JPH09232295A - Manufacturing apparatus of semiconductor device - Google Patents

Manufacturing apparatus of semiconductor device

Info

Publication number
JPH09232295A
JPH09232295A JP3603896A JP3603896A JPH09232295A JP H09232295 A JPH09232295 A JP H09232295A JP 3603896 A JP3603896 A JP 3603896A JP 3603896 A JP3603896 A JP 3603896A JP H09232295 A JPH09232295 A JP H09232295A
Authority
JP
Japan
Prior art keywords
gas
gas pipe
temperature
semiconductor device
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3603896A
Other languages
Japanese (ja)
Other versions
JP3077583B2 (en
Inventor
Toshitaka Shiobara
敏孝 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP08036038A priority Critical patent/JP3077583B2/en
Publication of JPH09232295A publication Critical patent/JPH09232295A/en
Application granted granted Critical
Publication of JP3077583B2 publication Critical patent/JP3077583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent re-liquefaction of gas caused by temperature irregularity in a gas piping. SOLUTION: A partial region of a gas piping 3 from a gas bomb 2 to a reaction chamber 1 is coated with a heat insulation material 10 and a heating device 11 is provided to a downstream side of the coated region. Temperature of the gas piping 3 is prevented from partially lowering by the heat insulation material 10 and temperature irregularity is restrained. Since temperature inclination from an upstream side toward a downstream side is formed in the region coated with the heat insulation material 10, re-liquefaction of gas is further effectively prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造装
置に関し、特に半導体装置製造材料として低沸点の液化
ガスを用い、この液化ガスをガス源から処理室にまで供
給するためのガス配管を有する半導体装置の製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing apparatus, and more particularly, it uses a low boiling point liquefied gas as a semiconductor device manufacturing material and has a gas pipe for supplying the liquefied gas from a gas source to a processing chamber. The present invention relates to a semiconductor device manufacturing apparatus.

【0002】[0002]

【従来の技術】従来のこの種の半導体装置の製造装置で
は、液化ガス源においてガス化されたガスが処理室まで
のガス配管を通流される間に冷却されて再び液化される
ことがあり、処理室において有効なガスが得られないこ
とがある。このような問題を解決するためのものとし
て、例えば実開平4−110754号公報で提案されて
いる技術がある。この技術は、図5に示すように、ガス
ボンベ2から反応室1にガスを通流させるためのガス配
管3の一部、ここでは第1,第2バルブ4,5とマスフ
ローコントローラ8を有するガス配管3の一部に電気ヒ
ータ11を配設し、この電気ヒータ11を温度制御回路
12により制御してガス配管3を加熱し、ガス配管3内
を通流されるガスの温度低下を防止してガスの再液化を
防止している。
2. Description of the Related Art In a conventional semiconductor device manufacturing apparatus of this type, the gasified gas in a liquefied gas source may be cooled and liquefied again while flowing through a gas pipe to a processing chamber. Effective gas may not be obtained in the processing chamber. As a means for solving such a problem, for example, there is a technique proposed in Japanese Utility Model Laid-Open No. 4-110754. As shown in FIG. 5, this technique is applied to a part of a gas pipe 3 for passing a gas from a gas cylinder 2 to a reaction chamber 1, here, a gas having first and second valves 4,5 and a mass flow controller 8. An electric heater 11 is arranged in a part of the pipe 3, and the electric heater 11 is controlled by a temperature control circuit 12 to heat the gas pipe 3 to prevent the temperature of the gas flowing through the gas pipe 3 from decreasing. Prevents reliquefaction of gas.

【0003】しかしながら、この従来技術では、電気ヒ
ータ11によってガス配管の長さ方向の一部のみを加熱
しているため、外気の温度が低い場合には、この加熱部
分以外の温度がガスの液化温度にまで低下されることが
あり、その結果ガスが再液化されてしまうという問題が
生じやすい。ガス配管内でガスが再液化することによ
り、ガス流量が振らつき、製造プロセスが不安定となり
製品歩留りが低下する。更に、再液化したガス配管を再
び正常な状態に戻すのに数時間を要するので、生産性に
も影響を及ぼし、特に腐食性ガス(Cl2 ,BCl
3 等)の再液化はガス配管内壁の腐食を加速し、信頼性
にも影響を与えることになる。
However, in this prior art, since only a part of the gas pipe in the lengthwise direction is heated by the electric heater 11, when the temperature of the outside air is low, the temperature other than the heated part is liquefied. The temperature may be lowered to the temperature, and as a result, the problem that the gas is reliquefied easily occurs. The reliquefaction of the gas in the gas pipe fluctuates the gas flow rate, which makes the manufacturing process unstable and lowers the product yield. Furthermore, it takes several hours to return the reliquefied gas pipe to a normal state again, which affects productivity as well, particularly corrosive gases (Cl 2 , BCl 2) .
The reliquefaction of ( 3 etc.) accelerates the corrosion of the inner wall of the gas pipe and affects the reliability.

【0004】このような問題を解決するためには、図6
に示す技術が考えられる。この技術では、第1バルブ4
から第2バルブ5まで至るガス配管3の長い領域に電気
ヒータ11Cを配設し、この領域のガス配管3を加温す
ることで部分的にガス配管の温度が低下されることを防
止している。このように、すれば、電気ヒータ11Cに
よってガス配管3の長い領域を加熱することができるた
め、この領域での温度低下が防止され、ガスの再液化を
防止することが可能となる。
In order to solve such a problem, FIG.
The technology shown in can be considered. In this technology, the first valve 4
The electric heater 11C is provided in a long region of the gas pipe 3 from the second valve 5 to the second valve 5, and the temperature of the gas pipe 3 is prevented from being partially lowered by heating the gas pipe 3 in this region. There is. In this way, since the electric heater 11C can heat the long region of the gas pipe 3, the temperature drop in this region can be prevented, and the reliquefaction of the gas can be prevented.

【0005】[0005]

【発明が解決しようとする課題】ところで、本発明者の
検討によれば、ガス配管におけるガスの再液化は、単に
温度を所定以上に確保していれば足りるのではなく、ガ
ス配管における温度のムラが大きな要因となることが判
明した。すなわち、ガス配管内でのガスの再液化は、圧
力と温度の影響を最も受ける。同一体積の場合、圧力が
高い方が状態エネルギが小さくなる方向へ進むので、再
液化し易くなる。温度による再液化も沸点以下にすれば
起こるが、ガス配管内の再液化現象は、沸点以上でも起
こるので、温度だけでなく前記の圧力の影響を強く受け
ている。配管内が減圧下であれば、室温での再液化は起
こらず、問題にならない。配管内が加圧下の場合、再液
化は温度ムラによって起こる。ガスボンベ(上流)側の
温度が高い場合、液化ガスは多く気化し、ガス配管内に
流れ込む。ところが配管の途中に外気の影響を受けて局
所的に冷却された箇所があった場合、その温度で気化で
きるガスの量は減少して飽和蒸気圧を越えてしまうの
で、その差分だけガスは再液化してしまうことになる。
By the way, according to the study by the present inventor, the reliquefaction of gas in the gas pipe is not sufficient if the temperature is kept at a predetermined temperature or more. It was found that unevenness was a major factor. That is, the reliquefaction of the gas in the gas pipe is most affected by the pressure and the temperature. In the case of the same volume, the higher the pressure is, the smaller the state energy is, and thus the easier it is to reliquefy. Reliquefaction due to temperature also occurs if the temperature is below the boiling point, but the reliquefaction phenomenon in the gas pipe occurs above the boiling point, so that it is strongly affected not only by the temperature but also by the pressure. If the inside of the pipe is under reduced pressure, reliquefaction does not occur at room temperature, which is not a problem. When the inside of the pipe is under pressure, reliquefaction occurs due to uneven temperature. When the temperature on the gas cylinder (upstream) side is high, a large amount of liquefied gas is vaporized and flows into the gas pipe. However, if there is a locally cooled part in the middle of the pipe due to the influence of the outside air, the amount of gas that can be vaporized at that temperature will decrease and exceed the saturated vapor pressure, so the gas will be regenerated by the difference. It will be liquefied.

【0006】したがって、理想的にはガス配管の全長さ
にわたってその温度ムラが生じていないことが望まし
い。この点で、図6に示した技術では、ガス配管の長い
領域を電気ヒータで加熱しているため、長い領域の温度
を均一化する上では有効である。しかしながら、実際に
は電気ヒータをガス配管に対して均一に巻き付けること
は困難であるため、電気ヒータの巻き付けが疎の部分で
は外気の影響を受け、局所的に低温箇所が生まれる。ま
た、電気ヒータは使い続けると徐々に劣化されるため、
ガス配管の長さ方向でみた場合、電気ヒータの劣化がそ
のまま温度ムラとなる。このように、実際にはガス配管
における温度ムラの発生を完全に防止することは困難で
ある。数度の温度差でも少量ながら再液化が起こり雪だ
るま式に徐々に再液化が配管内に広がり、最終的にはガ
スの流れを止めてしまう。
Therefore, ideally, it is desirable that the temperature unevenness does not occur over the entire length of the gas pipe. In this respect, the technique shown in FIG. 6 is effective in equalizing the temperature in the long region because the long region of the gas pipe is heated by the electric heater. However, in practice, it is difficult to uniformly wind the electric heater around the gas pipe. Therefore, in a sparsely wound portion of the electric heater, the outside air is affected and a low temperature portion is locally generated. Also, since the electric heater gradually deteriorates with continued use,
When viewed in the length direction of the gas pipe, the deterioration of the electric heater causes temperature unevenness as it is. As described above, it is actually difficult to completely prevent the occurrence of temperature unevenness in the gas pipe. Reliquefaction occurs even with a small temperature difference of a few degrees, but the reliquefaction gradually spreads into the pipe like a snowball, eventually stopping the gas flow.

【0007】本発明の目的は、このようなガス配管にお
ける温度ムラが原因とされるガスの再液化を防止するこ
とを可能にした半導体装置の製造装置を提供することに
ある。
An object of the present invention is to provide a semiconductor device manufacturing apparatus capable of preventing reliquefaction of a gas caused by such temperature unevenness in a gas pipe.

【0008】[0008]

【課題を解決するための手段】本発明の製造装置は、液
化ガスを蓄積したガスボンベと、所要の反応処理を行う
ための反応室とを接続するガス配管の一部領域を断熱材
で被覆するとともに、この断熱材で被覆したガス配管の
下流領域に加熱装置を設けたことを特徴とする。この場
合、ガス配管の一部には前記液化ガスの流量を制御する
ためのマスフローコントローラが設けられ、このガスボ
ンベとマスフローコントローラとの間のガス配管を前記
断熱材で被覆し、かつ加熱装置を設ける。また、この場
合、加熱装置は前記ガス配管の前記マスフローコントロ
ーラ側にのみ設けられる。これにより、ガス配管の加熱
温度が、前記下流側で高く、上流側で低い温度勾配とを
有するよう設定される。
In the manufacturing apparatus of the present invention, a partial region of a gas pipe connecting a gas cylinder storing a liquefied gas and a reaction chamber for performing a required reaction treatment is covered with a heat insulating material. At the same time, a heating device is provided in a downstream region of the gas pipe covered with the heat insulating material. In this case, a mass flow controller for controlling the flow rate of the liquefied gas is provided in a part of the gas pipe, the gas pipe between the gas cylinder and the mass flow controller is covered with the heat insulating material, and a heating device is provided. . Further, in this case, the heating device is provided only on the mass flow controller side of the gas pipe. Thus, the heating temperature of the gas pipe is set to have a high temperature gradient on the downstream side and a low temperature gradient on the upstream side.

【0009】また、本発明の製造装置は、ガス配管の一
部領域を断熱材で被覆するとともに、この断熱材で被覆
したガス配管の複数箇所に加熱装置を設け、これら複数
個の加熱装置の温度制御を個別に行うことを特徴とす
る。この場合、ガス配管に沿って複数個の温度センサを
設け、複数の加熱装置を各温度センサの検出温度に基づ
いて個別に行うことが好ましい。
Further, in the manufacturing apparatus of the present invention, a partial region of the gas pipe is covered with a heat insulating material, and heating devices are provided at a plurality of positions of the gas pipe covered with the heat insulating material. The feature is that temperature control is individually performed. In this case, it is preferable to provide a plurality of temperature sensors along the gas pipe and individually perform a plurality of heating devices based on the temperatures detected by the temperature sensors.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1は本発明を減圧CVD装置に適
用した一例を示す構成図である。反応室1はガス配管3
を介してSiH2 Cl2 ガス及びNH3 ガスの各ガス源
であるガスボンベ2に接続される。ガス配管3には第1
ないし第4の各バルブ4,5,6,7が介挿配置され、
これらのバルブの切り換え制御と、ガス配管3に設けた
マスフローコントローラ8によって反応室1に供給され
るガス流量が制御されるように構成される。また、反応
室1は真空ポンプ9によって所定の負圧に制御される。
そして、前記ガス配管3では、ガスボンベ2に近い第1
バルブ4からマスフローコントローラ8の直前の第2バ
ルブ5までの間に断熱材10を設け、この断熱材10に
よってガス配管3のその領域を被っている。また、この
断熱材10で被われたガス配管3の領域では、その下流
側の一部に電気ヒータ11が設けられ、温度制御回路1
2によって電気ヒータ11の加熱温度を制御するように
構成される。なお、前記電気ヒータ11には温度センサ
13が付設されており、この温度センサ13の検出温度
に基づいて加熱温度を所定の温度に制御することが行わ
れる。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example in which the present invention is applied to a low pressure CVD apparatus. Reaction chamber 1 is gas pipe 3
Via is connected to a gas cylinder 2 is each source of gas SiH 2 Cl 2 gas and NH 3 gas. Gas pipe 3 has a first
To the fourth valves 4, 5, 6, 7 are interposed and
The switching control of these valves and the mass flow controller 8 provided in the gas pipe 3 are configured to control the flow rate of the gas supplied to the reaction chamber 1. Further, the reaction chamber 1 is controlled to a predetermined negative pressure by the vacuum pump 9.
In the gas pipe 3, the first gas pipe 2 close to the gas cylinder 2
A heat insulating material 10 is provided between the valve 4 and the second valve 5 immediately before the mass flow controller 8, and the heat insulating material 10 covers the region of the gas pipe 3. Further, in the region of the gas pipe 3 covered with the heat insulating material 10, an electric heater 11 is provided at a part of the downstream side thereof, and the temperature control circuit 1
2 is configured to control the heating temperature of the electric heater 11. A temperature sensor 13 is attached to the electric heater 11, and the heating temperature is controlled to a predetermined temperature based on the temperature detected by the temperature sensor 13.

【0011】この構成においては、温度制御回路12に
より電気ヒータ11を加熱制御し、ガス配管3のその部
分を40℃に調整する。また、ガス配管3は断熱材10
によって覆われているために、外気や風等による放熱の
影響を配管が受けないので、ガス配管3では第2バルブ
5から第1バルブ4に向かって緩やかに下降する温度勾
配が構成される。このため、ガスボンベ2から反応室1
に向けて通流されるSiH2 Cl2 及びNH3 ガスは、
第1バルブ4から第2バルブ5に向かって断熱材10内
のガス配管3を僅かながら温度が上がる方向に通流され
ることになる。このように、温度が上がる方向にガスが
流れるので、同一圧力下では飽和蒸気圧は大きくなる方
向になり、このガスがガス配管3内で再液化することは
なくなる。なお、ガスはマスフローコントローラ8にて
SiH2 Cl2 は0.1SLM ,NH3 は0.9SLM に流
量制御され、第3バルブ6を経て圧力30Pa,温度8
00℃の反応室1へ導入される。反応室1において、窒
化膜成長に関与しなかった残ガスは真空ポンプ9により
排出される。
In this structure, the electric heater 11 is heated and controlled by the temperature control circuit 12, and the temperature of the portion of the gas pipe 3 is adjusted to 40.degree. In addition, the gas pipe 3 is a heat insulating material 10.
Since the pipe is not affected by heat radiation due to outside air or wind, the gas pipe 3 has a temperature gradient that gradually drops from the second valve 5 to the first valve 4. Therefore, from the gas cylinder 2 to the reaction chamber 1
SiH 2 Cl 2 and NH 3 gas flowing toward the
The gas pipe 3 in the heat insulating material 10 flows from the first valve 4 to the second valve 5 in a direction in which the temperature slightly rises. Since the gas flows in such a direction that the temperature rises, the saturated vapor pressure tends to increase under the same pressure, and this gas will not be reliquefied in the gas pipe 3. The flow rate of gas is controlled by the mass flow controller 8 to be 0.1 SLM for SiH 2 Cl 2 and 0.9 SLM for NH 3 , and the pressure is 30 Pa and the temperature is 8 Pa through the third valve 6.
It is introduced into the reaction chamber 1 at 00 ° C. In the reaction chamber 1, the residual gas not involved in the nitride film growth is exhausted by the vacuum pump 9.

【0012】このように、ガス配管3を断熱材10で覆
い、ガス配管3の温度分布をガスの下流側から上流側へ
下降方向の温度勾配が形成される。図2はこの温度勾配
を示す図であり、図中、実線が本発明により得られた温
度勾配であり、破線は図6に示した従来のガス配管にお
ける温度分布を示している。これから判るように、従来
の技術においては、ガス配管の長い領域を電気ヒータで
加熱しても外気や風やヒータの劣化の影響を受けて、例
えば40℃設定にしても温度幅にして約3℃振らつきガ
ス配管に温度ムラが生じている。これに対し、本発明に
おいてはガス配管3を断熱材10で覆うので外気や風の
影響を受けての温度ムラが生じ難くなる。更に、ガス配
管3の下流側に電気ヒータ11を設けてガス配管3に上
流側から下流側に向けて徐々に温度が上昇される温度勾
配が形成される。
In this way, the gas pipe 3 is covered with the heat insulating material 10, and a temperature gradient in the downward direction is formed in the temperature distribution of the gas pipe 3 from the downstream side to the upstream side of the gas. FIG. 2 is a diagram showing this temperature gradient. In the figure, the solid line shows the temperature gradient obtained by the present invention, and the broken line shows the temperature distribution in the conventional gas pipe shown in FIG. As can be seen from the above, in the conventional technique, even if a long area of the gas pipe is heated by an electric heater, it is affected by outside air, wind, or deterioration of the heater, and even if it is set at 40 ° C., the temperature width is about 3 Fluctuations in temperature occur in the gas pipe. On the other hand, in the present invention, since the gas pipe 3 is covered with the heat insulating material 10, the temperature unevenness due to the influence of the outside air or the wind hardly occurs. Further, an electric heater 11 is provided on the downstream side of the gas pipe 3 to form a temperature gradient in the gas pipe 3 in which the temperature gradually rises from the upstream side to the downstream side.

【0013】例えば、本実施形態の場合、200Wの電
気ヒータを用い、厚さ30mmのガラスウール製の断熱
材を用い、SUS316L,1/4インチのガス配管を
用い、電気ヒータを40℃に設定した場合、20m上流
側の配管温度は39℃であり、直線的に下降する温度勾
配とされている。このため、ガス配管に温度ムラが生じ
たとした場合でも、上流側から下流に向けて温度が徐々
に上昇されるため、通流ガスが局所的に温度低下される
ことはなく、これによりガスの再液化が生じることはな
い。
For example, in the case of this embodiment, an electric heater of 200 W is used, a heat insulating material made of glass wool having a thickness of 30 mm is used, a gas pipe of SUS316L, ¼ inch is used, and the electric heater is set to 40 ° C. In that case, the pipe temperature on the upstream side of 20 m is 39 ° C., which is a temperature gradient that linearly decreases. Therefore, even if the temperature unevenness occurs in the gas pipe, the temperature is gradually increased from the upstream side to the downstream side, so that the temperature of the flowing gas is not locally lowered, and the No reliquefaction occurs.

【0014】さらに、この実施形態では、ガス配管3
は、マスフローコントローラ8を境に上流側が加圧状態
で、下流側が減圧状態にある。前記したように、ガスの
再液化は同一堆積当たりガス量の多い加圧状態において
生じ易いため、加圧状態にあるマスフローコントローラ
8よりも上流側のガス配管において前記断熱材10と電
気ヒータ11を設けてここに温度勾配を形成すること
で、前記した再液化を有効に防止することが可能とな
る。
Further, in this embodiment, the gas pipe 3
Indicates that the upstream side is in a pressurized state and the downstream side is in a depressurized state with the mass flow controller 8 as a boundary. As described above, reliquefaction of gas is likely to occur in a pressurized state where a large amount of gas is deposited per deposition, so that the heat insulating material 10 and the electric heater 11 are connected to each other in the gas pipe upstream of the mass flow controller 8 in the pressurized state. By providing it and forming a temperature gradient here, it becomes possible to effectively prevent the above-mentioned reliquefaction.

【0015】したがって、ガスの再液化が防止され、こ
れにより製造プロセスが安定し、製品歩留が安定する共
に生産性,配管の信頼性が向上する。また、再液化した
ガス配管を再び正常な状態に戻す必要もないため、従来
必要とされていたガスのガス化のための数時間の処理が
不要となり生産性の低下も抑制される。
Therefore, reliquefaction of gas is prevented, which stabilizes the manufacturing process, stabilizes the product yield, and improves the productivity and the reliability of piping. Further, since it is not necessary to return the reliquefied gas pipe to a normal state again, it is not necessary to perform a process of several hours for gasifying the gas, which has been conventionally required, and it is possible to suppress a decrease in productivity.

【0016】次に、本発明の第2の実施形態について図
面を参照して説明する。図3は本発明の第2の実施形態
の要部の構成図であり、第1の実施形態と等価な部分に
は同一符号を付してある。この実施形態では、ガス配管
3の配管長が100m,200mと長い場合に有効であ
り、ガス配管3を断熱材10で覆うと共に、この断熱材
で覆われたガ配管の最も下流側の位置に第1の電気ヒー
タ11Aを配設し、さらに断熱材10で覆われたガス配
管3の長さ方向のほぼ中間位置に第2の電気ヒータ11
Bを配設している。また、各電気ヒータ11A,11B
の近傍にはそれぞれ温度センサ13A,13Bが設けら
れ、各電気ヒータで加熱されるガス配管のその部分の温
度を検出する。そして、前記各電気ヒータ11A,11
Bは、それぞれ各温度センサ13A,13Bの検出温度
に基づいて温度制御回路12によって個別に温度制御さ
れるように構成される。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a configuration diagram of a main part of the second embodiment of the present invention, and the same parts as those of the first embodiment are designated by the same reference numerals. This embodiment is effective when the pipe length of the gas pipe 3 is as long as 100 m and 200 m. The gas pipe 3 is covered with the heat insulating material 10, and at the most downstream position of the gas pipe covered with this heat insulating material. The first electric heater 11A is provided, and the second electric heater 11 is provided at a substantially middle position in the length direction of the gas pipe 3 covered with the heat insulating material 10.
B is arranged. Also, each electric heater 11A, 11B
Temperature sensors 13A and 13B are provided in the vicinity of, respectively, and detect the temperature of that portion of the gas pipe heated by each electric heater. Then, the electric heaters 11A, 11
B is configured to be individually temperature-controlled by the temperature control circuit 12 based on the temperatures detected by the temperature sensors 13A and 13B, respectively.

【0017】この構成では、温度制御回路12により第
1電気ヒータ11Aを40℃に調整する。第1の電気ヒ
ータ11Aのみでは、ガスボンベ2に近いガス配管3の
上流側の部分ではその温度は約3℃低下されるため、温
度勾配としては十分なものが得られるが、断熱材10だ
けでは外乱の影響を十分に押さえることができないおそ
れがある。そこで、第2電気ヒータ11Bを取り付け
て、ガス配管3の中間領域を加熱し温度が下がり過ぎな
いように補正する。この場合、第2電気ヒータ11Bは
ガス配管の長さ方向の中間位置よりガス配管長の10%
下流側に取り付けることで、ガス配管長の中間付近の温
度の調整を行っている。また、この場合第2電気ヒータ
11Bによる加熱部分がそれよりも下流の領域よりも温
度が極端に高くならないように制御することが好まし
い。
In this structure, the temperature control circuit 12 adjusts the temperature of the first electric heater 11A to 40.degree. With only the first electric heater 11A, the temperature of the upstream portion of the gas pipe 3 close to the gas cylinder 2 is lowered by about 3 ° C., so a sufficient temperature gradient can be obtained, but with the heat insulating material 10 alone. It may not be possible to sufficiently suppress the influence of disturbance. Therefore, the second electric heater 11B is attached, and the intermediate region of the gas pipe 3 is heated so that the temperature does not drop excessively. In this case, the second electric heater 11B is 10% of the gas pipe length from the middle position in the length direction of the gas pipe.
By installing on the downstream side, the temperature near the middle of the gas pipe length is adjusted. Further, in this case, it is preferable to control so that the temperature of the portion heated by the second electric heater 11B does not become extremely higher than that of the downstream region.

【0018】この結果、図4に示すように、前記第1の
実施形態では3℃低下した第1バルブ4付近の温度の低
下が1.5℃程度に抑さえられ、ガス配管の熱分布によ
ってガス配管における温度勾配を維持させる。万一、電
気ヒータが劣化してもガス配管の連続した領域を電気ヒ
ータで加熱しているのでないため、配管温度の振らつき
幅は小さくできる。このように、ガス配管において温度
ムラが殆どない温度勾配ができるので、再液化を抑制で
き、これにより製造プロセスが安定し、製造歩留が安定
となると共に生産性が向上される。
As a result, as shown in FIG. 4, the temperature drop around the first valve 4, which has been lowered by 3 ° C. in the first embodiment, is suppressed to about 1.5 ° C., and the heat distribution of the gas pipe causes Maintain a temperature gradient in the gas pipe. Even if the electric heater deteriorates, the continuous area of the gas pipe is not heated by the electric heater, so that the fluctuation range of the pipe temperature can be reduced. In this way, since a temperature gradient with almost no temperature unevenness can be formed in the gas pipe, reliquefaction can be suppressed, which stabilizes the manufacturing process, stabilizes the manufacturing yield, and improves productivity.

【0019】[0019]

【発明の効果】以上説明したように本発明は、液化ガス
を反応室に供給するためのガス配管の一部領域を断熱材
で被覆するとともに、この断熱材で被覆したガス配管の
下流領域に加熱装置を設けているので、断熱材によりガ
ス配管が外部の影響を受けて温度ムラが生じることが抑
制でき、加熱装置によって上流側から下流側に向けて温
度が徐々に上昇される温度勾配が形成されるため、温度
ムラが原因とされるガスの再液化を防止することがで
き、これにより、製造する半導体装置の製品歩留が向上
すると共に生産性、信頼性が向上できるという効果が得
られる。
As described above, according to the present invention, a partial region of a gas pipe for supplying a liquefied gas to a reaction chamber is covered with a heat insulating material, and a downstream region of the gas pipe covered with the heat insulating material is covered. Since the heating device is provided, it is possible to suppress the occurrence of temperature unevenness due to the influence of the outside on the gas pipe due to the heat insulating material, and there is a temperature gradient in which the temperature gradually rises from the upstream side to the downstream side by the heating device. Since it is formed, it is possible to prevent reliquefaction of the gas caused by temperature unevenness, which improves the product yield of the semiconductor device to be manufactured and also has the effect of improving productivity and reliability. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の全体構成を示す構成
図である。
FIG. 1 is a configuration diagram showing an overall configuration of a first embodiment of the present invention.

【図2】第1の実施形態におけるガス配管における温度
勾配を示す図である。
FIG. 2 is a diagram showing a temperature gradient in a gas pipe in the first embodiment.

【図3】本発明の第2の実施形態の要部の構成図であ
る。
FIG. 3 is a configuration diagram of a main part of a second embodiment of the present invention.

【図4】第2の実施形態におけるガス配管における温度
勾配を示す図である。
FIG. 4 is a diagram showing a temperature gradient in a gas pipe in the second embodiment.

【図5】従来の構成の一例を示す一部の構成図である。FIG. 5 is a partial configuration diagram showing an example of a conventional configuration.

【図6】従来の構成の他の例を示す一部の構成図であ
る。
FIG. 6 is a partial configuration diagram showing another example of a conventional configuration.

【符号の説明】[Explanation of symbols]

1 反応室 2 ガスボンベ 3 ガス配管 4〜7 バルブ 8 マスフローコントローラ 9 真空ポンプ 10 断熱材 11,11A,11B 電気ヒータ 12 温度制御回路 13,13A,13B 温度センサ 1 Reaction Chamber 2 Gas Cylinder 3 Gas Pipe 4-7 Valve 8 Mass Flow Controller 9 Vacuum Pump 10 Heat Insulating Material 11, 11A, 11B Electric Heater 12 Temperature Control Circuit 13, 13A, 13B Temperature Sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液化ガスを蓄積したガスボンベと、所要
の反応処理を行うための反応室とをガス配管で接続し、
前記液化ガスをガス化して前記反応室に供給するガス供
給系を備える半導体装置の製造装置において、前記ガス
配管の一部領域を断熱材で被覆するとともに、この断熱
材で被覆した前記ガス配管の下流領域に加熱装置を設け
たことを特徴とする半導体装置の製造装置。
1. A gas cylinder in which a liquefied gas is accumulated and a reaction chamber for performing a required reaction process are connected by a gas pipe,
In a semiconductor device manufacturing apparatus including a gas supply system that gasifies the liquefied gas and supplies the liquefied gas to the reaction chamber, a partial region of the gas pipe is covered with a heat insulating material, and the gas pipe of the heat insulating material is covered. An apparatus for manufacturing a semiconductor device, wherein a heating device is provided in a downstream region.
【請求項2】 ガス配管の一部には前記液化ガスの流量
を制御するためのマスフローコントローラが設けられ、
前記ガスボンベと前記マスフローコントローラとの間の
ガス配管を前記断熱材で被覆し、かつ加熱装置を設けて
なる請求項1の半導体装置の製造装置。
2. A mass flow controller for controlling the flow rate of the liquefied gas is provided in a part of the gas pipe,
2. The semiconductor device manufacturing apparatus according to claim 1, wherein a gas pipe between the gas cylinder and the mass flow controller is covered with the heat insulating material, and a heating device is provided.
【請求項3】 前記加熱装置は前記ガス配管の前記マス
フローコントローラ側にのみ設けられる請求項2の半導
体装置の製造装置。
3. The semiconductor device manufacturing apparatus according to claim 2, wherein the heating device is provided only on the mass flow controller side of the gas pipe.
【請求項4】 前記ガス配管の加熱温度が、前記下流側
で高く、上流側で低い温度勾配とを有するよう設定され
る請求項1ないし3のいずれかの半導体装置の製造装
置。
4. The semiconductor device manufacturing apparatus according to claim 1, wherein the heating temperature of the gas pipe is set to have a high temperature gradient on the downstream side and a low temperature gradient on the upstream side.
【請求項5】 液化ガスを蓄積したガスボンベと、所要
の反応処理を行うための反応室とをガス配管で接続し、
前記液化ガスをガス化して前記反応室に供給するガス供
給系を備える半導体装置の製造装置において、前記ガス
配管の一部領域を断熱材で被覆するとともに、この断熱
材で被覆した前記ガス配管の複数箇所に加熱装置を設
け、これら複数個の加熱装置の温度制御を個別に行うこ
とを特徴とする半導体装置の製造装置。
5. A gas cylinder in which a liquefied gas is accumulated and a reaction chamber for performing a required reaction treatment are connected by a gas pipe,
In a semiconductor device manufacturing apparatus including a gas supply system that gasifies the liquefied gas and supplies the liquefied gas to the reaction chamber, a partial region of the gas pipe is covered with a heat insulating material, and the gas pipe of the heat insulating material is covered. An apparatus for manufacturing a semiconductor device, wherein heating devices are provided at a plurality of locations, and temperature control of the plurality of heating devices is individually performed.
【請求項6】 ガス配管に沿って複数個の温度センサを
設け、前記複数の加熱装置を前記各温度センサの検出温
度に基づいて個別に行う請求項5の半導体装置の製造装
置。
6. The semiconductor device manufacturing apparatus according to claim 5, wherein a plurality of temperature sensors are provided along the gas pipe, and the plurality of heating devices are individually operated based on the temperatures detected by the respective temperature sensors.
JP08036038A 1996-02-23 1996-02-23 Semiconductor device manufacturing equipment Expired - Lifetime JP3077583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08036038A JP3077583B2 (en) 1996-02-23 1996-02-23 Semiconductor device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08036038A JP3077583B2 (en) 1996-02-23 1996-02-23 Semiconductor device manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH09232295A true JPH09232295A (en) 1997-09-05
JP3077583B2 JP3077583B2 (en) 2000-08-14

Family

ID=12458547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08036038A Expired - Lifetime JP3077583B2 (en) 1996-02-23 1996-02-23 Semiconductor device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3077583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076781A (en) * 2015-10-16 2017-04-20 株式会社日立国際電気 Heating section, substrate processing apparatus, and method of manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076781A (en) * 2015-10-16 2017-04-20 株式会社日立国際電気 Heating section, substrate processing apparatus, and method of manufacturing semiconductor device
CN106601650A (en) * 2015-10-16 2017-04-26 株式会社日立国际电气 Heating part, substrate processing apparatus and method of manufacturing semiconductor device
US11198935B2 (en) 2015-10-16 2021-12-14 Kokusai Electric Corporation Heating part, substrate processing apparatus, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3077583B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JP5461786B2 (en) Gas supply device with vaporizer
CN111095513A (en) High-pressure high-temperature annealing chamber
JPH0525099U (en) Gas supply device
US10998205B2 (en) Substrate processing apparatus and manufacturing method of semiconductor device
TWI460370B (en) A liquefied gas vaporization method, vaporization device and a liquefied gas supply device using the vaporization method and device
JP6752332B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
US20160281226A1 (en) Raw Material Supply Method, Raw Material Supply Apparatus, and Storage Medium
JP2017092325A (en) Processing device
KR101832249B1 (en) Substrate processing apparatus and temperature adjustment method
KR19990041785A (en) Manufacturing method of semiconductor device using lamp heating type sheet type equipment
JP3077583B2 (en) Semiconductor device manufacturing equipment
JP5179339B2 (en) Mixed gas supply method and mixed gas supply device
US7290572B2 (en) Method for purging a high purity manifold
US11807938B2 (en) Exhaust device, processing system, and processing method
TW202244309A (en) Double valve gas supply system
KR101196372B1 (en) Gas supplier for semiconductor manufacturing system
JP3164662B2 (en) Material gas supply pipe heating device
KR20070006460A (en) Gas feeding line
JP2009149939A (en) Method for supplying liquid material gas and system for supplying liquid material gas
JP2009176942A (en) Substrate treatment equipment
JP2006161937A (en) Liquefied gas supply method
US20240158912A1 (en) Material deposition system equipment maintenance
JP5265460B2 (en) Film forming method and film forming apparatus
JP3149514B2 (en) Method and apparatus for supplying vaporized gas
JP4304354B2 (en) Semiconductor device processing method