JPH09226575A - Three-axle steering truck for rolling stock - Google Patents

Three-axle steering truck for rolling stock

Info

Publication number
JPH09226575A
JPH09226575A JP4004396A JP4004396A JPH09226575A JP H09226575 A JPH09226575 A JP H09226575A JP 4004396 A JP4004396 A JP 4004396A JP 4004396 A JP4004396 A JP 4004396A JP H09226575 A JPH09226575 A JP H09226575A
Authority
JP
Japan
Prior art keywords
spring
axle
shaft
rail
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4004396A
Other languages
Japanese (ja)
Other versions
JP3471157B2 (en
Inventor
Toru Saima
間 亨 斎
Yoshiharu Yamashiro
城 義 治 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Transport Engineering Inc
Original Assignee
Toshiba Corp
Toshiba Transport Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Transport Engineering Inc filed Critical Toshiba Corp
Priority to JP04004396A priority Critical patent/JP3471157B2/en
Publication of JPH09226575A publication Critical patent/JPH09226575A/en
Application granted granted Critical
Publication of JP3471157B2 publication Critical patent/JP3471157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-axle steering truck for a rolling stock, capable of giving a high steering performance. SOLUTION: A three-axle steering truck 100 for a rolling stock has a front axle 11 and rear axle 13 mounted so as to be capable of yawing for a truck frame 1, and an intermediate axle 12 capable of yawing for the truck frame 1 as well as laterally movable along the breadthwise direction of a track 2. Also, when the three-axle steering truck 100 moves along the curved part of the track 2, the front axle 11 and the rear axle 13 are made to yaw and steered in such a state as keeping the axial lines S1 and S3 thereof extended to the center O of the curvature of the curved part. Furthermore, an axle spring for elastically supporting the axle boxes of the front and rear axles 11 and 13 on the truck frame 1, is formed to have a small spring constant along the lengthwise direction of the track 2, compared with a spring constant along the breadthwise direction of the track 2. In addition, the second axle spring for elastically supporting the intermediate axle 12 on the truck frame 1 is formed to have a small spring constant along the breadthwise direction of the track 2, compared with a spring constant along the lengthwise direction of the track 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両用3軸操
舵台車に関し、より詳しくは車軸を台車枠に支持る構造
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-axle steering bogie for railway vehicles, and more particularly to an improvement in a structure for supporting an axle on a bogie frame.

【0002】[0002]

【従来の技術】鉄道車両においては、走行する軌条の荷
重条件から、一本の車軸に負荷できる荷重の最大値が制
限される。これにより、ある重量の機関車を構成する場
合に何本の車軸を必要とするかが必然的に定まる。ま
た、一定の大きさの牽引力を必要とする場合は、軸重と
粘着係数との関係から必要とする車軸の本数が定まる。
2. Description of the Related Art In railway vehicles, the maximum value of the load that can be applied to one axle is limited by the load conditions of the rail running on it. This inevitably determines how many axles are needed to make a locomotive of a certain weight. When a certain amount of traction force is required, the number of axles required is determined from the relationship between axle load and adhesion coefficient.

【0003】機関車を構成する際に合計六本の車軸が必
要と判断された場合には、2軸台車を三つ組み合わせる
B−B−B配置の台車構成と、3軸台車を二つ組み合わ
せるC−C配置の台車構成とが考えられる。ところが、
従来の3軸台車は、軌条のカーブ部分を走行する際に車
軸に作用する横圧が2軸台車よりも大きいため、車輪の
フランジ磨耗が大きい。これにより、従来は、六本の車
軸を必要とする機関車には、上記B−B−B配置の台車
構成が採用されて来た。しかしながら、2軸台車を三つ
組み合わせた台車構成では、床下の空間が狭められるの
で、床下機器の配置に非常に大きな制限を受けるばかり
でなく、機関車の重量増加や重心位置の上昇を招いてし
まう。
When it is judged that a total of six axles are necessary when constructing a locomotive, a three-axle bogie configuration and a three-axle bogie configuration combining three twin-axle bogies are combined. A dolly configuration of CC arrangement is conceivable. However,
In the conventional three-axle bogie, the lateral pressure acting on the axle when traveling on the curved portion of the rail is larger than that of the two-axle bogie, so that the flange wear of the wheel is large. Due to this, conventionally, a locomotive configuration requiring the six axles has adopted the bogie configuration of the B-B-B arrangement. However, in the bogie configuration in which three two-axle bogies are combined, the space under the floor is narrowed, so that not only the placement of the underfloor equipment is greatly restricted, but also the weight of the locomotive and the position of the center of gravity are increased. I will end up.

【0004】そこで、本発明の出願人は、軌条のカーブ
部分を安定して走行することができ、かつ遠心力以上の
横圧が車軸に作用することがない3軸操舵台車を先に出
願している。(特願平7−162479号) この先願に係る3軸操舵台車においては、鉄道車両が軌
条の曲線部分を走行することによって台車枠が車体に対
して首を振ると、先頭軸と後尾軸とが操舵され、その軸
線が軌条の曲線部分の曲率中心に向かって延びるととも
に、中間軸が押動され、その軸線方向の中心が軌条の幅
方向の中心と一致するようにされている。
Therefore, the applicant of the present invention first applied for a three-axis steering trolley capable of stably traveling along a curved portion of a railroad line and having no lateral pressure exceeding centrifugal force acting on the axle. ing. (Japanese Patent Application No. 7-162479) In the three-axis steering bogie according to this prior application, when the bogie frame swings with respect to the vehicle body as the railroad vehicle travels on the curved portion of the rail, the front axle and the rear tail axle are moved. Is steered, its axis extends toward the center of curvature of the curved portion of the rail, and the intermediate shaft is pushed so that its axial center coincides with the widthwise center of the rail.

【0005】[0005]

【発明が解決しようとする課題】上述した先願に係る3
軸操舵台車においては、先頭軸および後尾軸の首振りを
可能とするため、先頭軸および後尾軸の軸箱を軌条の長
手方向には大きく変位できるように支持するが、軌条の
幅方向にはあまり変位しないように支持する必要があ
る。これに対して、中間軸の横動を可能とするために
は、中間軸の軸箱を軌条の幅方向には大きく変位できる
ように支持するが、牽引力によって中間軸がふらつかな
いように、軌条の長手方向にはあまり変位しないように
支持する必要がある。
[Problems to be Solved by the Invention]
In the axle steering cart, the front and rear tail axles are supported so that they can be largely displaced in the longitudinal direction of the rail to enable swinging of the front axle and the rear tail axle, but in the width direction of the rail. It is necessary to support it so that it is not displaced too much. On the other hand, in order to enable lateral movement of the intermediate shaft, the axle box of the intermediate shaft is supported so as to be able to be largely displaced in the width direction of the rail, but the intermediate shaft is prevented from wobbling due to traction force. It is necessary to support it so that it is not displaced much in the longitudinal direction.

【0006】しかしながら、上述した先願においては、
3軸操舵台車の各車軸を具体的にどのように支持すれば
良いかが開示されていない。
However, in the above-mentioned prior application,
It does not disclose how to specifically support each axle of the three-axis steering cart.

【0007】すなわち、本発明は、鉄道車両用の3軸操
舵台車に用いて好適な車軸支持構造を提供することによ
って、軌条のカーブ部分を走行する際に3軸操舵台車の
各車軸に作用する横圧を減少させ、6本の車軸を必要と
する機関車を二組の3軸台車で台車構成できるように
し、もって機関車の機器配置を改善するとともに機関車
の軽量化および低重心化を図ることを目的とする。
That is, the present invention provides a suitable axle support structure for use in a three-axle steering bogie for a railway vehicle, so that the present invention acts on each axle of the three-axle steering bogie when traveling on a curved portion of a rail. Lateral pressure is reduced, and a locomotive that requires 6 axles can be configured with 2 sets of 3 axle bogies, thus improving the equipment layout of the locomotive and reducing the weight and center of gravity of the locomotive. The purpose is to plan.

【0008】[0008]

【課題を解決するための手段】本発明による鉄道車両用
3軸操舵台車は、鉄道車両の台車枠に対して、首振り可
能に取り付けられた先頭軸および後尾軸と、軌条の幅方
向に横動可能に取り付けられた中間軸とを備え、前記鉄
道車両が軌条のカーブ部分を走行する際には、前記3本
の車軸の軸線が前記カーブ部分の曲率中心に向かって延
びるように前記先頭軸および前記後尾軸が首振り操舵さ
れる鉄道車両用3軸操舵台車において、前記先頭軸およ
び前記後尾軸の軸箱を前記台車枠に弾性支持する第1の
軸ばね全体の、軌条の長手方向のばね定数を軌条の幅方
向のばね定数よりも小さくするとともに、前記中間軸を
前記台車枠に弾性支持する第2の軸ばね全体の、軌条の
幅方向のばね定数を軌条の長手方向のばね定数よりも小
さくする。
A three-axle steered vehicle for a railroad vehicle according to the present invention has a front axle and a rear axle attached to a bogie frame of the railroad vehicle so as to be swingable, and laterally in the width direction of the rail. An intermediate shaft movably attached to the head shaft so that when the railway vehicle travels along a curved portion of a rail, the axes of the three axles extend toward the center of curvature of the curved portion. In a three-axle steering bogie for a railroad vehicle in which the rear tail shaft is pivotally steered, the entire first shaft spring elastically supporting the axle box of the leading shaft and the rear tail shaft in the bogie frame is provided in the longitudinal direction of the rail. The spring constant is made smaller than the spring constant in the width direction of the rail, and the spring constant in the width direction of the rail of the entire second shaft spring elastically supporting the intermediate shaft on the bogie frame is the spring constant in the longitudinal direction of the rail. Smaller than.

【0009】これにより、3軸操舵台車が軌条のカーブ
部分を走行する際には、先頭軸および後尾軸が首振り操
舵機構によってスムーズに操舵され、その軸線が前記カ
ーブ部分の曲率中心に向かって延びるとともに、中間軸
は軌条の幅方向にスムーズに変位し、その軸線方向の中
心が軌条の幅方向の中心線に一致するから、3軸操舵台
車は前記カーブ部分を滑らかに走行することができる。
As a result, when the three-axis steering trolley travels along the curved portion of the rail, the head shaft and the rear tail shaft are smoothly steered by the swing steering mechanism, and the axis of the steering shaft moves toward the center of curvature of the curved portion. As it extends, the intermediate shaft is smoothly displaced in the width direction of the rail, and its axial center coincides with the center line in the width direction of the rail, so that the triaxial steering cart can smoothly run on the curved portion. .

【0010】[0010]

【発明の実施の形態】以下、本発明による鉄道車両用3
軸操舵台車の各実施形態について、図面を参照して詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a railway vehicle according to the present invention 3
Each embodiment of the shaft steering cart will be described in detail with reference to the drawings.

【0011】第1実施形態図1に示したように、本第1
実施形態の鉄道車両用3軸操舵台車100は、鉄道車両
の図示されない車体に対して芯皿中心Bにおいて首振り
可能に軸支された台車枠1と、この台車枠1の前後方向
(軌条2の長手方向)に等しい軸距δをあけて台車枠1
に取り付けられた先頭軸11、中間軸12、後尾軸13
と、前記先頭軸2および前記後尾軸4を首振り操舵する
ための操舵機構20、および前記中間軸12を前記台車
枠1に連結する中間軸連結機構40とを備えている。
First Embodiment As shown in FIG. 1, the first embodiment
The three-axle steering bogie 100 for a railroad vehicle of the embodiment has a bogie frame 1 pivotably supported at a center plate center B with respect to a vehicle body (not shown) of the railcar, and a longitudinal direction of the bogie frame 1 (rail 2 Bogie frame 1 with an axial distance δ equal to
Head shaft 11, intermediate shaft 12, and tail shaft 13 attached to
And a steering mechanism 20 for swinging and steering the leading shaft 2 and the rear tail shaft 4, and an intermediate shaft connecting mechanism 40 for connecting the intermediate shaft 12 to the bogie frame 1.

【0012】前記先頭軸11および前記後尾軸13は、
それぞれの軸線方向の中心A、Cが、台車枠1の幅方向
(軌条2の幅方向)の中心線SDと一致するように配置
されるともに、台車枠1に対して首振り可能とされてい
る。これに対して前記中間軸12は、その軸線S2が台
車枠1の長手方向の中心線SCと一致するように配置さ
れ、台車枠1の幅方向に横動可能、かつ首振り可能に台
車枠1とされている。また、先頭軸11、中間軸12、
後尾軸13の両端部にはそれぞれ軸箱14、15、1
6、17、18、19が設けられ、これらの軸箱を介し
て各車軸11,12,13と台車枠1との間で、前後方
向および上下方向に力を伝達するようになっている。
The head shaft 11 and the tail shaft 13 are
The respective centers A and C in the axial direction are arranged so as to match the center line SD in the width direction of the bogie frame 1 (width direction of the rail 2), and the bobbin frame 1 can be swung. There is. On the other hand, the intermediate shaft 12 is arranged so that its axis S2 coincides with the longitudinal centerline SC of the bogie frame 1, and the bogie frame can be laterally moved in the width direction of the bogie frame 1 and can be swung. It is supposed to be 1. In addition, the head axis 11, the intermediate axis 12,
At both ends of the tail shaft 13, axle boxes 14, 15, 1 are respectively provided.
6, 17, 18, and 19 are provided, and force is transmitted between the axles 11, 12, and 13 and the bogie frame 1 via these axle boxes in the front-rear direction and the up-down direction.

【0013】前記操舵機構20は、図1に示したように
先頭軸11および中間軸12との間に配設されるととも
に、台車枠1に軸支されて軸支点21、22の回りに揺
動可能とされた一対の先頭軸操舵レバー23、24と、
中間軸12と後尾軸13との間に配設され、台車枠1に
軸支されて軸支点35、36の回りに揺動可能とされた
一対の後尾軸操舵レバー27、28とを備えている。そ
して、前記先頭軸操舵レバー23、24は、それぞれ操
舵リンク31、32により先頭軸11の軸箱14、15
と連結されている。同様に、前記後尾軸操舵レバー2
7、28は、それぞれ操舵リンク33、34により後尾
軸13の軸箱18、19と連結されている。
As shown in FIG. 1, the steering mechanism 20 is disposed between the head shaft 11 and the intermediate shaft 12 and is pivotally supported by the bogie frame 1 to swing around the pivot points 21 and 22. A pair of front shaft steering levers 23, 24 that are movable,
A pair of rear tail shaft steering levers 27, 28 disposed between the intermediate shaft 12 and the rear tail shaft 13 and pivotally supported by the bogie frame 1 and swingable around the shaft supporting points 35, 36 are provided. There is. The head shaft steering levers 23 and 24 are connected to the shaft boxes 14 and 15 of the head shaft 11 by the steering links 31 and 32, respectively.
Is linked to Similarly, the rear tail axle steering lever 2
Reference numerals 7 and 28 are connected to axle boxes 18 and 19 of the rear tail shaft 13 by steering links 33 and 34, respectively.

【0014】また、前記先頭軸操舵レバー23、24
間、および前記後尾軸操舵レバー27、28間は、それ
ぞれ台車枠2の幅方向に延びる左右連結リンク35、3
6により連結されている。そして、図示上側の先頭軸操
舵レバー23と後尾軸操舵レバー27間、および図示下
側の先頭軸操舵レバー24と後尾軸操舵レバー28間
は、それぞれ台車枠1の前後方向に延びる連動リンク3
7、38により連結されている。さらに、図示上側の後
尾軸操舵レバー27と車体側座3とは、操舵連結リンク
39により連結されている。
Further, the leading shaft steering levers 23, 24
Between the rear tail axle steering levers 27 and 28, and the left and right connecting links 35 and 3 extending in the width direction of the bogie frame 2 respectively.
6 are connected. An interlocking link 3 extending in the front-rear direction of the bogie frame 1 is provided between the leading shaft steering lever 23 and the rear tail shaft steering lever 27 on the upper side in the drawing, and between the leading shaft steering lever 24 and the rear tail shaft steering lever 28 on the lower side in the drawing.
7, 38 are connected. Further, the rear tail wheel steering lever 27 on the upper side of the drawing and the vehicle body side seat 3 are connected by a steering connection link 39.

【0015】一方、前記中間軸連結機構40は、図1に
示したように、中間軸12と後尾軸13との間の部分に
配設されるとともに、台車枠1に軸支されて軸支点4
1、42の回りにそれぞれ揺動可能とされた一対の中間
軸操舵レバー43、44を備えている。そして、前記中
間軸操舵レバー43、44は、それぞれ操舵リンク4
5、46により中間軸12の軸箱16、17と連結され
ている。また、一対の中間軸操舵レバー43,44間
は、台車枠1の幅方向に延びる左右連結リンク47によ
り連結されている。
On the other hand, as shown in FIG. 1, the intermediate shaft connecting mechanism 40 is arranged in a portion between the intermediate shaft 12 and the rear tail shaft 13 and is pivotally supported by the bogie frame 1 to be pivotally supported. Four
It is provided with a pair of intermediate shaft steering levers 43 and 44 which are swingable around the shafts 1 and 42, respectively. The intermediate shaft steering levers 43 and 44 are respectively connected to the steering link 4
5, 46 are connected to the axle boxes 16, 17 of the intermediate shaft 12. Further, the pair of intermediate shaft steering levers 43, 44 are connected by a left and right connecting link 47 extending in the width direction of the bogie frame 1.

【0016】次に、上述のように構成された本第1実施
形態の3軸操舵台車100の動作について説明すると、
先頭軸11は、先頭軸操舵レバー23,24と左右連結
リンク25および操舵リンク31、32の作用により、
その軸箱14,15の前後方向(軌条の長手方向)の変
位の和は、常にゼロとなるように台車枠1に連結されて
いる。これは、中間軸12および後尾軸13についても
全く同様である。
Next, the operation of the three-axis steering carriage 100 of the first embodiment having the above-mentioned structure will be described.
The front shaft 11 is operated by the front shaft steering levers 23 and 24, the left and right connecting links 25, and the steering links 31 and 32.
The axle boxes 14 and 15 are connected to the bogie frame 1 so that the sum of the displacements in the front-rear direction (longitudinal direction of the rail) is always zero. This is exactly the same for the intermediate shaft 12 and the tail shaft 13.

【0017】また、本第1実施形態の3軸操舵台車10
0は、図1に示したように軌条2が上向きに凸となるカ
ーブ部分に差し掛かると、台車枠1は、図示されない鉄
道車両の車体に対して芯皿中心Bを中心として、図示反
時計廻りに回動する。これにより、台車枠1と車体側座
3とが相対変位し、後尾軸操舵レバー27が操舵連結リ
ンク39により押動されて軸支点25の廻りに時計方向
に揺動するので、後尾軸13は、後尾軸操舵レバー2
7,28と左右連結リンク36および操舵リンク33,
34の作用により、首振り操舵されて図示時計方向に揺
動する。すると、先頭軸11は、連動リンク37、3
8、先頭軸操舵レバー23,24と左右連結リンク25
および操舵リンク31、32の作用により首振り操舵さ
れ、図示反時計方向に揺動する。
Further, the three-axis steering cart 10 of the first embodiment.
As shown in FIG. 1, when the railroad car 2 approaches a curved portion in which the rail 2 is convex upward, the bogie frame 1 moves counterclockwise with respect to the body of the railroad car (not shown) with the center plate center B as the center. It turns around. As a result, the bogie frame 1 and the vehicle body side seat 3 are displaced relative to each other, and the rear tail axle steering lever 27 is pushed by the steering coupling link 39 and swings clockwise around the pivot fulcrum 25. , Rear tail axle steering lever 2
7, 28, left and right connecting link 36, and steering link 33,
The action of 34 causes the steering wheel to swing and swing in the clockwise direction in the drawing. Then, the head axis 11 is connected to the interlocking links 37, 3
8. Leading shaft steering levers 23, 24 and left and right connecting links 25
Also, the steering links 31, 32 are pivotally steered by the action, and swing in the counterclockwise direction in the drawing.

【0018】この時、 f=(e・b・δ)/(d・L) ただし、 f;各操舵レバーの軸支点から各操舵リンク取り付け点
までの寸法 e;各操舵レバーの軸支点から操舵連結リンク取り付け
点までの寸法 2b;各輪軸の左右の軸箱間の寸法 2δ;先頭軸と後尾軸との間の軸距 d;車体中心から車体即座までの寸法 2L;車体に取り付けられた2つの台車の芯皿中心間寸
法 なる関係が満たされれば、先頭軸11および後尾軸13
の軸線が、軌条2のカーブ部分の曲率中心Oを通ること
は、前述した先願(特願平7−162479号)に記載
したとおりである。
At this time, f = (e ・ b ・ δ) / (d ・ L), where f: dimension from the shaft fulcrum of each steering lever to each steering link attachment point e; steering from the shaft fulcrum of each steering lever Dimension to the attachment point of the connecting link 2b; Dimension between the left and right axle boxes of each wheel axle 2δ; Axis distance between the leading axle and the tail axle d; Dimension from the vehicle center to the vehicle body immediately 2L; 2 attached to the vehicle body If the relationship between the center dimensions of the cores of two bogies is satisfied, the front shaft 11 and the rear shaft 13
The axis line of (2) passes through the center of curvature O of the curved portion of the rail 2 as described in the above-mentioned prior application (Japanese Patent Application No. 7-162479).

【0019】一方、中間軸12は、前述した中間軸連結
機構40の作用によって、台車枠1に対して自由に首を
振ることはできるが、強制的には変位する方向が拘束さ
れていないので、軌条2の幅方向に変位した状態で止ま
る。
On the other hand, although the intermediate shaft 12 can freely swing its head with respect to the bogie frame 1 by the action of the intermediate shaft connecting mechanism 40 described above, the displacement direction is not constrained by force. , It stops in the state of being displaced in the width direction of the rail 2.

【0020】次に、先頭軸11の軸箱14に求められる
軌条の長手方向(前後方向)の変位量を求める。図1に
おいて、軌条2のカーブ部分の曲率半径Rを100メー
トル、車体中心と台車の芯皿中心間の距離Lを1900
mmとすると、車軸のスイベル角は1900mm/10
0メートル=0.019となる。また、先頭軸11の左
右の軸箱14,15間の間隔bを835×2=1670
ミリとすれば、軸箱14,15の前後方向の変位量は、
0.019×835ミリ=15.87ミリとなる。
Next, the amount of displacement in the longitudinal direction (front-back direction) of the rail, which is required for the shaft box 14 of the leading shaft 11, is determined. In FIG. 1, the radius of curvature R of the curved portion of the rail 2 is 100 meters, and the distance L between the center of the vehicle body and the center of the trolley of the bogie is 1900.
mm, the swivel angle of the axle is 1900 mm / 10
0 meters = 0.019. Further, the distance b between the left and right axle boxes 14 and 15 of the head shaft 11 is set to 835 × 2 = 1670.
If it is millimeter, the displacement amount of the axle boxes 14 and 15 in the front-back direction is
0.019 × 835 mm = 15.87 mm.

【0021】次に、中間軸12が必要とする横動量a
を、前述した先願(特願平7−162479号)に記載
した次式によって求める。 a=δ2 /(2R) ここで、a:中間軸の横動量 2δ;先頭軸と後尾軸との間の軸距 R;軌条のカーブ部分の曲率半径 によって求めると、a=18.05ミリとなる。つま
り、中間軸12を18.05ミリだけ横動できるように
すれば、中間軸12の軸線方向の中心を、軌条2の幅方
向の中心線と一致させることができ、先頭軸11および
後尾軸13と同様に、軌条のカーブ部分に対して対向さ
せることができる。
Next, the lateral movement amount a required by the intermediate shaft 12
Is calculated by the following formula described in the above-mentioned prior application (Japanese Patent Application No. 7-162479). a = δ 2 / (2R) where, a is the amount of lateral movement of the intermediate shaft 2δ; the axial distance between the leading shaft and the rear tail shaft R; Calculated by the radius of curvature of the curve part of the track, a = 18.05 mm Becomes In other words, if the intermediate shaft 12 is allowed to move laterally by 18.05 mm, the center of the intermediate shaft 12 in the axial direction can be made to coincide with the center line of the rail 2 in the width direction, and the front shaft 11 and the rear tail shaft can be aligned. Similar to 13, it can be opposed to the curved portion of the rail.

【0022】すなわち、本第1実施形態の3軸操舵台車
100においては、先頭軸11の軸箱14,15および
後尾軸13の軸箱18,19に求められる前後方向(軌
条の長手方向)の変位量と、中間軸12の軸箱16,1
7に求められる左右方向(軌条の幅方向)変位量とはほ
ぼ同じで、かつその方向が90度異なっている。したが
って、軌条の長手方向と幅方向とでばね定数が異なる異
方性の軸ばねを用いて、ばね定数の低い方向が軌条の長
手方向を向くようにして先頭軸11および後尾軸13の
軸箱を支持し、かつばね定数が低い方向が軌条の幅方向
を向くようにして中間軸12の軸箱を支持することとす
れば、一つの軸ばねによって3本の車軸を支持できるこ
ととなり、部品の共用上極めて具合が良い。そこで、本
第1実施形態の3軸操舵台車100においては、図2に
示したような軸ばね50を用いて3本の車軸を台車枠1
に弾性支持している。
That is, in the three-axle steering bogie 100 of the first embodiment, the front-rear direction (the longitudinal direction of the rail) required for the axle boxes 14 and 15 of the front axle 11 and the axle boxes 18 and 19 of the rear tail axle 13 is determined. Displacement amount and shaft box 16, 1 of the intermediate shaft 12
7 is almost the same as the displacement amount in the left-right direction (width direction of the rail), and the direction is different by 90 degrees. Therefore, by using an anisotropic axial spring having different spring constants in the longitudinal direction and the width direction of the rail, the shaft box of the front shaft 11 and the rear tail shaft 13 is arranged so that the direction with the lower spring constant faces the longitudinal direction of the rail. If the shaft box of the intermediate shaft 12 is supported so that the direction in which the spring constant is low faces the width direction of the rail, three shafts can be supported by one shaft spring. It is extremely good for common use. Therefore, in the three-axle steering bogie 100 according to the first embodiment, three axles are mounted on the bogie frame 1 by using the axial spring 50 as shown in FIG.
It has elastic support.

【0023】次に、前記軸ばね50の構造について、図
2を参照して説明する。図2(a)に示したように、先
頭軸11の軸箱14に取り付けられた前後一対の軸ばね
50は、断面形状が正方形とされた角柱状のゴムばね部
分51と、このゴムばね部分51を上下に挟持する金属
製の台座52,53とを有している。前記ゴムばね部分
51は、展開形状が矩形状のゴム板54を山形に折り曲
げた、すなわち断面形状が「く」字形となるように折り
曲げたものを、多数枚、互いに密着させた状態で積層し
た構成とされている。これにより、このゴムばね部分5
1は、前記ゴム板54の山形に折り曲げた側縁54aが
露出する側面に対して垂直な方向(矢印D方向)のばね
定数が、前記ゴム板54の直線状の側縁54bが露出す
る側面に対して垂直な方向のばね定数よりも低くなる。
Next, the structure of the shaft spring 50 will be described with reference to FIG. As shown in FIG. 2A, the pair of front and rear shaft springs 50 attached to the shaft box 14 of the leading shaft 11 include a rectangular columnar rubber spring portion 51 having a square cross section, and the rubber spring portion. It has metal bases 52 and 53 for sandwiching 51 vertically. The rubber spring portion 51 is formed by bending a rubber plate 54 having a rectangular expanded shape into a chevron shape, that is, bending it so that its cross-sectional shape is a V-shape, and laminating a plurality of them in close contact with each other. It is configured. As a result, this rubber spring portion 5
1 is a side surface where a linear side edge 54b of the rubber plate 54 is exposed when a spring constant in a direction perpendicular to a side surface of the rubber plate 54 where the side edge 54a bent is exposed (direction of arrow D). Is lower than the spring constant in the direction perpendicular to.

【0024】したがって、図2(a)に示したように、
先頭軸11は、軌条の長手方向には大きく変位できる
が、軌条の幅方向にはわずかに変位できるように、軸ば
ね50によって台車枠1に弾性支持される。これに対し
て、図2(b)に示したように、中間軸12の軸箱16
には、前記軸ばね50が図2(a)に示した状態に対し
て90度向きを変えた状態で取り付けられている。これ
により、中間軸12は、軌条の幅方向(矢印E方向)に
は大きく変位できるが軌条の長手方向にはわずかに変位
できるように、同一の軸ばね50によって台車枠1に弾
性支持される。
Therefore, as shown in FIG.
The head shaft 11 is elastically supported by the bogie frame 1 by a shaft spring 50 so that it can be largely displaced in the longitudinal direction of the rail, but can be slightly displaced in the width direction of the rail. On the other hand, as shown in FIG. 2B, the shaft box 16 of the intermediate shaft 12 is
The shaft spring 50 is attached to the machine in a state in which the direction is changed by 90 degrees with respect to the state shown in FIG. Thereby, the intermediate shaft 12 is elastically supported by the bogie frame 1 by the same shaft spring 50 so that the intermediate shaft 12 can be largely displaced in the width direction of the rail (direction of arrow E) but slightly displaced in the longitudinal direction of the rail. .

【0025】また、図2(a)(b)に示したように、
前記台座52の上面には、位置決め用の突起52aに加
えて誤取り付け防止用の突起52bが突設されている。
そして、台車枠1の軸ばね取付面には、軸ばね50が正
しい方向を向けて軸箱14,16にそれぞれ取り付けら
れた時にのみ前記誤取り付け防止用の突起52bを受け
入れる凹部が形成されている。これにより、中間軸12
の軸箱16に取り付けた軸ばね50の向きが誤っている
場合には、前記誤取り付け防止用の突起52bが台車枠
1の軸ばね取付面に干渉するので、軸ばね50の誤取り
付けを確実に防止できる。
Further, as shown in FIGS. 2 (a) and 2 (b),
On the upper surface of the pedestal 52, a protrusion 52b for preventing erroneous mounting is projected in addition to the protrusion 52a for positioning.
Then, the shaft spring mounting surface of the bogie frame 1 is formed with a recess for receiving the protrusion 52b for preventing erroneous mounting only when the shaft spring 50 is mounted on the shaft boxes 14 and 16 in the correct direction. . Thereby, the intermediate shaft 12
If the orientation of the shaft spring 50 attached to the axle box 16 is wrong, the erroneous attachment preventing projection 52b interferes with the axle spring attachment surface of the bogie frame 1, so that the erroneous attachment of the axle spring 50 is ensured. Can be prevented.

【0026】次に、前記ゴムばね部分51の寸法諸元を
算出してみる。3軸操舵台車を二組備えた台車構成の電
気機関車の軸重を16トン〜16.8トンとすると、緩
和曲線1/300のねじれた軌条の上で30%以上の輪
重抜けが出ない軸ばねのばね定数は、一つの軸箱あたり
に280kg/mm以下でなければならないことが判
る。ここで、一つの軸箱あたりのばね定数を250kg
/mmとすると、軸ばね荷重は6740kg程度になる
ので、この圧縮荷重によりゴムばねの撓み率が10〜1
2%に収まるゴム厚さは、235ミリ程度必要となる。
これにより、6740kg程度の軸ばね荷重を1軸箱あ
たり2個のゴムばねで受けるときに、面圧を10kg/
平方センチ程度とすると、ゴムばね部分51の断面形状
は180ミリ×180ミリの正方形で良いことが判る。
したがって、ゴム厚さが235ミリ、受圧面積180ミ
リ×180ミリ、ばね定数が250kg/mm程度とな
るようなゴムばね部分51を形成するには、ゴム板54
を7層程度積層すれば良いことが判る。
Next, the dimensions of the rubber spring portion 51 will be calculated. If the axle load of an electric locomotive with a bogie configuration including two sets of three-axle steering bogies is 16 tons to 16.8 tons, 30% or more of the wheel weight loss occurs on a twisted track with a relaxation curve of 1/300. It can be seen that the spring constant of a blank shaft spring must be 280 kg / mm or less per shaft box. Here, the spring constant per axle box is 250 kg
/ Mm, the axial spring load is about 6740 kg, so the flexural ratio of the rubber spring is 10 to 1 due to this compression load.
A rubber thickness of 2% is required to be about 235 mm.
As a result, when the axial spring load of about 6740 kg is received by the two rubber springs per one axial box, the surface pressure is 10 kg /
It can be seen that the rubber spring portion 51 may have a square cross section of 180 mm × 180 mm, if it is approximately square centimeters.
Therefore, to form the rubber spring portion 51 having a rubber thickness of 235 mm, a pressure receiving area of 180 mm × 180 mm, and a spring constant of about 250 kg / mm, the rubber plate 54 is required.
It can be seen that it is sufficient to stack about 7 layers.

【0027】以上、本第1実施形態の3軸操舵台車10
0の軸ばね50の作用について説明したが、先頭軸11
および後尾軸13は、車両走行時に発生する遠心力を受
けるとともに、軌条の通り狂いに沿って車体を誘導する
ために、前記軸ばね50の軌条の幅方向のばね定数が充
分に大きい必要がある。したがって、前記軸ばね50
の、軌条の長手方向のばね定数と軌条の幅方向のばね定
数との比を充分に大きくとることができれば良いが、若
干不足した場合には先頭軸11および後尾軸13の、軌
条の幅方向の過度の変位を拘束する機構が必要となる。
As described above, the three-axis steering carriage 10 of the first embodiment.
Although the operation of the shaft spring 50 of 0 has been described,
The rear tail shaft 13 is required to have a sufficiently large spring constant in the width direction of the rail so as to receive the centrifugal force generated when the vehicle is traveling and guide the vehicle body along the deviation of the rail. . Therefore, the shaft spring 50
It is sufficient if the ratio between the spring constant in the longitudinal direction of the rail and the spring constant in the width direction of the rail can be made sufficiently large. A mechanism for restraining the excessive displacement of is required.

【0028】このような機構の一例を図3を参照して説
明すると、軸箱14の軌条の幅方向内側の部分には、台
車枠1の側面に対向する位置まで上方に延びるストッパ
14aが突設されている。そして、このストッパ14a
の台車枠1側の側面には、クッションラバー14bが取
り付けられている。これにより、軸ばね50が軌条の幅
方向に大きく撓んで軸箱14が台車枠1に対して過度に
接近すると、前記クッションラバー14bが台車枠1に
当接し、台車枠1に対する軸箱14のそれ以上の変位を
阻止できる構成となっている。
An example of such a mechanism will be described with reference to FIG. 3. A stopper 14a extending upward to a position facing the side surface of the bogie frame 1 is projected at a portion on the inner side in the width direction of the rail of the axle box 14. It is set up. And this stopper 14a
A cushion rubber 14b is attached to the side surface of the vehicle frame 1 side. As a result, when the shaft spring 50 largely bends in the width direction of the rail and the shaft box 14 comes too close to the bogie frame 1, the cushion rubber 14b comes into contact with the bogie frame 1 and the shaft box 14 with respect to the bogie frame 1 moves. It is configured to prevent further displacement.

【0029】ところで、前述したように中間軸12は、
前記首振り操舵機構20とは独立して設けられた、中間
軸連結機構40の中間軸操舵レバー43、44と操舵リ
ンク45、46、および左右連結リンク47の作用によ
り、首振り動作を可能としながら、牽引力およびブレー
キ力を受けることができるように台車枠1に連結されて
いる。これにより、図2に示したような軸ばねによって
軌条の長手方向の変位がある程度拘束されると、中間軸
12は、わずかな首振りにより単独で蛇行動を発生し、
軌条の幅方向に最も安定した位置を自ら見出す。
By the way, as described above, the intermediate shaft 12 is
The intermediate shaft steering levers 43 and 44 of the intermediate shaft connecting mechanism 40, the steering links 45 and 46, and the left and right connecting links 47, which are provided independently of the swinging steering mechanism 20, enable the swinging operation. However, it is connected to the bogie frame 1 so that it can receive the traction force and the braking force. As a result, when the displacement in the longitudinal direction of the rail is constrained to some extent by the shaft spring as shown in FIG. 2, the intermediate shaft 12 independently generates a serpentine action due to a slight swing,
Find the most stable position in the width direction of the railroad.

【0030】しかしながら、中間軸12の蛇行動によっ
て、中間軸12が軌条の幅方向の理想位置に移動するの
を待つだけでは、高速走行の際に自励振動に入る危険が
あり、ダンパなどの自励振動防止対策が必要となる。そ
こで、図4に示したような、中間軸12を積極的に横動
させるとともに、その横動を拘束する中間軸横動機構6
0が、前述した先願(特願平7−162479号)に記
載されている。前記中間軸横動機構60は、台車枠1に
軸支されて軸支点61の廻りに揺動可能とされたL字形
の中間軸横動レバー62と、この中間軸横動レバー62
の軌条の幅方向に最も外側の端部63と車体側座3とを
連結する連結リンク64と、前記中間軸横動レバー62
の軌条の長手方向に最も前側の端部65と、中間軸13
に装架されたサスコロ付き原動機66の後端部67とを
連結する中間軸横動リンク68とを備えている。
However, by waiting for the intermediate shaft 12 to move to the ideal position in the width direction of the rail due to the meandering action of the intermediate shaft 12, there is a risk that self-excited vibration may occur during high-speed traveling, and a damper or the like may be generated. Self-excited vibration prevention measures are required. Therefore, as shown in FIG. 4, the intermediate shaft 12 is positively moved laterally and the intermediate shaft lateral movement mechanism 6 for restraining the lateral movement is also provided.
0 is described in the above-mentioned prior application (Japanese Patent Application No. 7-162479). The intermediate shaft lateral movement mechanism 60 is an L-shaped intermediate shaft lateral movement lever 62 that is pivotally supported by the bogie frame 1 and is capable of swinging around a shaft fulcrum 61, and the intermediate shaft lateral movement lever 62.
A connecting link 64 for connecting the outermost end 63 in the width direction of the rail to the vehicle body side seat 3, and the intermediate shaft lateral movement lever 62.
The front end 65 in the longitudinal direction of the rail and the intermediate shaft 13
And an intermediate shaft lateral movement link 68 that connects the rear end portion 67 of the prime mover 66 with suspension rollers mounted on the.

【0031】このとき、前記中間軸横動レバー62の、
軸支点61と前記連結リンク64の取り付け点63との
間の寸法をe、前記軸支点61と前記中間軸横動リンク
68の取り付け点65との間の寸法をgとすると、 g=δ2 ・e/(2・d・L) なる関係を満たすように前記e寸法およびg寸法を定め
れば、本第1実施形態の3軸操舵台車100が軌条のカ
ーブ部分を走行する際に、中間軸12が前記中間軸横動
機構60によって横動させられ、その軸線方向の中心B
と軌条2の幅方向の中心とが一致することは、前述した
先願に記載したとおりである。
At this time, the intermediate shaft lateral movement lever 62 is
Assuming that the dimension between the shaft fulcrum 61 and the attachment point 63 of the connecting link 64 is e, and the dimension between the axis fulcrum 61 and the attachment point 65 of the intermediate shaft lateral movement link 68 is g, g = δ 2 When the e dimension and the g dimension are determined so as to satisfy the relationship of e / (2 · d · L), when the three-axis steering carriage 100 of the first embodiment travels on the curved portion of the rail, The shaft 12 is laterally moved by the intermediate shaft lateral movement mechanism 60, and its axial center B
The fact that the center of the rail 2 in the width direction coincides with that of the rail 2 is as described in the earlier application.

【0032】本第1実施形態の3軸操舵台車100は上
述のように構成したものであるから、軌条の直線部分を
走行する際には、3本の車軸が完全に平行な状態とな
り、安定した直線走行を行うことができる。また、軌条
のカーブ部分を走行する際には、3本の車軸の軸線がそ
れぞれ前記カーブ部分の曲率中心に向かって延びるの
で、前記カーブ部分を滑らかに走行することができる。
しかしながら、軌条の直線部分からカーブ部分に進入す
る段階、若しくは軌条のカーブ部分から直線部分に進入
する段階では、車体に対する台車枠の首振り角と先頭軸
および後尾軸の首振り角とが若干ずれる可能性がある。
また、各リンクの長さの調節が狂っていると、各車軸が
常時首を振って走行する可能性がある。
Since the three-axle steering carriage 100 of the first embodiment is constructed as described above, when traveling along a straight line portion of the rail, the three axles are completely parallel and stable. You can drive straight ahead. Further, when traveling on the curved portion of the rail, the axes of the three axles respectively extend toward the center of curvature of the curved portion, so that the curved portion can smoothly travel.
However, the swing angle of the bogie frame with respect to the vehicle body and the swing angles of the front axle and the rear tail axle are slightly deviated at the stage of entering the curved portion from the straight portion of the rail or at the stage of entering the straight portion from the curved portion of the railway. there is a possibility.
Further, if the adjustment of the length of each link is incorrect, each axle may shake its head at all times to travel.

【0033】このような不都合を解消するには、操舵連
結リンク34や横動拘束リンク68の途中に、図5に示
すような、リンク接続用バネ機構70を操舵連結リンク
39または中間軸横動リンク68の途中に介装すれば良
い。
In order to eliminate such inconvenience, a link connecting spring mechanism 70 as shown in FIG. 5 is provided in the middle of the steering connecting link 34 and the lateral movement restraining link 68 so as to move the steering connecting link 39 or the intermediate shaft laterally. It may be inserted in the middle of the link 68.

【0034】前記リンク接続用バネ機構70の構造の概
略を図5を用いて説明すると、図示左側のシャフト71
の先端には、大径円筒部72aと、この大径円筒部72
aを挟み込むように配設された一対の小径円筒部72
b、72cとを有するハウジング72が、シャフト71
と同軸に取り付けられている。一方、図示右側のシャフ
ト73の先端には、前記小径円筒部72b、72c内に
摺動可能に嵌入されるピストン74、75が設けられて
いる。また、これらのピストン74・75間に互いに対
向するように、かつ前記シャフト73に対して軸線方向
に摺動自在に嵌着された一対の円環状のワッシャ77・
78の間には、コイルばね79が初圧をかけられた状態
で介装されている。
The outline of the structure of the link connecting spring mechanism 70 will be described with reference to FIG.
At the tip of the large-diameter cylindrical portion 72a, the large-diameter cylindrical portion 72a
a pair of small-diameter cylindrical portions 72 arranged so as to sandwich a
The housing 72 having b and 72c is the shaft 71.
It is mounted coaxially with. On the other hand, pistons 74 and 75 slidably fitted in the small-diameter cylindrical portions 72b and 72c are provided at the tip of the shaft 73 on the right side in the drawing. Further, a pair of annular washers 77, which are fitted between the pistons 74, 75 so as to oppose each other and are slidably fitted to the shaft 73 in the axial direction.
A coil spring 79 is interposed between 78 in a state where initial pressure is applied.

【0035】上述のように構成されたリンク接続用バネ
機構70のシャフト71・73に、前記バネ79の初圧
よりも小さい軸力が作用した時には、バネ79は撓むこ
とがないから、シャフト71・73は互いに軸線方向に
相対変位することなく、あたかも一本の剛体ロッドのよ
うに軸力を伝達する。これに対して、シャフト71・7
3にバネ79の初圧よりも大きい軸力が作用した時には
バネ79が圧縮変形するので、シャフト71・73が軸
線方向に相対変位して伸縮可能なロッドとして作用す
る。したがって、このようなリンク接続用バネ機構70
を操舵連結リンク39または中間軸横動リンク68に取
り付けることにより、各々のリンク間に生じる無理を吸
収することができる。また、ワッシャ77・78の間隔
をハウジング72の前記大径円筒部72aの軸線方向の
長さよりも小さく設定することにより、シャフト71・
73間に遊びを持たせることができる。これにより、シ
ャフト71・73は、前記遊びの寸法だけは自由に相対
変位することができるが、相対変位が大きくなると剛な
ロッドとして作用することとなる。
When an axial force smaller than the initial pressure of the spring 79 acts on the shafts 71 and 73 of the link connecting spring mechanism 70 constructed as described above, the spring 79 does not bend, so that the shaft is not bent. 71 and 73 transmit the axial force as if they were one rigid rod, without being displaced relative to each other in the axial direction. On the other hand, the shaft 71.7
When an axial force larger than the initial pressure of the spring 79 is applied to 3, the spring 79 is compressed and deformed, so that the shafts 71 and 73 are displaced relative to each other in the axial direction and act as an expandable rod. Therefore, such a link connecting spring mechanism 70 is used.
Is attached to the steering connection link 39 or the intermediate shaft lateral movement link 68, it is possible to absorb the excessive force generated between the links. Further, by setting the interval between the washers 77 and 78 smaller than the axial length of the large-diameter cylindrical portion 72a of the housing 72, the shaft 71
You can have a play between 73. As a result, the shafts 71 and 73 can be freely displaced relative to each other only by the size of the play, but when the relative displacement becomes large, they act as rigid rods.

【0036】すなわち、以上説明したように、本第1実
施形態の3軸操舵台車100においては、先頭軸および
後尾軸の軸箱に求められる変位方向と、中間軸の軸箱に
求められる変位方向とが互いに90度異なっており、か
つ両者の変位量がほとんど同じであることを利用し、先
頭軸および後尾軸を台車枠に弾性支持する軸ばねと、中
間軸を台車枠に弾性支持する軸ばねとを、台車枠に対す
る取り付け方向を90度ずらすことによって共用する構
造とされている。これにより、本第1実施形態の3軸操
舵台車100が軌条の直線部分を走行する際には、3本
の車軸が完全に平行な状態となり、安定した直線走行を
行うことができる。また、軌条のカーブ部分を走行する
際には、首振り操舵機構20と中間軸連結機構40、お
よび軸ばね50の作用により、3本の車軸の軸線がそれ
ぞれ前記カーブ部分の曲率中心に向かって延びるので、
前記カーブ部分を滑らかに走行することができる。
That is, as described above, in the three-axis steering carriage 100 of the first embodiment, the displacement directions required for the front axle and rear tail axle boxes and the displacement directions required for the intermediate axle box. And 90 ° are different from each other, and the displacement amounts of both are almost the same, a shaft spring for elastically supporting the front shaft and the rear tail shaft to the bogie frame and a shaft for elastically supporting the intermediate shaft to the bogie frame. The spring and the spring are commonly used by shifting the mounting direction with respect to the bogie frame by 90 degrees. As a result, when the three-axle steering bogie 100 of the first embodiment travels on the straight line portion of the rail, the three axles are completely parallel, and stable straight line travel can be performed. Further, when traveling on a curved portion of the rail, the axes of the three axles are respectively moved toward the center of curvature of the curved portion by the action of the swing steering mechanism 20, the intermediate shaft connecting mechanism 40, and the shaft spring 50. Because it extends
It is possible to smoothly run on the curved portion.

【0037】また、本第1実施形態の3軸操舵台車10
0においては、中間軸連結機構40を用い、中間軸12
に牽引力およびブレーキ力が作用しても、中間軸12の
軸箱の、軌条の長手方向の変位の和がゼロとなるように
中間軸12を台車枠に連結するとともに、軌条の長手方
向のばね定数は大きいが軌条の幅方向のばね定数の小さ
い軸ばね50によって、中間軸12を台車枠1に弾性支
持する構造とした。これにより、中間軸12は、わずか
な首振りにより単独で蛇行動を発生して、軌条の幅方向
に最も安定した位置を自ら見出し、かつその位置に向か
って横動し易くなるので、3軸操舵台車100が軌条の
カーブ部分を走行する際に、早期に安定状態に入ること
ができる。
Also, the three-axis steering carriage 10 of the first embodiment.
0, the intermediate shaft coupling mechanism 40 is used, and the intermediate shaft 12
Even if traction force and braking force are applied to the intermediate shaft 12, the intermediate shaft 12 is connected to the bogie frame so that the sum of displacements in the longitudinal direction of the rail of the shaft box of the intermediate shaft 12 becomes zero. The intermediate shaft 12 is elastically supported on the bogie frame 1 by the shaft spring 50 having a large constant but a small spring constant in the width direction of the rail. As a result, the intermediate shaft 12 independently generates a serpentine motion by a slight swing, finds the most stable position in the width direction of the track, and easily moves laterally toward that position. It is possible to enter a stable state at an early stage when the steering cart 100 travels along a curved portion of the rail.

【0038】第2実施形態 次に、軌条の長手方向と幅方向でそのばね定数を変える
ことができる、他の実施形態の軸ばねについて説明す
る。図6に示したように、本第2実施形態の軸ばね80
は、コイルばね81と、このコイルばね80を上下に挟
持するゴム製のばね座82,83とを備えている。そし
て前記ばね座82,83は、円筒状に湾曲したゴム板8
4を前記コイルばね81の軸線方向に挟持した構造とさ
れている。これにより、ばね座82,83を前記円筒の
軸線に対して平行な方向に切断した断面においては、図
6(a)に示したように前記ゴム板84は平坦に延びる
が、前記円筒の軸線に対して垂直な方向に切断した断面
においては、図6(b)に示したように前記ゴム板84
は湾曲して延びる。
Second Embodiment Next, a shaft spring according to another embodiment whose spring constant can be changed in the longitudinal direction and the width direction of the rail will be described. As shown in FIG. 6, the shaft spring 80 according to the second embodiment.
Is provided with a coil spring 81 and rubber spring seats 82 and 83 that sandwich the coil spring 80 vertically. The spring seats 82 and 83 are formed by the rubber plate 8 curved in a cylindrical shape.
4 is sandwiched in the axial direction of the coil spring 81. As a result, in the cross section obtained by cutting the spring seats 82 and 83 in a direction parallel to the axis of the cylinder, the rubber plate 84 extends flat as shown in FIG. In a section cut in a direction perpendicular to the rubber plate 84, as shown in FIG.
Extends curvedly.

【0039】すなわち、前記ばね座82,83は、前記
円筒の軸線に対して平行な方向には、前記ゴム板84の
剪断変形によって大きく変形できるが、前記円筒の軸線
に対して垂直な方向は、前記ゴム板84を圧縮する方向
となるため、大きく変形することができない。したがっ
て、上述した3軸操舵台車100の先頭軸11および後
尾軸13の軸箱には、図6(a)の図示左右方向が軌条
の長手方向となるように、かつ中間軸12の軸箱には図
6(b)の図示左右方向が軌条の長手方向となるよう
に、それぞれ本第2実施形態の軸ばね80を取り付けれ
ば良い。
That is, the spring seats 82 and 83 can be largely deformed in the direction parallel to the axis of the cylinder by the shear deformation of the rubber plate 84, but the direction perpendicular to the axis of the cylinder is Since the rubber plate 84 is compressed, it cannot be largely deformed. Therefore, in the axle box of the front axle 11 and the rear axle 13 of the above-mentioned three-axis steering carriage 100, the left and right directions in FIG. 6B, the axial springs 80 of the second embodiment may be attached so that the horizontal direction in FIG. 6B is the longitudinal direction of the rail.

【0040】第3実施形態 次に、図7を参照して、第3実施形態の軸ばね90につ
いて説明する。この軸ばね90は、コイルばね91と、
このコイルばね91を上下に挟持する上下一対の金属製
ばね座92,93とを備えている。一方、台車枠1の下
面には上側ブラケット94が、軸箱14の上面には下側
ブラケット95がそれぞれ突設されている。そして、前
記上側ばね座92は、ピン96によって前記上側ブラケ
ット94に対して相対揺動自在に軸支されている。さら
に、前記下側ばね座93は、前記ピン96と平行に延び
るピン97によって前記下側ブラケット95に対して相
対揺動自在に軸支されている。
Third Embodiment Next, a shaft spring 90 of a third embodiment will be described with reference to FIG. The shaft spring 90 includes a coil spring 91,
It is provided with a pair of upper and lower metal spring seats 92, 93 for vertically sandwiching the coil spring 91. On the other hand, an upper bracket 94 is provided on the lower surface of the bogie frame 1 and a lower bracket 95 is provided on the upper surface of the axle box 14. The upper spring seat 92 is pivotally supported by a pin 96 so as to be relatively swingable with respect to the upper bracket 94. Further, the lower spring seat 93 is pivotally supported by the pin 97 extending in parallel with the pin 96 so as to be relatively swingable with respect to the lower bracket 95.

【0041】これにより、本第3実施形態の軸ばね90
は、上下のばね座92,93が上下のブラケット94,
95に対して揺動できる方向とできない方向とでばね定
数が異なり、図7(a)の図示左右方向のばね定数が、
図7(b)の図示左右方向のばね定数よりも小さくな
る。したがって、上述した3軸操舵台車100の先頭軸
11および後尾軸13の軸箱には、図7(a)の図示左
右方向が軌条の長手方向となるように、かつ中間軸12
の軸箱には図7(b)の図示左右方向が軌条の長手方向
となるように、それぞれ本第3実施形態の軸ばね90を
取り付ければ良い。
As a result, the shaft spring 90 of the third embodiment is provided.
The upper and lower spring seats 92, 93 are the upper and lower brackets 94,
The spring constant differs depending on whether it can be swung or not with respect to 95, and the spring constant in the lateral direction in FIG.
The spring constant is smaller than the spring constant in the horizontal direction in FIG. 7B. Therefore, in the axle box of the front axle 11 and the rear axle 13 of the above-described three-axle steering bogie 100, the intermediate shaft 12 is arranged so that the left-right direction in FIG. 7A is the longitudinal direction of the rail.
The shaft springs 90 of the third embodiment may be attached to the shaft boxes so that the left-right direction in FIG. 7B is the longitudinal direction of the rail.

【0042】第4実施形態 次に、図8を参照して、第4実施形態の軸ばね110に
ついて説明する。この軸ばね110は、コイルばね11
1と、このコイルばね111を上下に挟持する上下一対
の金属製ばね座112,113とを備えている。そし
て、これらのばね座112,113の、台車枠1の下面
および軸箱14の上面に対向する側の表面114,11
5は、それぞれ互いに同軸な円筒面の一部とされてい
る。さらに、これらの円筒面114,15には位置決め
用突起116,117がそれぞれ突設され、台車枠1の
下面および軸箱14の上面に凹設された位置決め用凹部
と係合するようにされている。
Fourth Embodiment Next, a shaft spring 110 according to a fourth embodiment will be described with reference to FIG. The shaft spring 110 is a coil spring 11
1 and a pair of upper and lower metal spring seats 112 and 113 for vertically sandwiching the coil spring 111. Then, the surfaces 114, 11 of these spring seats 112, 113 on the side facing the lower surface of the bogie frame 1 and the upper surface of the axle box 14, respectively.
5 is a part of a cylindrical surface coaxial with each other. Further, positioning protrusions 116 and 117 are respectively provided on the cylindrical surfaces 114 and 15 so as to be engaged with the positioning recesses provided on the lower surface of the bogie frame 1 and the upper surface of the axle box 14. There is.

【0043】これにより、本第4実施形態の軸ばね11
0は、そのばね座112,113の円筒面114,11
5が台車枠1の下面および軸箱14の上面に接しながら
揺動できる方向のばね定数が、そうでない方向のばね定
数よりも小さくなる。したがって、上述した3軸操舵台
車100の先頭軸11および後尾軸13の軸箱には、図
9(a)の図示左右方向が軌条の長手方向となるよう
に、かつ中間軸12の軸箱には図9(b)の図示左右方
向が軌条の長手方向となるように、それぞれ本第4実施
形態の軸ばね110を取り付ければ良い。
As a result, the shaft spring 11 of the fourth embodiment is provided.
0 is the cylindrical surface 114, 11 of the spring seat 112, 113.
The spring constant in the direction in which 5 can swing while being in contact with the lower surface of the bogie frame 1 and the upper surface of the axle box 14 becomes smaller than the spring constant in the other directions. Therefore, in the axle box of the front axle 11 and the rear axle 13 of the above-mentioned three-axis steering carriage 100, the left and right directions in FIG. 9A. The shaft springs 110 of the fourth embodiment may be attached so that the horizontal direction in FIG. 9B is the longitudinal direction of the rail.

【0044】なお、本発明の鉄道車両用3軸操舵台車
は、上述した実施例によって限定されるものではなく、
本発明の主旨に基づいて種々の変更が可能であることは
言うまでもない。例えば、上述した実施例においては主
電動機が輪軸に装架されているが、主電動機を台車枠に
装架することとしても良く、この場合には、主電動機と
駆動装置との間に、車軸の首振りと横動とを許容する継
手を介装すれば良い。
The three-axle steering bogie for railway vehicles according to the present invention is not limited to the above-mentioned embodiment,
It goes without saying that various modifications can be made based on the gist of the present invention. For example, although the main motor is mounted on the wheel axle in the above-described embodiment, the main motor may be mounted on the bogie frame. In this case, the main motor and the drive device may be mounted on the axle. It suffices to interpose a joint that allows swinging and lateral movement of the.

【0045】[0045]

【発明の効果】以上の説明から明らかなように、本発明
の鉄道車両用3軸操舵台車においては、先頭軸および後
尾軸の軸箱を台車枠に弾性支持する第1の軸ばねを、そ
の軌条の長手方向のばね定数を軌条の幅方向のばね定数
よりも小さくするとともに、中間軸を台車枠に弾性支持
する第2の軸ばねを、その軌条の幅方向のばね定数を軌
条の長手方向のばね定数よりも小さくしたものである。
これにより、3軸操舵台車が軌条のカーブ部分を走行す
る際には、先頭軸および後尾軸が首振り操舵機構によっ
て操舵され、その軸線が前記カーブ部分の曲率中心に向
かって延びるとともに、中間軸は軌条の幅方向に変位
し、その軸線方向の中心が軌条の幅方向の中心線に一致
するから、3軸操舵台車は前記カーブ部分を滑らかに走
行することができる。
As is apparent from the above description, in the three-axle steering bogie for railway vehicles of the present invention, the first axial spring elastically supporting the front and rear tail axle boxes on the bogie frame is provided. The spring constant in the longitudinal direction of the rail is made smaller than the spring constant in the width direction of the rail, and the second axial spring that elastically supports the intermediate shaft on the bogie frame has the spring constant in the width direction of the rail in the longitudinal direction of the rail. It is smaller than the spring constant of.
As a result, when the three-axis steering trolley travels along the curved portion of the rail, the head shaft and the rear tail shaft are steered by the swing steering mechanism, and the axis extends toward the center of curvature of the curved portion and the intermediate shaft. Is displaced in the width direction of the rail, and the center in the axial direction thereof coincides with the center line in the width direction of the rail, so that the triaxial steering carriage can smoothly run on the curved portion.

【0046】また、本発明の鉄道車両用3軸操舵台車に
おいては、先頭軸および後尾軸の軸箱に求められる変位
方向と、中間軸の軸箱に求められる変位方向とが互いに
90度異なっており、かつ両者の変位量がほとんど同じ
であることを利用し、先頭軸および後尾軸を台車枠に弾
性支持する軸ばねと、中間軸を台車枠に弾性支持する軸
ばねとを、台車枠に対する取り付け方向を90度ずらす
ことによって共用する構造とされている。これにより、
3軸操舵台車を構成する部品の種類を低減して、製造コ
ストを低減させることができる。
Further, in the three-axle steering bogie for the railroad vehicle of the present invention, the displacement directions required for the front axle and the rear axle axle boxes are different from the displacement directions required for the intermediate axle axle boxes by 90 degrees. And the fact that the displacement amounts of both are almost the same, an axial spring that elastically supports the front shaft and the rear tail shaft to the bogie frame and an axial spring that elastically supports the intermediate shaft to the bogie frame are The structure is shared by shifting the mounting direction by 90 degrees. This allows
The manufacturing cost can be reduced by reducing the types of parts constituting the three-axis steering cart.

【0047】また、本発明の3軸操舵台車においては、
中間軸連結機構を用いて、中間軸に牽引力およびブレー
キ力が作用しても、中間軸の軸箱の、軌条の長手方向の
変位の和がゼロとなるように中間軸を台車枠に連結する
とともに、軌条の長手方向のばね定数は大きいが軌条の
幅方向のばね定数の小さい軸ばねを用いて中間軸を台車
枠に弾性支持する構造とした。これにより、中間軸はわ
ずかな首振りにより単独で蛇行動を発生して、軌条の幅
方向に最も安定した位置を自ら見出し、かつその位置に
向かって横動し易くなるので、3軸操舵台車が軌条のカ
ーブ部分を走行する際には、早期に安定状態に入ること
ができる。
Further, in the three-axis steering trolley of the present invention,
By using the intermediate shaft connecting mechanism, the intermediate shaft is connected to the bogie frame so that the sum of the displacement of the shaft box of the intermediate shaft in the longitudinal direction of the rail becomes zero even if the intermediate shaft is subjected to traction force and braking force. Along with this, a shaft spring having a large spring constant in the longitudinal direction of the rail but a small spring constant in the width direction of the rail was used to elastically support the intermediate shaft on the bogie frame. As a result, the intermediate shaft independently generates a serpentine motion by a slight swing, finds the most stable position in the width direction of the railroad, and easily moves laterally toward that position. When the car runs on the curve part of the track, it can enter a stable state at an early stage.

【0048】すなわち、本発明の車軸支持構造を備えた
3軸操舵台車が軌条のカーブ部分を走行する際には、先
頭軸、中間軸、後尾軸の軌条に対するアタックアングル
をゼロとすることができるから、各輪軸の車輪の踏面勾
配が適切に設定されていれば、遠心力等の影響を受ける
以外は、各輪軸は軌条のカーブ部分を滑らかに走行する
ことができる。また、軌条に対する各車輪の横圧を最小
とすることができ、車輪のフランジ磨耗を防止すること
ができる。したがって、従来は、車輪のフランジ磨耗に
伴う保守整備の困難さを嫌って3軸台車を敬遠し2軸台
車を用いてきたが、本発明の3軸操舵台車によれば従来
の問題点を解消することができ、3軸台車を敬遠する必
要が無い。これにより、例えば6本の駆動輪軸を有する
機関車を構成する際には、従来であれば2軸台車を3つ
組み合わせたB−B−B配置の台車構成とせざるを得な
かったが、本発明によれば、3軸操舵台車を2つ組み合
わせたC−C配置の台車構成とすることができ、機関車
の機器配置の設計自由度が大きく高まるばかりでなく、
機関車の重量を低減し、かつ低重心なものとすることが
できるという優れた効果を奏する。
That is, when the three-axle steering bogie equipped with the axle support structure of the present invention travels along the curved portion of the rail, the attack angles of the leading shaft, the intermediate shaft, and the rear tail shaft with respect to the rail can be made zero. Therefore, if the tread slope of the wheels of each axle is set appropriately, each axle can travel smoothly along the curved portion of the rail except for being affected by centrifugal force and the like. Further, the lateral pressure of each wheel against the rail can be minimized, and the flange wear of the wheel can be prevented. Therefore, conventionally, the 3-axle trolley has been shunned and a 2-axle trolley has been used because of the difficulty of maintenance due to the wear of the flanges of the wheels. However, the 3-axle steering trolley of the present invention solves the conventional problems. It is possible to do so, and there is no need to shy away from the 3-axis dolly. Thus, for example, when constructing a locomotive having six drive wheel shafts, conventionally, there was no choice but to use a BB-BB arrangement bogie structure in which three two-axle bogies are combined. According to the invention, it is possible to form a bogie structure of CC arrangement in which two three-axis steering bogies are combined, and not only the degree of freedom in designing the locomotive equipment arrangement is greatly increased,
It has the excellent effect of reducing the weight of the locomotive and having a low center of gravity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施形態の鉄道車両用3軸操舵
台車を示した平面図。
FIG. 1 is a plan view showing a three-axis steering trolley for a railway vehicle according to an embodiment of the present invention.

【図2】第1実施形態の軸ばねを軸箱に取り付けた状態
を示した斜視図。
FIG. 2 is a perspective view showing a state in which the shaft spring of the first embodiment is attached to a shaft box.

【図3】ストッパを備えた軸箱の正面図。FIG. 3 is a front view of an axle box provided with a stopper.

【図4】中間軸横動機構を示した平面図。FIG. 4 is a plan view showing an intermediate shaft lateral movement mechanism.

【図5】リンク接続用バネ機構を示した縦断面図。FIG. 5 is a vertical sectional view showing a link connecting spring mechanism.

【図6】第2実施形態の軸ばねの縦断面図。FIG. 6 is a vertical sectional view of a shaft spring according to a second embodiment.

【図7】第3実施形態の軸ばねの縦断面図。FIG. 7 is a vertical sectional view of a shaft spring according to a third embodiment.

【図8】第4実施形態の軸ばねの縦断面図。FIG. 8 is a vertical cross-sectional view of a shaft spring according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 台車枠 2 軌条 3 車体側座 11 先頭軸 12 中間軸 13 後尾軸 14、15、16、17、18、19 軸箱 20 操舵機構 40 中間軸連結機構 50,80,90,110 軸ばね 60 中間軸横動機構 70 リンク接続用バネ機構 100 鉄道車両用3軸操舵台車 1 bogie frame 2 rail 3 vehicle body side seat 11 leading shaft 12 intermediate shaft 13 rear tail shaft 14, 15, 16, 17, 18, 19 axle box 20 steering mechanism 40 intermediate shaft coupling mechanism 50, 80, 90, 110 axial spring 60 intermediate Axial lateral movement mechanism 70 Link connection spring mechanism 100 Three-axis steering cart for railway vehicles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 城 義 治 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiharu Yamashiro No. 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu factory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】鉄道車両の台車枠に対して、首振り可能に
取り付けられた先頭軸および後尾軸と、軌条の幅方向に
横動可能に取り付けられた中間軸とを備え、前記鉄道車
両が軌条のカーブ部分を走行する際には、前記3本の車
軸の軸線が前記カーブ部分の曲率中心に向かって延びる
ように前記先頭軸および前記後尾軸が首振り操舵される
鉄道車両用3軸操舵台車において、 前記先頭軸および前記後尾軸の軸箱を前記台車枠に弾性
支持する第1の軸ばね全体の、軌条の長手方向のばね定
数を軌条の幅方向のばね定数よりも小さくするととも
に、前記中間軸を前記台車枠に弾性支持する第2の軸ば
ね全体の、軌条の幅方向のばね定数を軌条の長手方向の
ばね定数よりも小さくしたことを特徴とする鉄道車両用
3軸操舵台車。
1. A railcar frame comprising a front axle and a rear axle attached to a bogie frame of the railroad vehicle so as to be swingable, and an intermediate axle attached so as to be laterally movable in the width direction of the railroad track. When traveling on a curved portion of a railroad, a three-axle steering for a rail vehicle in which the front axle and the rear tail axle are pivotally steered so that the axes of the three axles extend toward the center of curvature of the curved portion. In the bogie, the spring constant in the longitudinal direction of the rail is made smaller than the spring constant in the width direction of the rail, of the entire first shaft spring elastically supporting the axle box of the leading shaft and the rear tail shaft on the bogie frame. A triaxial steering bogie for a railway vehicle, wherein the spring constant of the entire second shaft spring elastically supporting the intermediate shaft on the bogie frame in the width direction of the rail is smaller than the spring constant in the longitudinal direction of the rail. .
【請求項2】前記第2の軸ばねは、前記第1の軸ばねと
同一の軸ばねで構成され、かつ前記第1の軸ばねの前記
台車枠への取り付け方向に対して、軌条の長手方向から
軌条の幅方向に90度回転させた方向に、前記第2の軸
ばねを前記台車枠に取り付けることを特徴とする請求項
1に記載の鉄道車両用3軸操舵台車。
2. The second shaft spring is composed of the same shaft spring as the first shaft spring, and the longitudinal direction of the rail with respect to the mounting direction of the first shaft spring to the bogie frame. The three-axle steering bogie for rail vehicles according to claim 1, wherein the second shaft spring is attached to the bogie frame in a direction rotated by 90 degrees in the width direction of the rail.
【請求項3】前記第1の軸ばね又は前記第2の軸ばね
が、前記台車枠若しくは前記車軸の軸箱にその取り付け
方向を誤った状態で取り付けられることを防止する、誤
取り付け防止手段をさらに備えることを特徴とする請求
項2に記載の鉄道車両用3軸操舵台車。
3. An erroneous attachment preventing means for preventing the first axle spring or the second axle spring from being attached to the bogie frame or the axle box of the axle in an erroneous attachment direction. The three-axle steering trolley for railway vehicles according to claim 2, further comprising:
【請求項4】前記第1の軸ばね又は前記第2の軸ばね
が、山形に折り曲げたゴム板を互いに密着させた状態で
複数枚積層した柱状のゴムばね部分を備えることによ
り、前記第1の軸ばね又は前記第2の軸ばね全体とし
て、前記山形を正面から見る方向のばね定数が、前記山
形を側方から見る方向のばね定数よりも小さくされてい
ることを特徴とする請求項1又は請求項2に記載の鉄道
車両用3軸操舵台車。
4. The first shaft spring or the second shaft spring is provided with a columnar rubber spring portion in which a plurality of rubber plates bent in a mountain shape are closely attached to each other, and a columnar rubber spring portion is provided. 2. The spring constant of the axial spring or the second axial spring as a whole is such that the spring constant in the direction in which the chevron is viewed from the front is smaller than the spring constant in the direction in which the chevron is viewed from the side. Alternatively, the three-axis steering trolley for a railway vehicle according to claim 2.
【請求項5】前記第1の軸ばね又は第2の軸ばねは、金
属製のコイルばねと、前記コイルばねを挟持する一対の
ばね座とを備え、前記ばね座が湾曲したゴム板を前記コ
イルばねの軸線方向に挟持した構造とされることによ
り、前記第1の軸ばね又は前記第2の軸ばね全体とし
て、前記ゴム板の断面形状が平板状に見える方向のばね
定数が、前記ゴム板の断面形状が湾曲して見える方向の
ばね定数よりも小さくされていることを特徴とする請求
項1又は請求項2に記載の鉄道車両用3軸操舵台車。
5. The first axial spring or the second axial spring includes a metal coil spring and a pair of spring seats for sandwiching the coil spring, and the spring seat has a curved rubber plate. With the structure in which the coil spring is sandwiched in the axial direction, the spring constant in the direction in which the cross-sectional shape of the rubber plate looks like a flat plate in the first axial spring or the second axial spring as a whole is the rubber. The three-axis steering trolley for railway vehicles according to claim 1 or 2, wherein a cross-sectional shape of the plate is smaller than a spring constant in a direction in which the plate appears curved.
【請求項6】前記第1の軸ばね又は前記第2の軸ばね
は、金属製のコイルばねと、前記コイルばねを挟持する
一対のばね座とを備え、これらのばね座が、前記台車枠
および前記軸箱にそれぞれ設けられたブラケットに対し
て、互いに平行に延びる一対のピンのそれぞれによって
揺動自在に軸支されることにより、前記第1の軸ばね又
は前記第2の軸ばね全体として、前記ピンの軸線に対し
て垂直な方向のばね定数が、前記ピンの軸線方向のばね
定数よりも小さくされていることを特徴とする請求項1
又は請求項2に記載の鉄道車両用3軸操舵台車。
6. The first shaft spring or the second shaft spring includes a metal coil spring and a pair of spring seats for sandwiching the coil spring, and these spring seats are the bogie frame. And a bracket provided on the axle box, respectively, pivotally supported by a pair of pins extending in parallel with each other, so that the first axial spring or the second axial spring as a whole is The spring constant in the direction perpendicular to the axial line of the pin is smaller than the spring constant in the axial direction of the pin.
Alternatively, the three-axis steering trolley for a railway vehicle according to claim 2.
【請求項7】前記第1の軸ばね又は前記第2の軸ばね
は、金属製のコイルばねと、前記コイルばねを挟持する
一対のばね座とを備え、前記ばね座の前記台車枠および
前記軸箱への取付面が円筒状とされることにより、前記
第1の軸ばね又は前記第2の軸ばね全体として、前記ば
ね座が前記台車枠および前記軸箱の取付面上を転動可能
な方向のばね定数が、前記ばね座が前記台車枠および前
記軸箱側の取付面上を転動不能な方向のばね定数よりも
小さくされていることを特徴とする請求項1または請求
項2に記載の鉄道車両用3軸操舵台車。
7. The first shaft spring or the second shaft spring includes a coil spring made of metal and a pair of spring seats for sandwiching the coil spring, and the bogie frame of the spring seat and the spring seat. By making the attachment surface to the axle box cylindrical, the spring seat can roll on the attachment surfaces of the bogie frame and the axle box as a whole of the first axle spring or the second axle spring. 3. A spring constant in a different direction is smaller than a spring constant in a direction in which the spring seat cannot roll on the mounting surface on the bogie frame and the axle box side. The three-axle steering trolley for railway vehicles described in.
【請求項8】前記軸箱の前記台車枠に対する所定の大き
さ以上の相対変位を阻止するストッパをさらに備えるこ
とを特徴とする請求項1乃至請求項7のいずれかに記載
の鉄道車両用3軸操舵台車。
8. The railway vehicle 3 according to any one of claims 1 to 7, further comprising a stopper that prevents relative displacement of the axle box with respect to the bogie frame by a predetermined amount or more. Axle steering cart.
【請求項9】前記先頭軸および前記後尾軸の軌条の幅方
向の相対変位許容量に対して、前記中間軸の軌条の幅方
向の相対変位許容量を大きくしたことを特徴とする請求
項8に記載の鉄道車両用3軸操舵台車。
9. The relative displacement allowance in the width direction of the rail of the intermediate shaft is set larger than the relative displacement allowance in the width direction of the rail of the leading shaft and the rear tail shaft. The three-axle steering trolley for railway vehicles described in.
【請求項10】前記中間軸の両端部をそれぞれ支持する
軸箱の、軌条の長手方向へのそれぞれの変位の合計が常
にゼロとなるように前記中間軸を前記台車枠に連結す
る、リンクおよびレバーを有した中間軸連結機構をさら
に備えることを特徴とする請求項1乃至請求項8のいず
れかに記載の鉄道車両用3軸操舵台車。
10. A link for connecting the intermediate shaft to the bogie frame so that the total displacement of each of the shaft boxes supporting both ends of the intermediate shaft in the longitudinal direction of the rail is always zero. The three-axle steering bogie for a railroad vehicle according to any one of claims 1 to 8, further comprising an intermediate shaft coupling mechanism having a lever.
【請求項11】鉄道車両の車体に対する前記台車枠の首
振り角度に比例した横動量で前記中間軸を軌条の幅方向
に横動させる中間軸横動機構をさらに備えることを特徴
とする請求項1乃至請求項10のいずれかに記載の鉄道
車両用3軸操舵台車。
11. An intermediate shaft lateral movement mechanism for laterally moving the intermediate shaft in a width direction of a rail with a lateral movement amount proportional to a swing angle of the bogie frame with respect to a vehicle body of a railway vehicle. The three-axle steering cart for railway vehicles according to any one of claims 1 to 10.
JP04004396A 1996-02-27 1996-02-27 3-axis steering bogie for railway vehicles Expired - Fee Related JP3471157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04004396A JP3471157B2 (en) 1996-02-27 1996-02-27 3-axis steering bogie for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04004396A JP3471157B2 (en) 1996-02-27 1996-02-27 3-axis steering bogie for railway vehicles

Publications (2)

Publication Number Publication Date
JPH09226575A true JPH09226575A (en) 1997-09-02
JP3471157B2 JP3471157B2 (en) 2003-11-25

Family

ID=12569893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04004396A Expired - Fee Related JP3471157B2 (en) 1996-02-27 1996-02-27 3-axis steering bogie for railway vehicles

Country Status (1)

Country Link
JP (1) JP3471157B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054573A (en) * 2001-12-26 2003-07-02 한국철도기술연구원 truck device use for high-speed driving of electric train
WO2007006528A1 (en) 2005-07-13 2007-01-18 Evoinvent Ag Drive for rail vehicles
JP2007303530A (en) * 2006-05-10 2007-11-22 Denso Corp Mounting structure of bearing on rotary shaft and actuator of valve lift controller
WO2009017114A1 (en) * 2007-07-30 2009-02-05 The University Of Tokyo Self-steering platform car
EP2371656A1 (en) * 2010-03-29 2011-10-05 Siemens AG Österreich Rail vehicle with variable axel geometry
KR101530206B1 (en) * 2013-12-20 2015-06-22 한국철도기술연구원 3-axles articulated bogie for railway vehicle
JP2017024580A (en) * 2015-07-23 2017-02-02 幸徳 川本 Truck device of railway vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054573A (en) * 2001-12-26 2003-07-02 한국철도기술연구원 truck device use for high-speed driving of electric train
WO2007006528A1 (en) 2005-07-13 2007-01-18 Evoinvent Ag Drive for rail vehicles
US7540242B2 (en) 2005-07-13 2009-06-02 Evoinvent Ag Running gear for rail vehicles
JP2007303530A (en) * 2006-05-10 2007-11-22 Denso Corp Mounting structure of bearing on rotary shaft and actuator of valve lift controller
WO2009017114A1 (en) * 2007-07-30 2009-02-05 The University Of Tokyo Self-steering platform car
JP5311414B2 (en) * 2007-07-30 2013-10-09 国立大学法人 東京大学 Self-steering trolley
EP2371656A1 (en) * 2010-03-29 2011-10-05 Siemens AG Österreich Rail vehicle with variable axel geometry
US8833267B2 (en) 2010-03-29 2014-09-16 Siemens Ag Oesterreich Rail vehicle with variable axial geometry
KR101530206B1 (en) * 2013-12-20 2015-06-22 한국철도기술연구원 3-axles articulated bogie for railway vehicle
JP2017024580A (en) * 2015-07-23 2017-02-02 幸徳 川本 Truck device of railway vehicle

Also Published As

Publication number Publication date
JP3471157B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US10065663B2 (en) Steering bogie and vehicle
JP5325199B2 (en) Tracked vehicle
EP2196377B1 (en) Steering bogie for rolling stock, rolling stock and articulated vehicle
US3547046A (en) Railway locomotive truck with low traction point
JP3471157B2 (en) 3-axis steering bogie for railway vehicles
JPH043347B2 (en)
JP4838693B2 (en) Track system
JP7319550B2 (en) Linking devices and bogies for railway vehicles
US4040361A (en) Railway locomotive truck
US4040360A (en) Railway locomotive truck
JP2000038132A (en) Rolling stock truck
JPH0321380B2 (en)
JPH078647B2 (en) Orbital vehicle
JP7094626B2 (en) Bolsterless bogie
JPH057222B2 (en)
JPH0911899A (en) Triaxial steering bogie for railway rolling stock
JP2001114103A (en) Car end coupler
JP2003137092A (en) Bogie for rolling stock
JPH05221314A (en) Truck for rolling stock
US2255619A (en) Railway vehicle
JPH08104233A (en) Steering device for railway rolling stock bogie
JPS59230859A (en) Truck for railway rolling stock
NZ204854A (en) Three-axle motor bogie with low weight transfer suspension
JP2002234435A (en) Single axle bogie for rolling stock
JPS59164263A (en) Truck system locomotive

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080912

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees