JPH09229991A - Method for locating partial discharge position - Google Patents

Method for locating partial discharge position

Info

Publication number
JPH09229991A
JPH09229991A JP6191096A JP6191096A JPH09229991A JP H09229991 A JPH09229991 A JP H09229991A JP 6191096 A JP6191096 A JP 6191096A JP 6191096 A JP6191096 A JP 6191096A JP H09229991 A JPH09229991 A JP H09229991A
Authority
JP
Japan
Prior art keywords
partial discharge
time difference
peak
frequency
selector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6191096A
Other languages
Japanese (ja)
Inventor
Takashi Noma
隆嗣 野間
Toshihiro Miyazaki
俊博 宮崎
Takayuki Kawai
隆之 川井
Akishige Ogawa
明栄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP6191096A priority Critical patent/JPH09229991A/en
Publication of JPH09229991A publication Critical patent/JPH09229991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to accurately measure the partial discharge position by locating the position according to the time difference of the peak position of the partial discharge signal detected with a selected measuring frequency. SOLUTION: The signals detected by both detectors 1, 2 are input to a frequency selector 3. The peak position of the waveform after the detection signal is frequency-selected is recognized by a peak position detector 4, and the time difference is obtained by the time difference detector 5, thereby making it possible to calculate the accurate time difference. 2 to 10 are used as the Q value (central frequency/passing band width) of the selector 3 to obtain more accurate time difference. In the case of detecting the peak, the peak of the output of the selector 3 may be obtained, but its envelope is taken, and its peak value may be obtained. If the time difference accuracy is raised, the position locating accuracy is hence raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はケーブル線路や電力
機器の特定区間の部分放電発生位置標定方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a partial discharge generation position in a specific section of a cable line or power equipment.

【0002】[0002]

【従来の技術】従来の技術としては、例えば「部分放電
検出」(H.Kreuger 著、岡田・内藤共訳、コロナ社発
行)P142 に示されている。部分放電パルスはケーブル
内を進行波として伝搬するため、その到達時間差を測定
することによって部分放電発生位置を算出できる。前記
文献では測定器を一つだけ用いて位置標定しているが、
測定器を複数箇所に設置し、その時間差で位置標定して
も、もちろん差し支えない。ここでは、一つのケーブル
の両端で部分放電を検出する場合を図7、8により説明
する。
2. Description of the Related Art As a conventional technique, for example, "Partial discharge detection" (H. Kreuger, Okada / Naito joint translation, Corona Publishing Co.) P142 is shown. Since the partial discharge pulse propagates in the cable as a traveling wave, the partial discharge occurrence position can be calculated by measuring the arrival time difference. In the above literature, the position is located using only one measuring device,
Of course, it does not matter if the measuring instruments are installed at multiple locations and the position is determined by the time difference. Here, a case where partial discharge is detected at both ends of one cable will be described with reference to FIGS.

【0003】図7に示すように、離れた位置ケーブル線
路の特定区間の両端に検出器1、検出器2を結合する。
Dで示す部分放電発生点で発生した放電パルスは発生点
Dより線路を進行波となって伝搬して検出器1と検出器
2に到達する。図8は時間軸上に検出器1、2で検出し
た放電パルスの位置を示しているが、このように特定区
間の線路の中間より検出器1に近い側で、パルスが発生
したときは、まず検出器1で前記パルスによる進行波が
検出され、伝搬時間差△Td時間経過して検出器2で前
記パルスによる進行波が検出される。この場合、特定区
間の線路長Lは既知であり、パルスの伝搬速度υも分っ
ており、伝搬時間差△Tdは測定できるので検出器1よ
り放電発生点までの距離をχとすると、一般的にχは次
の式(1)、(2)によって算出することできる。
As shown in FIG. 7, a detector 1 and a detector 2 are coupled to both ends of a specific section of a distant position cable line.
The discharge pulse generated at the partial discharge generation point indicated by D propagates as a traveling wave through the line from the generation point D and reaches the detector 1 and the detector 2. FIG. 8 shows the positions of the discharge pulses detected by the detectors 1 and 2 on the time axis. Thus, when a pulse is generated on the side closer to the detector 1 than the middle of the line in the specific section, First, the detector 1 detects the traveling wave of the pulse, and the detector 2 detects the traveling wave of the pulse after the propagation time difference ΔTd has elapsed. In this case, the line length L of the specific section is known, the propagation velocity υ of the pulse is also known, and the propagation time difference ΔTd can be measured. Therefore, when the distance from the detector 1 to the discharge generation point is χ, it is general. Can be calculated by the following equations (1) and (2).

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【数2】 [Equation 2]

【0006】なお、前記の位置標定においてはパルスが
あるしきい値を越えた瞬間を図8に示すようにパルス到
達時間と認識して検出を行っており、式(1)による場
合はパルスが線路の中央より検出器1に近い箇所で発生
した場合、式(2)はパルスが線路の中央より検出器2
に近い箇所で発生した場合に算定を行う式である。
In the above-mentioned position locating, the moment when the pulse exceeds a certain threshold is recognized as the pulse arrival time as shown in FIG. 8, and the detection is performed. In the case of the formula (1), the pulse is detected. When it occurs at a position closer to the detector 1 than the center of the line, the equation (2) shows that the pulse is detected by the detector 2 from the center of the line.
This is a formula to calculate when it occurs near the point.

【0007】[0007]

【発明が解決しようとする課題】すでに説明したよう
に、従来のこの種、位置標定においては、パルスがしき
い値を越えた瞬間をパルス到達時間として認識している
が、この方法では以下三つの理由により到達時間差に誤
差を生じる。 部分放電は図9に示すように、ケーブル線路内を伝
搬する間に高周波成分ほど大きく減衰する。そのため、
検出信号はケーブル伝搬距離が長くなるほど波形がなま
り、図10に示すように検出される伝搬時間差△Tdは、
本当の立ち上がりの時間差△Tと異なった値となる。 同一箇所での放電を測定した場合でも、放電の大き
さによって検出される伝搬時間差には、図11に示すよう
に差異を生じる。 ケーブル内の伝搬速度は図12に示すように周波数依
存がある。部分放電発生箇所が測定点に近い場合には、
部分放電パルス中の高周波成分も検出されるため、その
パルスの平均的な伝搬速度は速くなる。一方、放電発生
箇所が測定点から離れている場合には高周波成分が減衰
するため、そのパルスの平均伝搬速度が遅くなる。 つまり、誤差を最小にする最適なパルス伝搬速度は、部
分放電発生位置により変化する。しかしながら、どこで
部分放電が発生するかをあらかじめ予想することは不可
能である。そのため実用上は適当な一定値の伝搬速度を
仮定して用いることになるが、この仮定した伝搬速度が
誤差を最小にする最適な伝搬速度とは異なるために依然
として誤差を生じる。
As described above, in this kind of conventional position locating, the moment when the pulse exceeds the threshold value is recognized as the pulse arrival time. There is an error in the arrival time difference for one reason. As shown in FIG. 9, the partial discharge is attenuated more as the high frequency component is propagated in the cable line. for that reason,
The longer the cable propagation distance is, the more the detection signal becomes more blunt, and the propagation time difference ΔTd detected as shown in FIG.
It is a value different from the actual rising time difference ΔT. Even when the discharge at the same location is measured, there is a difference in the propagation time difference detected depending on the magnitude of the discharge, as shown in FIG. The propagation velocity in the cable depends on the frequency as shown in Fig.12. If the location of partial discharge is close to the measurement point,
Since the high frequency component in the partial discharge pulse is also detected, the average propagation speed of the pulse is increased. On the other hand, when the location where the discharge is generated is far from the measurement point, the high-frequency component is attenuated, and the average propagation velocity of the pulse becomes slow. That is, the optimum pulse propagation speed that minimizes the error varies depending on the position where the partial discharge occurs. However, it is impossible to predict in advance where the partial discharge will occur. Therefore, in practice, an appropriate constant propagation velocity is assumed and used, but an error still occurs because the assumed propagation velocity is different from the optimum propagation velocity that minimizes the error.

【0008】[0008]

【課題を解決するための手段】図1に示すように、両検
出器1、2により検出された信号を、周波数選択器3に
入力する。検出信号を周波数選択した後の波形のピーク
位置をピーク位置検出回路4で認識し、その時間差△T
を時間差検出回路5で求めることにより正確な時間差を
算出できる。また周波数選択器のQ値として2〜10を用
いることにより正確な時間差を求めることができる。
As shown in FIG. 1, the signals detected by both detectors 1 and 2 are input to a frequency selector 3. The peak position of the waveform after the frequency of the detection signal is selected is recognized by the peak position detection circuit 4, and the time difference ΔT
An accurate time difference can be calculated by calculating the time difference detection circuit 5. Further, by using 2 to 10 as the Q value of the frequency selector, an accurate time difference can be obtained.

【0009】[0009]

【作用】図2に周波数選択器3の出力段階での両検出信
号を示す。また、図3には放電の大きさが変化した場合
を示す。部分放電信号は周波数選択器3を通過すると図
示のような俵状のパルス信号となる。この信号のピーク
点を検出し、その時間差を求めることで前記課題を解決
する。このように特定周波数成分のみを用いるため、波
形のなまりや、伝搬速度の変化がない。また信号の大き
さが変化してもピークを検出する方法であるため誤差を
生じない。
FIG. 2 shows both detection signals at the output stage of the frequency selector 3. Further, FIG. 3 shows a case where the magnitude of the discharge changes. When the partial discharge signal passes through the frequency selector 3, it becomes a bale-shaped pulse signal as shown. The above problem is solved by detecting the peak point of this signal and determining the time difference. Since only the specific frequency component is used in this way, the waveform is not blunted and the propagation velocity does not change. Further, even if the magnitude of the signal changes, the method of detecting the peak does not cause an error.

【0010】[0010]

【発明の実施の形態】ピーク検出に際しては図2に示す
ように周波数選択器の出力のピークを求めてもよいが、
他の方法でももちろん構わない。例えば図4に示すよう
に包絡線を取り出し、その包絡線のピーク値を求めても
よい。図2では周波数選択器として、バンドパスフィル
タ(BPF)を用いた場合を示しているが、スペクトラ
ムアナライザのようなヘテロダイン検波を用いた周波数
選択器を用いてももちろんかまわない。この場合には、
スペクトラムアナライザからは図4のような包絡線が出
力される。
BEST MODE FOR CARRYING OUT THE INVENTION At the time of peak detection, the peak of the output of the frequency selector may be obtained as shown in FIG.
Of course, other methods are also acceptable. For example, as shown in FIG. 4, an envelope may be taken out and the peak value of the envelope may be obtained. Although FIG. 2 shows the case where a bandpass filter (BPF) is used as the frequency selector, it goes without saying that a frequency selector using heterodyne detection such as a spectrum analyzer may be used. In this case,
The envelope shown in FIG. 4 is output from the spectrum analyzer.

【0011】この測定方法では、周波数選択器のQ値
(中心周波数/通過帯域幅)により時間差精度、これが
ひいては位置標定精度を上げることになるのであるが、
変化する。図5に示すように、Q値を大きくする(周波
数選択度を上げる)と周波数選択器出力波形が時間的に
長くなる。そのため矢印で示すように、どの位置がパル
スのピークであるかの認識が難しくなるため結果的に時
間精度が低下する。一方Q値を小さくすると、中心周波
数以外の成分の比率が大きくなる。そのため生波形に含
まれる高周波成分の比率により出力波形が変化する、平
均伝搬速度が変化する等の本発明が解決しようとしてい
た元々の課題が現われ、やはり時間精度が低下する。つ
まり時間精度が最もよくなるQ値が存在することが分か
る。発明者は最適Q値について評価を行い、Q=2〜10
の場合が最も精度がよいことを経験的に求めている。
In this measuring method, the time difference accuracy, which in turn increases the accuracy of position location, by the Q value (center frequency / pass band width) of the frequency selector,
Change. As shown in FIG. 5, when the Q value is increased (frequency selectivity is increased), the frequency selector output waveform becomes longer in time. Therefore, as shown by the arrow, it becomes difficult to recognize which position is the peak of the pulse, and as a result, the time accuracy decreases. On the other hand, when the Q value is reduced, the ratio of components other than the center frequency increases. Therefore, the original problem that the present invention was trying to solve appears, such as the change of the output waveform and the change of the average propagation velocity depending on the ratio of the high-frequency components included in the raw waveform, and the time accuracy also deteriorates. That is, it can be seen that there is a Q value with the best time accuracy. The inventor evaluated the optimum Q value, and Q = 2 to 10
It is empirically sought that the case is the most accurate.

【0012】実施例を図6に示す。検出器1、2として
は測定周波数範囲が3〜30MHz であり、パルス状の生波
形を検出できる。検出器1、2よりの出力信号を中心周
波数4MHz 、Q=4のBPF6を用いて4MHz を中心と
する高周波を抽出し、前記出力をピーク位置検出回路に
入力してそれぞれのピーク点を検出し、時間差検出回路
5にて両ピーク点の時間差を検出し、放電発生位置算定
回路7においてこれより前記式(1)又は(2)により
部分放電発生点の位置を標定したが、2kmの特定区間の
ケーブル線路において、その発生点を実際の発生点から
約±10m以内の精度で標定することができた。
An embodiment is shown in FIG. The detectors 1 and 2 have a measurement frequency range of 3 to 30 MHz and can detect a pulse-like raw waveform. The output signals from the detectors 1 and 2 are used to extract a high frequency centered at 4 MHz by using a BPF 6 having a center frequency of 4 MHz and Q = 4, and the output is input to a peak position detection circuit to detect each peak point. The time difference detection circuit 5 detects the time difference between the two peak points, and the discharge generation position calculation circuit 7 determines the position of the partial discharge generation point from the equation (1) or (2). It was possible to locate the point of occurrence in the cable track of No. 1 with an accuracy within about ± 10 m from the actual point of occurrence.

【0013】以上は、電力ケーブル線路上において部分
放電を生じた際における部分放電を標定することについ
て説明したが、例えばGIS、GILのようなガス絶縁
機器のような電力機器に対しても、同様に部分放電位置
を標定することができる。
Although the above description has been made about locating the partial discharge when the partial discharge occurs on the power cable line, the same applies to the power device such as the gas-insulated device such as GIS and GIL. It is possible to locate the partial discharge position.

【0014】以上説明したように、本発明の方法を用い
ることにより、部分放電位置を正確に測定することがで
きるため、電力ケーブルの工場出荷試験や竣工部分放電
試験、電力機器の放電試験、さらにこれらの実線路にお
ける部分放電監視に適用できる。
As described above, since the partial discharge position can be accurately measured by using the method of the present invention, a factory shipment test of a power cable, a completed partial discharge test, a power device discharge test, and It can be applied to the partial discharge monitoring in these real lines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の部分放電位置標定方法に用いる装置の
構成を示す。
FIG. 1 shows a configuration of an apparatus used in a partial discharge position locating method of the present invention.

【図2】本発明による標定方法を概念図で示す。FIG. 2 is a conceptual diagram showing an orientation method according to the present invention.

【図3】放電の大きさが変化して図1の両周波数選択器
に入力してそれぞれ出力した波形を示す。
FIG. 3 shows waveforms input to and output from both frequency selectors of FIG. 1 when the magnitude of discharge changes.

【図4】検出信号として包絡線取り出し概念を示す。FIG. 4 shows the concept of envelope extraction as a detection signal.

【図5】周波数選択器のQ値と出力波形との関係を示
す。
FIG. 5 shows the relationship between the Q value of the frequency selector and the output waveform.

【図6】本発明の実施例を示す。FIG. 6 shows an embodiment of the present invention.

【図7】従来の部分放電位置標定方法の概念を示す。FIG. 7 shows a concept of a conventional partial discharge position locating method.

【図8】従来の部分放電位置標定の回路構成の一部を示
す。
FIG. 8 shows a part of a conventional partial discharge position locating circuit configuration.

【図9】電力ケーブル内の減衰の大きさの周波数特性を
示す。
FIG. 9 shows frequency characteristics of the magnitude of attenuation in a power cable.

【図10】従来の部分放電位置標定方法における誤差発生
の原因を波形図で示す。
FIG. 10 is a waveform diagram showing the cause of error generation in the conventional partial discharge position locating method.

【図11】従来の部分放電位置標定方法において、放電の
大きさが変化することによる誤差発生の原因を波形図で
示す。
FIG. 11 is a waveform diagram showing a cause of an error caused by a change in discharge magnitude in a conventional partial discharge position locating method.

【図12】ケーブル内の進行波伝搬速度の周波数特性を示
す。
FIG. 12 shows frequency characteristics of traveling wave propagation velocity in a cable.

【符号の説明】[Explanation of symbols]

1,2 検出器 3 周波数選択器 4 ピーク位置検出器 5 時間差検出器 6 BPF 7 放電発生位置算定回路 1, 2 detector 3 frequency selector 4 peak position detector 5 time difference detector 6 BPF 7 discharge occurrence position calculation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川井 隆之 名古屋市東区東新町1番地 中部電力株式 会社内 (72)発明者 小川 明栄 名古屋市東区東新町1番地 中部電力株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takayuki Kawai, 1 Higashishinmachi, Higashi-ku, Nagoya, Chubu Electric Power Co., Ltd. (72) Akiei Ogawa, 1 Higashishinmachi, Higashi-ku, Nagoya, Chubu Electric Power Company

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブルや電力機器のある区間の部
分放電を離れた位置で検出し、検出された部分放電信号
の到達時間差により部分放電発生位置を標定する方法に
おいて、測定周波数を選択し、当該測定周波数で検出さ
れた部分放電信号のピーク位置の時間差により放電発生
位置標定を行うことを特徴とする部分放電位置標定方
法。
1. A method of detecting a partial discharge in a certain section of a power cable or a power device at a distant position and locating a partial discharge occurrence position based on a difference in arrival times of the detected partial discharge signals, selecting a measurement frequency, A partial discharge position locating method characterized by performing a discharge occurrence position locating based on a time difference between peak positions of partial discharge signals detected at the measurement frequency.
【請求項2】 測定周波数を選択する選択器として用い
るフィルタのQ値をQ=2〜10の間で設定することを特
徴とする請求項1による部分放電位置標定方法。
2. The partial discharge position locating method according to claim 1, wherein the Q value of the filter used as a selector for selecting the measurement frequency is set between Q = 2 to 10.
【請求項3】 測定周波数を選択する選択器としてヘテ
ロダイン検波を用いることを特徴とする請求項1による
部分放電位置標定方法。
3. The partial discharge position locating method according to claim 1, wherein heterodyne detection is used as a selector for selecting a measurement frequency.
JP6191096A 1996-02-23 1996-02-23 Method for locating partial discharge position Pending JPH09229991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6191096A JPH09229991A (en) 1996-02-23 1996-02-23 Method for locating partial discharge position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191096A JPH09229991A (en) 1996-02-23 1996-02-23 Method for locating partial discharge position

Publications (1)

Publication Number Publication Date
JPH09229991A true JPH09229991A (en) 1997-09-05

Family

ID=13184802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191096A Pending JPH09229991A (en) 1996-02-23 1996-02-23 Method for locating partial discharge position

Country Status (1)

Country Link
JP (1) JPH09229991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194065A (en) * 2011-03-16 2012-10-11 Toshiba Mitsubishi-Electric Industrial System Corp Discharge detection method and discharge detection system
CN104459488A (en) * 2014-09-01 2015-03-25 国家电网公司 Insulator arc-over locating system used in GIS voltage withstanding process
CN107076795A (en) * 2014-11-21 2017-08-18 三菱电机株式会社 Partial discharge position caliberating device
JP2017181148A (en) * 2016-03-29 2017-10-05 矢崎エナジーシステム株式会社 Power cable insulation degraded position estimation method and estimation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194065A (en) * 2011-03-16 2012-10-11 Toshiba Mitsubishi-Electric Industrial System Corp Discharge detection method and discharge detection system
CN104459488A (en) * 2014-09-01 2015-03-25 国家电网公司 Insulator arc-over locating system used in GIS voltage withstanding process
CN107076795A (en) * 2014-11-21 2017-08-18 三菱电机株式会社 Partial discharge position caliberating device
CN107076795B (en) * 2014-11-21 2020-05-05 三菱电机株式会社 Partial discharge position calibration device
JP2017181148A (en) * 2016-03-29 2017-10-05 矢崎エナジーシステム株式会社 Power cable insulation degraded position estimation method and estimation system

Similar Documents

Publication Publication Date Title
US6951132B2 (en) Rail and train monitoring system and method
US3753086A (en) Method and apparatus for locating and measuring wave guide discontinuities
KR102014582B1 (en) Apparatus for processing reflected wave
KR920010692A (en) Partial discharge detection device and method of gas insulated switchgear
US10048309B2 (en) Method and device for automatically measuring physical characteristics of a cable, in particular the propagation velocity
KR100915712B1 (en) Partial discharge location detection system and method of detecting a discharge location
JPH0415415B2 (en)
US20100010761A1 (en) Method and device for monitoring a system
JPH09229991A (en) Method for locating partial discharge position
US11796361B2 (en) Flow rate measurement apparatus measuring flow rate of fluid inside pipe having predetermined cross-sectional area
JP6215992B2 (en) Power cable insulation degradation position estimation method and estimation system
NL8003086A (en) METHOD AND APPARATUS FOR LOCATING A LIGHT OR FLASH ARC IN A WAVE PIPE
KR101579896B1 (en) System and Method for Analyzing Cable State using Multi Band Signal
CN114859180B (en) Cable fault double-end positioning method based on continuous wave
JP2614144B2 (en) Transmission line
RU2511644C1 (en) Acoustic method of rail track failure detection
JPH0545405A (en) Partial discharge measurement method of cable
JP3129881B2 (en) Train position detection method and device
Mardiana et al. Phase difference method for two-end partial discharge location in power cables
CN114235135B (en) Amplitude demodulation vibration positioning detection method based on double differential step sizes
JP2654793B2 (en) Partial discharge detection device
Miyazaki et al. Development of partial discharge automated locating system for power cable
JP2001074839A (en) Device and method for measuring velocity
JPH01216291A (en) Method and device for detecting object
JPH08146077A (en) Measurement of partial discharge