JPH09225311A - Modified raney nickel catalyst and production of diol compound thereby - Google Patents

Modified raney nickel catalyst and production of diol compound thereby

Info

Publication number
JPH09225311A
JPH09225311A JP8039730A JP3973096A JPH09225311A JP H09225311 A JPH09225311 A JP H09225311A JP 8039730 A JP8039730 A JP 8039730A JP 3973096 A JP3973096 A JP 3973096A JP H09225311 A JPH09225311 A JP H09225311A
Authority
JP
Japan
Prior art keywords
hydroxy
catalyst
weight
reaction
hydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8039730A
Other languages
Japanese (ja)
Other versions
JP3016727B2 (en
Inventor
Shien Chang Chen
顯 彰 陳
Seisho Shu
正 章 朱
Fu Shen Lin
福 伸 林
June-Yen Chou
俊 彦 周
Kenchu Ko
健 忠 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIREN KAGAKU KOGYO KOFUN YUUG
DAIREN KAGAKU KOGYO KOFUN YUUGENKOUSHI
DALIAN CHEM IND CO Ltd
Original Assignee
DAIREN KAGAKU KOGYO KOFUN YUUG
DAIREN KAGAKU KOGYO KOFUN YUUGENKOUSHI
DALIAN CHEM IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIREN KAGAKU KOGYO KOFUN YUUG, DAIREN KAGAKU KOGYO KOFUN YUUGENKOUSHI, DALIAN CHEM IND CO Ltd filed Critical DAIREN KAGAKU KOGYO KOFUN YUUG
Priority to JP8039730A priority Critical patent/JP3016727B2/en
Publication of JPH09225311A publication Critical patent/JPH09225311A/en
Application granted granted Critical
Publication of JP3016727B2 publication Critical patent/JP3016727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modified Raney nickel catalyst for hydrogenation reaction of a hydroxy-aldehyde compd. and a hydroxy cyclic ether compd. SOLUTION: This modified Raney nickel catalyst is especially used in hydrogentation reaction of a hydroxy-aldehyde compd. such as 4-hydroxy-butanal or 2-methyl-3-hydroxy-propanal and 2-hydroxytetrahydrofuran and consists of 40-98wt.% of nickel, 1-50wt.% of aluminum and 0.05-15wt.% of iron as a hydrogenation catalyst of hydroxy-aldehyde or hydroxy cyclic ether and, further, a diol compd. is produced by using this catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、改質ラニーニッケ
ル触媒とその触媒によるジオール化合物の製造方法に関
する。本発明の改質ラニーニッケルは、ヒドロキシ−ア
ルデヒドとヒドロキシ環状エーテルの水素添加反応、特
に、4−ヒドロキシ−ブタナール、2−ヒドロキシ−テ
トラヒドロフランおよび2−メチル−3−ヒドロキシ−
プロパナールの水素添加反応の際に有用な触媒として最
も良く用いられる。
TECHNICAL FIELD The present invention relates to a modified Raney nickel catalyst and a method for producing a diol compound by the catalyst. The modified Raney nickel of the present invention is a hydrogenation reaction of hydroxy-aldehyde and hydroxy cyclic ether, especially 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-.
It is most often used as a useful catalyst in the hydrogenation reaction of propanal.

【0002】[0002]

【従来の技術】従来、4−ヒドロキシ−ブタナール(4
−hydroxy−butanal)、2−ヒドロキシ
−テトラヒドロフラン(2−hydroxy−tetr
a−hydrofuran)および2−メチル−3−ヒ
ドロキシ−プロパナール(2−methyl−3−hy
droxypropanal)の製造方法として、アリ
ル−アルコール(allyl alcohol)、一酸
化炭素と水素を原料とするゲルマニウム触媒の存在下
で、ヒドロホルミル化反応(Hydro−formyl
ation)による下記に挙げる方法が知られている。
Conventionally, 4-hydroxy-butanal (4
-Hydroxy-butanal), 2-hydroxy-tetrahydrofuran (2-hydroxy-tetr)
a-hydrofuran) and 2-methyl-3-hydroxy-propanal (2-methyl-3-hy)
As a method for producing droxypropanal, a hydroformylation reaction (Hydro-formyl) in the presence of an allyl alcohol and a germanium catalyst using carbon monoxide and hydrogen as raw materials is used.
The following methods are known.

【0003】[0003]

【化1】 Embedded image

【0004】そして、上記に挙げる方法により得られた
4−ヒドロキシ−ブタナールと2−ヒドロキシ−テトラ
ヒドロフラン及び2−メチル−3−ヒドロキシ−プロパ
ナールは、それぞれさらに水素添加反応(hydrog
enation)により、1,4−ブタンジオール
(1,4−butanediol)及び2−メチル−
1,3−プロパンジオール(2−methyl−1,3
−propanediol)の製造に際し、必要な中間
原料として有用な化合物である。上記水素添加反応とし
て下記の反応式が挙げられている。
Then, 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal obtained by the above-mentioned methods are further subjected to a hydrogenation reaction (hydrolog).
1,4-butanediol and 2-methyl-
1,3-propanediol (2-methyl-1,3
-Propanediol) is a useful compound as a necessary intermediate raw material. The following reaction formula is mentioned as the above hydrogenation reaction.

【0005】[0005]

【化2】 Embedded image

【0006】前記の4−ヒドロキシ−ブタナールと2−
メチル−3−ヒドロキシ−プロパナールの水素添加反応
はカルボニル基(carbonyl group)の水
素添加反応によるもので、一般にはカルボニ基の水素添
加反応に用いられる貴重金属(Precious me
tal)を含む触媒、例えばパラジウム触媒〔Bioc
hemistry Journal,37,726(1
943)〕、白金触媒〔Journal of Ame
rican Chemical Society,7
0,664(1948)〕、ルテニウム触媒(USP第
3144490号公報)、レニウム触媒〔Journa
l of Organic Chemistry,2
4,1847(1959)〕、酸化銅−クロマイト触媒
〔Industrial and Engineeri
ng Chemistry,38,251,(194
6)〕、銅触媒(BP第659981号公報)、ニッケ
ル触媒〔工業化学雑誌、第46巻、901頁、(194
3)〕、ラニーニッケル触媒〔Journal of
American Chemical Societ
y,70,695(1948)〕、ラニーコバルト触媒
(Journal of Applied Chemi
stry,8,492(1958)〕などか用いられて
いる。
The above 4-hydroxy-butanal and 2-
The hydrogenation reaction of methyl-3-hydroxy-propanal is based on the hydrogenation reaction of a carbonyl group, and is generally a precious metal used in the hydrogenation reaction of a carbonyl group.
tal) containing catalysts such as palladium catalysts [Bioc
chemistry Journal, 37, 726 (1
943)], platinum catalyst [Journal of Ame
rican Chemical Society, 7
0,664 (1948)], ruthenium catalyst (USP No. 3144490), rhenium catalyst [Journa
l of Organic Chemistry, 2
4, 1847 (1959)], copper oxide-chromite catalyst [Industrial and Engineering]
ng Chemistry, 38, 251, (194
6)], copper catalyst (BP 659981), nickel catalyst [Industrial Chemistry, Vol. 46, page 901, (194)
3)], Raney nickel catalyst [Journal of
American Chemical Societ
y, 70, 695 (1948)], Raney cobalt catalyst (Journal of Applied Chemi).
stry, 8, 492 (1958)] or the like is used.

【0007】[0007]

【発明が解決しようとする課題】本発明者らの多年にわ
たる上記4−ヒドロキシ−ブタナール、2−ヒドロキシ
−テトラヒドロフランと2−メチル−3−ヒドロキシ−
プロパナールの水素添加反応にかかわる研究の結果、本
系列の水素添加反応と通常のカルボニル基の水素添加反
応は異なることを見出した。即ち、実験に用いたパラジ
ウム触媒と酸化銅亜鉛触媒は上記反応系においてほとん
ど活性がみられず、さらにルテニウム触媒と酸化銅−ク
ロマイト触媒にいたっては、上記反応系では活性が非常
に低く、実用価値のないものである。ただニッケル触媒
とラニーニッケル触媒のみ、本反応系において高い活性
を示す。さらに鋭意検討したところ、ニッケル触媒、ラ
ニーニッケル触媒とも反応活性の低下が非常にはやく、
触媒として重複使用した場合、その使用寿命は短かく、
33バッチ或いは30時間の連続的使用で、その反応活
性は使用に耐えないものとなり、工業的には実用化に遠
いものであった。
SUMMARY OF THE INVENTION The 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-above-mentioned for many years of the present inventors.
As a result of research on hydrogenation reaction of propanal, it was found that the hydrogenation reaction of this series is different from the usual hydrogenation reaction of carbonyl group. That is, the palladium catalyst and the copper-zinc oxide catalyst used in the experiment showed almost no activity in the above reaction system, and the ruthenium catalyst and the copper oxide-chromite catalyst had very low activity in the above reaction system, and were practically used. It is worthless. Only nickel catalyst and Raney nickel catalyst show high activity in this reaction system. As a result of further study, the reaction activity of both the nickel catalyst and the Raney nickel catalyst was very low,
When it is used repeatedly as a catalyst, its service life is short,
With 33 batches or continuous use for 30 hours, the reaction activity became unusable, and industrially far from practical use.

【0008】このように、公知のいずれの触媒によって
も上記の反応系の水素添加反応を工業的に有利に行なう
ことは困難であった。
As described above, it has been difficult to industrially advantageously carry out the hydrogenation reaction of the above reaction system with any known catalyst.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の状
況に鑑み、有用な触媒を提供すべく鋭意検討をした。そ
の結果、従来のラニーニッケル触媒に鉄或いは鉄とクロ
ム、モリブデン、タングステン、コバルト、マンガン、
チタンなどの金属より選出した少なくとも一種或いは二
種以上の金属を添加したところ、非常に高い反応活性を
示し、かつ反応活性の低下も少ない。即ち、再三重複使
用した場合、触媒としての寿命も非常に長く、工業的に
も有用な改質ラニーニッケル触媒を見出した。
In view of the above situation, the present inventors have made earnest studies to provide a useful catalyst. As a result, iron or iron and chromium, molybdenum, tungsten, cobalt, manganese,
When at least one metal or two or more metals selected from metals such as titanium are added, a very high reaction activity is exhibited and the reaction activity is not significantly reduced. That is, a modified Raney nickel catalyst was found to be industrially useful, since it has a very long life as a catalyst when it is used repeatedly.

【0010】さらに本発明者らは、上記の改質ラニーニ
ッケル触媒を用いることにより、4−ヒドロキシ−ブタ
ナール、2−ヒドロキシ−テトラヒドロフランと2−メ
チル−3−ヒドロキシ−プロパナールを原料として水素
添加反応を行ない、1,4−−ブタンジオールと2−メ
チル−1,3−プロパンジオールを工業的に有利に製造
できることを見出し、本発明を完成するに至った。
Further, the inventors of the present invention use the above modified Raney nickel catalyst to carry out hydrogenation reaction using 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal as raw materials. The present invention was completed by finding out that 1,4-butanediol and 2-methyl-1,3-propanediol can be industrially advantageously produced.

【0011】本発明の第1の目的は、改質ラニーニッケ
ル触媒を提供し、即ち、ヒドロキシ−アルデヒド、特に
4−ヒドロキシ−ブタナール、2−ヒドロキシ−テトラ
ヒドロフランと2−メチル−3−ヒドロキシ−プロパナ
ールの水素添加反応に用いられる触媒を提供する。
The first object of the present invention is to provide a modified Raney nickel catalyst, ie a hydroxy-aldehyde, especially 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal. A catalyst used in the hydrogenation reaction of 1.

【0012】さらに、本発明の次の目的は、上記の改質
ラニーニッケル触媒を用いたジオール化合物の製造方法
を提供する。
Further, the next object of the present invention is to provide a method for producing a diol compound using the above modified Raney nickel catalyst.

【0013】本発明は、一種の改質ラニーニッケル触媒
に関したものであり、ヒドロキシ−アルデヒドの水素添
加反応、特に4−ヒドロキシ−ブタナール、2−ヒドロ
キシ−テトラヒドロフランと2−メチル−3−ヒドロキ
シ−プロパナールの水素添加反応に用いられる触媒を提
供することを特徴とする。
The present invention relates to a kind of modified Raney nickel catalyst, which is a hydrogenation reaction of hydroxy-aldehyde, especially 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-proton. It is characterized by providing a catalyst used in the hydrogenation reaction of Panhard.

【0014】さらに本発明は、上記の触媒を用いたジオ
ール化合物の製造方法に関するものである。
Further, the present invention relates to a method for producing a diol compound using the above catalyst.

【0015】本発明の改質ラニーニッケル触媒における
ニッケルの含有量は、40〜98重量%、アルミニウム
の含有量は1〜50重量%、鉄の含有量は0.05〜1
5重量%である。
In the modified Raney nickel catalyst of the present invention, the nickel content is 40 to 98% by weight, the aluminum content is 1 to 50% by weight, and the iron content is 0.05 to 1%.
5% by weight.

【0016】本発明の改質ラニーニッケル触媒は、前記
必須成分のニッケル、アルミニウムと鉄に加え、必要に
応じて、さらにクロム、モリブデン、タングステン、コ
バルト、マンガン、チタンなどの金属より任意に選んだ
1種或いは1種以上の金属を0.05〜10重量%加え
ることができる。
The modified Raney nickel catalyst of the present invention is arbitrarily selected from the metals such as chromium, molybdenum, tungsten, cobalt, manganese and titanium in addition to the above-mentioned essential components nickel, aluminum and iron. 0.05 to 10% by weight of one or more metals can be added.

【0017】本発明の改質ラニーニッケル触媒の製造方
法は、公知の製造方法に準じて製造することができる。
The modified Raney nickel catalyst of the present invention can be produced according to a known production method.

【0018】例えば、所定量のニッケル、アルミニウム
と鉄、さらに必要に応じてクロム、モリブデン、コバル
ト、タングステン、マンガン、チタンなどの金属より任
意に選ばれた1種或いは1種以上を適宜配合した混合物
を1200〜2000℃の温度下で加熱融解し、本発明
の改質ラニーニッケル触媒の前駆合金を製造し、静置、
冷却した後に適当な粒度(通常は粒状あるいは粉末とし
て)に粒砕し、次に水酸化アルカリ金属水溶液中で分散
し、さらに蒸留水あるいはイオン交換水を用いて洗浄す
ることにより本発明の改質ラニーニッケル触媒を得る。
For example, a predetermined amount of nickel, aluminum and iron, and, if necessary, one kind or a mixture of one or more kinds arbitrarily selected from metals such as chromium, molybdenum, cobalt, tungsten, manganese and titanium. Is heated and melted at a temperature of 1200 to 2000 ° C. to produce a precursor alloy of the modified Raney nickel catalyst of the present invention, which is allowed to stand,
After cooling, it is crushed to a suitable particle size (usually as a granule or powder), then dispersed in an aqueous alkali metal hydroxide solution, and further washed with distilled water or ion-exchanged water to modify the present invention. A Raney nickel catalyst is obtained.

【0019】本発明による改質ラニーニッケル触媒はヒ
ドロキシ−アルデヒド、特に4−ヒドロキシ−ブタナー
ル、2−ヒドロキシ−テトラヒドロフランと2−メチル
−3−ヒドロキシ−プロパナールの水素添加反応の触媒
として最も良く用いられる。
The modified Raney nickel catalyst according to the invention is best used as a catalyst for the hydrogenation reaction of hydroxy-aldehydes, especially 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal. .

【0020】また、本発明の改質ラニーニッケル触媒に
よるジオール化合物の製造方法は、例えば本発明の改質
ラニーニッケル触媒の存在下で、ヒドロキシ−アルデヒ
ドを50〜200℃、好ましくは70〜150℃の温度
下で、10〜200kg/cm2 Gの加圧、好ましくは
20〜80kg/cm2 Gの反応加圧下で水素添加反応
を行うことにより目的とするジオール化合物が得られ
る。
The method for producing a diol compound using the modified Raney nickel catalyst of the present invention is, for example, in the presence of the modified Raney nickel catalyst of the present invention, hydroxy-aldehyde is added at 50 to 200 ° C., preferably 70 to 150 ° C. The desired diol compound can be obtained by carrying out the hydrogenation reaction under the pressure of 10 to 200 kg / cm 2 G, and preferably under the reaction pressure of 20 to 80 kg / cm 2 G under the temperature of

【0021】上記水素添加反応の際に用いる反応器は、
使用する触媒によって異なるが、一般に粉末状の触媒を
用いた場合、スラリー床式反応槽(slurry be
dreactor)を用い、粒状の触媒を用いた場合
は、固定床式反応槽(fixed bed react
or)が良く利用される。上記反応は、バッチ・プロセ
ス(batch process)或いは連続式操作
(continuousprocess)の任意の方法
が用いられる。
The reactor used in the above hydrogenation reaction is
Depending on the catalyst used, in general, when a powdery catalyst is used, a slurry bed reactor (slurry beer) is used.
fixed bed reactor when a granular catalyst is used.
or) is often used. For the above reaction, any method of batch process or continuous process is used.

【0022】本発明の触媒の使用量は、スラリー床式反
応系において、反応液重量に対して、通常0.5〜20
重量%を用いる。固定床式反応系の場合は、0.1〜1
0hr-1の液量空間速度(liquid hourly
space velocity、以下LHSVと略す
る)で触媒を投入する。
The amount of the catalyst of the present invention used is usually 0.5 to 20 relative to the weight of the reaction liquid in the slurry bed type reaction system.
Use% by weight. 0.1 to 1 for fixed bed reaction system
Liquid hourly velocity of 0 hr -1
The catalyst is charged at a space velocity (hereinafter abbreviated as LHSV).

【0023】本発明の水素添加反応に用いられる原料化
合物のヒドロキシ−アルデヒドとして、例えば4−ヒド
ロキシ−ブタナール、2−ヒドロキシ−テトラヒドロフ
ランと2−メチル−3−ヒドロキシ−プロパナールなど
が挙げられる。
Examples of the hydroxy-aldehyde of the raw material compound used in the hydrogenation reaction of the present invention include 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal.

【0024】本発明の改質ラニーニッケル触媒は活性が
高く、かつ触媒として長期間利用できるものである。
The modified Raney nickel catalyst of the present invention has high activity and can be used as a catalyst for a long period of time.

【0025】以下に、実施例により本発明をさらに詳し
く説明するが、本発明は、これらの実施例に何等限定さ
れるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0026】[0026]

【実施例】【Example】

1.粉末状スラリー床反応系 1. Powder slurry bed reaction system

【0027】[0027]

【実施例1】撹拌機を附した耐圧ガラス反応容器に、カ
ルボニルヒドロトリス(トリフェニルホスフィン)ロジ
ウム0.781g、トリフェニルホスフィン21.6
g、アリルアルコール55.4gとトルエン73.6g
を加え、反応系の温度を60℃に保ちながら、一酸化炭
素と水素ガスの混合物(1:1モル比)を導入し、それ
により反応系の内圧を7kg/cm2 Gに保ち、アルデ
ヒド化反応を6.5時間続ける。反応終了後、精製水を
反応液に加えて抽出、分液する。上層に触媒を含むトル
エン液と下層に4−ヒドロキシ−ブタナール、2−ヒド
ロキシ−テトラヒドロフランと2−メチル−3−ヒドロ
キシ−プロパナールを含む水層とに分かれる。
Example 1 0.781 g of carbonylhydrotris (triphenylphosphine) rhodium and 21.6 triphenylphosphine were placed in a pressure-resistant glass reaction vessel equipped with a stirrer.
g, allyl alcohol 55.4 g and toluene 73.6 g
And a mixture of carbon monoxide and hydrogen gas (1: 1 molar ratio) was introduced while maintaining the temperature of the reaction system at 60 ° C., thereby maintaining the internal pressure of the reaction system at 7 kg / cm 2 G and performing aldehyde formation. The reaction is continued for 6.5 hours. After completion of the reaction, purified water is added to the reaction solution for extraction and separation. It is divided into a toluene solution containing a catalyst in the upper layer and an aqueous layer containing 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal in the lower layer.

【0028】水素添加触媒の調製として、ニッケル3
8.5重量%、アルミニウム58.4重量%、鉄1.4
重量%、クロム1.7重量%よりなるアロイを1650
℃で熔解、冷却して製造した後、これを20〜150μ
mに粒砕する。別に、水酸化ナトリウム30gを水15
0mlに溶解し、撹拌しながら50〜60℃に冷却す
る。次に上記アロイ粉末20gを前記の水酸化ナトリウ
ム水溶液中に加え、温度を50〜100℃に上昇させ、
撹拌しながら30〜120分間分散を行なう。その後、
精製水を用い洗浄液がpH8〜9になる迄洗浄して、ニ
ッケル85.0重量%、アルミニウム9.5重量%、鉄
2.5重量%とクロム3.0重量%を含有する本発明の
改質ラニーニッケル触媒を得る。
For the preparation of the hydrogenation catalyst, nickel 3
8.5% by weight, aluminum 58.4% by weight, iron 1.4
1650 alloy consisting of 1% by weight and 1.7% chromium
After melting and cooling at ℃, and manufacturing, this is 20-150μ
Grind to m. Separately, 30 g of sodium hydroxide is added to 15 g of water.
Dissolve in 0 ml and cool to 50-60 ° C. with stirring. Next, 20 g of the above alloy powder is added to the above aqueous sodium hydroxide solution to raise the temperature to 50 to 100 ° C.,
Disperse for 30 to 120 minutes with stirring. afterwards,
It was washed with purified water until the pH of the washing liquid reached 8 to 9, and the modified form of the present invention containing 85.0% by weight nickel, 9.5% by weight aluminum, 2.5% by weight iron and 3.0% by weight chromium. Quality Raney nickel catalyst is obtained.

【0029】次に、4−ヒドロキシ−ブタナール、2−
ヒドロキシ−テトラヒドロフランと2−メチル−3−ヒ
ドロキシ−プロパナールを含む上記の水溶液420ml
を撹拌機を附したステンレス・ジャケット式反応容器に
加え、反応容器内に金属粉末か燒装置を設置し、上記の
水素添加触媒9.38g(粒径50μm以下65%)を
添加し、115℃に加温、水素ガスを導入しながら反応
系内圧を60kg/cm2 Gに維持し、撹拌を続け、2
時間水素添加反応を行なう。反応後、水素ガスの供給と
撹拌を止め、30分間静置して触媒を沈澱させ、水素ガ
ス圧を上記か燒装置の中心より放圧した後、上澄液約4
00mlを反応系より取り出す。ガスクロマトグラフィ
の分析結果、1,4−ブタンジオール16.64重量
%、2−メチル−1,3−プロパンジオール3.25重
量%、その他の反応生成物と水溶液80.11重量%よ
りなることを知る。さらに4−ヒドロキシ−ブタナー
ル、2−ヒドロキシ−テトラヒドロフランと2−メチル
−3−ヒドロキシ−プロパナールなどを含む水溶液40
0mlを反応容器内に補給し、上記と同じ反応条件下で
2時間水素添加反応を再度行ない、このようにして五十
回(batch)水素添加反応の操作を連続した結果、
平均95〜98%の転化率を維持した状態を示した。上
記の転化率は下記の式により計算される。
Next, 4-hydroxy-butanal, 2-
420 ml of the above aqueous solution containing hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal
Was added to a stainless steel jacket type reaction vessel equipped with a stirrer, a metal powder or a burning device was installed in the reaction vessel, 9.38 g of the above hydrogenation catalyst (particle size 50 μm or less 65%) was added, and 115 ° C. While heating and introducing hydrogen gas, the internal pressure of the reaction system was maintained at 60 kg / cm 2 G and stirring was continued for 2
The hydrogenation reaction is performed for an hour. After the reaction, supply of hydrogen gas and stirring were stopped, the catalyst was allowed to stand for 30 minutes, the hydrogen gas pressure was released from the center of the above-mentioned burning apparatus, and the supernatant liquid was about 4
Remove 00 ml from the reaction system. As a result of analysis by gas chromatography, it was found that it was composed of 16.64% by weight of 1,4-butanediol, 3.25% by weight of 2-methyl-1,3-propanediol, 80.11% by weight of other reaction products and an aqueous solution. know. Further, an aqueous solution containing 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran, 2-methyl-3-hydroxy-propanal, etc. 40
0 ml was replenished in the reaction vessel, and the hydrogenation reaction was performed again for 2 hours under the same reaction conditions as described above. As a result, the operation of the 50th hydrogenation reaction was continued in this way,
An average conversion rate of 95 to 98% was maintained. The above conversion rate is calculated by the following formula.

【0030】[0030]

【数1】 HBA1:水素添加反応前の反応液中、ガスクロ分析に
よる4−ヒドロキシ−ブタナール+2−ヒドロキシ−テ
トラヒドロフラン+2−メチル−3−ヒドロキシ−プロ
パナールの濃度を示す。 HBA2:水素添加反応後の反応液中、ガスクロ分析に
よる4−ヒドロキシ−ブタナール+2−ヒドロキシ−テ
トラヒドロフラン+2−メチル−3−ヒドロキシ−プロ
パナールの濃度を示す。
[Equation 1] HBA1: shows the concentration of 4-hydroxy-butanal + 2-hydroxy-tetrahydrofuran + 2-methyl-3-hydroxy-propanal in the reaction solution before hydrogenation reaction by gas chromatography analysis. HBA2: shows the concentration of 4-hydroxy-butanal + 2-hydroxy-tetrahydrofuran + 2-methyl-3-hydroxy-propanal in the reaction solution after the hydrogenation reaction by gas chromatography analysis.

【0031】[0031]

【実施例2】水素添加反応に用いる触媒中、粒径50μ
m以下に占める比を57%、かつ触媒の組成をニッケル
87.1重量%、アルミニウム9.9重量%、鉄3.0
重量%に変えた以外は、実施例1と同様にして水素添加
反応を行ない、50回(batch)連続操作をしたと
ころ、その転化率は、平均93〜98%の範囲を維持し
た。
Example 2 Particle size of 50 μm in a catalyst used for hydrogenation reaction
The ratio of m to m is 57%, and the composition of the catalyst is nickel 87.1% by weight, aluminum 9.9% by weight, iron 3.0.
The hydrogenation reaction was carried out in the same manner as in Example 1 except that the weight ratio was changed to 50 times (batch), and the conversion rate was maintained in the range of 93 to 98% on average.

【0032】[0032]

【実施例3】水素添加反応に用いる触媒中、粒径87μ
m以下に占める比を90%、かつ触媒の組成をニッケル
87.0重量%、アルミニウム9.9重量%、鉄0.1
重量%、クロム3.0重量%に変えた以外は、実施例1
と同様にして水素添加反応を行ない、46回(batc
h)連続操作をしたところ、その転化率は平均90〜9
8%の範囲を維持した。
Example 3 Particle size of 87 μm in a catalyst used for hydrogenation reaction
90% of m or less, and the composition of the catalyst is 87.0% by weight of nickel, 9.9% by weight of aluminum, and 0.1 of iron.
Example 1 except that the weight% and chromium 3.0% were changed.
The hydrogenation reaction was carried out in the same manner as in, and was carried out 46 times (batc
h) When the continuous operation was performed, the conversion rate was 90 to 9 on average.
The range of 8% was maintained.

【0033】[0033]

【実施例4】水素添加反応に用いる触媒中、粒径162
μm以下に占める比を90%、かつ触媒の組成をニッケ
ル92.0重量%、アルミニウム6.1重量%、鉄0.
7重量%、モリブデン1.2重量%に変えた以外は、実
施例1と同様にして水素添加反応を行ない、45回(b
atch)連続操作をしたところ、その転化率は平均9
0〜98%の範囲を維持した。
Example 4 Particle size 162 in catalyst used for hydrogenation reaction
90% by weight, and the composition of the catalyst is 92.0% by weight of nickel, 6.1% by weight of aluminum, and 0.1% by weight of iron.
The hydrogenation reaction was carried out in the same manner as in Example 1 except that the amount of hydrogen was changed to 7% by weight and 1.2% by weight of molybdenum.
When the continuous operation was performed, the conversion rate was 9 on average.
The range of 0-98% was maintained.

【0034】[0034]

【実施例5】水素添加反応に用いる触媒中、粒径50μ
m以下に占める比を65%、かつ触媒の組成をニッケル
86.0重量%、アルミニウム9.5重量%、鉄0.5
重量%、チタン2.0重量%、タングステン2.0重量
%に変えた以外は、実施例1と同様にして水素添加反応
を行ない、40回(batch)連続操作をしたとこ
ろ、その転化率は平均90〜98%の範囲を維持した。
Example 5 Particle size of 50 μm in catalyst used for hydrogenation reaction
The ratio of 65% to m or less, and the composition of the catalyst is 86.0% by weight of nickel, 9.5% by weight of aluminum, and 0.5 of iron.
The hydrogenation reaction was carried out in the same manner as in Example 1 except that the weight ratio was changed to 2.0% by weight of titanium and 2.0% by weight of tungsten, and the continuous operation was repeated 40 times (batch). The average range of 90-98% was maintained.

【0035】[0035]

【実施例6】水素添加反応に用いる触媒中、粒径44μ
m以下に占める比を46.8%、かつ触媒の組成をニッ
ケル87.0重量%、アルミニウム11.6重量%、鉄
1.2重量%、マンガン2.0重量%に変えた以外は、
実施例1と同様にして水素添加反応を行い、38回(b
atch)連続操作をしたところ、その転化率は平均9
0〜98%の範囲を維持した。
Example 6 Particle size of 44 μm in catalyst used for hydrogenation reaction
except that the ratio of m to m is 46.8%, and the composition of the catalyst is changed to nickel 87.0 wt%, aluminum 11.6 wt%, iron 1.2 wt% and manganese 2.0 wt%.
The hydrogenation reaction was carried out in the same manner as in Example 1, 38 times (b
When the continuous operation was performed, the conversion rate was 9 on average.
The range of 0-98% was maintained.

【0036】[0036]

【比較例1】水素添加反応に用いる触媒中、粒径50μ
m以下に占める比を83%、但し触媒の組成をニッケル
92.7重量%、アルミニウム6.1重量%、モリブデ
ン1.2重量%に変え、実施例1と同様にして水素添加
反応を行い、33回(batch)連続操作をしたとこ
ろ、その転化率は90%より70%に低下した。
[Comparative Example 1] Particle size of 50μ in a catalyst used for hydrogenation reaction
The proportion of m or less is 83%, except that the composition of the catalyst is changed to nickel 92.7% by weight, aluminum 6.1% by weight, molybdenum 1.2% by weight, and hydrogenation reaction is performed in the same manner as in Example 1, After continuous operation for 33 times (batch), the conversion rate decreased from 90% to 70%.

【0037】[0037]

【比較例2】水素添加反応に用いる触媒の組成をニッケ
ル87.2重量%、アルミニウム3.6重量%、マンガ
ン9.2重量%に変え、実施例1と同様にして水素添加
反応を行ない、15回(batch)連続操作をしたと
ころ、その転化率は90%より30%に低下した。
Comparative Example 2 The composition of the catalyst used in the hydrogenation reaction was changed to nickel 87.2% by weight, aluminum 3.6% by weight and manganese 9.2% by weight, and the hydrogenation reaction was carried out in the same manner as in Example 1, After continuous operation for 15 times (batch), the conversion rate decreased from 90% to 30%.

【0038】[0038]

【比較例3】水素添加反応に用いる触媒中、粒径50μ
m以下に占める比を60%、但し触媒の組成をニッケル
92.7重量%、アルミニウム7.3重量%に変えて、
実施例1と同様にして水素添加反応を行ない、10回
(batch)連続操作をしたところ、その転化率は8
0%より30%に低下した。
[Comparative Example 3] Particle size of 50 μm in the catalyst used for hydrogenation reaction
The ratio of m or less is 60%, except that the composition of the catalyst is changed to 92.7% by weight of nickel and 7.3% by weight of aluminum,
Hydrogenation reaction was carried out in the same manner as in Example 1 and continuous operation was carried out 10 times (batch).
It decreased from 0% to 30%.

【0039】[0039]

【比較例4】水素添加反応にドイツHoechst社製
の触媒RCH55/10を用い、その組成をニッケル5
5重量%を硅藻土に維持した以外は、実施例1と同様に
して水素添加反応を行ない、3回(batch)連続操
作をしたところ、その転化率は80%より20%に低下
した。
[Comparative Example 4] A catalyst RCH55 / 10 manufactured by Hoechst in Germany was used for the hydrogenation reaction, and the composition was changed to nickel 5
The hydrogenation reaction was carried out in the same manner as in Example 1 except that diatomaceous earth was maintained at 5% by weight, and the conversion was repeated 3 times (batch), and the conversion rate decreased from 80% to 20%.

【0040】[0040]

【比較例5】水素添加反応にアメリカHarshaw社
製の触媒Ni−1404Pを用い、触媒の粒径を100
μm以下に占める比を100%とし、その触媒の組成を
ニッケル66重量%をシリカ−アルミナ(SiO2−A
23 )上に載持した以外は、実施例1と同様にして
水素添加反応を行ない、3回(batch)連続操作を
したところ、その転化率は85%より35%に低下し
た。
[Comparative Example 5] The catalyst Ni-1404P manufactured by Harshaw, USA was used for the hydrogenation reaction, and the particle size of the catalyst was 100.
The ratio of the catalyst in 100 μm or less is 66% by weight of nickel and silica-alumina (SiO 2 -A).
The hydrogenation reaction was carried out in the same manner as in Example 1 except that the reaction was carried out on 1 2 O 3 ) and the operation was carried out continuously for 3 times (batch). As a result, the conversion rate decreased from 85% to 35%.

【0041】[0041]

【比較例6】水素添加反応に用いる触媒として、イギリ
スのJohnson Matthey社製の触媒19A
を用い、その組成をルテニウム5重量%を活性炭に載持
した以外は、実施例1と同様にして、一回だけ水素添加
反応を行なった。その転化率は16%と低いものであっ
た。
[Comparative Example 6] As a catalyst used in the hydrogenation reaction, catalyst 19A manufactured by Johnson Matthey of England
Was used, and the hydrogenation reaction was carried out only once in the same manner as in Example 1 except that 5% by weight of ruthenium was loaded on the activated carbon. The conversion rate was as low as 16%.

【0042】[0042]

【比較例7】水素添加反応に用いる触媒として、日本N
ikki社製の触媒N−203SDを用い、該触媒組成
を、第二酸化銅と酸化クロム(Cr23)よりなる以外
は、実施例1と同様にして、一回だけ水素添加反応を行
なったところ、その転化率は9%と非常に低い値を示し
た。
[Comparative Example 7] Japan N was used as a catalyst for the hydrogenation reaction.
A hydrogenation reaction was performed only once in the same manner as in Example 1 except that a catalyst N-203SD manufactured by ikki was used and the catalyst composition consisted of cupric oxide and chromium oxide (Cr 2 O 3 ). However, the conversion rate was a very low value of 9%.

【0043】[0043]

【比較例8】水素添加反応に用いる触媒として、日本G
irdler社製の触媒G−66Dを用い、該触媒組成
を酸化銅33重量%、酸化亜鉛65重量%とする以外
は、実施例1と同様にして、一回だけ水素添加反応を行
なったところ、その転化率は0%であった。
Comparative Example 8 As a catalyst used in the hydrogenation reaction, Japan G
A hydrogenation reaction was carried out only once in the same manner as in Example 1 except that the catalyst composition G-66D manufactured by Irdler was used and the catalyst composition was 33% by weight of copper oxide and 65% by weight of zinc oxide. The conversion rate was 0%.

【0044】[0044]

【比較例9】水素添加反応に用いる触媒として、日本E
ngelhard社製の触媒を用い、触媒組成をパラジ
ウム2重量%をアルミナ上に載持する以外は、実施例1
と同様にして、一回だけ水素添加反応を行なったとこ
ろ、その転化率も0%であった。
[Comparative Example 9] Japan E was used as a catalyst for the hydrogenation reaction.
Example 1 except that a catalyst manufactured by Ngelhard was used and the catalyst composition was 2% by weight of palladium loaded on alumina.
When the hydrogenation reaction was carried out only once in the same manner as above, the conversion rate was 0%.

【0045】上記触媒組成、転化率と操作回数などを併
せ得た結果を第1表に示す。
Table 1 shows the results obtained by combining the above-mentioned catalyst composition, conversion rate and number of operations.

【0046】[0046]

【表1】 [Table 1]

【0047】2.粒状触媒固定床反応系2. Granular catalyst fixed bed reaction system

【0048】[0048]

【実施例7】撹拌機を附した耐圧ガラス反応容器に、カ
ルボニルヒドロトリス(トリフェニルホスフィン)ロジ
ウム0.781g、トリフェニルホスフィン21.6
g、アリルアルコール55.4gとトルエン73.6g
を加え、反応系の温度を60℃に保ち、さらに一酸化炭
素と水素(1:1モル比)の混合ガスを導入し、これに
より反応系の内圧を7kg/cm2 Gに維持して6.5
時間反応を続けた。反応終了後、精製水を用いて抽出、
分液、上層にアルデヒド化反応触媒を含むトルエン溶液
層と、下層に4−ヒドロキシ−ブタナール、2−ヒドロ
キシ−テトラヒドロフランと2−メチル−3−ヒドロキ
シ−プロパナールなどを含む水溶液層とに分かれる。
Example 7 0.781 g of carbonylhydrotris (triphenylphosphine) rhodium and 21.6 triphenylphosphine were placed in a pressure-resistant glass reaction vessel equipped with a stirrer.
g, allyl alcohol 55.4 g and toluene 73.6 g
Was added to maintain the temperature of the reaction system at 60 ° C., and a mixed gas of carbon monoxide and hydrogen (1: 1 molar ratio) was further introduced to maintain the internal pressure of the reaction system at 7 kg / cm 2 G. .5
The reaction was continued for hours. After completion of the reaction, extraction with purified water,
Liquid separation is divided into a toluene solution layer containing an aldehyde conversion catalyst in the upper layer and an aqueous solution layer containing 4-hydroxy-butanal, 2-hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal in the lower layer.

【0049】水素添加触媒の調製として、ニッケル40
重量%、アルミニウム58重量%、鉄0.5重量%、ク
ロム1.5重量%よりなるアロイを160℃で熔解、冷
却して製造した後、これを3〜10meshに粉砕す
る。別に、水酸化ナトリウム80gを水400mlに溶
解し、撹拌しながら50〜60℃に冷却する。次に上記
製造した粒状のアロイを前記の水酸化ナトリウム水溶液
に加え、温度を50〜100℃に上昇し、撹拌しながら
30〜120分間分散を行ない、その後精製水で分散液
を洗浄し、洗浄液がpH8〜9を示す迄洗浄し、これに
よりニッケル57.0重量%、アルミニウム40.2重
量%、鉄0.7重量%、クロム2.1重量%を含む本発
明の改質ラニーニッケル触媒を得る。
To prepare the hydrogenation catalyst, nickel 40
An alloy composed of 50% by weight, 58% by weight of aluminum, 0.5% by weight of iron, and 1.5% by weight of chromium is melted at 160 ° C. and manufactured by cooling, and then crushed to 3 to 10 mesh. Separately, 80 g of sodium hydroxide is dissolved in 400 ml of water and cooled to 50-60 ° C with stirring. Next, the above-prepared granular alloy is added to the above-mentioned sodium hydroxide aqueous solution, the temperature is raised to 50 to 100 ° C., dispersion is carried out for 30 to 120 minutes while stirring, and then the dispersion is washed with purified water to obtain a washing liquid. Was washed until it showed a pH of 8-9, whereby a modified Raney nickel catalyst of the present invention containing 57.0% by weight of nickel, 40.2% by weight of aluminum, 0.7% by weight of iron and 2.1% by weight of chromium was obtained. obtain.

【0050】次に、4−ヒドロキシ−ブタナール、2−
ヒドロキシ−テトラヒドロフランと2−メチル−3−ヒ
ドロキシ−プロパナールなどを含む水溶液を、ポンプに
より、1.5ml/minの流速で、内径1cmのシリ
ンダー状反応液に加え、さらに前記の粒状水素添加触媒
30mlを添加し、115℃に昇温し、水素ガスを導入
しながら、反応系の内圧を60kg/cm2 Gに保ち、
水素添加反応を行なう。ガスクロマトグラフィにより反
応第1日目の反応液中の生成物を分析したところ、1,
4−ブタンジオール17.38重量%、2−メチル−
1,3−プロパンジオール1.98重量%とその他の生
成物を含む水溶液80.64重量%よりなることを知
る。
Next, 4-hydroxy-butanal, 2-
An aqueous solution containing hydroxy-tetrahydrofuran and 2-methyl-3-hydroxy-propanal was added to the cylindrical reaction liquid having an inner diameter of 1 cm by a pump at a flow rate of 1.5 ml / min, and further 30 ml of the granular hydrogenation catalyst. Was added and the temperature was raised to 115 ° C., while introducing hydrogen gas, the internal pressure of the reaction system was maintained at 60 kg / cm 2 G,
Carry out hydrogenation reaction. When the products in the reaction solution on the first day of the reaction were analyzed by gas chromatography,
17.38 wt% 4-butanediol, 2-methyl-
It is known that it consists of 1.98% by weight of 1,3-propanediol and 80.64% by weight of an aqueous solution containing other products.

【0051】さらに20日間連続反応し、その転化率を
調べたところ、すべて96〜100%範囲内に維持した
結果を得る。
The reaction was continued for 20 more days, and the conversion rate was examined. As a result, all the results were maintained within the range of 96 to 100%.

【0052】[0052]

【実施例8】水素添加反応触媒の組成をニッケル50.
4重量%、アルミニウム47重量%、鉄2.6重量%に
変えた以外は、実施例7と同様にして水素添加反応を2
0日間続けて、その転化率を調べた結果95〜100%
を示した。
Example 8 The composition of the hydrogenation reaction catalyst was nickel 50.
The hydrogenation reaction was carried out in the same manner as in Example 7 except that the amounts were changed to 4% by weight, 47% by weight of aluminum and 2.6% by weight of iron.
As a result of checking the conversion rate continuously for 0 days, 95 to 100%
showed that.

【0053】[0053]

【実施例9】水素添加反応触媒の組成をニッケル53.
5重量%、アルミニウム42.4重量%、鉄0.1重量
%、モリブデン4.0重量%に変えた以外は、実施例7
と同様にして水素添加反応を20日間続けて、その転化
率を調べた結果94〜100%を維持していた。
Example 9 The composition of the hydrogenation reaction catalyst was nickel 53.
Example 7 except that the amounts were changed to 5% by weight, 42.4% by weight of aluminum, 0.1% by weight of iron, and 4.0% by weight of molybdenum.
The hydrogenation reaction was continued for 20 days in the same manner as above, and the conversion rate was examined. As a result, it was maintained at 94 to 100%.

【0054】[0054]

【実施例10】水素添加反応触媒の組成をニッケル4
7.5重量%、アルミニウム48.0重量%、鉄0.5
重量%、マンガン3.0重量%、コバルト1.0重量%
に変えた以外は、実施例7と同様にして水素添加反応を
20日間続けて、その転化率を調べたところ、90〜1
00%範囲内に維持した結果を得る。
Example 10 The composition of the hydrogenation reaction catalyst was nickel 4
7.5% by weight, aluminum 48.0% by weight, iron 0.5
% By weight, 3.0% by weight of manganese, 1.0% by weight of cobalt
The hydrogenation reaction was continued for 20 days in the same manner as in Example 7 except that the conversion ratio was changed to 90-1.
The result obtained is maintained within the range of 00%.

【0055】[0055]

【比較例10】水素添加反応触媒の組成をニッケル52
重量%、アルミニウム48重量%に変えた以外は、実施
例7と同様にして水素添加反応を1.5日間行なったと
ころ、その転化率は90%より25%に低下した。
Comparative Example 10 The composition of the hydrogenation reaction catalyst was nickel 52.
When the hydrogenation reaction was carried out for 1.5 days in the same manner as in Example 7 except that the amounts were changed to 80% by weight and 48% by weight of aluminum, the conversion rate decreased from 90% to 25%.

【0056】[0056]

【比較例11】水素添加反応触媒の組成をニッケル4
8.7重量%、アルミニウム48.4重量%、コバルト
2.9重量%に変えた以外は、実施例7と同様にして水
素添加反応を1.5日間行なった結果、その転化率は6
0%より20%に低下した。
Comparative Example 11 The composition of the hydrogenation reaction catalyst was nickel 4
The hydrogenation reaction was conducted for 1.5 days in the same manner as in Example 7 except that the amounts were changed to 8.7% by weight, aluminum 48.4% by weight, and cobalt 2.9% by weight. As a result, the conversion rate was 6%.
It fell from 0% to 20%.

【0057】[0057]

【比較例12】水素添加触媒として、アメリカMall
inckradt社製品の触媒E−113Tを用いた。
その触媒の組成は銅−クロムよりなり、粒度1/8″を
示すものである。水素添加反応を連続4時間行なったと
ころ、その転化率は10%より0%に低下した。
[Comparative Example 12] US Mall as a hydrogenation catalyst
The catalyst E-113T manufactured by inckradt was used.
The composition of the catalyst was copper-chromium and had a particle size of 1/8 ". When the hydrogenation reaction was carried out continuously for 4 hours, the conversion rate decreased from 10% to 0%.

【0058】[0058]

【比較例13】水素添加触媒として、イギリスJohn
son Metthey社製の触媒50Aを用いた。そ
の触媒組成は、パラジウム0.5重量%をアルミナに載
持したものよりなる。実施例7と同様にして4時間反応
を続けた結果、その転化率は0%を示した。
[Comparative Example 13] As a hydrogenation catalyst, England John
The catalyst 50A manufactured by Son Metsey was used. The catalyst composition consists of 0.5% by weight of palladium on alumina. As a result of continuing the reaction for 4 hours in the same manner as in Example 7, the conversion rate was 0%.

【0059】上記触媒組成、転化率と反応時間などの結
果を併せて第2表に示す。
The results of the catalyst composition, conversion rate and reaction time are shown in Table 2.

【0060】[0060]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // C07B 61/00 300 C07B 61/00 300

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ヒドロキシ−アルデヒドまたはヒドロキ
シ環状エーテルの水添触媒としてニッケル40〜98重
量%、アルミニウム1〜50重量%と鉄0.05〜15
重量%よりなることを特徴とする改質ラニーニッケル触
媒。
1. As a hydrogenation catalyst for hydroxy-aldehyde or hydroxy cyclic ether, 40 to 98% by weight of nickel, 1 to 50% by weight of aluminum and 0.05 to 15 of iron are used.
A modified Raney-nickel catalyst, characterized in that it comprises 1% by weight.
【請求項2】 クロム、モリブデン、タングステン、コ
バルト、マンガン、チタンなどより任意の一種あるいは
一種以上の金属物質を更に0.05〜10重量%含む請
求項1記載の改質ラニーニッケル触媒。
2. The modified Raney nickel catalyst according to claim 1, further comprising 0.05 to 10% by weight of any one or more metal substances selected from chromium, molybdenum, tungsten, cobalt, manganese, titanium and the like.
【請求項3】 前記ヒドロキシ−アルデヒドが4−ヒド
ロキシ−ブタナールまたは2−メチル−3−ヒドロキシ
−プロパナールである請求項1記載の改質ラニーニッケ
ル触媒。
3. The modified Raney nickel catalyst according to claim 1, wherein the hydroxy-aldehyde is 4-hydroxy-butanal or 2-methyl-3-hydroxy-propanal.
【請求項4】 前記ヒドロキシ環状エーテルが2−ヒド
ロキシ−テトラヒドロフランである請求項1記載の改質
ラニーニッケル触媒。
4. The modified Raney nickel catalyst according to claim 1, wherein the hydroxy cyclic ether is 2-hydroxy-tetrahydrofuran.
【請求項5】 50〜200℃の反応温度と10〜20
0kg/cm2 Gの反応圧力で、請求項1或いは2に記
載の改質ラニーニッケル触媒を用いてヒドロキシ−アル
デヒドまたはヒドロキシ環状エーテルを水素添加反応さ
せることを特徴とするその対応するジオール化合物の製
造方法。
5. A reaction temperature of 50 to 200 ° C. and a temperature of 10 to 20.
Preparation of its corresponding diol compound, characterized in that a hydroxy-aldehyde or hydroxy cyclic ether is hydrogenated with a modified Raney nickel catalyst according to claim 1 or 2 at a reaction pressure of 0 kg / cm 2 G. Method.
【請求項6】 前記ヒドロキシ−アルデヒドが4−ヒド
ロキシ−ブタナールまたは2−メチル−3−ヒドロキシ
−プロパナールである請求項5記載の対応するジオール
化合物の製造方法。
6. The method for producing a corresponding diol compound according to claim 5, wherein the hydroxy-aldehyde is 4-hydroxy-butanal or 2-methyl-3-hydroxy-propanal.
【請求項7】 前記対応するジオール化合物が1,4−
ブタンジオール或いは2−メチル−1,3−プロパンジ
オールである請求項6の製造方法。
7. The corresponding diol compound is 1,4-
The production method according to claim 6, which is butanediol or 2-methyl-1,3-propanediol.
【請求項8】 前記ヒドロキシ環状エーテルが2−ヒド
ロキシ−テトラヒドロフランである請求項5記載の対応
するジオール化合物の製造方法。
8. The method for producing a corresponding diol compound according to claim 5, wherein the hydroxy cyclic ether is 2-hydroxy-tetrahydrofuran.
【請求項9】 前記対応するジオール化合物が1,4−
ブタンジオールである請求項8記載の製造方法。
9. The corresponding diol compound is 1,4-
The production method according to claim 8, which is butanediol.
JP8039730A 1996-02-27 1996-02-27 Modified Raney nickel catalyst and method for producing diol compound using the catalyst Expired - Lifetime JP3016727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039730A JP3016727B2 (en) 1996-02-27 1996-02-27 Modified Raney nickel catalyst and method for producing diol compound using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039730A JP3016727B2 (en) 1996-02-27 1996-02-27 Modified Raney nickel catalyst and method for producing diol compound using the catalyst

Publications (2)

Publication Number Publication Date
JPH09225311A true JPH09225311A (en) 1997-09-02
JP3016727B2 JP3016727B2 (en) 2000-03-06

Family

ID=12561099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039730A Expired - Lifetime JP3016727B2 (en) 1996-02-27 1996-02-27 Modified Raney nickel catalyst and method for producing diol compound using the catalyst

Country Status (1)

Country Link
JP (1) JP3016727B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056963A1 (en) * 2000-02-04 2001-08-09 Daicel Chemical Industries, Ltd. High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
JP2001288131A (en) * 2000-02-04 2001-10-16 Daicel Chem Ind Ltd Method for producing purified 1,3-butylene glycol
KR100420453B1 (en) * 1998-11-05 2004-03-02 이 아이 듀폰 디 네모아 앤드 캄파니 Raney Iron Catalyst and a Process for Hydrogenating Organic Compounds Using Said Catalyst
JP2008524326A (en) * 2004-12-20 2008-07-10 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol
FR2993557A1 (en) * 2012-07-23 2014-01-24 Arkema France SYNTHESIS OF METHYL PROPANE DIOL FROM ALLYL ALCOHOL

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420453B1 (en) * 1998-11-05 2004-03-02 이 아이 듀폰 디 네모아 앤드 캄파니 Raney Iron Catalyst and a Process for Hydrogenating Organic Compounds Using Said Catalyst
WO2001056963A1 (en) * 2000-02-04 2001-08-09 Daicel Chemical Industries, Ltd. High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
JP2001288131A (en) * 2000-02-04 2001-10-16 Daicel Chem Ind Ltd Method for producing purified 1,3-butylene glycol
US6900360B2 (en) 2000-02-04 2005-05-31 Daicel Chemical Industries, Ltd. High-purity 1,3-butylen glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
JP2008524326A (en) * 2004-12-20 2008-07-10 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol
JP4913752B2 (en) * 2004-12-20 2012-04-11 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol
FR2993557A1 (en) * 2012-07-23 2014-01-24 Arkema France SYNTHESIS OF METHYL PROPANE DIOL FROM ALLYL ALCOHOL
WO2014016491A1 (en) * 2012-07-23 2014-01-30 Arkema France Synthesising of methyl propanediol from allyl alcohol

Also Published As

Publication number Publication date
JP3016727B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
EP0055512B1 (en) Process for the manufacture of 1-4-butanediol and tetrahydrofuran
JP3466228B2 (en) Method for producing 1,3-propanediol
JP3187868B2 (en) Method for producing saturated alcohol from aldehydes
JP3631141B2 (en) Raney iron catalyst and method for hydrogenating organic compounds using the catalyst
EP0071787B1 (en) Ruthenium/carbon-hydrogenation catalysts, their preparation and their use in the selective hydrogenation of unsaturated carbonyl compounds
TWI764937B (en) Process and catalyst for preparing 1,4-butanediol
EP0951938B1 (en) Process for producing a Raney catalyst
EP0807464B1 (en) A process for preparing diols by using a modified raney nickel catalyst
US6376414B1 (en) Method for producing catalysts containing ruthenium and the use thereof for hydrogenation
JP3016727B2 (en) Modified Raney nickel catalyst and method for producing diol compound using the catalyst
JP2002346390A (en) Catalyst for manufacturing both terminal diols, method for manufacturing the same, method for manufacturing both terminal diols using the catalyst and both terminal diols obtained by the manufacturing method
CA1122961A (en) Process for preparing butanediol of high quality
US6472575B2 (en) Process for producing adamantane
EP0328920B1 (en) Process for the preparation of 1,2,4-butane triol
JPS624174B2 (en)
US2257800A (en) Alloy-skeleton catalyst
EP1162186A2 (en) Process for the preparation of d,l-menthol
EP3400100B1 (en) Process for producing 1,3-butanediol and for optionally further producing (r)-3-hydroxybutyl (r)-3-hydroxybutyrate
JPH10502062A (en) Method for producing 1,4-butanediol
US3412042A (en) Hydrogenation catalyst composition consisting of aluminum, copper and cadmium
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JPH01100139A (en) Production of 3-methylpentane-1,5-diol
JPS58140030A (en) Preparation of 1,9-nonanediol
JPH09132536A (en) Hydrogenation of organic compound
JPH1081641A (en) Production of 4-tertiary-butylcyclohexanol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term