JPH09230030A - Light transmitting and intercepting device and light-intercepting device - Google Patents

Light transmitting and intercepting device and light-intercepting device

Info

Publication number
JPH09230030A
JPH09230030A JP8063810A JP6381096A JPH09230030A JP H09230030 A JPH09230030 A JP H09230030A JP 8063810 A JP8063810 A JP 8063810A JP 6381096 A JP6381096 A JP 6381096A JP H09230030 A JPH09230030 A JP H09230030A
Authority
JP
Japan
Prior art keywords
light
receiving
lens
transmitting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8063810A
Other languages
Japanese (ja)
Inventor
Shigeru Nagarego
繁 流郷
Hidefumi Ito
秀文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP8063810A priority Critical patent/JPH09230030A/en
Publication of JPH09230030A publication Critical patent/JPH09230030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the sensitivity of detecting a close range by installing a cylindrical reflector smoothly increased in its inside diamter between a light-intercepting lens and a photodetector, and guiding an incident light ray from the vicinity which enters at a large angle to the optical axis to the photodetector. SOLUTION: A cylindrical reflector Q is installed in front of a photodetector APD (avalanche photo diode). The reflector Q is increased in its inside diameter toward the forward end at a fixed proportion to present a conical form. A mirror finished surface (m) is formed on the inner surface of the forward part by plating, and a roughened surface (n) is formed on the inner surface of the rear part. Some of reflected light rays entering the lens barrel S through the center of a photo detecting lens R that enter from a long distance advance on the optical axis of the lens R to directly enter the photodetector APD without being subjected to reflection by the reflector Q. A reflected light ray L entering from the vicinity enters at an equivalent angle to the optical axis of the lens R and is reflected on the inner surface of the reflector Q to enter the element APD. Thus, the capability of detecting the vicinity can be improved without using expensive driving mechanism and control mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学式の接岸速度
計を構成するレーザ送受光装置などとして利用される送
受光装置と、この送受光装置から送光部を除いた受光装
置に関するものであり、特に、近距離の検出感度を向上
させた光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light transmitting / receiving device used as a laser light transmitting / receiving device or the like constituting an optical berth speedometer, and a light receiving device in which the light transmitting unit is removed from the light transmitting / receiving device. In particular, the present invention relates to an optical device with improved short-range detection sensitivity.

【0002】[0002]

【従来の技術】従来、レーザ送受光ヘッドを備えた光学
式の接岸速度計が本出願人によって開発されてきてお
り、その詳細は、特公平7ー69423号公報、特公平
7ー69427号公報、特公平7ー78537号公報な
どに開示されている。このレーザ送受光ヘッドは、岸壁
に接近中の船舶にレーザ光線を照射し、船腹で反射され
て戻ってきた反射光を受光するように構成されている。
このレーザ送受光ヘッドの後段に配置される算定部は、
このレーザ送受光ヘッドによるレーザ光線の送出時点と
反射光の受光時点との差をレーザ光線が船舶まで往復す
るのに要した伝播所要時間として検出し、この検出した
伝播所要時間から船舶までの距離とその接近速度とを算
定し、表示する。
2. Description of the Related Art Conventionally, an optical berthing speedometer equipped with a laser transmitting / receiving head has been developed by the present applicant, and the details thereof are disclosed in Japanese Patent Publication Nos. 7-69423 and 7-69427. Japanese Patent Publication No. 7-78537. The laser transmitting / receiving head is configured to irradiate a ship approaching the quay with a laser beam and to receive the reflected light reflected by the side of the ship and returning.
The calculation unit placed after this laser transmitting / receiving head is
The time required for the laser beam to travel back and forth to the ship is detected as the difference between the time when the laser beam is sent by this laser transmitting and receiving head and the time when the reflected light is received, and the distance from the detected time required for the propagation to the ship is detected. And its approach speed are calculated and displayed.

【0003】上述したようなレーザ送受光ヘッドを実現
する際の問題点は、船舶が沖合二百メートルもの遠方に
おいて接岸動作を開始し、その後このレーザ送受光ヘッ
ドが設置されている岸壁にほぼ接岸するまで、すなわち
二百mもの遠方から数十cmもの近傍に至る極めて広い
距離範囲にわたって、測定対象の船舶にレーザ光線を送
出しその反射を受光しなければならないという点であ
る。この問題点を、図を参照しながら説明する。
The problem in realizing the laser transmitting / receiving head as described above is that the ship starts the berthing operation at a distance of 200 meters offshore, and then the berth on which the laser transmitting / receiving head is installed is almost berthed. Until that time, that is, the laser beam must be sent to the vessel to be measured and the reflection thereof must be received over a very wide distance range from a distance of 200 m to the vicinity of several tens of cm. This problem will be described with reference to the drawings.

【0004】図6を参照すれば、発光素子であるレーザ
ダイオードLDから出力されたレーザ光線は、送光レン
ズTによる収束を受け、完全な平行光線ではなく前方に
向けて極めて僅かずつ拡大される径の光束となって船舶
などの検出対象物に向けて照射される。船舶などの検出
対象物で生じた反射ビームは、前方に向けて極めて僅か
ずつ拡大される視野を有する受光レンズRに入射して収
束を受け、受光素子であるアバランシェ・フォトダイオ
ードAPDに入射する。なお、送光レンズTと受光レン
ズRとは、それぞれの光軸をほぼ平行に保ちながら設置
されている。
Referring to FIG. 6, a laser beam emitted from a laser diode LD, which is a light emitting element, is converged by a light transmitting lens T and is not a perfect parallel beam but is expanded slightly toward the front. It becomes a luminous flux of a diameter and is irradiated toward an object to be detected such as a ship. A reflected beam generated by a detection target such as a ship is incident on a light receiving lens R having a field of view that is extremely slightly enlarged toward the front, is converged, and is incident on an avalanche photodiode APD which is a light receiving element. The light transmitting lens T and the light receiving lens R are installed while keeping their optical axes substantially parallel to each other.

【0005】図6中、斜線を付した領域は、レーザダイ
オードLDから放射されたレーザ光線が送光レンズTを
通って到達でき、かつそこで発生した反射光が受光レン
ズRを通って受光素子APDに到達できるという領域、
すなわち、接岸中の船舶の検出が可能な領域を示してい
る。このレーザ送受光ヘッドからの距離が異なる三つの
地点A、B、Cにおける放射レーザ光線の形状LLと受
光レンズRの視野RVは、それぞれ下段の正面図に例示
するようなものとなる。この正面図中斜線を付した部分
は、接岸中の船舶の検出が可能な領域を示している。こ
のように、レーザ送受光ヘッドの近傍では、船舶が検出
できなくなる。
In FIG. 6, the hatched region allows the laser beam emitted from the laser diode LD to reach through the light transmitting lens T, and the reflected light generated there passes through the light receiving lens R to receive the light receiving element APD. An area where you can reach
That is, it shows a region where the ship on the shore can be detected. The shape LL of the emitted laser beam and the visual field RV of the light receiving lens R at the three points A, B, and C having different distances from the laser transmitting / receiving head are as illustrated in the front view of the lower stage. The shaded portion in this front view shows the area where the ship on the shore can be detected. In this way, the ship cannot be detected near the laser transmitting / receiving head.

【0006】従来、上記レーザ送受光ヘッドを用いる接
岸速度計において近傍の検出を可能とするために、図7
に示すように、近傍を計測する場合だけ受光レンズRと
送光レンズTの光軸を交差させたり、図8に示すよう
に、近傍を測定する場合だけ受光レンズRの直前にプリ
ズムPを挿入するなどの対策が講じられてきた。
[0006] Conventionally, in order to be able to detect the vicinity in a berth speed meter using the above laser transmitting / receiving head, FIG.
As shown in FIG. 8, the optical axes of the light receiving lens R and the light transmitting lens T are crossed only when measuring the vicinity, or as shown in FIG. 8, the prism P is inserted immediately before the light receiving lens R only when measuring the vicinity. Measures such as doing have been taken.

【0007】[0007]

【発明が解決しようとする課題】上述の図7や図8に示
した従来の方法では、受光レンズの光軸の傾きを変更し
たり、プリズムを光路内に挿入したりそこから抜き取っ
たりするための機構が必要になるが、そのような機構
は、無人運転の下で自動的に動作する必要がある。この
ため、電動機などを含む駆動機構や、そのような電動機
の回転角を船舶の距離に応じて制御するための制御装置
などが必要になり、レーザ送受光ヘッド、従って接岸速
度計の価格の上昇を招くという問題がある。従って、本
発明の目的は、高価な駆動機構や制御機構を用いること
なく、近傍の検出能力を向上できるレーザ送受光装置な
どの送受光装置を提供することにある。
In the conventional method shown in FIGS. 7 and 8 described above, the inclination of the optical axis of the light receiving lens is changed, and the prism is inserted into or removed from the optical path. Mechanism is required, but such a mechanism needs to operate automatically under unmanned operation. For this reason, a drive mechanism including an electric motor and a control device for controlling the rotation angle of such an electric motor according to the distance of the ship are required, which increases the price of the laser transmitting / receiving head, and hence the berth speedometer. There is a problem of inviting. Therefore, an object of the present invention is to provide a light transmitting / receiving device such as a laser light transmitting / receiving device that can improve the detection capability in the vicinity without using an expensive driving mechanism or control mechanism.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本第
1の発明の送受光装置によれば、受光部が、受光体と受
光レンズとの間に前方に向けて内径が滑らかに拡大せし
められる筒状導光体を備えている。本第2の発明の送受
光装置によれば、受光部の受光体が光軸から遠ざかるに
つれて面積が拡大せしめられる受光面を有している。本
第3の発明の送受光装置によれば、受光部が、受光レン
ズと受光体との間に、小径の凹レンズを前方に大径の凸
レンズを後方に配置することにより構成される組合せレ
ンズを備えている。本第4の発明によれば、受光部が、
受光レンズと受光体との間に、周辺部分のみがプリズム
として機能する光学素子を備えている。
According to the light transmitting / receiving device of the first invention for solving the above-mentioned problems, the light receiving portion is such that the inner diameter is smoothly enlarged between the light receiving body and the light receiving lens toward the front. It is equipped with a tubular light guide. According to the light transmitting / receiving device of the second aspect of the present invention, the light receiving surface of the light receiving portion has a light receiving surface whose area increases as the distance from the optical axis increases. According to the light transmitting / receiving device of the third aspect of the present invention, the light receiving unit is a combination lens configured by disposing a concave lens having a small diameter in the front and a convex lens having a large diameter in the rear between the light receiving lens and the light receiving body. I have it. According to the fourth invention, the light receiving section is
Between the light receiving lens and the light receiving body, an optical element whose peripheral portion functions as a prism is provided.

【0009】[0009]

【発明の実施の形態】第1の発明の実施の形態によれ
ば、上記筒状導光体の内面が全部又は少なくとも後方の
一部が粗面を呈している。第1の発明の他の実施の形態
によれば、上記筒状導光体の内面は全部が鏡面を呈して
いる。第1の発明のさらに他の実施の形態によれば、上
記筒状導光体の前方への内径の拡大比率が前方に向けて
増加せしめられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first embodiment of the present invention, the inner surface of the tubular light guide is wholly or at least a rear part thereof is rough. According to another embodiment of the first invention, the entire inner surface of the cylindrical light guide body is a mirror surface. According to still another embodiment of the first aspect of the present invention, the forward enlargement ratio of the inner diameter of the tubular light guide is increased toward the front.

【0010】[0010]

【実施例】図1は、本第1の発明の一実施例のレーザ送
受光装置のうち受光部のみの構成を示す図であり、
(A)は受光部全体の断面図、(B)は筒状導光体のみ
の拡大斜視図である。この受光部は、図6に示したよう
に、本実施例のレーザ送受光装置を構成するレーザダイ
オードと送光レンズとを備える送光部(図示省略)の上
方にこの送光部に密接して配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the configuration of only a light receiving portion in a laser transmitting / receiving device according to an embodiment of the first invention,
(A) is a cross-sectional view of the entire light receiving portion, and (B) is an enlarged perspective view of only a cylindrical light guide. As shown in FIG. 6, this light receiving portion is in close contact with this light transmitting portion above a light transmitting portion (not shown) including a laser diode and a light transmitting lens that constitute the laser light transmitting / receiving device of this embodiment. Are arranged.

【0011】鏡筒Sは、便宜上その中間部分が省略され
て図示されている。この鏡筒Sの先端部には凸状の受光
レンズRが保持されると共に、その根元部分には受光素
子APDが保持されている。受光素子APDの直ぐ前方
には、筒状導光体Qが設置されると共に、さらにその前
方には、太陽光線を遮るためのフィルタFが設置されて
いる。円錐形状の筒状導光体Qは、その内径が前方に向
けて一定の比率で拡大する円錐形状を呈している。この
筒状導光体Qは、金属やガラスなどを素材として構成さ
れており、(B)の拡大斜視図に示すように、前方部分
の内面にはメッキによる鏡面mが形成されると共に、後
方部分の内面には粗面nが形成されている。
The lens barrel S is shown with the middle portion omitted for convenience. A convex light-receiving lens R is held at the tip of the lens barrel S, and a light-receiving element APD is held at the root of the lens. A tubular light guide Q is installed immediately in front of the light receiving element APD, and a filter F for blocking the sun's rays is installed further in front of it. The conical tubular light guide Q has a conical shape whose inner diameter expands forward at a constant rate. The tubular light guide Q is made of metal, glass or the like, and as shown in the enlarged perspective view of (B), a mirror surface m is formed by plating on the inner surface of the front part and the rear surface A rough surface n is formed on the inner surface of the portion.

【0012】受光レンズRの中心を通過して鏡筒S内に
入射する反射光線のうち、遠方から入射するものは、点
線で示す受光レンズRの光軸上を進み、筒状導光体Qに
よる反射を受けることなく、受光素子APDに直接入射
する。これに対して、近傍から入射する反射光線は、実
線Lで例示するように、受光レンズRの光軸に対して相
当の角度をなして入射する。この反射光線Lは、筒状導
光体Qが設置されていない場合には、図中に近距離での
結像として例示したように、受光素子APDの後方かつ
光軸から離れた箇所に結像を生じさせる。実際には、こ
の近傍からの反射光線Lは、筒状導光体Qの内面で反射
を受けて受光素子APDに入射する。このように、筒状
導光体Qは、遠方からの反射光線に対しては大きな影響
を及ぼさないが、近傍からの反射光線に対しては、その
内面における反射を通してこの反射光線を受光素子に導
くという機能を有する。
Of the reflected light rays that pass through the center of the light receiving lens R and enter the lens barrel S, those that are incident from a distance travel on the optical axis of the light receiving lens R indicated by the dotted line, and are cylindrical light guide Q. The light directly enters the light receiving element APD without being reflected by the light receiving element APD. On the other hand, the reflected light rays incident from the vicinity are incident at a considerable angle with respect to the optical axis of the light receiving lens R, as illustrated by the solid line L. When the tubular light guide Q is not installed, the reflected light beam L is formed at a position behind the light receiving element APD and away from the optical axis, as illustrated as an image formation at a short distance in the figure. Give rise to an image. Actually, the reflected light beam L from this vicinity is reflected by the inner surface of the tubular light guide Q and enters the light receiving element APD. As described above, the tubular light guide Q does not have a great influence on the reflected light rays from a distant place, but the reflected light rays from the vicinity are reflected by the inner surface of the reflected light rays to the light receiving element. It has the function of guiding.

【0013】筒状導光体Qの内面が、前方部分(先端部
分)から後方部分(根元部分)までの全体にわたって鏡
面を呈している場合には、図2(A)に例示するよう
に、この筒状導光体Q内に入射した反射光線は、入射角
と反射角とが等しい関係に保たれる正規反射(鏡面反
射)を繰り返しながら受光素子に到達しようとする。し
かしながら、かなりの成分は再び先端部分に戻ってしま
い、受光素子に到達できなくなる。これに対して、本実
施例のように筒状導光体Qの根元部分に粗面を形成して
おくと、図2(B)に示すように、筒状導光体Qの先端
部分の内面の鏡面で正規反射を反復しながら根元部分の
粗面に到達し、ここまで到達した反射光線はこの粗面に
よって散乱反射を受け、この散乱光のかなりの部分が受
光素子APDに到達可能となる。
When the inner surface of the cylindrical light guide Q has a mirror surface over the entire front portion (tip portion) to rear portion (root portion), as shown in FIG. The reflected light ray that has entered the cylindrical light guide Q attempts to reach the light receiving element while repeating regular reflection (mirror reflection) in which the incident angle and the reflection angle are kept equal. However, a considerable component returns to the tip portion again and cannot reach the light receiving element. On the other hand, if a rough surface is formed at the base of the tubular light guide Q as in the present embodiment, as shown in FIG. While repeating regular reflection on the mirror surface of the inner surface, it reaches the rough surface of the root portion, and the reflected light rays that have reached up to this point are scattered and reflected by this rough surface, and a considerable part of this scattered light can reach the light receiving element APD. Become.

【0014】このように、受光レンズと受光素子との間
に筒状導光体Qを設置し、光軸に大きな角度を成して入
射する近傍からの入射光線を受光素子まで導くことによ
り、近傍からの入射光線に対する感度を向上できる。こ
の場合、筒状導光体Qの内面を全部鏡面とするよりも、
この実施例のように、根元側には粗面を形成することに
より、近傍からの反射光線の受光素子への入射効率を高
めることができる。また、構造の簡略化の点などから、
筒状導光体Qの根元側だけに粗面を形成する代わりに、
先端側までの全面にわたって粗面を形成してもよい。
As described above, by disposing the cylindrical light guide Q between the light receiving lens and the light receiving element and guiding the incident light beam from the vicinity which is incident at a large angle to the optical axis to the light receiving element, It is possible to improve sensitivity to incident light rays from the vicinity. In this case, rather than making the entire inner surface of the cylindrical light guide Q a mirror surface,
By forming a rough surface on the root side as in this embodiment, it is possible to increase the incidence efficiency of reflected light rays from the vicinity to the light receiving element. In addition, from the viewpoint of simplification of the structure,
Instead of forming a rough surface only on the base side of the cylindrical light guide Q,
A rough surface may be formed over the entire surface up to the tip side.

【0015】このような粗面は、所望の粒度のカーボラ
ンダムの粉末を圧縮空気に混ぜて処理対象の筒状導光体
の内面に吹き付けるサンドブラストなどによって形成で
きるし、適宜な粗面を有する薄手の素材を漏斗状に巻回
したり、筒状導光体の内面に張り付けたりすることによ
り実現することもできる。本発明者は、ボール紙を漏斗
状に巻回することより作成した全面が粗面を呈する筒状
導光体Qを受光レンズRと受光素子APDとの間の鏡筒
S内に設置した場合、近傍の入射光線に対する受光感度
が10dB程度向上することを実験的に確認した。
Such a rough surface can be formed by, for example, sandblasting in which a powder of carborundum having a desired particle size is mixed with compressed air and sprayed on the inner surface of the tubular light guide to be treated, or a thin surface having an appropriate rough surface. It can also be realized by winding the material in a funnel shape or by sticking it on the inner surface of the tubular light guide. In the case where the present inventor installs a tubular light guide Q, which is created by winding a cardboard in a funnel shape and has an overall rough surface, in a lens barrel S between a light receiving lens R and a light receiving element APD. , It was experimentally confirmed that the light receiving sensitivity for incident light in the vicinity was improved by about 10 dB.

【0016】さらに、図2(C)に例示するように、筒
状導光体Qの内径の前方への拡大比率を前方に向けて増
加させることにより、例えば、内径を前方に向けて指数
関数的に増加させることにより、筒状導光体Qの内面を
全部鏡面とし、正規反射の反復に基づき、近傍からの反
射光線を効率良く受光素子に入射させるという構成とす
ることもできる。
Further, as shown in FIG. 2C, by increasing the forward expansion ratio of the inner diameter of the cylindrical light guide Q, for example, the inner diameter is exponentially forward. It is also possible to adopt a configuration in which the inner surface of the tubular light guide Q is entirely mirror-finished and the reflected light rays from the vicinity are efficiently incident on the light receiving element based on the repetition of regular reflection.

【0017】図3は、本第2の発明の一実施例のレーザ
送受光装置のうち受光部のみの構成を示す図であり、
(A)は受光部全体の断面図、(B)は受光素子の受光
面の形状を拡大して示す拡大正面図である。この受光部
は、図6に示したように、本実施例のレーザ送受光装置
を構成するレーザダイオードと送光レンズとを備える送
光部(図示省略)の上方にこの送光部に密接して配置さ
れている。
FIG. 3 is a diagram showing the construction of only the light receiving portion of the laser transmitting / receiving device of the second embodiment of the present invention.
(A) is a sectional view of the entire light receiving portion, and (B) is an enlarged front view showing an enlarged shape of a light receiving surface of a light receiving element. As shown in FIG. 6, this light receiving portion is in close contact with this light transmitting portion above a light transmitting portion (not shown) including a laser diode and a light transmitting lens that constitute the laser light transmitting / receiving device of this embodiment. Are arranged.

【0018】鏡筒Sは、便宜上その中間部分が省略され
て図示されている。この鏡筒Sの先端部には凸状の受光
レンズRが保持されると共に、その根元部分には受光素
子APDが保持されている。受光素子APDの直ぐ前方
には、太陽光線を遮るためのフィルタFが設置されてい
る。
The lens barrel S is shown with the middle portion omitted for convenience. A convex light-receiving lens R is held at the tip of the lens barrel S, and a light-receiving element APD is held at the root of the lens. Immediately in front of the light receiving element APD, a filter F for blocking sun rays is installed.

【0019】図3(A)において、Hは百メートル程度
の遠方からの反射光線の結像を、Jは数十センチメート
ル程度の近傍からの反射光線の結像を、それぞれ例示し
ている。さらに、Iはこれらの中間の数十メートルの位
置からの反射光線の結像を例示している。このように、
反射光線の発生位置、すなわち、図示しない送光部から
放射されたレーザ光線を反射させる船舶などの物体の位
置がこの受光部に接近するにつれて、反射光線の結像位
置が受光レンズRの焦点近傍から次第に後退してゆくと
共に、受光レンズRの光軸から次第に離れてゆく。ま
た、結像は次第に増大してゆく。
In FIG. 3A, H exemplifies the image formation of reflected light rays from a distance of about 100 meters, and J exemplifies the image formation of reflected light rays from the vicinity of several tens of centimeters. Further, I exemplifies the imaging of reflected light rays from a position several tens of meters between these positions. in this way,
As the generation position of the reflected light beam, that is, the position of an object such as a ship that reflects the laser beam emitted from a light transmitting unit (not shown) approaches the light receiving unit, the image forming position of the reflected light beam is near the focus of the light receiving lens R. The optical axis of the light receiving lens R gradually moves away from the optical axis of the light receiving lens R. In addition, the image formation gradually increases.

【0020】上述のように、遠方から近傍までの反射光
線を入射させるために、受光素子APDの受光面の形状
を、図3(B)の正面図に示すように、涙滴の形状に設
定される。受光素子の受光面は、光軸Oの近傍では小さ
く、光軸Oから離れるにつれて次第に増大される。な
お、この受光部の下方に設置された送光部からレーザ光
線が放射され、物体で反射された反射光線がこの受光部
に入射することが前提とっている。このため、受光レン
ズRに入射する反射光線は、この受光レンズRの光軸を
右肩上がりの向きに横切ることになり、受光面の形状は
上下に非対象となる。
As described above, the shape of the light receiving surface of the light receiving element APD is set to the shape of a tear drop as shown in the front view of FIG. To be done. The light receiving surface of the light receiving element is small in the vicinity of the optical axis O and gradually increases as the distance from the optical axis O increases. It is premised that a laser beam is emitted from a light transmitting unit installed below the light receiving unit, and a reflected light beam reflected by an object enters the light receiving unit. For this reason, the reflected light beam entering the light receiving lens R crosses the optical axis of the light receiving lens R in an upwardly rising direction, and the shape of the light receiving surface is not symmetrical vertically.

【0021】アバランシェ・フォトダイオードなどの受
光素子は、その受光面の増加につれて暗電流などに起因
する雑音が増加する。従って、受光面は、検出しようと
する反射光線の入射を許容できる必要最小限の形状・寸
法に留める必要がある。受光素子の受光面の形状をこの
ような涙滴形状とすることにより、近傍で生じた反射光
線に対する受光感度を、光軸Oを中心とする円形や楕円
形にした場合に比べて大幅に向上できる。
In a light receiving element such as an avalanche photodiode, noise due to dark current increases as the light receiving surface of the light receiving element increases. Therefore, it is necessary to keep the light-receiving surface in the minimum necessary shape and size that allows the incident of the reflected light beam to be detected. By making the shape of the light receiving surface of the light receiving element into such a teardrop shape, the light receiving sensitivity to the reflected light beam generated in the vicinity is significantly improved as compared with the case where the light receiving surface has a circular shape or an elliptical shape with the optical axis O as the center. it can.

【0022】図4は、本第3の発明の一実施例のレーザ
送受光装置のうち受光部のみの構成を示す図であり、
(A)は受光部全体の断面図、(B)は受光レンズと受
光素子との間に設置される組合せレンズ系の構成を拡大
して示す拡大斜視図である。この受光部は、図6に示し
たように、本実施例のレーザ送受光装置を構成するレー
ザダイオードと送光レンズとを備える送光部(図示省
略)の上方にこの送光部に密接して配置されている。
FIG. 4 is a diagram showing the construction of only the light receiving portion of the laser transmitting / receiving device of the third embodiment of the present invention.
(A) is a cross-sectional view of the entire light receiving portion, and (B) is an enlarged perspective view showing the configuration of a combination lens system installed between a light receiving lens and a light receiving element in an enlarged manner. As shown in FIG. 6, this light receiving portion is in close contact with this light transmitting portion above a light transmitting portion (not shown) including a laser diode and a light transmitting lens that constitute the laser light transmitting / receiving device of this embodiment. Are arranged.

【0023】鏡筒Sは、便宜上その中間部分が省略され
て図示されている。この鏡筒Sの先端部には凸状の受光
レンズRが保持されると共に、その根元部分には受光素
子APDが保持されている。受光素子APDの直ぐ前方
には、太陽光線を遮るためのフィルタFが設置されてい
る。さらに、フィルタFと受光レンズRの間に、小径の
凹レンズP1を前方に大径の凸レンズP2を後方に配置
することにより構成される組合せレンズが設置されてい
る。凹レンズP1は、斜視図(B)にも示すように、レ
ンズホルダーTの上に設置されている。
The lens barrel S is shown with the middle portion omitted for convenience. A convex light-receiving lens R is held at the tip of the lens barrel S, and a light-receiving element APD is held at the root of the lens. Immediately in front of the light receiving element APD, a filter F for blocking sun rays is installed. Further, between the filter F and the light receiving lens R, there is installed a combination lens configured by disposing a concave lens P1 having a small diameter in the front and a convex lens P2 having a large diameter in the rear. The concave lens P1 is installed on the lens holder T, as also shown in a perspective view (B).

【0024】遠方から到来する反射光線の成分L1は、
受光レンズRの光軸にほぼ平行に入射することから、こ
の受光レンズRの通過後はその焦点に向かって進み、そ
の全光束が凹レンズP1に入射する。凹レンズP1は、
その焦点位置が受光レンズRの焦点位置と一致するよう
に配置されている。従って、受光レンズRを通過したの
ち凹レンズP1に入射した遠方からの反射光線は、受光
レンズRの光軸と平行になるような進路の変更を受け、
凸レンズP2に入射し、これを通過したのち受光素子A
PDに入射する。
The component L1 of the reflected ray coming from a distance is
Since the light is incident substantially parallel to the optical axis of the light receiving lens R, after passing through the light receiving lens R, the light travels toward the focal point, and the entire light flux enters the concave lens P1. The concave lens P1 is
The focus position is arranged so as to match the focus position of the light receiving lens R. Therefore, the reflected light beam from a distance, which has passed through the light receiving lens R and then is incident on the concave lens P1, undergoes a change of course so as to be parallel to the optical axis of the light receiving lens R,
After entering the convex lens P2 and passing through it, the light receiving element A
It is incident on the PD.

【0025】次に、近傍の物体から到来する反射光線の
うち受光レンズRの前側焦点を通過してこれに入射する
成分の光路を考察する。そのような反射光線のうち受光
レンズRの光軸に比較的大きな角度をなして入射する成
分L2は、受光レンズRを通過した後はその光軸に平行
にかつこの光軸から上方に離れて進行し、凹レンズP1
に入射することなく直接凸レンズP2に入射し、進路の
変更を受けて受光素子APDに入射する。これに対し
て、受光レンズRの光軸に小さな角度をなして入射する
成分L3は、受光レンズRの光軸に平行にかつこの光軸
から上方に近接して進行し、凹レンズP1に入射する。
凹レンズP1を通過した成分L3は、凸レンズP2に入
射して進路の変更を受けるが、受光素子APDには入射
せず、ロスになる。
Next, the optical path of the component of the reflected light ray coming from the nearby object which passes through the front focal point of the light receiving lens R and enters it will be considered. After passing through the light receiving lens R, the component L2 of such a reflected light beam which is incident on the optical axis of the light receiving lens R at a relatively large angle is parallel to the light axis and is separated upward from this optical axis. Progress, concave lens P1
The light directly enters the convex lens P2 without entering, and enters the light receiving element APD after the path is changed. On the other hand, the component L3 that is incident on the optical axis of the light receiving lens R at a small angle travels in parallel with the optical axis of the light receiving lens R and in the vicinity of and upward from the optical axis, and is incident on the concave lens P1. .
The component L3 that has passed through the concave lens P1 enters the convex lens P2 and undergoes a course change, but does not enter the light receiving element APD, resulting in loss.

【0026】上述のように、受光レンズRと受光素子A
PDとの間に組合せレンズ系を付加することにより、近
傍からの反射光線の一部を受光素子APDに入射させる
ことができる。なお、本実施例の光学系と図3の実施例
で説明した涙滴型の受光面とを組合わせることにより、
近傍の反射光線に対する受光効率を更に向上させること
もできる。また、この受光部の下方に設置された送光部
からレーザ光線が放射され、物体で反射された反射光線
がこの受光部に入射することが前提とっているため、受
光レンズRに入射する反射光線は、この受光レンズRの
光軸を右肩上がりの向きに横切ることになり、レンズホ
ルダーTの存在は、光学特性になんら影響しない。
As described above, the light receiving lens R and the light receiving element A
By adding a combination lens system to the PD, a part of the reflected light beam from the vicinity can be made incident on the light receiving element APD. By combining the optical system of this embodiment with the teardrop-shaped light-receiving surface described in the embodiment of FIG.
It is also possible to further improve the light receiving efficiency for reflected light rays in the vicinity. Further, since it is premised that the laser beam is emitted from the light transmitting section installed below the light receiving section and the reflected light beam reflected by the object enters the light receiving section, the reflection light entering the light receiving lens R is reflected. The light beam crosses the optical axis of the light receiving lens R in an upwardly rising direction, and the presence of the lens holder T does not affect the optical characteristics at all.

【0027】図5は、本第4の発明の一実施例のレーザ
送受光装置のうち受光部のみの構成を示す図であり、
(A)は受光部全体の断面図、(B)は受光レンズと受
光素子との間に設置されるプリズム円盤PPを拡大して
示す拡大斜視図である。この受光部は、図6に示したよ
うに、本実施例のレーザ送受光装置を構成するレーザダ
イオードと送光レンズとを備える送光部(図示省略)の
上方にこの送光部に密接して配置されている。
FIG. 5 is a diagram showing the construction of only the light receiving portion of the laser transmitting / receiving device of the fourth embodiment of the present invention.
(A) is a cross-sectional view of the entire light receiving portion, and (B) is an enlarged perspective view showing a prism disc PP installed between a light receiving lens and a light receiving element in an enlarged manner. As shown in FIG. 6, this light receiving portion is in close contact with this light transmitting portion above a light transmitting portion (not shown) including a laser diode and a light transmitting lens that constitute the laser light transmitting / receiving device of this embodiment. Are arranged.

【0028】鏡筒Sは、便宜上その中間部分が省略され
て図示されている。この鏡筒Sの先端部には凸状の受光
レンズRが保持されると共に、その根元部分には受光素
子APDが保持されている。受光素子APDの直ぐ前方
には、フィルタFが設置されている。さらに、フィルタ
Fと受光レンズRの間に、遮光マスクを有するプリズム
円盤PPが配置されている。
The lens barrel S is shown with the middle portion omitted for convenience. A convex light-receiving lens R is held at the tip of the lens barrel S, and a light-receiving element APD is held at the root of the lens. A filter F is installed immediately in front of the light receiving element APD. Further, a prism disk PP having a light shielding mask is arranged between the filter F and the light receiving lens R.

【0029】プリズム円盤PPは、図5の斜視図(B)
にも示すように、中央部分が平行平面のガラスの円盤か
ら成り、周辺部分がプリズムとなっている。このプリズ
ム円盤PPの下半分は、有意な光線が入射しないので黒
色の遮光マスクが形成されている。このプリズム円盤P
Pは、図4に示した受光部の組合せレンズと同様の機能
を果たす。
The prism disk PP is a perspective view of FIG. 5 (B).
As also shown, the central part consists of a parallel flat glass disk and the peripheral part is a prism. A black light-shielding mask is formed on the lower half of the prism disk PP because no significant light rays are incident on it. This prism disk P
P has the same function as the combination lens of the light receiving unit shown in FIG.

【0030】すなわち、遠方から到来する反射光線は、
受光レンズRの光軸にほぼ平行にこれに入射し、この受
光レンズRを通過した後はその焦点に向かって進み、そ
の全光束がプリズム円盤PPの中央部の平行平面のガラ
スの円盤に入射する。このため、遠方から到来する反射
光線は、このプリズム円盤PPによる進路の変更をほと
んど受けずにフィルタFを通過して受光レンズRの焦点
位置に配置された受光素子APDに入射する。
That is, the reflected light rays coming from a distance are
It is incident on the optical axis of the light receiving lens R substantially in parallel to it, and after passing through the light receiving lens R, it advances toward its focal point, and the entire light flux is incident on the parallel flat glass disk in the central portion of the prism disk PP. To do. Therefore, the reflected light ray coming from a distant place passes through the filter F with almost no change of the course by the prism disk PP and enters the light receiving element APD arranged at the focal position of the light receiving lens R.

【0031】これに対して、受光レンズRを通過した近
傍からの反射光線のうちプリズム円盤PPの周辺部分に
入射した成分は、プリズム作用に基づく大きな進路の変
更を受けて受光素子APDに入射する。なお、近傍から
の反射光線のうちプリズム円盤PPの中央部分に入射し
た成分は進路の変更をほとんど受けず、ロスとなる。こ
のように、受光レンズRと受光素子APDとの間にプリ
ズム円盤PPを付加することにより、受光レンズRの周
辺部分に入射する近傍からの反射光線の一部を受光素子
APDに入射させることができる。なお、本実施例の光
学系と図3の実施例で説明した涙滴型の受光面とを組合
せることにより、近傍の反射光線に対する受光効率を更
に向上させることもできる。
On the other hand, the component of the reflected light from the vicinity that has passed through the light receiving lens R and has entered the peripheral portion of the prism disk PP undergoes a large course change due to the prism action and enters the light receiving element APD. . It should be noted that, of the reflected light rays from the vicinity, the component incident on the central portion of the prism disk PP is hardly changed in its course and becomes a loss. In this way, by adding the prism disk PP between the light receiving lens R and the light receiving element APD, a part of the reflected light beam from the vicinity incident on the peripheral portion of the light receiving lens R can be made incident on the light receiving element APD. it can. By combining the optical system of this embodiment with the teardrop-shaped light receiving surface described in the embodiment of FIG. 3, it is possible to further improve the light receiving efficiency for reflected light rays in the vicinity.

【0032】また、プリズム円盤PPの中央部分を平行
平板の透明なガラスとする代わりにこの部分を除去して
中空とすることもできる。なお、この受光部の下方に設
置された送光部からレーザ光線が放射され、物体で反射
された反射光線がこの受光部に入射することが前提とっ
ているため、受光レンズRに入射する反射光線は、この
受光レンズRの光軸を右肩上がりの向きに横切ることに
なり、このため、図5の(C)にも示すような遮光マス
クMが形成されている。
Further, instead of making the central portion of the prism disk PP transparent glass of parallel plate, this portion can be removed to make it hollow. Since it is premised that a laser beam is emitted from the light transmitting unit installed below the light receiving unit and the reflected light beam reflected by the object enters the light receiving unit, the reflection light incident on the light receiving lens R is reflected. The light ray crosses the optical axis of the light receiving lens R in an upwardly rising direction, so that a light shielding mask M as shown in FIG. 5C is formed.

【0033】以上、光学式の接岸速度計を構成するレー
ザ送受光装置を例にとって本発明の送受光装置を説明し
た。しかしながら、本発明の送受光装置は、接岸速度計
以外の各種の接近速度計、距離計、侵入警報装置など各
種の用途に応用できる。
The laser transmitter / receiver of the present invention has been described above by taking the laser transmitter / receiver constituting an optical berth speedometer as an example. However, the light transmitting / receiving device of the present invention can be applied to various applications such as various approach speedometers other than the berth speedometer, distance meters, intrusion alarm devices, and the like.

【0034】この場合、発光素子としては半導体レーザ
の代わりに、ガスレーザや発光ダイオードなどを使用す
ることもできる。また、受光素子としてはアバランシェ
・フォトダイオードの代わりに、通常のフォトダイオー
ドなどを使用することもできる。
In this case, as the light emitting element, a gas laser, a light emitting diode or the like can be used instead of the semiconductor laser. Further, as the light receiving element, a normal photodiode or the like can be used instead of the avalanche photodiode.

【0035】また、送光部と受光部とを備えた送受光装
置に本発明を適用する場合を説明した。しかしながら、
受光部の近傍の視野を拡大するという目的のもとに受光
部のみから成る監視装置などの受光専用装置に本発明を
適用することもできる。
The case where the present invention is applied to the light transmitting / receiving device having the light transmitting portion and the light receiving portion has been described. However,
For the purpose of expanding the field of view in the vicinity of the light receiving portion, the present invention can be applied to a light receiving-only device such as a monitoring device including only the light receiving portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本第1の発明の一実施例のレーザ送受光装置の
構成を示す断面図(A)と、筒状導光体Qの拡大斜視図
(B)である。
FIG. 1 is a cross-sectional view (A) showing a configuration of a laser transmitting / receiving device according to an embodiment of the present invention, and an enlarged perspective view (B) of a cylindrical light guide Q.

【図2】図1の筒状反射体Qに入射した光線の挙動を説
明するための概念図である。
FIG. 2 is a conceptual diagram for explaining the behavior of a light ray that has entered the tubular reflector Q in FIG.

【図3】本第2の発明の一実施例のレーザ送受光装置の
構成を示す断面図(A)と、受光素子APDの受光面の
形状を説明する拡大正面図(B)である。
FIG. 3 is a cross-sectional view (A) showing a configuration of a laser transmitting / receiving device according to an embodiment of the present invention, and an enlarged front view (B) for explaining a shape of a light receiving surface of a light receiving element APD.

【図4】本第3の発明の一実施例のレーザ送受光装置の
構成を示す断面図(A)と、組合せレンズ系の構成を示
す斜視図(B)である。
FIG. 4 is a sectional view (A) showing a structure of a laser transmitting / receiving device according to an embodiment of the present invention and a perspective view (B) showing a structure of a combination lens system.

【図5】本第4の発明の一実施例のレーザ送受光装置の
構成を示す断面図(A)と、プリズム円盤PPの形状を
示す斜視図(B)と、正面図(C)である。
FIG. 5 is a sectional view (A) showing a configuration of a laser transmitting / receiving device according to an embodiment of the present invention, a perspective view (B) showing a shape of a prism disk PP, and a front view (C). .

【図6】レーザ送受光装置を接岸速度計などに適用する
場合の問題点を説明するための概念図である。
FIG. 6 is a conceptual diagram for explaining a problem when the laser transmitter / receiver device is applied to a berth speed meter or the like.

【図7】図6で説明した問題点を解決するための従来方
法の一つを説明するための概念図である。
FIG. 7 is a conceptual diagram for explaining one of conventional methods for solving the problem described in FIG.

【図8】図6で説明した問題点を解決するための従来方
法の他の一つを説明するための概念図である。
FIG. 8 is a conceptual diagram for explaining another one of the conventional methods for solving the problem described in FIG.

【符号の説明】[Explanation of symbols]

R 受光レンズ APD 受光素子(アバランシェ・フォトダイオード) S 鏡筒 F フィルタ Q 筒状導光体 L 近傍からの入射光線(反射レーザ光線) m 鏡面 n 粗面 O 光軸 R light receiving lens APD light receiving element (avalanche photodiode) S lens barrel F filter Q tubular light guide L incident light (reflected laser light) from near L m mirror surface n rough surface O optical axis

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】光線を放射する発光体と送光レンズとを備
えた送光部と、この送光部から放射された光線の物体に
よる反射光を受光する受光レンズと受光体とを備えた受
光部とから構成される送受光装置であって、 前記受光部は、前記受光体と前記受光レンズとの間にこ
の受光体からこの受光レンズを見た方向(以下「前方」
という)に内径が滑らかに拡大せしめられる筒状導光体
を備えたことを特徴とする送受光装置。
1. A light-transmitting unit including a light-emitting body that emits a light beam and a light-transmitting lens, a light-receiving lens that receives reflected light from an object of the light beam emitted from the light-transmitting unit, and a light-receiving body. A light transmitting / receiving device including a light receiving unit, wherein the light receiving unit is located between the light receiving body and the light receiving lens in a direction in which the light receiving lens is viewed from the light receiving body (hereinafter referred to as “forward”).
(2) is provided with a tubular light guide whose inner diameter can be smoothly expanded.
【請求項2】 請求項1において、 前記筒状導光体の内面は、全部又は少なくとも後方の一
部が粗面を呈することを特徴とする送受光装置。
2. The light-transmitting / receiving device according to claim 1, wherein the inner surface of the tubular light guide member has a rough surface in whole or at least in a rear part thereof.
【請求項3】 請求項1において、 前記筒状導光体の内面は、全部が鏡面を呈することを特
徴とする送受光装置。
3. The light transmitting / receiving device according to claim 1, wherein the entire inner surface of the cylindrical light guide body is a mirror surface.
【請求項4】 請求項3において、 前記筒状導光体の内径は、前方に向けて拡大比率が増加
せしめられることを特徴とする送受光装置。
4. The light transmitting / receiving device according to claim 3, wherein an enlargement ratio of the inner diameter of the tubular light guide is increased toward the front.
【請求項5】 請求項1乃至4のそれぞれにおいて、 前記送光部の発光体は、半導体レーザダイオードである
ことを特徴とする送受光装置。
5. The light transmitting / receiving device according to claim 1, wherein the light emitting body of the light transmitting unit is a semiconductor laser diode.
【請求項6】光線を放射する発光体と送光レンズとを備
えた送光部と、この送光部から放射された光線の物体に
よる反射光を受光する受光レンズと受光体とを備えた受
光部とから構成される送受光装置であって、 前記受光部の受光体は、光軸から遠ざかるにつれて面積
が拡大せしめられる受光面を有することを特徴とする送
受光装置。
6. A light-transmitting section having a light-emitting body for emitting a light beam and a light-transmitting lens, a light-receiving lens for receiving reflected light of an object of the light beam emitted from the light-transmitting section, and a light-receiving body. A light-transmitting / receiving device comprising a light-receiving unit, wherein the light-receiving member of the light-receiving unit has a light-receiving surface whose area increases as the distance from the optical axis increases.
【請求項7】 請求項6において、 前記受光面の面積の拡大は前記送光部から遠ざかる方向
にのみ行われることによりこの受光面は涙滴形を呈する
ことを特徴とする送受光装置。
7. The light transmitting / receiving device according to claim 6, wherein the light receiving surface has a teardrop shape by increasing the area of the light receiving surface only in a direction away from the light transmitting unit.
【請求項8】光線を放射する発光体と送光レンズとを備
えた送光部と、この送光部から放射された光線の物体に
よる反射光を受光する受光レンズと受光体とを備えた受
光部とから構成される送受光装置であって、 前記受光部は、前記受光レンズと前記受光体との間に、
小径の凹レンズを前方に大径の凸レンズを後方に配置す
ることにより構成される組合せレンズを備えたことを特
徴とする送受光装置。
8. A light-transmitting portion having a light-emitting body for emitting a light ray and a light-transmitting lens, a light-receiving lens for receiving reflected light of an object of the light ray emitted from the light-transmitting portion, and a light-receiving body. A light transmitting / receiving device comprising a light receiving unit, wherein the light receiving unit is provided between the light receiving lens and the light receiving body.
1. A light transmitting / receiving device comprising a combination lens configured by arranging a small-diameter concave lens in the front and a large-diameter convex lens in the rear.
【請求項9】光線を放射する発光体と送光レンズとを備
えた送光部と、この送光部から放射された光線の物体に
よる反射光を受光する受光レンズと受光体とを備えた受
光部とから構成される送受光装置であって、 前記受光部は、前記受光レンズと前記受光体との間に、
周辺部分のみがプリズムとして機能する光学素子を備え
たことを特徴とする送受光装置。
9. A light transmitting section comprising a light emitting body for emitting a light beam and a light transmitting lens, a light receiving lens for receiving reflected light of an object of the light beam emitted from the light transmitting section, and a light receiving body. A light transmitting / receiving device comprising a light receiving unit, wherein the light receiving unit is provided between the light receiving lens and the light receiving body.
An optical transmitter / receiver characterized in that only a peripheral portion is provided with an optical element that functions as a prism.
【請求項10】 請求項6乃至9のそれぞれにおいて、 前記送光部の発光体は、半導体レーザダイオードである
ことを特徴とする送受光装置。
10. The light transmitting / receiving device according to claim 6, wherein the light emitting body of the light transmitting unit is a semiconductor laser diode.
【請求項11】受光レンズと受光体とを備えた受光装置で
あって、 この受光装置は、前記受光体と前記受光レンズとの間に
前方に内径が滑らかに拡大せしめられる筒状導光体を備
えたことを特徴とする受光装置。
11. A light receiving device comprising a light receiving lens and a light receiving body, wherein the light receiving device has a cylindrical light guiding body in which an inner diameter is smoothly expanded forward between the light receiving body and the light receiving lens. A light-receiving device comprising:
【請求項12】受光レンズと受光体とを受光装置であっ
て、 前記受光体は、光軸から遠ざかるにつれて面積が拡大せ
しめられる受光面を有することを特徴とする受光装置。
12. A light-receiving device comprising a light-receiving lens and a light-receiving body, wherein the light-receiving body has a light-receiving surface whose area increases as the distance from the optical axis increases.
【請求項13】受光レンズと受光体とを備えた受光装置で
あって、 この受光装置は、前記受光レンズと前記受光体との間
に、小径の凹レンズを前方に大径の凸レンズを後方に配
置することにより構成される組合せレンズを備えたこと
を特徴とする受光装置。
13. A light-receiving device comprising a light-receiving lens and a light-receiving body, wherein the light-receiving device comprises a small-diameter concave lens in the front and a large-diameter convex lens in the rear between the light-receiving lens and the light-receiving body. A light receiving device comprising a combination lens configured by being arranged.
【請求項14】受光レンズと受光体とを備えた受光装置で
あって、 前記受光部は、前記受光レンズと前記受光体との間に、
周辺部分のみがプリズムとして機能する光学素子を備え
たことを特徴とする受光装置。
14. A light-receiving device including a light-receiving lens and a light-receiving body, wherein the light-receiving section is provided between the light-receiving lens and the light-receiving body.
A light receiving device characterized in that only a peripheral portion is provided with an optical element functioning as a prism.
JP8063810A 1996-02-26 1996-02-26 Light transmitting and intercepting device and light-intercepting device Pending JPH09230030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8063810A JPH09230030A (en) 1996-02-26 1996-02-26 Light transmitting and intercepting device and light-intercepting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8063810A JPH09230030A (en) 1996-02-26 1996-02-26 Light transmitting and intercepting device and light-intercepting device

Publications (1)

Publication Number Publication Date
JPH09230030A true JPH09230030A (en) 1997-09-05

Family

ID=13240113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063810A Pending JPH09230030A (en) 1996-02-26 1996-02-26 Light transmitting and intercepting device and light-intercepting device

Country Status (1)

Country Link
JP (1) JPH09230030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233927A (en) * 2003-07-02 2005-09-02 Iwasaki Electric Co Ltd Light source apparatus and light quantity monitor using it
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
JP2020511666A (en) * 2017-03-20 2020-04-16 ベロダイン ライダー, インク. LIDAR-based 3D imaging with structured light and integrated illumination and detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233927A (en) * 2003-07-02 2005-09-02 Iwasaki Electric Co Ltd Light source apparatus and light quantity monitor using it
JP4604572B2 (en) * 2003-07-02 2011-01-05 岩崎電気株式会社 Light source device and light intensity monitor used for it
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
JP2020511666A (en) * 2017-03-20 2020-04-16 ベロダイン ライダー, インク. LIDAR-based 3D imaging with structured light and integrated illumination and detection

Similar Documents

Publication Publication Date Title
CN107209265B (en) Optical detection and distance measurement device
EP0768542B1 (en) Optical distance measuring apparatus
US7944549B2 (en) Optical screen, systems and methods for producing and operating same
US7940444B2 (en) Method and apparatus for synchronous laser beam scanning
KR102210101B1 (en) Optical structure and scanning LiDAR having the same
JP2003202215A (en) Photoelectron detection apparatus
US20070030474A1 (en) Optical range finder
KR102350621B1 (en) Lidar apparatus
JP2005121638A (en) Optoelectronic detection apparatus
JP2019533153A (en) 3D lidar sensor
KR102350613B1 (en) Irrotational omnidirectional lidar apparatus
JP2012255738A (en) Optical measuring apparatus
JP2000193748A (en) Laser distance-measuring device for large measurement range
CN112255617B (en) Can anti sunshine interference type laser scanning distancer
JP4127579B2 (en) Light wave distance meter
JPH09230030A (en) Light transmitting and intercepting device and light-intercepting device
US3825747A (en) Scanner
US20220120869A1 (en) Receiving system for lidar, lidar and method for inhibiting ghost lines
JP4588339B2 (en) Light transmitting / receiving device and automatic monitoring device having the light transmitting / receiving device
KR20200006999A (en) Lidar device and method using simplified detection
JPH10253533A (en) Photo detector with film reflector
WO2019235260A1 (en) Distance measuring device
CN116125436B (en) Integrated coaxial transceiver for single-photon radar and single-photon radar
JP2000137065A (en) Laser ray detecting device
KR102363318B1 (en) Miniaturized Lidar Optical System