができた。
Example 2 The film obtained by the casting method of Example 1 was added with 110
Applying a DC electric field of 500 V while heating to ℃ 1
The poling treatment was performed by cooling to 50 ° C. after 0 minutes. The relative permittivity was measured using this electrode, and the obtained relative permittivity was 20.0. As a result, the thickness of the film of the present invention could be 1 / 2.5 that of the conventional PMMA at the target frequency.

【0021】このフィルムからなる誘電体膜に実施例1
と同様にしてITOとアルミニウムを積層し、保護膜と
してサラン樹脂でラミネート加工した。このようにして
得た電波吸収体を実施例1と同様の方法で周波数−透過
特性を測定した。図4に周波数(GHz)と透過減衰量
(dB)の関係を示した。良好な電波吸収体が得られ
た。
Example 1 was applied to a dielectric film made of this film.
In the same manner as above, ITO and aluminum were laminated, and a protective film was laminated with saran resin. The frequency-transmission characteristics of the radio wave absorber thus obtained were measured by the same method as in Example 1. FIG. 4 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB). A good electromagnetic wave absorber was obtained.

【0022】実施例3 信越化学工業(株)製のシアノレジンCR−M(シアノ
エチルセルロース)を溶媒(アセトン:ジメチルフォル
ムアミド=9:1重量比)に35%濃度になるように
し、キャスト法により20×7×0.1mmのキャスト
フィルムを得、これを試験片とした。この試験片の両側
に5×5mmの銀の電極を取り付け、比誘電率を測定し
た結果、得られた比誘電率は16.0であった。その結
果、目的とする周波数において本発明のフィルムの厚さ
を従来のPMMAの1/2.3にすることができた。
Example 3 A cyanoresin CR-M (cyanoethyl cellulose) manufactured by Shin-Etsu Chemical Co., Ltd. was made to have a concentration of 35% in a solvent (acetone: dimethylformamide = 9: 1 weight ratio), and 20 by a casting method. A cast film of × 7 × 0.1 mm was obtained and used as a test piece. 5 × 5 mm silver electrodes were attached to both sides of this test piece, and the relative permittivity was measured. As a result, the obtained relative permittivity was 16.0. As a result, the thickness of the film of the present invention could be 1 / 2.3 of the conventional PMMA at the target frequency.

【0023】このフィルムからなる誘電体膜に実施例1
と同様にしてITOとアルミニウムを積層し、保護膜と
してサラン樹脂でラミネート加工した。このようにして
得た電波吸収体を実施例1と同様の方法で周波数−透過
特性を測定した。図5に周波数(GHz)と透過減衰量
(dB)の関係を示した。良好な電波吸収体が得られ
た。
Example 1 was applied to a dielectric film made of this film.
In the same manner as above, ITO and aluminum were laminated, and a protective film was laminated with saran resin. The frequency-transmission characteristics of the radio wave absorber thus obtained were measured by the same method as in Example 1. FIG. 5 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB). A good electromagnetic wave absorber was obtained.

【0024】実施例4 実施例3と同様にして得られたフィルムを110℃に加
熱しながら500ボルトの直流電界を印加させ、1時間
後に50℃に冷却することでポーリング処理を行った。
この電極を利用して比誘電率を測定し、得られた比誘電
率は20.6であった。その結果、目的とする周波数に
おいて本発明のフィルムの厚さを従来のPMMAの1/
2.6にすることができた。
Example 4 A film obtained in the same manner as in Example 3 was subjected to a poling treatment by applying a DC electric field of 500 V while heating at 110 ° C. and cooling to 50 ° C. after 1 hour.
The relative permittivity was measured by using this electrode, and the obtained relative permittivity was 20.6. As a result, the thickness of the film of the present invention is reduced to 1 / th that of conventional PMMA
I was able to get to 2.6.

【0025】このフィルムからなる誘電体膜に実施例1
と同様にしてITOとアルミニウムを積層し、保護膜と
してサラン樹脂でラミネート加工した。このようにして
得た電波吸収体を実施例1と同様の方法で周波数−透過
特性を測定した。図6に周波数(GHz)と透過減衰量
(dB)の関係を示した。良好な電波吸収体が得られ
た。
Example 1 was applied to a dielectric film made of this film.
In the same manner as above, ITO and aluminum were laminated, and a protective film was laminated with saran resin. The frequency-transmission characteristics of the radio wave absorber thus obtained were measured by the same method as in Example 1. FIG. 6 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB). A good electromagnetic wave absorber was obtained.

【0026】実施例5 実施例1と同様にして得られたフィルムに、実施例1と
同様に抵抗被膜としてスパッタリング法でフィルム両面
にITOを積層し、保護膜としてサラン樹脂でラミネー
ト加工した。このようにして得た電波吸収体を実施例1
と同様の方法で周波数−透過特性を測定した。図7に周
波数(GHz)と透過減衰量(dB)の関係を示した。
比較的透明で良好な電波吸収体が得られた。
Example 5 On the film obtained in the same manner as in Example 1, ITO was laminated on both surfaces of the film as a resistance coating by the sputtering method in the same manner as in Example 1 and laminated with saran resin as a protective film. The electromagnetic wave absorber thus obtained was used in Example 1.
The frequency-transmission characteristics were measured by the same method as in. FIG. 7 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB).
A relatively transparent and good electromagnetic wave absorber was obtained.

【0027】実施例6 実施例3と同様にして得られたフィルムに、実施例1と
同様に抵抗被膜としてスパッタリング法でフィルム両面
にITOを積層し、保護膜としてサラン樹脂でラミネー
ト加工した。このようにして得た電波吸収体を実施例1
と同様の方法で周波数−透過特性を測定した。図8に周
波数(GHz)と透過減衰量(dB)の関係を示した。
比較的透明で良好な電波吸収体が得られた。
Example 6 To the film obtained in the same manner as in Example 3, ITO was laminated on both surfaces of the film by a sputtering method as a resistance film in the same manner as in Example 1 and laminated with saran resin as a protective film. The electromagnetic wave absorber thus obtained was used in Example 1.
The frequency-transmission characteristics were measured by the same method as in. FIG. 8 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB).
A relatively transparent and good electromagnetic wave absorber was obtained.

【0028】比較例1 市販のポリメチルメタクリレートPMMAのフィルムを
切断し、20×7×0.1mmの試験片を得た。この試
験片の両側に5×5mmの銀の電極を取り付け、比誘電
率を測定した。得られた比誘電率は3.0であり、フィ
ルムの厚さは5.0mmとなった。
Comparative Example 1 A commercially available polymethylmethacrylate PMMA film was cut to obtain a 20 × 7 × 0.1 mm test piece. A 5 × 5 mm silver electrode was attached to both sides of this test piece, and the relative dielectric constant was measured. The obtained relative dielectric constant was 3.0 and the film thickness was 5.0 mm.

【0029】このフィルムからなる誘電体膜に実施例1
と同様にしてITOとアルミニウムを積層し、保護膜と
してサラン樹脂でラミネート加工した。このようにして
得た電波吸収体を実施例1と同様の方法で周波数−透過
特性を測定した。図9に周波数(GHz)と透過減衰量
(dB)の関係を示した。満足する電波吸収体が得られ
なかった。
Example 1 was applied to a dielectric film made of this film.
In the same manner as above, ITO and aluminum were laminated, and a protective film was laminated with saran resin. The frequency-transmission characteristics of the radio wave absorber thus obtained were measured by the same method as in Example 1. FIG. 9 shows the relationship between the frequency (GHz) and the transmission attenuation amount (dB). A satisfactory electromagnetic wave absorber was not obtained.

【0030】[0030]

【発明の効果】本発明の電波吸収体は、誘電率および誘
電損失がこれまでに電波吸収体材料として使用されてい
たものに比べ、大きな値を示す層を有することで、薄型
化を達成できたものである。
The radio wave absorber of the present invention can be made thin by having a layer exhibiting a large dielectric constant and dielectric loss as compared with those used as radio wave absorber materials up to now. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】電波吸収体の構造を示す模式図である。FIG. 1 is a schematic diagram showing a structure of a radio wave absorber.

【図2】周波数−吸収特性測定系の概要を示す模式図で
ある。
FIG. 2 is a schematic diagram showing an outline of a frequency-absorption characteristic measuring system.

【図3】本発明の実施例1での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 3 shows the frequency (G) of the electromagnetic wave absorber in the first embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図4】本発明の実施例2での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 4 shows the frequency (G) of the electromagnetic wave absorber in the second embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図5】本発明の実施例3での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 5 shows the frequency (G) of the electromagnetic wave absorber in the third embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図6】本発明の実施例4での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 6 shows the frequency (G) of the electromagnetic wave absorber in the fourth embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図7】本発明の実施例5での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 7 shows the frequency (G) of the electromagnetic wave absorber in the fifth embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図8】本発明の実施例6での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 8 is a frequency (G) of the electromagnetic wave absorber according to the sixth embodiment of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【図9】本発明の比較例1での電波吸収体の周波数(G
Hz)−透過減衰量(dB)を示す図である。
FIG. 9 shows the frequency (G) of the electromagnetic wave absorber in Comparative Example 1 of the present invention.
It is a figure which shows Hz) -transmission attenuation amount (dB).

【符号の説明】[Explanation of symbols]

1:誘電体層 2:抵抗皮膜 3:抵抗皮膜又は金属層 4:保護膜 5:保護膜 6:スペクトラム・アナライザー 7:トラッキングジュネレーター 8:増幅器 9:近磁界プローブ 10:磁界発生源アンテナ 11:被試験密閉箱 12:被測定電波吸収体 1: Dielectric layer 2: Resistive film 3: Resistive film or metal layer 4: Protective film 5: Protective film 6: Spectrum analyzer 7: Tracking generator 8: Amplifier 9: Near magnetic field probe 10: Magnetic field source antenna 11: Sealed box under test 12: Wave absorber under test

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】セルロース誘導体を誘電体層とし、この誘
電体層の少なくとも片表面上に抵抗被膜として、金属酸
化物、金属窒化物あるいはこれらの混合体を含む薄膜を
形成してなることを特徴とする電波吸収体。
1. A cellulose derivative as a dielectric layer, and a thin film containing a metal oxide, a metal nitride or a mixture thereof is formed on at least one surface of the dielectric layer as a resistance coating. And a radio wave absorber.
【請求項2】セルロース誘導体を電界によりポーリング
処理することを特徴とする請求項1記載の電波吸収体。
2. The radio wave absorber according to claim 1, wherein the cellulose derivative is subjected to poling treatment by an electric field.
【請求項3】抵抗被膜がITO(酸化インジュウム/酸
化スズ)、酸化インジュウム、酸化スズ、酸化亜鉛、酸
化チタンから選ばれたものであり、その膜厚が0.01
〜0.6ミクロンであることを特徴とする請求項1又は
請求項2に記載の電波吸収体。
3. The resistance film is selected from ITO (indium oxide / tin oxide), indium oxide, tin oxide, zinc oxide and titanium oxide, and the film thickness is 0.01.
The electromagnetic wave absorber according to claim 1 or 2, wherein the electromagnetic wave absorber has a size of ˜0.6 μm.
【請求項4】抵抗皮膜を形成していない誘電体層の表面
に金属層を積層し、その厚さが0.01〜0.6ミクロ
ンであることを特徴とする請求項1〜請求項3いずれか
記載の電波吸収体。
4. A metal layer is laminated on the surface of a dielectric layer on which a resistive film is not formed, and the thickness thereof is 0.01 to 0.6 μm. The radio wave absorber according to any one of the above.
【請求項5】抵抗皮膜、金属層の表面に有機高分子フィ
ルム、有機高分子シート、有機塗料から選択した保護膜
を形成したことを特徴とする請求項1〜請求項4いずれ
か記載の電波吸収体。
5. The radio wave according to claim 1, wherein a protective film selected from an organic polymer film, an organic polymer sheet and an organic paint is formed on the surface of the resistance film and the metal layer. Absorber.
JP8039500A 1996-02-27 1996-02-27 Radio-wave absorber Pending JPH09232787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039500A JPH09232787A (en) 1996-02-27 1996-02-27 Radio-wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039500A JPH09232787A (en) 1996-02-27 1996-02-27 Radio-wave absorber

Publications (1)

Publication Number Publication Date
JPH09232787A true JPH09232787A (en) 1997-09-05

Family

ID=12554774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039500A Pending JPH09232787A (en) 1996-02-27 1996-02-27 Radio-wave absorber

Country Status (1)

Country Link
JP (1) JPH09232787A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797744B2 (en) * 2000-06-01 2004-09-28 The Yokohama Rubber Co., Ltd. Radio wave absorber composition
WO2018088492A1 (en) 2016-11-10 2018-05-17 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
WO2018163584A1 (en) 2017-03-10 2018-09-13 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
WO2019054378A1 (en) 2017-09-13 2019-03-21 マクセルホールディングス株式会社 Electromagnetic wave-absorbing sheet
WO2019235536A1 (en) 2018-06-07 2019-12-12 マクセルホールディングス株式会社 Electromagnetic wave absorption sheet
CN111479458A (en) * 2020-04-22 2020-07-31 江苏师范大学 Visible light high-transmittance intermediate infrared wave absorbing device based on layered inclined ITO nanorod array and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244542A (en) * 1975-10-07 1977-04-07 Mitsubishi Oil Co Ltd Electric wave absorber
JPH05114813A (en) * 1991-10-22 1993-05-07 Tdk Corp Radio wave absorber
JPH0784281A (en) * 1993-09-14 1995-03-31 Sharp Corp Active element
JPH07126301A (en) * 1993-10-29 1995-05-16 Shin Etsu Chem Co Ltd Highly dielectric cellulose derivative and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244542A (en) * 1975-10-07 1977-04-07 Mitsubishi Oil Co Ltd Electric wave absorber
JPH05114813A (en) * 1991-10-22 1993-05-07 Tdk Corp Radio wave absorber
JPH0784281A (en) * 1993-09-14 1995-03-31 Sharp Corp Active element
JPH07126301A (en) * 1993-10-29 1995-05-16 Shin Etsu Chem Co Ltd Highly dielectric cellulose derivative and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797744B2 (en) * 2000-06-01 2004-09-28 The Yokohama Rubber Co., Ltd. Radio wave absorber composition
WO2018088492A1 (en) 2016-11-10 2018-05-17 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
JPWO2018088492A1 (en) * 2016-11-10 2018-11-22 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
CN109923953A (en) * 2016-11-10 2019-06-21 麦克赛尔控股株式会社 Electro-magnetic wave absorption piece
EP3541160A4 (en) * 2016-11-10 2020-07-08 Maxell Holdings, Ltd. Electromagnetic wave absorbing sheet
WO2018163584A1 (en) 2017-03-10 2018-09-13 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
US11477925B2 (en) 2017-03-10 2022-10-18 Maxell, Ltd. Electromagnetic wave absorbing sheet
WO2019054378A1 (en) 2017-09-13 2019-03-21 マクセルホールディングス株式会社 Electromagnetic wave-absorbing sheet
WO2019235536A1 (en) 2018-06-07 2019-12-12 マクセルホールディングス株式会社 Electromagnetic wave absorption sheet
CN111479458A (en) * 2020-04-22 2020-07-31 江苏师范大学 Visible light high-transmittance intermediate infrared wave absorbing device based on layered inclined ITO nanorod array and preparation method thereof
CN111479458B (en) * 2020-04-22 2022-04-08 江苏师范大学 Visible light high-transmittance intermediate infrared wave absorbing device based on layered inclined ITO nanorod array and preparation method thereof

Similar Documents

Publication Publication Date Title
US6818291B2 (en) Durable transparent EMI shielding film
JP5729376B2 (en) Far-infrared reflective laminate
JP3033369B2 (en) Radio wave absorber
EP2833478A1 (en) Electromagnetic radiation attenuator
JPH09232787A (en) Radio-wave absorber
Ragulis et al. Shielding effectiveness of modern energy-saving glasses and windows
CN111655018A (en) Anti-electromagnetic leakage transparent material based on single-layer conductive film
JP2002158483A (en) Radio wave absorber
US5705329A (en) Silver halide photographic light-sensitive material
Walther Reflection factor of gradual-transition absorbers for electromagnetic and acoustic waves
JP2000059083A (en) Electromagnetic wave shielding transparent substance
JPH09223890A (en) Radio wave absorber
JPH1013082A (en) Electromagnetic wave absorber
JPH09223889A (en) Electromagnetic wave absorber
JPH09232786A (en) Radio-wave absorber
JP2582859B2 (en) Static electricity, electromagnetic wave shielding material
JPH11150393A (en) Transparent radio wave absorber and production thereof
Liao Light transmittance and RF shielding effectiveness of a gold film on a glass substrate
Liubetski et al. Creation of radar-absorbing structures based on carbon films
JPS62270337A (en) Transparent conductive plastic film
Ragulis et al. Reflection and transmission of microwaves by a modern glass window
JPWO2020138190A1 (en) Radio wave absorber
JPH0240238B2 (en)
JP2000261241A (en) Radio wave absorber and manufacture of the same
CN215667801U (en) PETG composite film with light shielding performance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214