JPH09228828A - Emission control device - Google Patents

Emission control device

Info

Publication number
JPH09228828A
JPH09228828A JP8036232A JP3623296A JPH09228828A JP H09228828 A JPH09228828 A JP H09228828A JP 8036232 A JP8036232 A JP 8036232A JP 3623296 A JP3623296 A JP 3623296A JP H09228828 A JPH09228828 A JP H09228828A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
hydro carbon
exhaust gas
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8036232A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8036232A priority Critical patent/JPH09228828A/en
Publication of JPH09228828A publication Critical patent/JPH09228828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove hydro carbon when an engine is started by disposing a hydro carbon absorbing catalyst which liberates absorbed hydro carbon when it reaches a desorption temperature, and introducing secondary air for a definite period of time when exhaust temperature at the inlet port of the catalyst is equal to or more than a definite temperature. SOLUTION: A hydro carbon absorbing catalyst 16 is disposed in the exhaust system of an engine 14, exhaust temperature at its inlet port and the water temperature of an engine are measured, and let a control unit 10 execute secondary air control and lean control 12 on an air-fuel ratio for the engine. The absorbed quantity of hydro carbon is estimated based on the period of time consumed by the catalyst until its temperature is raised up to a temperature equal to or more than a temperature where the hydro carbon absorbing catalyst 16 starts absorbing hydro carbon, and furthermore, the period of time for introducing secondary air or the period of time for placing an air-fuel ratio under lean control, is thereby obtained. By this constitution, the greater quantity of absorbed hydro carbon by the hydro carbon absorbing catalyst 16 is much more subject to the longer period of time for introducing secondary air or the longer period of time for placing an air-fuel ration under lean control, and thereby hydro carbon liberated out of the hydro carbon absorbing catalyst 16 is positively purified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排気浄化装置、より
具体的には内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device, and more particularly to an exhaust gas purification device for an internal combustion engine.

【0002】[0002]

【従来の技術】従来の炭化水吸着触媒を用いる排気浄化
装置としては、例えば特開平5−59942号公報に示
されるように第一の三元触媒または酸化触媒を設け、そ
の上流にHC吸着触媒を設け、さらにその上流に第二の
三元触媒を設けて始動時の炭化水素を効率よく除去する
排気装置が開示されている。
2. Description of the Related Art As a conventional exhaust gas purifying apparatus using a hydrocarbon adsorption catalyst, for example, a first three-way catalyst or an oxidation catalyst is provided as shown in JP-A-5-59942, and an HC adsorption catalyst is provided upstream thereof. There is disclosed an exhaust device for efficiently removing hydrocarbons at the time of startup by providing a second three-way catalyst upstream of the above.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の排気浄化装置では、エンジン始動直後の排気
温度が低い時には炭化水素は充分に浄化できるが、排気
温度が上昇してきて炭化水素吸着触媒が暖まるに従い、
炭化水素吸着触媒に吸着していた炭化水素が脱離してき
たものが浄化されずに、排出される炭化水素が増加して
しまうという問題があった。
However, in such a conventional exhaust gas purification apparatus, hydrocarbons can be sufficiently purified when the exhaust gas temperature is low immediately after the engine is started, but the exhaust gas temperature rises and the hydrocarbon adsorption catalyst becomes As it gets warmer
There is a problem that hydrocarbons adsorbed on the hydrocarbon adsorption catalyst are desorbed, but the hydrocarbons discharged are increased without being purified.

【0004】本発明はこのような従来技術の問題点を解
消し、エンジン始動時の炭化水素を効率よく除去する排
気浄化装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems of the prior art and to provide an exhaust gas purifying apparatus which efficiently removes hydrocarbons at the time of engine start.

【0005】[0005]

【課題を解決するための手段】本発明は、このような従
来の排気浄化装置の問題点に着目してなされたもので、
内燃機関から排出される炭化水素を含有する排気ガス中
の炭化水素を浄化する排気浄化装置において、少なくと
も炭化水素を吸着し、脱離温度に達すると吸着されてい
た炭化水素を脱離させる炭化水素吸着触媒を配置し、そ
の炭化水素吸着触媒の入口の排気温度を測定し、ある一
定の温度以上になったときに一定時間、2次空気を導入
するか、エンジンの空燃比制御をリーン側に制御するこ
とにより、触媒を通過する排気ガスを酸素過剰条件に制
御することとし、炭化水素吸着触媒としてハニカム担体
にゼオライト粉末を主成分としたスラリーをコーティン
グした後、アルミナを主成分とする無機物に貴金属を担
持したものを主成分とするスラリーをコーティングした
触媒を用いるか、または、少なくともハニカム担体にゼ
オライト粉末を主成分としたスラリーをコーティングし
た炭化水素吸着触媒とハニカム担体に活性アルミナを主
成分とした無機酸化物に貴金属を担持した粉末を主成分
としたスラリーをコーティングした三元触媒とを配置し
た。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the problems of the conventional exhaust emission control device,
In an exhaust gas purification device for purifying hydrocarbons in exhaust gas containing hydrocarbons discharged from an internal combustion engine, a hydrocarbon that adsorbs at least hydrocarbons and desorbs the adsorbed hydrocarbons when the desorption temperature is reached. Place an adsorption catalyst, measure the exhaust gas temperature at the inlet of the hydrocarbon adsorption catalyst, and introduce secondary air for a certain period of time when it reaches a certain temperature or above, or set the air-fuel ratio control of the engine to the lean side. By controlling the exhaust gas passing through the catalyst to oxygen excess conditions, after coating the honeycomb carrier as a hydrocarbon adsorption catalyst with a slurry containing zeolite powder as a main component, an inorganic substance containing alumina as a main component is added. Use a catalyst that is coated with a slurry containing a precious metal as the main component, or at least use zeolite powder as the main carrier. It was placed a three-way catalyst coated with slurry mainly composed of powder carrying a noble metal on the minute and slurry the inorganic oxide activated alumina as a main component to the coated hydrocarbon adsorbing catalyst and the honeycomb carrier.

【0006】[0006]

【発明の実施の形態】以下、本発明による排気浄化装置
の実施の形態を図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an exhaust emission control device according to the present invention will be described below in detail with reference to the drawings.

【0007】(実施の形態1)図1は本発明の実施の形
態1の排気浄化装置の構成図である。図1に示すよう
に、エンジン14の排気系に炭化水素吸着触媒16を配
置し、その炭化水素吸着触媒16の入口の排気温度、エ
ンジンの水温を測定し、コントロールユニット10に
て、2次空気制御、エンジンの空燃比のリーン制御12
を行なう。
(Embodiment 1) FIG. 1 is a configuration diagram of an exhaust emission control device according to Embodiment 1 of the present invention. As shown in FIG. 1, a hydrocarbon adsorbing catalyst 16 is arranged in the exhaust system of the engine 14, the exhaust temperature at the inlet of the hydrocarbon adsorbing catalyst 16 and the water temperature of the engine are measured, and the control unit 10 controls the secondary air. Control, lean control of engine air-fuel ratio 12
Perform

【0008】この炭化水素吸着触媒16の調製方法を以
下に示す。
A method for preparing the hydrocarbon adsorption catalyst 16 will be described below.

【0009】H型USY(SiO2 /Al2 3 =5
0)ゼオライト1000g、シリカゾル(固形分20
%)1000g、水1000gをボールミルポットに投
入し、6.5時間粉砕してスラリーを得た。得られたス
ラリーをモノリスハニカム担体基材(1.3L 400
セル)に塗布し乾燥後、400℃で1時間、空気雰囲気
中で仮焼成した。この時の塗布量は、焼成後に約60g
/Lになるようにし、同様なコーティング作業を繰り返
し合計したコート量が150g/Lになるようにした
後、650℃で4時間焼成を行ないゼオライト層を調製
する。さらに、Pdを4wt%担持した活性アルミナ粉
末1410g、活性アルミナ590g、2%硝酸溶液2
000gを磁性ポットに仕込み、振動ミル装置で混合粉
砕し、ウオッシュコートスラリーを製造した。このスラ
リーを上記のゼオライト層の上に塗布し、乾燥後、40
0℃で1時間、空気雰囲気中で焼成した。このコーティ
ング作業を塗布量が、焼成後に約100g/Lになるま
で繰り返し触媒Alを得た。
H-type USY (SiO 2 / Al 2 O 3 = 5
0) 1000 g of zeolite, silica sol (solid content 20
%) 1000 g and water 1000 g were put into a ball mill pot and pulverized for 6.5 hours to obtain a slurry. The obtained slurry was used as a monolith honeycomb carrier substrate (1.3 L 400
After being applied to a cell and dried, it was calcined at 400 ° C. for 1 hour in an air atmosphere. The coating amount at this time is about 60 g after firing.
/ L, and the same coating operation is repeated until the total coating amount becomes 150 g / L, followed by firing at 650 ° C. for 4 hours to prepare a zeolite layer. Further, 1410 g of activated alumina powder carrying 4 wt% of Pd, 590 g of activated alumina, and 2% nitric acid solution 2
000 g was charged into a magnetic pot and mixed and pulverized with a vibration mill device to produce a wash coat slurry. After coating this slurry on the above zeolite layer and drying,
Firing was performed in an air atmosphere at 0 ° C. for 1 hour. This coating operation was repeated until a coating amount of about 100 g / L was obtained after firing to obtain a catalyst Al.

【0010】図2に、本発明における2次空気導入、空
燃比のリーン制御を行なう際の、制御フローを示してあ
る(本フローは、エンジン始動時毎に実行される。)。
図2においてS101ではエンジンからのスタータ信号
(STF)を読み込み、エンジンの始動の判定を行な
う。S102ではエンジンの水温(WTES)から冷間
始動の判定を行ない冷間始動であれば、炭化水素吸着触
媒の入口の排気温度(CTES)を読み込み、それ以外
は読み込まない。S103では炭化水素吸着触媒におけ
る温度が吸着した炭化水素を脱離する温度(CTCL)
に達しているかを判断し、達している場合は、2次空気
の導入あるいは空燃比のリーン制御を行ない、それ以外
は行なわない。S104では冷間始動開始時から炭化水
素吸着触媒が炭化水素を吸着する温度以上までに温度が
上昇するまでの時間から炭化水素吸着触媒に吸着した炭
化水素吸着量(HCCA(T))を推定し、単位時間当
たりの2次空気の導入量あるいは空燃比のリーンシフト
量より決まる係数(AATK)で割り、一定の定数(炭
化水素吸着触媒の炭化水素吸着容量が0の場合の時間を
制御する値で0以上)を加えて、2次空気を導入する時
間あるいは空燃比をリーンに制御する時間(SAST)
を求める。炭化水素吸着触媒の炭化吸着容量が多いほど
2次空気を導入する時間あるいは空燃比をリーンに制御
する時間を長くし、炭化水素吸着触媒から脱離してくる
炭化水素を確実に浄化し、エンジン始動直後の、炭化水
素の浄化を行なう。また、炭化水素吸着触媒での吸着容
量HCCA(T)の値は、温度に対するマップとして記
憶しておき用いることができ、このような方法により温
度に対する影響を入れた制御を行なうことにより、どの
ような条件下でも脱離してくる炭化水素の除去を充分に
行なうことができる。
FIG. 2 shows a control flow when performing secondary air introduction and lean control of the air-fuel ratio in the present invention (this flow is executed every time the engine is started).
In FIG. 2, in step S101, a starter signal (STF) from the engine is read to determine whether to start the engine. In S102, a cold start determination is performed based on the water temperature (WTES) of the engine, and if it is a cold start, the exhaust gas temperature (CTES) at the inlet of the hydrocarbon adsorption catalyst is read, and the rest is not read. In S103, the temperature at which the hydrocarbon adsorption catalyst desorbs the adsorbed hydrocarbon (CTCL)
Is reached, and if so, the secondary air is introduced or the lean control of the air-fuel ratio is performed, and the other operations are not performed. In S104, the hydrocarbon adsorption amount (HCCA (T)) adsorbed on the hydrocarbon adsorption catalyst is estimated from the time from the start of cold start until the temperature rises above the temperature at which the hydrocarbon adsorption catalyst adsorbs hydrocarbons. , A constant (a value that controls the time when the hydrocarbon adsorption capacity of the hydrocarbon adsorption catalyst is 0) divided by a coefficient (AATK) determined by the amount of secondary air introduced per unit time or the lean shift amount of the air-fuel ratio Time of introducing secondary air or controlling the air-fuel ratio to lean (SAST)
Ask for. The larger the carbon adsorption capacity of the hydrocarbon adsorption catalyst, the longer the time to introduce the secondary air or the time to control the air-fuel ratio lean, so that the hydrocarbons desorbed from the hydrocarbon adsorption catalyst can be reliably purified and the engine started. Immediately after that, the hydrocarbon is purified. Further, the value of the adsorption capacity HCCA (T) of the hydrocarbon adsorption catalyst can be stored and used as a map with respect to the temperature, and by using such a method, the control can be performed by influencing the temperature. It is possible to sufficiently remove the desorbed hydrocarbons even under various conditions.

【0011】次に作用を説明する。Next, the operation will be described.

【0012】本発明の排気浄化用装置においては、内燃
機関から排出される炭化水素を含有する排気ガス中の炭
化水素を浄化する排気浄化装置において、少なくとも炭
化水素を吸着し、脱離温度に達すると吸着されていた炭
化水素を脱離させる炭化水素吸着触媒を配置し、その炭
化水素吸着触媒の入口の排気温度を測定し、ある一定の
温度以上になったときに一定時間、2次空気を導入する
か、エンジンの空燃比制御をリーン側に制御することに
より、触媒を通過する排気ガスを酸素過剰条件に制御す
ることとし、炭化水素吸着触媒としてハニカム担体にゼ
オライト粉末を主成分としたスラリーをコーティングし
た後、アルミナを主成分とする無機物に貴金属を担持し
たものを主成分とするスラリーをコーティングした触媒
を用いるか、または、少なくともハニカム担体にゼオラ
イト粉末を主成分としたスラリーをコーティングした炭
化水素吸着触媒とハニカム担体に活性アルミナを主成分
とした無機酸化物に貴金属を担持した粉末を主成分とし
たスラリーをコーティングした三元触媒とを配置したこ
とを特徴とする排気浄化装置としている。
In the exhaust gas purifying apparatus of the present invention, in the exhaust gas purifying apparatus for purifying the hydrocarbons in the exhaust gas containing the hydrocarbons discharged from the internal combustion engine, at least the hydrocarbons are adsorbed and the desorption temperature is reached. Then, a hydrocarbon adsorption catalyst that desorbs the adsorbed hydrocarbons is placed, the exhaust gas temperature at the inlet of the hydrocarbon adsorption catalyst is measured, and when the temperature exceeds a certain temperature, the secondary air is discharged for a certain period of time. By introducing or by controlling the air-fuel ratio of the engine to the lean side, the exhaust gas passing through the catalyst is controlled to the oxygen excess condition, and the slurry containing zeolite powder as the main component in the honeycomb carrier as the hydrocarbon adsorption catalyst. Or using a catalyst coated with a slurry whose main component is an inorganic substance whose main component is alumina and which carries a noble metal, or , At least a honeycomb carrier coated with a slurry containing a zeolite powder as a main component, and a honeycomb carrier coated with a slurry containing, as a main component, a powder in which a precious metal is supported on an inorganic oxide mainly containing activated alumina. The exhaust gas purification device is characterized in that a main catalyst is arranged.

【0013】ゼオライト層を用いた炭化水素吸着触媒層
では、エンジン始動直後の排気温度の低い条件で炭化水
素を吸着し排出される炭化水素を大幅に減少させる働き
があるが、排気ガスの温度が上昇してくると吸着してい
た炭化水素が脱離する特性を合わせ持っている。本実施
の形態では、この炭化水素吸着触媒層の上に排気ガスが
充分に上昇した時に排気成分を浄化する働きと吸着触媒
から脱離してくる炭化水素を浄化する働きを有している
三元触媒層を組み合わせて、冷間始動時以外の触媒の温
度が充分に上昇した条件下でも排気浄化を行なえるよう
にしている。このような触媒に対してエンジンスタート
時の冷間始動時の炭化水素吸着触媒が充分に炭化水素を
吸着する期間は、2次空気導入や空燃比のリーン制御を
行なわずに排ガス中に含まれる炭化水素濃度が濃い条件
下で充分に炭化水素を炭化水素吸着触媒に吸着させ、炭
化水素吸着触媒の吸着性能が無くなり炭化水素が脱離し
てくる温度域になったら、2次空気導入や空燃比のリー
ン制御を行ない、排気ガスの雰囲気を炭化水素濃度が薄
い、酸素過剰域にして三元触媒層で炭化水素吸着触媒か
ら脱離してくる炭化水素を効率よく浄化させることで排
出される炭化水素を大幅に低下させることができる。
The hydrocarbon adsorption catalyst layer using the zeolite layer has a function of adsorbing hydrocarbons and significantly reducing the exhausted hydrocarbons under conditions of low exhaust gas temperature immediately after the engine is started. It also has the property of desorbing the adsorbed hydrocarbons as it rises. In the present embodiment, the ternary element has a function of purifying exhaust components when exhaust gas sufficiently rises on the hydrocarbon adsorption catalyst layer and a function of purifying hydrocarbons desorbed from the adsorption catalyst. By combining the catalyst layers, the exhaust gas can be purified even under conditions in which the temperature of the catalyst has sufficiently risen except during cold start. The period in which the hydrocarbon adsorbing catalyst at the time of cold starting at the time of engine start adsorbs hydrocarbons sufficiently against such a catalyst is included in the exhaust gas without performing secondary air introduction or lean control of the air-fuel ratio. When the hydrocarbon adsorption catalyst has adsorbed hydrocarbons sufficiently under conditions of high hydrocarbon concentration and the adsorption performance of the hydrocarbon adsorption catalyst is lost and it is in a temperature range where hydrocarbons are desorbed, secondary air introduction or air-fuel ratio The hydrocarbons that are exhausted by performing lean control of the exhaust gas and making the atmosphere of the exhaust gas have a low hydrocarbon concentration and making the oxygen excess region to efficiently purify the hydrocarbons desorbed from the hydrocarbon adsorption catalyst in the three-way catalyst layer. Can be significantly reduced.

【0014】(実施の形態2)図3は実施の形態2の排
気浄化装置の構成を示している。図3に示すように実施
の形態2では、エンジンの排気系の前段に炭化水素吸着
触媒16を配置し、その直後に三元触媒18を配置して
ある。それ以外の構成要素は図1に示した実施の形態1
と同じである。
(Second Embodiment) FIG. 3 shows the structure of an exhaust gas purification apparatus according to a second embodiment. As shown in FIG. 3, in the second embodiment, the hydrocarbon adsorbing catalyst 16 is arranged in the preceding stage of the exhaust system of the engine, and the three-way catalyst 18 is arranged immediately after that. The other components are the same as those of the first embodiment shown in FIG.
Is the same as

【0015】この炭化水素吸着触媒16の調製は、US
Y(SiO2 /Al2 3 =50)ゼオライト100
部、シリカゾル(固形分20%)65部、水65部をボ
ールミルポットに投入し、6.5時間粉砕してスラリー
を得た。得られたスラリーをモノリスハニカム担体基材
(1.3L 400セル)に塗布し乾燥後、400℃で
1時間、空気雰囲気中で仮焼成した。この時の塗布量
は、焼成後に約60g/Lになるようにし、同様なコー
ティング作業を繰り返し合計したコート量が150g/
Lになるようにした後、650℃で4時間焼成して行な
う。
The preparation of this hydrocarbon adsorption catalyst 16 is described in US
Y (SiO 2 / Al 2 O 3 = 50) zeolite 100
Parts, silica sol (solid content 20%) 65 parts, and water 65 parts were put into a ball mill pot and pulverized for 6.5 hours to obtain a slurry. The obtained slurry was applied to a monolith honeycomb carrier substrate (1.3 L 400 cells), dried, and then calcined at 400 ° C. for 1 hour in an air atmosphere. The coating amount at this time was set to about 60 g / L after firing, and the same coating operation was repeated to give a total coating amount of 150 g / L.
After adjusting to L, baking is performed at 650 ° C. for 4 hours.

【0016】後方に配置する三元触媒18としては、P
t、Pd、Rhのうち少なくとも一種以上を含む一般的
な三元触媒を用いることができる。
As the three-way catalyst 18 arranged at the rear, P
A general three-way catalyst containing at least one of t, Pd, and Rh can be used.

【0017】本実施の形態における2次空気の導入、空
燃比のリーン制御を行なう際の、制御フローは実施の形
態1と同様のフローを用いることができる。
The same control flow as that of the first embodiment can be used when the secondary air is introduced and the lean control of the air-fuel ratio is performed in the present embodiment.

【0018】(実施の形態3)図4は実施の形態3の排
気浄化装置の構成を示している。図4に示すようにエン
ジンの排気系の前段に三元触媒18を配置し、後段に三
元触媒機能を付加した炭化水素吸着触媒16を配置して
ある。
(Embodiment 3) FIG. 4 shows the structure of an exhaust emission control device according to Embodiment 3. As shown in FIG. 4, the three-way catalyst 18 is arranged in the front stage of the exhaust system of the engine, and the hydrocarbon adsorbing catalyst 16 having a three-way catalyst function is arranged in the rear stage.

【0019】前段に配置する三元触媒18としては、P
t、Pd、Rhのうち少なくとも一種以上を含む一般的
な三元触媒を用いることができる。
As the three-way catalyst 18 arranged in the preceding stage, P
A general three-way catalyst containing at least one of t, Pd, and Rh can be used.

【0020】後段の炭化水素吸着触媒16は、実施の形
態1で用いた触媒A1を用いる。
As the hydrocarbon adsorption catalyst 16 in the latter stage, the catalyst A1 used in the first embodiment is used.

【0021】本実施の形態における2次空気の導入、空
燃比のリーン制御を行なう際の、制御フローも実施の形
態1と同様のフローを用いることができる。
The same control flow as that of the first embodiment can be used when the secondary air is introduced and the lean control of the air-fuel ratio is performed in the present embodiment.

【0022】(実施の形態4)実施の形態4は炭化水素
吸着触媒16に用いるゼオライト種をベータゼオライト
とZSM5ゼオライトの混合物とした以外は実施の形態
3と同様な触媒排気装置とした。
(Embodiment 4) Embodiment 4 has the same catalyst exhaust system as Embodiment 3 except that the zeolite species used for the hydrocarbon adsorption catalyst 16 is a mixture of beta zeolite and ZSM5 zeolite.

【0023】前段に配置する三元触媒18としては、P
t、Pd、Rhのうち少なくとも一種以上を含む一般的
な三元触媒を用いることができる。
As the three-way catalyst 18 arranged in the preceding stage, P
A general three-way catalyst containing at least one of t, Pd, and Rh can be used.

【0024】後段の炭化水素吸着触媒16は、H型βゼ
オライト(SiO2 /Al2 3 =100)500g、
H型ZSM5ゼオライト(SiO2 /Al2 3 =70
0)500g、シリカゾル(固形分20%)1000
g、水1000gをボールミルポットに投入し粉砕して
得られたスラリーをコーディエライト製モノリス担体
(1.3L 400セル)に塗布し乾燥後、400℃で
1時間、空気雰囲気中で仮焼成した。同様なコーティン
グ作業を繰り返し合計した塗布量が、焼成後に約150
g/Lになるようにした後、650℃で4時間焼成を行
ないゼオライト層を調製する。さらに、Pdを4wt%
担持した活性アルミナ粉末1410g、活性アルミナ5
90g、2%硝酸溶液2000gを磁性ポットに仕込
み、振動ミル装置で混合粉砕し、ウオッシュコートスラ
リーを製造した。このスラリーを上記のゼオライト層の
上に塗布し、乾燥後、400℃で1時間、空気雰囲気中
で焼成した。このコーティング作業を塗布量が、焼成後
に約100g/Lになるまで繰り返し触媒A2を得た。
The hydrocarbon adsorption catalyst 16 in the latter stage is 500 g of H-type β zeolite (SiO 2 / Al 2 O 3 = 100),
H-type ZSM5 zeolite (SiO 2 / Al 2 O 3 = 70
0) 500 g, silica sol (solid content 20%) 1000
g and 1000 g of water were put into a ball mill pot and pulverized to obtain a slurry, which was applied to a cordierite monolith carrier (1.3 L 400 cells), dried, and then calcined at 400 ° C. for 1 hour in an air atmosphere. . Repeated similar coating operation, the total coating amount is about 150 after firing.
After adjusting to g / L, calcination is performed at 650 ° C. for 4 hours to prepare a zeolite layer. Furthermore, Pd is 4 wt%
1410 g of activated alumina powder carried, 5 activated alumina
90 g of a 2% nitric acid solution (2000 g) was charged into a magnetic pot and mixed and pulverized with a vibration mill device to produce a washcoat slurry. This slurry was applied on the above zeolite layer, dried, and fired at 400 ° C. for 1 hour in an air atmosphere. This coating operation was repeated until the coating amount became about 100 g / L after firing, to obtain a catalyst A2.

【0025】この実施の形態における2次空気の導入、
空燃比のリーン制御を行なう際の、制御フローも実施の
形態1と同様のフローを用いることができる。
Introduction of secondary air in this embodiment,
As the control flow when performing lean control of the air-fuel ratio, the same flow as in the first embodiment can be used.

【0026】なお、各実施の形態に用いるゼオライトと
しては、USY、ZSM−5、ベータゼオライト以外に
モルデナイト等のSi/2A1比の高いゼオライトや、
H型ゼオライト以外にPd、Ag、Cu、Co等の金属
を担持したゼオライトを用いることができる。
As the zeolite used in each embodiment, zeolite having a high Si / 2A1 ratio such as mordenite, in addition to USY, ZSM-5 and beta zeolite,
In addition to H-type zeolite, zeolite supporting metals such as Pd, Ag, Cu and Co can be used.

【0027】(比較例1)実施の形態1と同様な触媒排
気装置において、2次空気導入、空燃比のリーン制御を
行なわなかった場合を比較例1とする。
(Comparative Example 1) Comparative Example 1 is the same as the first embodiment except that the secondary air introduction and lean control of the air-fuel ratio are not performed.

【0028】(比較例2)実施の形態1と同様な触媒排
気装置において、エンジンの冷間始動時直後より2次空
気導入、空燃比のリーン制御を行なった場合を比較例2
とする。
(Comparative Example 2) A comparative example 2 in which the secondary air introduction and the lean control of the air-fuel ratio are carried out immediately after the cold start of the engine in the same catalyst exhaust system as in the first embodiment.
And

【0029】各実施の形態、比較例について下記評価条
件でHC浄化特性評価(FTP75A−bag)を日産
自動車(株)製車両(排気量3L)を用いて行なった。
その結果を表1に示す。
For each of the embodiments and comparative examples, HC purification characteristic evaluation (FTP75A-bag) was carried out using a vehicle (displacement 3L) manufactured by Nissan Motor Co., Ltd. under the following evaluation conditions.
Table 1 shows the results.

【0030】性能評価条件 評価条件としては、エンジン始動時に排出されるHC浄
化能を評価するためA−bag 0〜125秒間のHC
排出量の低減率を測定した。
Performance evaluation conditions As the evaluation conditions, in order to evaluate the purification performance of HC discharged at the time of engine start, HC of A-bag for 0 to 125 seconds is evaluated.
The emission reduction rate was measured.

【0031】なお、エンジン始動時(0〜125秒)の
ガス組成は、芳香族44.4%、パラフィン33.3
%、オレフィン22.3%である。
When the engine was started (0 to 125 seconds), the gas composition was 44.4% aromatic and 33.3 paraffin.
% And olefin 22.3%.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上詳細に説明してきたように、本発明
によれば、その構成を内燃機関から排出される炭化水素
を含有する排気ガス中の炭化水素を浄化する排気浄化装
置において、少なくとも炭化水素を吸着し、脱離温度に
達すると吸着されていた炭化水素を脱離させる炭化水素
吸着触媒を配置し、その炭化水素吸着触媒の入口の排気
温度を測定し、ある一定の温度以上になったときに一定
時間2次空気を導入するか、エンジンの空燃比制御をリ
ーン側に制御することにより触媒を通過する排気ガスを
酸素過剰条件に制御することとし、さらに炭化水素吸着
触媒としてはハニカム担体にゼオライト粉末を主成分と
したスラリーをコーティングした後、アルミナを主成分
とする無機物に貴金属を担持したものを主成分とするス
ラリーをコーティングした触媒を用いるか、または、少
なくともハニカム担体にゼオライト粉末を主成分とした
スラリーをコーティングした炭化水素吸着触媒と、ハニ
カム担体に活性アルミナを主成分とした無機酸化物に貴
金属を担持した粉末を主成分としたスラリーをコーティ
ングした三元触媒とを配置したことを特徴とする排気浄
化装置とすることで、エンジン始動直後の炭化水素の排
出量を大幅に低減できる。
As described in detail above, according to the present invention, at least the carbonization of an exhaust gas purifying apparatus for purifying hydrocarbons in exhaust gas containing hydrocarbons discharged from an internal combustion engine A hydrocarbon adsorbing catalyst that adsorbs hydrogen and desorbs adsorbed hydrocarbons when the desorption temperature is reached is placed, and the exhaust gas temperature at the inlet of the hydrocarbon adsorbing catalyst is measured and the temperature rises above a certain temperature. In this case, the exhaust gas passing through the catalyst is controlled to the oxygen excess condition by introducing the secondary air for a certain time or by controlling the air-fuel ratio of the engine to the lean side. After coating the carrier with a slurry containing zeolite powder as the main component, coat the slurry containing the precious metal supported on an inorganic substance containing alumina as the main component. Used catalyst, or at least a hydrocarbon adsorption catalyst in which a honeycomb carrier is coated with a slurry containing zeolite powder as a main component, and a honeycomb carrier containing a powder in which a precious metal is supported on an inorganic oxide containing active alumina as a main component. The exhaust gas purification device characterized by arranging the three-way catalyst coated with the slurry as the main component can significantly reduce the emission amount of hydrocarbons immediately after the engine is started.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の排気浄化装置の構成図
である。
FIG. 1 is a configuration diagram of an exhaust emission control device according to a first embodiment of the present invention.

【図2】本発明の実施の形態における制御フローチャー
トである。
FIG. 2 is a control flowchart in the embodiment of the present invention.

【図3】本発明の実施の形態2の排気浄化装置の構成図
である。
FIG. 3 is a configuration diagram of an exhaust emission control device according to a second embodiment of the present invention.

【図4】本発明の実施の形態3の排気浄化装置の構成図
である。
FIG. 4 is a configuration diagram of an exhaust emission control device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 コントロールユニット 12 2次空気制御、空燃比のリーン制御 14 エンジン 16 炭化水素吸着触媒 18 三元触媒 10 control unit 12 secondary air control, lean control of air-fuel ratio 14 engine 16 hydrocarbon adsorption catalyst 18 three-way catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/94 B01J 23/44 A B01J 23/42 23/46 311 23/44 29/04 A 23/46 311 29/064 A 29/04 29/18 A 29/064 F01N 3/10 A 29/18 3/24 ZABE F01N 3/10 3/28 301B 3/24 ZAB B01D 53/34 120D 3/28 301 53/36 104Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number for FI Technical location B01D 53/94 B01J 23/44 A B01J 23/42 23/46 311 23/44 29/04 A 23 / 46 311 29/064 A 29/04 29/18 A 29/064 F01N 3/10 A 29/18 3/24 ZABE F01N 3/10 3/28 301B 3/24 ZAB B01D 53/34 120D 3/28 301 53/36 104Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関から排出される炭化水素を含有
する排気ガス中の炭化水素を浄化する排気浄化装置にお
いて、 少なくとも炭化水素を吸着し、脱離温度に達すると吸着
されていた炭化水素を脱離させる炭化水素吸着触媒を配
置し、その炭化水素吸着触媒の入口の排気温度を測定
し、ある一定の温度以上になったときに一定時間、2次
空気を導入するか、エンジンの空燃比制御をリーン側に
制御することにより、触媒を通過する排気ガスを酸素過
剰条件に制御することを特徴とする排気浄化装置。
1. An exhaust gas purification apparatus for purifying hydrocarbons contained in exhaust gas containing hydrocarbons discharged from an internal combustion engine, wherein at least hydrocarbons are adsorbed and adsorbed when the desorption temperature is reached. A hydrocarbon adsorbing catalyst to be desorbed is arranged, and the exhaust gas temperature at the inlet of the hydrocarbon adsorbing catalyst is measured, and when the temperature exceeds a certain temperature, secondary air is introduced for a certain time or the air-fuel ratio of the engine is increased. An exhaust emission control device, wherein exhaust gas passing through a catalyst is controlled under an oxygen excess condition by controlling the control to a lean side.
【請求項2】 請求項1に記載の排気浄化装置におい
て、炭化水素吸着触媒としてハニカム担体にゼオライト
粉末を主成分としたスラリーをコーティングした後、ア
ルミナを主成分とする無機物に貴金属を担持したものを
主成分とするスラリーをコーティングしたことを特徴と
する排気浄化装置。
2. The exhaust emission control device according to claim 1, wherein a honeycomb carrier as a hydrocarbon adsorption catalyst is coated with a slurry containing zeolite powder as a main component, and then an inorganic substance containing alumina as a main component is loaded with a noble metal. An exhaust emission control device, characterized by being coated with a slurry containing as a main component.
【請求項3】 請求項1に記載の排気浄化装置におい
て、少なくともハニカム担体にゼオライト粉末を主成分
としたスラリーをコーティングした炭化水素吸着触媒
と、ハニカム担体に活性アルミナを主成分とした無機酸
化物に貴金属を担持した粉末を主成分としたスラリーを
コーティングした三元触媒とを配置したことを特徴とす
る排気浄化装置。
3. The exhaust gas purifying apparatus according to claim 1, wherein at least a honeycomb carrier is coated with a slurry containing zeolite powder as a main component, and a hydrocarbon adsorbing catalyst is formed on the honeycomb carrier. An exhaust emission control device, in which a three-way catalyst coated with a slurry containing a powder carrying a noble metal as a main component is disposed.
JP8036232A 1996-02-23 1996-02-23 Emission control device Pending JPH09228828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036232A JPH09228828A (en) 1996-02-23 1996-02-23 Emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036232A JPH09228828A (en) 1996-02-23 1996-02-23 Emission control device

Publications (1)

Publication Number Publication Date
JPH09228828A true JPH09228828A (en) 1997-09-02

Family

ID=12464038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036232A Pending JPH09228828A (en) 1996-02-23 1996-02-23 Emission control device

Country Status (1)

Country Link
JP (1) JPH09228828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303084B1 (en) 1998-06-17 2001-10-16 Nissan Motor Co., Ltd. Exhaust emission control device
US6779338B1 (en) * 2001-02-14 2004-08-24 Ford Global Technologies, Llc System and method for purging a hydrocarbon trap
US6932067B2 (en) 2003-05-27 2005-08-23 Nissan Motor Co., Ltd. Exhaust gas purifying system
US7988921B2 (en) 2007-07-06 2011-08-02 Denso Corporation Hexagonal-cell honeycomb catalyzer for purifying exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303084B1 (en) 1998-06-17 2001-10-16 Nissan Motor Co., Ltd. Exhaust emission control device
DE19926954C2 (en) * 1998-06-17 2001-10-31 Nissan Motor Exhaust emission control device
US7229596B2 (en) * 1998-06-17 2007-06-12 Nissan Motor Co., Ltd. Exhaust emission control device
US6779338B1 (en) * 2001-02-14 2004-08-24 Ford Global Technologies, Llc System and method for purging a hydrocarbon trap
US6932067B2 (en) 2003-05-27 2005-08-23 Nissan Motor Co., Ltd. Exhaust gas purifying system
US7246488B2 (en) 2003-05-27 2007-07-24 Nissan Motor Co., Ltd. Exhaust gas purifying system
US7988921B2 (en) 2007-07-06 2011-08-02 Denso Corporation Hexagonal-cell honeycomb catalyzer for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP3965711B2 (en) Nitrogen oxide purification catalyst and purification method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2000176298A (en) Exhaust gas purification catalyst and its production
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH07174017A (en) Exhaust emission control device
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3282344B2 (en) Exhaust gas purification device
JPH115020A (en) Exhaust gas purifying system
JP2000042368A (en) Exhaust gas purifying method
JP3842862B2 (en) Exhaust gas purification system
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JPH1147596A (en) Catalyst for purifying exhaust gas
JPH09228828A (en) Emission control device
JPH1190226A (en) Catalyst for exhaust gas purification
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JPH06142519A (en) Hydrocarbon adsorptive catalyst
JPH0999217A (en) Exhaust gas purifying system
JPH09225265A (en) Exhaust gas purifying device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH04293519A (en) Exhaust gas purification device
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3295989B2 (en) Exhaust gas purification catalyst
JP2003135970A (en) Exhaust gas cleaning catalyst
JP2004322022A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106