JPH09225305A - Production of egg shell-shaped metal catalyst - Google Patents

Production of egg shell-shaped metal catalyst

Info

Publication number
JPH09225305A
JPH09225305A JP8067210A JP6721096A JPH09225305A JP H09225305 A JPH09225305 A JP H09225305A JP 8067210 A JP8067210 A JP 8067210A JP 6721096 A JP6721096 A JP 6721096A JP H09225305 A JPH09225305 A JP H09225305A
Authority
JP
Japan
Prior art keywords
metal
catalyst
egg shell
adherend
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8067210A
Other languages
Japanese (ja)
Inventor
Tsuun Bin Rin
ツゥン ビン リン
Tsua Chuan Tsuu
ツァ チュアン ツゥ
Kun Yon Tsuai
クン ヨン ツァイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYUNKUO SUUYUU KUFUN YUUSHIE
CHIYUNKUO SUUYUU KUFUN YUUSHIENKONSU
CHUNKUO SUUYUU KOFUN YUGENKOSHI
Original Assignee
CHIYUNKUO SUUYUU KUFUN YUUSHIE
CHIYUNKUO SUUYUU KUFUN YUUSHIENKONSU
CHUNKUO SUUYUU KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYUNKUO SUUYUU KUFUN YUUSHIE, CHIYUNKUO SUUYUU KUFUN YUUSHIENKONSU, CHUNKUO SUUYUU KOFUN YUGENKOSHI filed Critical CHIYUNKUO SUUYUU KUFUN YUUSHIE
Priority to JP8067210A priority Critical patent/JPH09225305A/en
Publication of JPH09225305A publication Critical patent/JPH09225305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To accurately control important properties of a catalyst such as the thickness of a single metal egg shell or many kinds of metal egg shells, the content of metal or the dispersibility of metal by setting different operation variables. SOLUTION: An organometal compd. or an inorg. metal compd. is dissolved in an org. solvent or a mixed solvent of many kinds of org. solvents at the normal temp. or under heating and the resulting conc. organometal or inorg. metal soln. is bonded to the outer layer of a carrier comprising Al2 O3 , SiO2 , zeolite, TiO2 , ZrO2 , MgO, activated carbon, a polymer or a mixture of them by a wet permeation method or a spray method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、卵殻状金属触媒の製造
方法に係り、詳しくは、Pd、Ni、Co、Mo、C
u、Pt、Fe、Ag、Ir、Pb、Ti、Sn、V、
Znなどの金属を含有する有機金属化合物を、常温或い
は加熱によって、有機溶媒(芳香族有機溶媒のトルエ
ン、ベンゼン、キシレン、メチル類のメタノールとTH
F溶液等)、或いはそれらの多種の混合溶媒に溶かし、
湿式浸透法或は噴霧法により、被付着体(Al23
SiO2 、Zeolite、TiO2 、ZrO2 、Mg
O、活性炭とポリマー等の他、これらの混合物)に、有
機金属濃度溶液中又は無機金属濃度溶液中の活性金属を
付着させて、異なる操作変数(例えば、Al23 を異
なる温度で焼き付けてその表面積、酸度を変え、或いは
浸透後の触媒を異なる温度で焼き付け、或いは浸透液の
種類及び濃度を変えること等)により、単一或いは多種
の金属卵殻の厚み、金属含量及び金属分散度などの触媒
の重要な性質を精確に制御することができる卵殻状金属
触媒の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an egg shell metal catalyst, more specifically, Pd, Ni, Co, Mo and C.
u, Pt, Fe, Ag, Ir, Pb, Ti, Sn, V,
An organometallic compound containing a metal such as Zn is heated at room temperature or by heating to an organic solvent (toluene, which is an aromatic organic solvent, benzene, xylene, methanol such as methyl, and TH.
F solution, etc.) or various mixed solvents thereof,
By a wet infiltration method or a spraying method, an adherend (Al 2 O 3 ,
SiO 2 , Zeolite, TiO 2 , ZrO 2 , Mg
O, activated carbon and polymer, etc., as well as mixtures thereof, with active metal in organic metal concentration solution or inorganic metal concentration solution, and different operating variables (eg, Al 2 O 3 baked at different temperatures) By changing its surface area, acidity, baking the catalyst after permeation at different temperatures, or changing the type and concentration of permeate, etc.), the thickness, metal content and metal dispersity of single or various metal eggshells The present invention relates to a method for producing an egg shell metal catalyst capable of precisely controlling important properties of the catalyst.

【0002】[0002]

【従来の技術】従来、多孔形被付着体に活性金属を不均
等的に付着させる技術は、石油精製と石油化学工業に幅
広く研究、応用されており、それによって、収量と選択
率を増加し、熱敏感度を下げ、不活性化と活性減衰を防
ぎ、及び摩擦による損失を抑えることができるなどのメ
リットを有する事は、理論的にも実験的にも認められて
いる。
2. Description of the Related Art Conventionally, a technique for unevenly depositing an active metal on a porous adherend has been widely studied and applied to the petroleum refining and petrochemical industries, thereby increasing yield and selectivity. It has been theoretically and experimentally confirmed that it has advantages such as lowering heat sensitivity, preventing inactivation and activity decay, and suppressing loss due to friction.

【0003】また、文献(Ind. Eng. Chem. Prod. Res.
Dev. 1981, Vol. 20, P439 )によれば、多孔形被付着
体での活性金属分布のプロフィールは、以下の四種類に
分類されている。
In addition, literature (Ind. Eng. Chem. Prod. Res.
According to Dev. 1981, Vol. 20, P439), the profile of active metal distribution in the porous adherend is classified into the following four types.

【0004】1.金属が均等分布:通常に触媒活性が低
く、物質移動の抵抗が無く反応に使用する。
1. Even distribution of metal: Usually used for reaction because of low catalytic activity and no resistance to mass transfer.

【0005】2.金属が被付着体の外層に分布(卵殻状
分布):通常に快速反応且つ所要製品の収量及び選択率
を増加し得るように使用する。
[0005] 2. Metal distribution in the outer layer of the adherend (egg-shell distribution): Usually used so as to have a rapid reaction and to increase the yield and selectivity of the required product.

【0006】3.金属が被付着体の内部に分布(卵黄状
分布):通常に流動層或いは移動層に触媒の外層が消耗
され易い時或いは不活性化され易い時に使用する。
[0006] 3. Metal distribution inside the adherend (egg-like distribution): Usually used when the outer layer of the catalyst is easily consumed or deactivated in the fluidized bed or moving bed.

【0007】4.金属が被付着体の内部と外層の間に分
布(卵白状分布):卵殻状及び卵黄状の間の範囲に、被
付着体の内部に物質移動の抵抗があり、且つ被付着体の
外層の不活性化或いは消耗が激しいときに適用する。
[0007] 4. Metal is distributed between the inside and the outer layer of the adherend (egg-white distribution): In the range between the egg shell shape and the yolk shape, there is resistance to mass transfer inside the adherend and the outer layer of the adherend Apply when inactivation or exhaustion is severe.

【0008】ところで、卵殻状触媒は、工業的には選択
性水素化反応(例えば、エチレンからエタンに、石油の
ジエン類からアルケンに水素化反応するなど)や、選択
性異性反応(例えば、α−オレフィン類からβ−オレフ
ィン類に転化する反応など)、選択性酸化反応(例え
ば、エチレンをエチレン酸化物に酸化反応し、SO2
化反応及びCO酸化反応など)などの反応に幅広く応用
され、それらの反応に卵殻状の触媒を使用して所要製品
の収量と選択率を増加することができ、特に連続式反応
A→B→Cに対し、文献Chem. Eng. Sci. vol. 27, 197
2. P227 とChem.Eng. Sci. vol. 29. 1974, P1473 に
記載されているように、卵殻状触媒の使用により、所要
製品Bの収量及び選択率を増加し得ることが明記されて
おり、文献の J. of Chem. Eng. of Japan, Vol, 22, N
o 3, 1989, P287 に記載のように、エチレンからエタン
(主要製品)に水素化反応する選択率において、エタン
の選択率の大小は被付着体Al23 に、Ni/Al2
3 触媒のニッケル金属の分布が薄層卵殻状>厚層卵殻
状>均等分布>卵黄状の順になっていることが判明して
いる。
In the meantime, the egg shell catalyst is industrially used for selective hydrogenation reaction (for example, hydrogenation reaction of ethylene to ethane, petroleum diene to alkene, etc.) and selective isomerization reaction (for example, α). -Widely applied to reactions such as a reaction for converting olefins to β-olefins), a selective oxidation reaction (e.g., oxidation reaction of ethylene to ethylene oxide, SO 2 oxidation reaction, CO oxidation reaction, etc.), Eggshell-like catalysts can be used in these reactions to increase the yield and selectivity of the required products, especially for continuous reactions A → B → C, see Chem. Eng. Sci. Vol. 27, 197.
2. As stated in P227 and Chem. Eng. Sci. Vol. 29. 1974, P1473, it is specified that the use of egg shell catalyst can increase the yield and selectivity of the required product B. , J. of Chem. Eng. Of Japan, Vol, 22, N in the literature.
o As described in 3, 1989, P287, in the selectivity of hydrogenation reaction of ethylene to ethane (main product), the selectivity of ethane depends on the adherend Al 2 O 3 and Ni / Al 2
It is known that the distribution of nickel metal in the O 3 catalyst is in the order of thin-layer egg shell-like> thick layer egg shell-like> uniform distribution> yolk-like.

【0009】また、被付着体に金属を不均等に付着させ
る方法により触媒を製造する方法については、アメリカ
特許第3259454号、第3259589号(196
6年7月5日)に記載されており、及びE.R.Bec
ker氏らの”Preparationof Catalysts〓:Proceedin
gs of the 2nd International SympogereousCatalysts,
Elsevier, Amsterdam, 1979, P159”では、球形の酸化
アルミニウム被付着体にH2 Pt I6 とクエン酸を含有
する溶液で、浸透法により白金を不均等に付着させて各
種の触媒を製造することが記載されており、その再現性
実験誤差は約10%であったことが記されている。
Regarding the method for producing a catalyst by a method of unevenly depositing a metal on an adherend, US Pat. Nos. 3,259,454 and 3,259,589 (196)
July 5, 2006), and E. R. Bec
"Preparation of Catalysts〓: Proceedin
gs of the 2nd International SympogereousCatalysts,
Elsevier, Amsterdam, 1979, P159 ”, various catalysts are prepared by unevenly adhering platinum by a permeation method using a solution containing H 2 Pt I 6 and citric acid in a spherical aluminum oxide adherend. It is noted that the reproducibility experimental error was about 10%.

【0010】また、文献 J. Cata., vol. 43, 1976, P2
00には、CrO3 、(NH4)2 Cr27 、Cr(N
33 とCu(NO32 などの先駆物の溶液を用
い、異なる浸透技術により、球形の酸化アルミニウム被
付着体に、異なる状態のCrとCu金属を不均等に付着
させて触媒を製造することが記載されている。
Also, reference J. Cata., Vol. 43, 1976, P2.
00 includes CrO 3 , (NH 4) 2 Cr 2 O 7 , and Cr (N
Using catalyst solutions such as O 3 ) 3 and Cu (NO 3 ) 2 and different infiltration techniques, Cr and Cu metals in different states are unevenly attached to spherical aluminum oxide adherends to form a catalyst. It is described to be manufactured.

【0011】更に文献 J. Catal., vol.63, 1980. P425
により、HCl、NaBrなどの塩類をH2 Pt Cl
6 浸透溶液に添加することにより、球形の酸化アルミニ
ウム被付着体に9種の異なる状態でPt を不均等的に付
着させることを設定することができることが開示されて
いる。
Further literature J. Catal., Vol.63, 1980. P425
To remove salts such as HCl and NaBr from H 2 Pt Cl
6 It is disclosed that the addition of Pt to a spherical aluminum oxide adherend in nine different states can be set to be unevenly adhered to the spherical aluminum oxide adherent by adding 6 to the permeation solution.

【0012】しかしながら、以上の従来の技術により、
被付着体に金属の不均等な分布を行うために、無機金属
塩類、及び他の塩類を使用し、PH値により金属の厚み
と位置を制御することが必要であり、このような方法で
は、以下のような欠点が生じている。
However, according to the above conventional techniques,
In order to carry out uneven distribution of the metal on the adherend, it is necessary to use inorganic metal salts, and other salts, and to control the thickness and position of the metal by the PH value. The following drawbacks occur.

【0013】1.無機金属塩類中の陰イオンは被付着体
の上に残すことがあり、高温焼付で取除しても、Cl
- 、SO4 -2 などのような陰イオンは、取除きにくく、
もし、触媒を金属状態に還元しか作用しない場合であれ
ば、水素ガスで金属を還元する時に、これらのCl-
SO4 -2 等のような陰イオンは、水素ガスと反応し、H
ClとH2 SO4 酸を生成して設備パイプを腐食する恐
れがある。
1. Anions in the inorganic metal salts may remain on the adherend, and even if removed by high temperature baking, Cl
- , SO 4 -2 and other anions are difficult to remove,
If, in the case where the catalyst of the acts only reduced to metallic state, when reducing the metal with hydrogen gas, these Cl -,
Anions such as SO 4 -2 react with hydrogen gas to generate H
There is a risk that Cl and H 2 SO 4 acid will be generated and the equipment pipe will be corroded.

【0014】2.従来の技術に開示されていた方法で
は、卵殻状触媒の金属厚み及び重量濃度を精確に制御す
ることがとても難しい。
2. With the methods disclosed in the prior art, it is very difficult to accurately control the metal thickness and weight concentration of the egg shell catalyst.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記の欠点
に鑑みて研究開発し、浸透時間又は浸透金属溶液の濃度
を制御することにより、金属卵殻の厚みと金属含量を精
確に制御することができ、単一或いは多種の卵殻状金属
触媒を製造できるようにし、更に異なる焼付温度によっ
て、これらの金属の分散度を制御できるようにする卵殻
状金属触媒の製造方法を提供する事を目的として成され
たものである。
SUMMARY OF THE INVENTION The present invention has been researched and developed in view of the above-mentioned drawbacks, and precisely controls the thickness and metal content of the metal egg shell by controlling the permeation time or the concentration of the permeating metal solution. The present invention aims to provide a method for producing an egg shell metal catalyst that enables the production of a single or various egg shell metal catalysts, and the dispersity of these metals can be controlled by different baking temperatures. It was made.

【0016】[0016]

【発明が解決しようとするための手段】本発明の卵殻状
金属触媒の製造方法は、Pd、Ni、Co、Mo、C
u、Pt、Fe、Ag、Ir、Pb、Re、Ti、S
n、V、Zn等を含有する有機金属化合物或いは無機金
属化合物を、常温或いは加熱によって芳香族のトルエ
ン、ベンゼン、キシレン、メチル類のメタノール、TH
F溶液等の有機溶媒、或いはこれらの多種有機溶媒の混
合溶媒に溶解させ、該有機金属濃度溶液溶液中又は無機
金属濃度溶液中の活性金属を湿式浸透法又は噴霧法によ
り、Al23 、SiO2 、Zeolite、TiO
2 、ZrO2 、MgO、活性炭とポリマー等の被付着
体、或いはこれらの被付着体の混合物の外層に付着さ
せ、浸透時間又は浸透金属溶液の濃度を制御することに
より、金属卵殻の厚みと金属含量を精確に制御すること
ができ、単一或いは多種の卵殻状金属触媒を製造できる
ようにし、更に異なる焼付温度によって、これらの金属
の分散度を制御できるようにする事を特徴とするもので
ある。
The method for producing an egg shell-shaped metal catalyst of the present invention comprises Pd, Ni, Co, Mo and C.
u, Pt, Fe, Ag, Ir, Pb, Re, Ti, S
An organic metal compound or an inorganic metal compound containing n, V, Zn, etc. is heated to room temperature or heated to produce aromatic toluene, benzene, xylene, methyl methanol, TH
Al 2 O 3 , the active metal in the organic metal concentration solution or the inorganic metal concentration solution is dissolved in an organic solvent such as F solution or a mixed solvent of these various organic solvents by a wet permeation method or a spraying method, SiO 2 , Zeolite, TiO
2 , ZrO 2 , MgO, activated carbon and polymer, or the like, or the mixture of these substances is adhered to the outer layer of the adherend, and the permeation time or the concentration of the permeating metal solution is controlled to control the thickness of the metal egg shell and the metal. It is characterized in that the content can be precisely controlled, single or various egg shell metal catalysts can be produced, and the dispersity of these metals can be controlled by different baking temperatures. is there.

【0017】また本発明は、過飽和或いは適当な濃度の
Pd(CH3 COO)2 を有機触媒トルエンに溶解さ
せ、該有機金属溶液中のパラジウムを湿式浸透法によ
り、酸化アルミニウム被付着体(Al23 )に付着さ
せ、1秒〜48時間の浸透時間を制御することにより、
酸化アルミニウム被付着体の外層に1mm〜卵殻状の半
径までのパラジウム金属の厚み、及び含量を1〜4.0
wt%まで制御することができるようにする事を特徴と
するものである。
Further, in the present invention, Pd (CH 3 COO) 2 having a supersaturation or an appropriate concentration is dissolved in toluene as an organic catalyst, and palladium in the organic metal solution is wet-penetrated by an aluminum oxide adherend (Al 2 O 3 ) to control the permeation time from 1 second to 48 hours,
The outer layer of the aluminum oxide adherend has a thickness of palladium metal of 1 mm to an egg-shell-shaped radius and a content of 1 to 4.0.
The feature is that it can be controlled up to wt%.

【0018】更に本発明は、Ni(NO32 ・6H2
O水溶液を用い、湿式浸透法で酸化アルミニウム被付着
体にニッケルを均等的に付着させた後、過飽和或いは適
当な濃度のPd(CH3 COO)2 を有機触媒トルエン
に溶解させた前記有機金属溶液を用いて、該金属溶液中
のパラジウム金属が前記酸化アルミニウム被付着体の外
層から球心内部へ線状的に減少するように付着させ、ニ
ッケル金属が均等的に分布し、パラジウム金属が被付着
体の外層から球心内部へ線状的に減少するダブル金属分
布状態を呈する事を特徴とする。
Furthermore, the present invention is directed to Ni (NO 3 ) 2 .6H 2
The organometallic solution in which nickel is evenly adhered to an aluminum oxide adherend by an aqueous O 2 solution by a wet permeation method, and then Pd (CH 3 COO) 2 of supersaturation or an appropriate concentration is dissolved in toluene as an organic catalyst. By using, the palladium metal in the metal solution is linearly reduced from the outer layer of the aluminum oxide adherend to the inside of the ball core, the nickel metal is evenly distributed, and the palladium metal is adhered. It is characterized by exhibiting a double metal distribution state that linearly decreases from the outer layer of the body to the inside of the sphere.

【0019】更にまた本発明は、パラジウム金属が卵殻
状或いは被付着体の外層から球心内部に向けて線状的に
減少するよう付着させた触媒に、100℃〜1200℃
の焼付温度を再度調整することにより、パラジウムの分
散度を制御することができる事を特徴とするものであ
る。
Furthermore, the present invention relates to a catalyst in which palladium metal is attached so as to decrease linearly from the outer layer of the egg shell or the adherend toward the inside of the ball core, and the catalyst has a temperature of 100 ° C to 1200 ° C.
It is characterized in that the degree of dispersion of palladium can be controlled by re-adjusting the baking temperature of.

【0020】更に、本発明の卵殻状金属触媒の製造方法
は、金属分布不均等な触媒を選択性水素化反応、或いは
選択性酸化反応に利用し、中間製品Bの選択率及び生産
率を向上できるようにする事を特徴とするものでもあ
る。
Further, in the method for producing an egg shell metal catalyst of the present invention, the catalyst having an uneven metal distribution is used for the selective hydrogenation reaction or the selective oxidation reaction to improve the selectivity and the production rate of the intermediate product B. It is also characterized by making it possible.

【0021】[0021]

【実施例1】以下、本発明の卵殻状金属触媒の製造方法
について調べた結果を、図面に基づき説明する。イソプ
レンの選択性水素化反応の中に卵殻状及び均等分布のP
d/Al23触媒が転化率と寿命に及ぼす影響につい
て、下記条件にて分析した結果を示す。
Example 1 The results of an examination of the method for producing an egg shell metal catalyst of the present invention will be described below with reference to the drawings. Eggshell-like and even distribution of P during selective hydrogenation of isoprene
The results of analyzing the effect of the d / Al 2 O 3 catalyst on the conversion rate and the life under the following conditions are shown.

【0022】図1は、0.2wt%Pd含有のPd/A
23 均等分布触媒の製造についての分析をした結果
を示したものであり、まず、Pd純度36.04wt%
のPd(NH34 (NO32 溶液0.1523gを
50mlの脱イオン水に溶かし、10.045gのδ−
Al23 球形顆粒(直径2mm、表面積82.4m2
/g、ボイド体積0.570cc/g)を前記溶液に入
れ、100rpmの振動器で3時間撹拌し、それを濾過
して得られた不溶物を100℃で1時間乾燥させ、温度
を常温から10℃/分の上昇速度で350℃までに上
げ、6時間維持して得られた触媒サンプルの元素を電子
マイクロアナライザー(Electron Probe Microanalyse
r: 以下、EPMAと略す)で分析測定した結果、Pdが
0.2wt%を含有し、またパラジウム金属(Pd)
は、均等的に分布していることが判明した。
FIG. 1 shows Pd / A containing 0.2 wt% Pd.
The result of the analysis for the production of the 1 2 O 3 uniform distribution catalyst is shown below. First, the Pd purity is 36.04 wt%.
0.1523 g of Pd (NH 3 ) 4 (NO 3 ) 2 solution of is dissolved in 50 ml of deionized water, and 10.045 g of δ-
Al 2 O 3 spherical granules (diameter 2 mm, surface area 82.4 m 2
/ G, void volume 0.570 cc / g) was added to the above solution, stirred with a 100 rpm vibrator for 3 hours, and the insoluble matter obtained by filtering it was dried at 100 ° C. for 1 hour, and the temperature was changed from room temperature to room temperature. The element of the catalyst sample obtained by raising the temperature to 350 ° C at a rate of 10 ° C / min and maintaining it for 6 hours was analyzed by an electron probe microanalyse (Electron Probe Microanalyse).
r: hereinafter abbreviated as EPMA), Pd contained 0.2 wt% and palladium metal (Pd)
Were found to be evenly distributed.

【0023】図2は、純度0.2wt%のPd/Al2
3 のパラジウム卵殻状触媒の製造について分析すべ
く、Pd純度47wt%のPd(CH3 COO)2 溶液
0.1068gを150mlのトルエンに溶かし、2
5.048gのδ−Al23 を前記溶液に入れ、上記
触媒サンプルをEPMAで測定した結果、パラジウム金
属(Pd)は、卵殻状に分布していることが判明した。
FIG. 2 shows Pd / Al 2 with a purity of 0.2 wt%.
To analyze the production of O 3 palladium egg shell catalyst, 0.1068 g of a Pd (CH 3 COO) 2 solution with a Pd purity of 47 wt% was dissolved in 150 ml of toluene and 2
5.048 g of δ-Al 2 O 3 was put in the solution, and the catalyst sample was measured by EPMA. As a result, it was found that the palladium metal (Pd) was distributed in an egg shell shape.

【0024】次にイソプレンの選択性水素化反応の中
に、卵殻状及び均等分布Pd/Al23 触媒が転化
率、選択率と寿命に及ぼす影響を、下記条件にて調べた
結果を示す。両者の触媒活性測定は、10wt%のイソ
プレンをn- ヘキサン溶液に、下降流(downflow) 連続
式固定層リアクターシステムで選択性水素化反応をして
実験を行い、該リアクターが、内径2.2cm、内容積
94mlの垂直ステンレスパイプであり、オーブン等の
電気加熱システムを使用し、その反応温度がPID温度
制御器で制御され、該反応により製造された製品が、循
環式冷却装置で−30℃に冷却され、また定期的にサン
プルを抽出してその成分をG.C.分析した結果は、系
統的に製品の質量は97%以上であったので、反応の系
統測定は問題がないと判明した。
Next, the results of investigating the effects of egg shell-like and evenly distributed Pd / Al 2 O 3 catalysts on the conversion, selectivity and life during the selective hydrogenation reaction of isoprene under the following conditions are shown. . The catalytic activity of both was measured by conducting selective hydrogenation reaction in a downflow continuous fixed bed reactor system with 10 wt% isoprene in an n - hexane solution, and the reactor had an inner diameter of 2.2 cm. , A vertical stainless steel pipe with an internal volume of 94 ml, using an electric heating system such as an oven, the reaction temperature of which is controlled by a PID temperature controller, and the product produced by the reaction is a circulating cooling device at -30 ° C. And periodically extract a sample to extract its ingredients C. As a result of the analysis, the mass of the product was systematically 97% or more, so that the systematic measurement of the reaction proved to be no problem.

【0025】尚、反応の操作条件は以下の通りであっ
た: A:リアクターの内部には、触媒約1gと直径0.4〜
0.6mmの球形ガラスビーズとの混合物25mlを充
填してから、その両端には、直径0.4〜0.6mmの
球形ガラスビーズを充填すること。 B:440Psigの圧力での窒素ガスでガス漏れテス
トをすること。 C:1.2L(NTP)/hの水素ガス流速で100
℃、410Psigの圧力で触媒上のPdOをPdに還
元し、10時間維持すること。 D:還元完成後、反応温度を44℃に下げて、重量液体
空間流速=18h-1(g of feed/h.g of catalyst )、
P=30atm、T=44℃、H2 /イソプレン混合率
=2.262)で反応を行うこと。 E.その簡単な反応系統は下記の表1の通りであった:
尚、ここで示した、IPはイソプレン(Isoprene) を示
す略であり、3M1Bは3−メチル−1−ブテン(3-met
hyl-1-butene) を示す略であり、2M2Bは2−メチル
−2−ブテン(2-methyl-2-butene) を示す略であり、2
M1Bは2−メチル−1−ブテン(2-methyl-1-butene)
を示す略であり、lC5はイソペンタン(Isopentane)を
示す略である。
The operating conditions of the reaction were as follows: A: Inside the reactor, about 1 g of catalyst and 0.4-0.4 mm diameter.
Fill 25 ml of a mixture with 0.6 mm spherical glass beads and then fill both ends with spherical glass beads with a diameter of 0.4-0.6 mm. B: Perform a gas leak test with nitrogen gas at a pressure of 440 Psig. C: 100 at a hydrogen gas flow rate of 1.2 L (NTP) / h
Reduce PdO on the catalyst to Pd at a pressure of 410 Psig at ℃ and maintain for 10 hours. D: After the reduction was completed, the reaction temperature was lowered to 44 ° C., and the space flow velocity of heavy liquid was 18 h −1 (g of feed / hg of catalyst),
Perform the reaction at P = 30 atm, T = 44 ° C., H 2 / isoprene mixing ratio = 2.262). E. FIG. The simple reaction scheme was as shown in Table 1 below:
In this case, IP is an abbreviation for isoprene, and 3M1B is 3-methyl-1-butene (3-met).
2M2B is an abbreviation that represents 2-methyl-2-butene, and 2M2B is an abbreviation that represents 2-methyl-2-butene.
M1B is 2-methyl-1-butene
And lC5 is an abbreviation for isopentane.

【表1】 [Table 1]

【0026】イソプレンに1−2水素を付加反応して部
分的水素化して2M1Bと3M1Bになり、2M2Bは
1−4水素を付加反応し、或いは2M1Bと3M1Bの
二重結合転移による異性化反応により製造される。その
中の2M1Bと2M2Bは、第三アルミメチルエーテル
(tertiary amyl methyl ether、以下はTAMEと略
す)製造過程の主要原料である。また不要の製品IC5
は、イソペンテン(3M1B、2M1B及び2M2Bの
総合、以下はMBと略称)にさらに水素を加え、飽和さ
せて産出されたものである。
1-2 hydrogen is added to isoprene to be partially hydrogenated into 2M1B and 3M1B, and 2M2B is subjected to 1-4 hydrogen addition reaction or by isomerization reaction by double bond transfer of 2M1B and 3M1B. Manufactured. Among them, 2M1B and 2M2B are main raw materials in the process of producing tertiary aluminum methyl ether (hereinafter abbreviated as TAME). Also unnecessary product IC5
Is produced by isolating isopentene (the total of 3M1B, 2M1B and 2M2B, hereinafter abbreviated as MB) with further hydrogenation and saturating.

【0027】図3の(a)と(b)は、卵殻状触媒と均
等触媒のイソプレンの水素化反応における主要製品であ
る2M1B、3M1B、2M2B、及びIC5濃度が反
応時間により変化するグラフを示している。
3 (a) and 3 (b) are graphs showing the concentrations of 2M1B, 3M1B, 2M2B, and IC5, which are the main products in the hydrogenation reaction of isoprene with an egg shell catalyst and an equivalent catalyst, varying with the reaction time. ing.

【0028】図4は、図3におけるイソプレン濃度の反
応時間による変化を示したものであるが、図4に示した
結果により、均等触媒より卵殻状触媒の方が活性が高く
て活性減衰率が低いことが判明した。
FIG. 4 shows the change in isoprene concentration in FIG. 3 depending on the reaction time. From the results shown in FIG. 4, the egg shell catalyst has a higher activity and a higher activity decay rate than the homogeneous catalyst. Turned out to be low.

【0029】図5に反応後の触媒を差動走査熱量計(Di
fferential Scanning Calorimeter、以下はDSCと略
称)により分析した結果を示している。
FIG. 5 shows the differential scanning calorimeter (Di
fferential scanning calorimeter (hereinafter abbreviated as DSC) shows the results of analysis.

【0030】図6と表2に、使用された触媒の高分子ポ
リマー硬積炭をトルエンで抽出して膿縮したものを、差
動走査熱量計とガスクロマトグラフィー質量分析計(ga
schromatography/ mass spectrometer 、以下はGC/
massと略称)で分析した結果を示した。差動走査熱
量計の測定結果では、図6に示したように両者とも30
8℃に同様なメインピークが現れ(軟積炭)、卵殻状触
媒には408℃(硬積炭)、均等触媒には455℃にサ
イドピークが現れることがわかる。また、表2のGC/
massに表れているように、GCの滞留時間が20.
4分以内にある場合、両者は同じ軟積炭が製造され、G
Cの滞留時間が20.4以上にある場合、均等触媒のみ
に硬積炭が製造されることがわかり、これらの結果か
ら、卵殻状触媒の活性減衰率が低いことが明白である。
尚、ここで示したR.T.は、滞留時間を示す略であ
り、R.A.は気体クロマトグラフィー質量分析計で測
定した積炭先駆物の面積比を示す略である。
In FIG. 6 and Table 2, the high-molecular polymer hard coal of the catalyst used was extracted with toluene and contracted, and a differential scanning calorimeter and a gas chromatography mass spectrometer (ga) were used.
schromatography / mass spectrometer, the following is GC /
The results are shown below. According to the measurement result of the differential scanning calorimeter, both are 30% as shown in FIG.
It can be seen that a similar main peak appears at 8 ° C. (soft coal), an egg shell catalyst at 408 ° C. (hard coal), and a homogeneous catalyst at 455 ° C. In addition, GC / in Table 2
As shown in mass, the residence time of GC is 20.
If within 4 minutes, both produce the same soft coal and G
When the residence time of C was 20.4 or more, it was found that hard coal was produced only in the homogeneous catalyst, and from these results, it is clear that the egg shell catalyst has a low activity decay rate.
In addition, the R. T. Is an abbreviation indicating the residence time, and R. A. Is an abbreviation showing the area ratio of the Sekiseki precursor measured by a gas chromatography mass spectrometer.

【表2】 [Table 2]

【0031】図7と図8には、主要製品(MB)と過飽
和水素化製品IC5の濃度が反応時間に対する変化を示
しており、均等触媒と比べ、卵殻状触媒では、不要な製
品IC5の収量が少なく、目的製品MBの収量が多いこ
とが明らかである。尚、この反応におけるMBの選択率
(SMB)は化1のように定義されている。
7 and 8 show changes in the concentrations of the main product (MB) and the supersaturated hydrogenated product IC5 with respect to the reaction time. Compared with the homogeneous catalyst, the egg shell catalyst yielded unnecessary product IC5. It is clear that the target product MB is high in yield. The MB selectivity (S MB ) in this reaction is defined as in Chemical formula 1.

【化1】 Embedded image

【0032】図9は、両者触媒のSMBが反応時間に対す
る変化を示し、均等触媒より卵殻状触媒の方はより高い
MBの選択率を有することが明らかである。
FIG. 9 shows that the S MB of both catalysts changes with the reaction time, and that the egg shell catalyst has a higher MB selectivity than the homogeneous catalyst.

【0033】図10には、両者触媒の主要製品2M1B
と2M2Bの選択率が反応時間に対する変化が示されて
おり、2M1Bと2M2BがTAME合成の主要原料で
あるので、卵殻状触媒の方では2M1Bと2M2Bの選
択率が高いことがわかる。
FIG. 10 shows the main product 2M1B of both catalysts.
And the selectivity of 2M2B with respect to the reaction time are shown. Since 2M1B and 2M2B are the main raw materials for TAME synthesis, it can be seen that the egg shell catalyst has a higher selectivity of 2M1B and 2M2B.

【0034】以上の実験結果により、イソプレンの選択
性水素化反応に関し、均等触媒より卵殻状触媒の方は、
イソプレンの触媒活性、選択率及び触媒の寿命が優れて
いることが判明した。
From the above experimental results, regarding the selective hydrogenation reaction of isoprene, the egg shell catalyst is better than the homogeneous catalyst in
It was found that isoprene has excellent catalytic activity, selectivity and catalyst life.

【0035】[0035]

【実施例2】次に、浸透時間による卵殻状金属触媒の外
層厚みとPd含量の制御について以下のような条件によ
り実験を行った。まず、直径4mmのδ−Al23
形被付着体10gを200mlの過飽和Pd(CH3
OO)2 トルエン溶液中に入れ、振動器(100rp
m)で撹拌しながら、0.5時間、1時間、3時間、6
時間、12時間と24時間浸透して、それを濾過し、1
00℃で1時間乾燥してから、温度を10℃/分の上昇
速度で常温から350℃まで上昇させ、6時間維持させ
た。
Example 2 Next, an experiment was conducted under the following conditions to control the outer layer thickness and the Pd content of the egg shell metal catalyst by the penetration time. First, 10 g of a δ-Al 2 O 3 spherical adherend having a diameter of 4 mm was added to 200 ml of supersaturated Pd (CH 3 C
OO) 2 Put in a toluene solution and shake (100 rp
m) with stirring for 0.5 hours, 1 hour, 3 hours, 6
Soak for 12 hours and 24 hours, filter it, and
After drying at 00 ° C. for 1 hour, the temperature was raised from room temperature to 350 ° C. at a rate of 10 ° C./min and maintained for 6 hours.

【0036】次に、異なる浸透時間により得られた触媒
サンプルをEPMAで分析してPd金属の分布状況を測
定した結果、図11のような結果が得られた。
Next, the catalyst samples obtained with different permeation times were analyzed by EPMA to measure the distribution of Pd metal, and the results shown in FIG. 11 were obtained.

【0037】また図12は、浸透時間に対してPd卵殻
状厚み(r/R)の変化を示したものであり、これか
ら、浸透時間が長いほど卵殻が厚くなることが判明し
た。
FIG. 12 shows the change in the Pd egg shell thickness (r / R) with respect to the penetration time. From this, it was revealed that the longer the penetration time, the thicker the eggshell.

【0038】更に図13は、Pd含量が浸透時間に対す
る変化を示したものであり、この図より、浸透時間が長
いほどPdの重量濃度が多くなることも判明した。
Further, FIG. 13 shows changes in Pd content with respect to permeation time. From this figure, it was found that the longer the permeation time, the higher the Pd weight concentration.

【0039】[0039]

【実施例3】更に、焼付温度による卵殻触媒のPd分散
度の制御について、以下のような条件に従って調べた結
果を示す。まず、純度47wt%のPd(CH3 CO
O)2 溶液の0.534gを750mlのトルエンに溶
かし、直径2mm、表面積82.4m2 /g、ボイド体
積が0.570cc/gのδ−Al23 球形被付着体
125.24gを該溶液に入れ、振動器(100rp
m)で撹拌しながら3時間浸透し、それを濾過した後、
100℃で1時間乾燥した。
Example 3 Furthermore, the control results of the Pd dispersity of the egg shell catalyst depending on the baking temperature will be shown under the following conditions. First, Pd (CH 3 CO with a purity of 47 wt%
0.534 g of the O) 2 solution was dissolved in 750 ml of toluene to obtain 125.24 g of a δ-Al 2 O 3 spherical adherend having a diameter of 2 mm, a surface area of 82.4 m 2 / g and a void volume of 0.570 cc / g. Put in the solution, shaker (100 rp
m) with stirring for 3 hours, after filtering it,
Dried at 100 ° C. for 1 hour.

【0040】次に、乾燥後に得られた触媒サンプルを5
等分重量にして、それぞれを10℃/分の上昇速度で常
温から300℃、400℃、500℃、600℃と70
0℃まで上げ、最後の温度で全部6時間維持して得た触
媒サンプルの元素を分析した結果、0.2wt%のPd
が含有していた。そして、これをEPMA分析を行った
結果、Pdが全部被付着体の外層に分布しており、また
そのPd卵殻厚みはr/R=0.05であり、異なる焼
付温度による卵殻の厚みの変化がないことが判明した。
500℃で触媒サンプルを焼き付けて得られたサンプル
の21点をEPMA分析して定量測定した結果、Pd含
量のプロフィールは図14のようであった。
Next, the catalyst sample obtained after drying was treated with 5
The weight is divided into equal parts, and each of them is heated from room temperature to 300 ° C, 400 ° C, 500 ° C, 600 ° C and 70 ° C at a rising rate of 10 ° C / min.
As a result of analyzing the elements of the catalyst sample obtained by raising the temperature to 0 ° C. and maintaining it at the final temperature for all 6 hours, 0.2 wt% Pd was obtained.
Was contained. As a result of EPMA analysis of this, Pd was entirely distributed in the outer layer of the adherend, and the Pd egg shell thickness was r / R = 0.05, and the change in egg shell thickness due to different baking temperatures. It turned out that there is no.
As a result of quantitatively measuring 21 points of the sample obtained by baking the catalyst sample at 500 ° C. by EPMA analysis, the profile of Pd content was as shown in FIG. 14.

【0041】更に、異なった焼付温度で得られた触媒サ
ンプルをそれぞれ0.300gを取って、10℃/分の
上昇速度で25℃から300℃まで加熱しながら、アル
ゴン/水素混合ガス(モル比:Ar/H2 =9/1)を
30cc/分の気体流速で触媒サンプルを通過し、温度
制御還元実験(Temperature Programmed Reduction、以
下はTPRと略す)を行い、温度が300℃に達した時
点でオーブンを開け、急速冷却し、温度制御吸収実験
(Temperature Resolved Sorption 、以下、TRSと略
す)を行った。尚、文献 J. of Catal. vol 96, 1985,
P51 により、TRS実験の中で、より高い吸着温度の化
学吸着水素、及び低温で沸き合いPdから吸収された水
素の含量を測定し、次の化2の方程式によりPd金属の
分散度を算出した。
Further, 0.300 g of each catalyst sample obtained at different baking temperatures was taken and heated from 25 ° C. to 300 ° C. at an ascending rate of 10 ° C./min while mixing with an argon / hydrogen mixed gas (molar ratio). : Ar / H 2 = 9/1) was passed through the catalyst sample at a gas flow rate of 30 cc / min, and a temperature controlled reduction experiment (Temperature Programmed Reduction, hereinafter abbreviated as TPR) was performed and the temperature reached 300 ° C. Then, the oven was opened and rapidly cooled, and a temperature-controlled absorption experiment (Temperature Resolved Sorption, hereinafter abbreviated as TRS) was performed. Incidentally, J. of Catal. Vol 96, 1985,
The content of chemisorbed hydrogen having a higher adsorption temperature and the hydrogen absorbed from Pd that boiled at a lower temperature in the TRS experiment was measured by P51, and the dispersity of Pd metal was calculated by the following equation (2). .

【化2】 尚、この化2の方程式において、D=分散度であり、A
c=H2 化学吸着された水素ガスのピーク面積であり、
Aa=H2 低温吸収された水素ガスのピーク面積を示す
ものである。
Embedded image In the equation of this chemical formula 2, D = dispersion degree, and A
c = H 2 is the peak area of the chemisorbed hydrogen gas,
Aa = H 2 shows the peak area of hydrogen gas absorbed at low temperature.

【0042】図15は、それぞれの触媒サンプルのTP
RとTRSの実験結果を示すものであり、図15に示し
た各種の触媒サンプルのTRSの実験結果から、焼付温
度に対するPd金属分散度を計算した結果、図16に示
すような変化図が得られ、この図から、Pd金属の分散
度は焼付温度の上昇により悪くなっていくことが判明し
た。
FIG. 15 shows the TP of each catalyst sample.
FIG. 16 shows the experimental results of R and TRS. As a result of calculating the Pd metal dispersity with respect to the baking temperature from the experimental results of TRS of various catalyst samples shown in FIG. 15, a change diagram as shown in FIG. 16 was obtained. From this figure, it was found that the dispersity of the Pd metal deteriorates as the baking temperature increases.

【0043】[0043]

【実施例4】更にまた、Pd金属の分布が被付着体の外
層から球心内部まで線状的に減少する触媒の製作につい
て、下記条件で実験した結果を記す。まず、Ni(NO
32 6H2 Oを脱イオン水に溶かし、1.0M濃度の
溶液に配製し、球形γ−Al23 被付着体(直径4m
m、表面積173m2 /g、ボイド体積0.760cc
/g)を該溶液に入れて、湿式浸透方法で1時間浸透
し、これを濾過した後、110℃で1時間乾燥した。
Example 4 Furthermore, the results of experiments conducted under the following conditions for producing a catalyst in which the distribution of Pd metal linearly decreases from the outer layer of the adherend to the inside of the spherical core will be described. First, Ni (NO
3 ) 2 6H 2 O is dissolved in deionized water, and the solution is prepared in a 1.0 M concentration solution, and spherical γ-Al 2 O 3 adherend (diameter 4 m
m, surface area 173 m 2 / g, void volume 0.760 cc
/ G) was added to the solution and permeated by a wet permeation method for 1 hour, filtered, and then dried at 110 ° C. for 1 hour.

【0044】次に、前記で得られた触媒サンプルを過飽
和のPd(CH3 COO)2 トルエン溶液に入れ、湿式
浸透方法で0.5時間浸透し、これを濾過した後、11
0℃で1時間乾燥した。
Next, the catalyst sample obtained above was put into a supersaturated Pd (CH 3 COO) 2 toluene solution, and the solution was permeated by a wet permeation method for 0.5 hours, filtered, and then filtered.
Dry at 0 ° C. for 1 hour.

【0045】更に、前記で得られた触媒サンプルをEP
MAで分析して、NiとPd金属の分布を測定した結
果、図17に示すように、被付着体上の金属分布は、P
d金属が外層から線状的に球心内部に向けて減少し、N
i金属が均等的に分布していることが判明した。
Further, the catalyst sample obtained above was treated with EP.
As a result of measuring the distribution of Ni and Pd metals by MA analysis, as shown in FIG. 17, the metal distribution on the adherend is P
d metal linearly decreases from the outer layer toward the inside of the sphere, and N
It was found that the i metal was evenly distributed.

【0046】[0046]

【実施例5】また、浸透時間によるニッケル卵殻厚みを
制御する触媒の製作について、下記条件にて実験を行っ
た結果を記す。まず、Ni(NO32 6H2 OをTH
F溶液に溶かして、3.0M濃度の溶液に配製し、球形
γ−Al23 被付着体(直径2mm、表面積173m
2/g、ボイド体積0.760cc/g)1gを5ccの
上記のニッケル溶液に浸透し、浸透時間を5分、10
分、20分、40分と異なるよう制御し、それを濾過し
た後、120℃で12時間乾燥した。
[Example 5] The results of experiments conducted under the following conditions for the production of a catalyst for controlling the thickness of a nickel egg shell by the infiltration time will be described. First, Ni (NO 3 ) 2 6H 2 O was added to TH
Dissolve it in the F solution and distribute it in a solution of 3.0 M concentration to form a spherical γ-Al 2 O 3 adherend (diameter 2 mm, surface area 173 m
2 / g, void volume 0.760 cc / g) 1 g is infiltrated into the above nickel solution of 5 cc, and the infiltration time is 5 minutes, 10
It was controlled to be different from minutes, 20 minutes and 40 minutes, filtered, and dried at 120 ° C. for 12 hours.

【0047】次に、前記で得られた触媒サンプルをEP
MAで分析してNi金属の分布を測定した結果、図18
に示すように、浸透時間が長い程、ニッケル卵殻が厚く
なっていくことが判明した。
Next, the catalyst sample obtained above was treated with EP.
As a result of measuring the Ni metal distribution by analysis with MA, FIG.
As shown in, it was found that the longer the penetration time, the thicker the nickel egg shell.

【0048】[0048]

【発明の効果】本発明の卵殻状金属触媒の製造方法は、
以上の実施例で示したように、過飽和或いは適当な濃度
のPd(CH3 COO)2 を有機触媒トルエンに溶解さ
せ、該有機金属溶液中のパラジウムを湿式浸透法によ
り、酸化アルミニウム被付着体(Ai23 )に付着さ
せ、浸透時間(1秒〜48時間)を制御することによ
り、酸化アルミニウム被付着体の外層にパラジウム金属
の厚み(1mm〜卵殻状の半径まで)と含量を1〜4.
0wt%まで制御することができる。
The method for producing an egg shell metal catalyst of the present invention comprises:
As shown in the above examples, supersaturation or Pd (CH 3 COO) 2 having an appropriate concentration is dissolved in toluene as an organic catalyst, and palladium in the organic metal solution is wet-penetrated by an aluminum oxide adherend ( Ai 2 O 3 ) and controlling the permeation time (1 second to 48 hours) so that the thickness of palladium metal (from 1 mm to egg shell-shaped radius) and the content of palladium metal in the outer layer of the aluminum oxide adherend are controlled to 1 to 4.
It can be controlled up to 0 wt%.

【0049】また、Ni(NO32 ・6H2 O水溶液
を用い、湿式浸透法で酸化アルミニウム被付着体にニッ
ケルを均等的に付着させた後、前記有機パラジウム金属
溶液を用い、該金属溶液中のパラジウム金属が前記酸化
アルミニウム被付着体の外層から球心内部へ線状的に減
少するように付着させることで、ニッケル金属が均等的
に分布し、パラジウム金属が被付着体外層から球心内部
へ線状的に減少する分布状態を呈するダブル金属触媒を
製造することができる。
Nickel is evenly adhered to the aluminum oxide adherend by a wet permeation method using a Ni (NO 3 ) 2 .6H 2 O aqueous solution, and then the organopalladium metal solution is used to produce the metal solution. By depositing the palladium metal in the aluminum oxide so as to linearly decrease from the outer layer of the adherend to the inside of the core, the nickel metal is evenly distributed, and the palladium metal is deposited from the outer layer of the adherend to the core. It is possible to produce a double metal catalyst which exhibits a linearly decreasing distribution to the inside.

【0050】更に、パラジウム金属が卵殻状或いは被付
着体の外層から球心内部に向けて線状的に減少するよう
付着させた触媒に、再び焼付温度(100〜1200
℃)を調整することにより、パラジウムの分散度を制御
することができる。
Further, the palladium metal is attached again so that the palladium metal is linearly reduced from the outer layer of the adherend to the inside of the core toward the inside of the core, and the baking temperature (100 to 1200) is again applied.
The degree of dispersion of palladium can be controlled by adjusting (.degree. C.).

【0051】更にまた、金属分布不均等な触媒を選択性
水素化反応、或いは選択性酸化反応(例えば、A→B→
C反応)に利用し、より良い中間製品Bの選択率及び生
産率を得られる効果があり、従来の、被付着体に金属の
不均等な分布を行うために、無機金属塩類、及び他の塩
類を使用し、PH値により金属の厚みと位置を制御する
という発想とは異なり、無機金属塩類中の陰イオンを被
付着体の上に残すことがなく、高温焼付で取除しにくい
Cl- 、SO4 -2 等のような陰イオンは、水素ガスで金
属を還元する時に水素ガスと反応し、HClとH2 SO
4 の酸を生成するため設備パイプを腐食する恐れがな
く、卵殻状触媒の金属厚み及び重量濃度を精確及び容易
に制御することができる。
Furthermore, a catalyst having an uneven metal distribution is used for a selective hydrogenation reaction or a selective oxidation reaction (for example, A → B →
C)) to obtain a better selectivity and production rate of the intermediate product B. In order to achieve a non-uniform distribution of the metal on the adherend, it is necessary to use inorganic metal salts, and other using the salts, unlike idea of controlling the position and thickness of the metal by the PH value, without leaving the anion of the inorganic metal salts on the object to be adhered body, hardly the Remove high temperature baking Cl - , SO 4 -2, etc. react with hydrogen gas when reducing the metal with hydrogen gas, and HCl and H 2 SO
Since the acid of 4 is generated, there is no risk of corroding the equipment pipe, and the metal thickness and weight concentration of the egg shell catalyst can be accurately and easily controlled.

【0036】よって本発明は、従来の各種問題点を一掃
すると共に要望を満足させ、浸透時間又は浸透金属溶液
の濃度を制御することにより、金属卵殻の厚みと金属含
量を精確に制御し、単一或いは多種の卵殻状金属触媒を
製造できるようにし、更に異なる焼付温度によって、こ
れらの金属の分散度を制御できるようにすることができ
る画期的なものである。
Therefore, the present invention eliminates various problems in the related art and satisfies the demand, and controls the permeation time or the concentration of the permeating metal solution to precisely control the thickness of the metal egg shell and the metal content. It is an epoch-making one that enables production of one or various egg shell metal catalysts and control of the dispersity of these metals by different baking temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の卵殻状金属触媒の製造方法におけるE
PMAにより測定した均等状触媒のパラジウム金属厚み
とパラジウム金属含量の関係を示す分布図。
FIG. 1E in the method for producing an egg shell metal catalyst of the present invention
The distribution diagram which shows the palladium metal thickness of a uniform catalyst measured by PMA, and the relationship of palladium metal content.

【図2】本発明におけるEPMAにより測定した卵殻状
触媒におけるパラジウム金属厚みとパラジウム金属含量
の関係を示す分布図。
FIG. 2 is a distribution chart showing the relationship between the palladium metal thickness and the palladium metal content in the egg shell catalyst measured by EPMA in the present invention.

【図3】(a)は、本発明における卵殻状触媒に接触す
るイソプレン、イソペンテン、イソペンタンの反応時間
に対するモル濃度の変化を示す分布図。(b)は、均等
状触媒と接触するイソプレン、イソペンテン、イソペン
タンの反応時間に対するモル濃度の変化を示す分布図。
FIG. 3 (a) is a distribution chart showing changes in molar concentration with respect to reaction time of isoprene, isopentene, and isopentane in contact with the egg shell catalyst of the present invention. (B) is a distribution chart showing a change in molar concentration with respect to the reaction time of isoprene, isopentene, and isopentane in contact with the homogeneous catalyst.

【図4】本発明における卵殻状触媒と均等状触媒の反応
時間に対するイソプレン濃度の変化を示す分布図。
FIG. 4 is a distribution chart showing changes in isoprene concentration with respect to the reaction time of the egg shell catalyst and the homogeneous catalyst in the present invention.

【図5】本発明における卵殻状触媒と均等状触媒の各廃
棄物を差動走査熱量計により分析したの反応温度に対す
る熱流量を示す分布図。
FIG. 5 is a distribution chart showing the heat flow rate with respect to the reaction temperature, when the waste products of the egg shell catalyst and the uniform catalyst of the present invention are analyzed by a differential scanning calorimeter.

【図6】(a)は、均等状触媒の触媒廃棄物積炭先駆物
をガスクロマトグラフィー質量分析計で測定した保持時
間に対する信号速度の変化を示すスペクトル図。(b)
は、本発明における卵殻状触媒の触媒廃棄物積炭先駆物
をガスクロマトグラフィー質量分析計で測定した保持時
間に対する信号速度の変化を示すスペクトル図。
FIG. 6 (a) is a spectrum diagram showing a change in signal velocity with respect to a retention time of a catalyst waste product-laden coal precursor of a homogeneous catalyst measured by a gas chromatography mass spectrometer. (B)
FIG. 4 is a spectrum diagram showing a change in signal velocity with respect to a retention time, which is measured by a gas chromatography-mass spectrometer for a catalyst waste product-laden precursor of the egg shell catalyst of the present invention.

【図7】本発明における卵殻状触媒と均等状触媒の反応
時間に対するイソプテン濃度の変化を示す分布図。
FIG. 7 is a distribution chart showing changes in the concentration of isoptene with the reaction time of the egg shell catalyst and the homogeneous catalyst according to the present invention.

【図8】本発明における卵殻状触媒と均等状触媒の反応
時間に対するイソペンタン濃度の変化を示す分布図。
FIG. 8 is a distribution chart showing changes in the isopentane concentration with the reaction time of the egg shell catalyst and the homogeneous catalyst in the present invention.

【図9】本発明における卵殻状触媒と均等状触媒の反応
時間によるイソプテンに対する選択率の変化図。
FIG. 9 is a diagram showing a change in the selectivity for isoptene depending on the reaction time of the egg shell catalyst and the homogeneous catalyst according to the present invention.

【図10】本発明における卵殻状触媒接触下の2−メチ
ル−1−ブテンと2−メチル−2−ブテン、及び均等状
触媒接触下の2−メチル−1−ブテンと2−メチル−2
−ブテンの反応時間に対する選択率の変化図。
FIG. 10: 2-methyl-1-butene and 2-methyl-2-butene under contact with an egg shell catalyst and 2-methyl-1-butene and 2-methyl-2 under uniform catalyst contact according to the present invention.
-The change figure of the selectivity with respect to the reaction time of butene.

【図11】本発明における(a)0.5時間、(b)
1.0時間、(c)3.0時間、(d)6.0時間、
(e)12.0時間、(f)24.0時間の異なる浸透
時間により得られた触媒を、EMPA分析により測定し
た担体顆粒半径位置に対するパラジウム金属含量を示す
パラジウム分布プロファイル。
FIG. 11 (a) 0.5 hour in the present invention, (b)
1.0 hour, (c) 3.0 hours, (d) 6.0 hours,
Palladium distribution profiles showing the palladium metal content with respect to the radial position of the carrier granules measured by EMPA analysis for the catalysts obtained with different penetration times of (e) 12.0 hours and (f) 24.0 hours.

【図12】本発明の浸透時間に対するパラジウム金属卵
殻厚みの変化図。
FIG. 12 is a diagram showing changes in the thickness of a palladium metal egg shell with respect to the penetration time of the present invention.

【図13】本発明の浸透時間に対するパラジウム含量の
変化図。
FIG. 13 is a graph showing changes in palladium content with respect to permeation time according to the present invention.

【図14】本発明における0.2wt%のパラジウム/
酸化アルミニウム触媒を500℃で焼き付け、これをE
PMA分析でパラジウム卵殻の厚みに対するパラジウム
含量を測定した結果を示す分布図。。
FIG. 14: 0.2 wt% palladium / in the present invention
Baking an aluminum oxide catalyst at 500 ° C.
The distribution chart which shows the result of having measured the palladium content with respect to the thickness of a palladium egg shell by PMA analysis. .

【図15】本発明の異なる温度で焼付けた0.2wt%
のパラジウム/酸化アルミニウム触媒をTPR分析で反
応時間に対する水素ガス消耗量を測定した結果を示す分
布図。
FIG. 15: 0.2 wt% baked at different temperatures according to the invention
FIG. 6 is a distribution chart showing the results of measuring the hydrogen gas consumption amount with respect to the reaction time by TPR analysis of the palladium / aluminum oxide catalyst of FIG.

【図16】本発明における0.2wt%のパラジウム/
酸化アルミニウム触媒の焼付温度に対する分散度を示す
変化図。
FIG. 16: 0.2 wt% palladium / in the present invention
FIG. 4 is a change diagram showing the degree of dispersion of an aluminum oxide catalyst with respect to the baking temperature.

【図17】(a)は、本発明をEPMA分析により測定
した金属卵殻厚みに対するパラジウム含量とニッケル含
量を示す分布図。(b)は、本発明をEPMA分析によ
り測定したパラジウム卵殻厚みとニッケル卵殻厚みを示
す分布図。
FIG. 17 (a) is a distribution chart showing palladium content and nickel content with respect to the thickness of a metal egg shell measured by EPMA analysis of the present invention. (B) is a distribution chart showing the thickness of palladium eggshell and the thickness of nickel eggshell measured by EPMA analysis of the present invention.

【図18】本発明を(a)は5分、(b)は10分、
(C)は20分、(d)は40分の浸透時間で制御した
触媒をEMPA分析により測定したニッケル金属卵殻厚
みに対するニッケル金属の含量を示す分布図。
18 (a) is 5 minutes, FIG. 18 (b) is 10 minutes,
(C) is a distribution chart showing the content of nickel metal with respect to the thickness of the nickel metal egg shell measured by EMPA analysis of the catalyst controlled by the penetration time of 20 minutes and (d) of 40 minutes.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月17日[Submission date] July 17, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】 図5に反応後の触媒を差動主査熱量
計(Differential Scanning C
alorimeter、以下はDSCと略称)により分
析した結果を示している。この差動走査熱量計の測定結
果では、図5に示したように両者とも308℃に同様な
メインピークが現れ(軟積炭)、卵殻状触媒には408
℃(硬積炭)、均等触媒には455℃にサイドピークが
現れることがわかる。
FIG. 5 shows the catalyst after the reaction as a differential scanning calorimeter (Differential Scanning C).
The results are shown in Table 1 below, which are abbreviated as DSC. The measurement results of this differential scanning calorimeter
In the result, both are similar to 308 ° C as shown in FIG.
Main peak appears (soft coal) and 408 for egg shell catalyst
℃ (hard coal), even catalyst has a side peak at 455 ℃
You can see that it will appear.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】 図6と表2に、使用された触媒の高
分子ポリマー硬積炭をトルエンで抽出して膿縮したもの
を、ガスクロマトグラフィー質量分析計(gas ch
romatography/mass spectro
meter、以下はGC/massと略称)で分析した
結果を示した。図6の比較スペクトル図において、
(a)は均等状触媒の触媒廃棄物積炭先駆物をガスクロ
マトグラフィー質量分析計で保持時間に対する信号強度
の変化を測定分析した結果を示し、(b)は卵殻状触媒
の触媒廃棄物積炭先駆物をガスクロマトグラフィー質量
分析計で保持時間に対する信号強度の変化を測定分析し
た結果を示す。すなわち、この図6及び表2のGC/m
assに表れているように、GCの保持時間が20.4
分以内にある場合、両者は同じ軟積炭が製造され、GC
保持時間が20.4以上にある場合、均等触媒のみに
硬積炭が製造されることがわかり、これらの結果から、
卵殻状触媒の活性減衰率が低いことが明白である。尚、
ここで示したR.T.は、保持時間を示す略であり、
R.A.は気体クロマトグラフィー質量分析計で測定し
た積炭先駆物の面積比を示す略である。
In FIG. 6 and Table 2, the high molecular polymer hard coal of the catalyst used was extracted with toluene and contracted, and the obtained product was analyzed by a gas chromatography mass spectrometer (gas ch).
romanography / mass spectro
meter, the following is the result of analysis by GC / mass). In the comparative spectrum diagram of FIG.
(A) Gas chromatograph of catalyst waste piled coal precursor of uniform catalyst
Signal strength versus retention time in a matography mass spectrometer
Shows the results of measurement and analysis of changes in (b) is an egg shell catalyst
Gas Chromatography Mass of Catalyst Waste Sediment Precursor of
Use an analyzer to measure and analyze changes in signal strength with retention time.
The results are shown below. That is, GC / m in FIG. 6 and Table 2
As shown in ass, the retention time of GC is 20.4
If within minutes, both produce the same soft coal and GC
It can be seen that hard coal is produced only with a homogeneous catalyst when the holding time of 20.4 or more is obtained.
It is clear that the egg shell catalyst has a low activity decay rate. still,
The R. T. Is an abbreviation for the retention time,
R. A. Is an abbreviation showing the area ratio of the Sekiseki precursor measured by a gas chromatography mass spectrometer.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0036】 次に、上記の異なる浸透時間によ
り得られた触媒サンプルをEPMAで分析してPd金
属の分布状況を測定した結果、図11のような結果が得
られた。尚、図11において、(a)は0.5時間、
(b)は1.0時間、(c)は3.0時間、(d)は
6.0時間、(e)は12.0時間、(f)は24.0
時間の浸透時間により得られた各サンプルを分析したパ
ラジウム分布プロファイルである。
Next, as a result of analyzing the distribution state of Pd metal by analyzing each catalyst sample obtained by the above different penetration times with EPMA, the result as shown in FIG. 11 was obtained. In addition, in FIG. 11, (a) is 0.5 hours,
(B) 1.0 hours, (c) 3.0 hours, (d)
6.0 hours, (e) 12.0 hours, (f) 24.0
Each sample obtained by the permeation time of time was analyzed.
It is a radium distribution profile.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 本発明における卵殻状触媒と均等状触
媒の各触媒廃棄物積炭先駆物をそれぞれガスクロマトグ
ラフィー質量分析計で測定した保持時間に対する信号強
度の変化を示す比較スペクトル図。
[Fig. 6] Eggshell-like catalyst and equivalent touch in the present invention
Comparative spectrum diagram showing the change of each catalyst waste Sekisumi precursor product signal strength for a retention time as measured by gas chromatography mass spectrometer respective medium.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図11[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図11】 本発明おける異なる浸透時間により得
られた触媒を、それぞれEPMA分析により測定した担
体顆粒半径位置に対するパラジウム金属含量を示すパラ
ジウム分布プロファイル。
[11] The catalyst obtained by the present invention definitive different penetration times, palladium distribution profile showing a palladium metal content for each carrier granules radial position as measured by EPMA analysis.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/14 B01J 23/14 Z 23/22 23/22 Z 23/28 23/28 Z 23/38 23/38 Z 23/70 23/70 Z 29/064 29/064 Z 29/076 29/076 Z 31/06 31/06 Z C07C 5/03 6958−4H C07C 5/03 5/05 6958−4H 5/05 9/16 6958−4H 9/16 11/10 6958−4H 11/10 // C07B 61/00 300 C07B 61/00 300 (72)発明者 ツァイ クン ヨン チュンファミンクォ タイワンシェン ジ ャイスゥ ミンシェンナンルゥ 239ハオ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/14 B01J 23/14 Z 23/22 23/22 Z 23/28 23/28 Z 23 / 38 23/38 Z 23/70 23/70 Z 29/064 29/064 Z 29/076 29/076 Z 31/06 31/06 Z C07C 5/03 6958-4H C07C 5/03 5/05 6958-4H 5/05 9/16 6958-4H 9/16 11/10 6958-4H 11/10 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Tsai Khun Yong Chun Famin Qutai Wansheng Jai Su Min Sheng Nanru 239 Hao

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Pd、Ni、Co、Mo、Cu、Pt、
Fe、Ag、Ir、Pb、Re、Ti、Sn、V、Zn
等を含有する有機金属化合物或いは無機金属化合物を、
常温或いは加熱によって芳香族のトルエン、ベンゼン、
キシレン、メチル類のメタノール、THF溶液等の有機
溶媒、或いはこれらの多種有機溶媒の混合溶媒に溶解さ
せ、該有機金属濃度溶液溶液中又は無機金属濃度溶液中
の活性金属を湿式浸透法又は噴霧法により、Al2
3 、SiO2 、Zeolite、TiO2 、ZrO2
MgO、活性炭とポリマー等の被付着体、或いはこれら
の被付着体の混合物の外層に付着させ、浸透時間又は浸
透金属溶液の濃度を制御することにより、金属卵殻の厚
みと金属含量を精確に制御することができ、単一或いは
多種の卵殻状金属触媒を製造できるようにし、更に異な
る焼付温度によって、これらの金属の分散度を制御でき
るようにする事を特徴とする卵殻状金属触媒の製造方
法。
1. Pd, Ni, Co, Mo, Cu, Pt,
Fe, Ag, Ir, Pb, Re, Ti, Sn, V, Zn
An organic metal compound or an inorganic metal compound containing
Aromatic toluene, benzene, at room temperature or by heating
Xylene, methanol of methyls, an organic solvent such as a THF solution, or a mixed solvent of these various organic solvents is dissolved, and the active metal in the organic metal concentration solution or the inorganic metal concentration solution is wet-penetrated or sprayed. Al 2 O
3 , SiO 2 , Zeolite, TiO 2 , ZrO 2 ,
Precisely control the thickness and metal content of the metal egg shell by depositing it on the outer layer of the adherend such as MgO, activated carbon and polymer, or the mixture of these adherends, and controlling the permeation time or the concentration of the permeating metal solution. A method for producing an egg shell metal catalyst, characterized in that it is possible to produce single or various egg shell metal catalysts, and that the degree of dispersion of these metals can be controlled by different baking temperatures. .
【請求項2】 過飽和或いは適当な濃度のPd(CH3
COO)2 を有機触媒トルエンに溶解させ、該有機金属
溶液中のパラジウムを湿式浸透法により、酸化アルミニ
ウム被付着体(Al 23 )に付着させ、1秒〜48時
間の浸透時間を制御することにより、酸化アルミニウム
被付着体の外層に1mm〜卵殻状の半径までのパラジウ
ム金属の厚み、及び含量を1〜4.0wt%まで制御す
ることができるようにする事を特徴とする請求項1の卵
殻状金属触媒の製造方法。
2. Supersaturation or an appropriate concentration of Pd (CH 3
COO) 2 is dissolved in an organic catalyst toluene, and palladium in the organometallic solution is adhered to an aluminum oxide adherend (Al 2 O 3 ) by a wet infiltration method to control an infiltration time of 1 second to 48 hours. The thickness of the palladium metal having a radius of 1 mm to an egg shell-like radius and the content thereof can be controlled to 1 to 4.0 wt% in the outer layer of the adherend of aluminum oxide. Of the egg shell metal catalyst of the above.
【請求項3】 Ni(NO32 ・6H2 O水溶液を用
い、湿式浸透法で酸化アルミニウム被付着体にニッケル
を均等的に付着させた後、過飽和或いは適当な濃度のP
d(CH3 COO)2 を有機触媒トルエンに溶解させた
前記有機金属溶液を用いて、該金属溶液中のパラジウム
金属が前記酸化アルミニウム被付着体の外層から球心内
部へ線状的に減少するように付着させ、ニッケル金属が
均等的に分布し、パラジウム金属が被付着体の外層から
球心内部へ線状的に減少するダブル金属分布状態を呈す
る事を特徴とする請求項1の卵殻状金属触媒の製造方
法。
3. Ni (NO 3 ) 2 .6H 2 O aqueous solution is used to uniformly deposit nickel on an aluminum oxide adherend by a wet permeation method, and then supersaturation or an appropriate concentration of P is applied.
Using the organometallic solution prepared by dissolving d (CH 3 COO) 2 in the organic catalyst toluene, the palladium metal in the metal solution is linearly reduced from the outer layer of the aluminum oxide adherend to the inside of the ball core. And the nickel metal is evenly distributed, and the palladium metal exhibits a double metal distribution state in which the palladium metal linearly decreases from the outer layer of the adherend to the inside of the spherical core. Method for producing metal catalyst.
【請求項4】 パラジウム金属が卵殻状或いは被付着体
の外層から球心内部に向けて線状的に減少するよう付着
させた触媒に、100℃〜1200℃の焼付温度を再度
調整することにより、パラジウムの分散度を制御するこ
とができる事を特徴とする請求項2及び請求項3の卵殻
状金属触媒の製造方法。
4. The catalyst is attached so that the palladium metal linearly decreases from the outer layer of the eggshell or the outer layer of the adherend toward the inside of the spherical core, and the baking temperature of 100 ° C. to 1200 ° C. is readjusted. The method for producing an egg shell metal catalyst according to claim 2, wherein the degree of dispersion of palladium can be controlled.
【請求項5】 金属分布不均等な触媒を選択性水素化反
応、或いは選択性酸化反応に利用し、中間製品Bの選択
率及び生産率を向上できるように構成する事を特徴とす
る請求項乃至請求項4の卵殻状金属触媒の製造方法。
5. A catalyst having a non-uniform metal distribution is used in a selective hydrogenation reaction or a selective oxidation reaction so that the selectivity and the production rate of the intermediate product B can be improved. To the method for producing an egg shell metal catalyst according to claim 4.
JP8067210A 1996-02-27 1996-02-27 Production of egg shell-shaped metal catalyst Pending JPH09225305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8067210A JPH09225305A (en) 1996-02-27 1996-02-27 Production of egg shell-shaped metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067210A JPH09225305A (en) 1996-02-27 1996-02-27 Production of egg shell-shaped metal catalyst

Publications (1)

Publication Number Publication Date
JPH09225305A true JPH09225305A (en) 1997-09-02

Family

ID=13338330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067210A Pending JPH09225305A (en) 1996-02-27 1996-02-27 Production of egg shell-shaped metal catalyst

Country Status (1)

Country Link
JP (1) JPH09225305A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787501B2 (en) 2001-07-02 2004-09-07 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US6872680B2 (en) 2002-03-20 2005-03-29 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7271123B2 (en) 2002-03-20 2007-09-18 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion process
JP2010012468A (en) * 2009-10-19 2010-01-21 Idemitsu Kosan Co Ltd Isomerization catalyst of paraffinic hydrocarbon, its production method, and isomerization method
JP2010540232A (en) * 2007-10-04 2010-12-24 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Sintering resistant catalyst used in hydrogenation and dehydrogenation reactions and process for producing the same
CN102553634A (en) * 2010-12-31 2012-07-11 中国石油化工股份有限公司 Catalyst for Fischer-Tropsch synthesis and application thereof
CN102626620A (en) * 2012-03-24 2012-08-08 中国石油化工股份有限公司 Preparation method of palladium carbon catalyst with controllable load depth
CN106457210A (en) * 2014-03-18 2017-02-22 巴斯夫欧洲公司 A process for the production of a carbon supported catalyst
JP2018086647A (en) * 2016-11-29 2018-06-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Catalyst for selective hydrogenation of c3 hydrocarbon fractions from steam cracking and/or catalytic cracking
JP2018099679A (en) * 2016-11-29 2018-06-28 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Selective hydrogenation catalyst for c3 hydrocarbon cut
CN110102265A (en) * 2019-04-04 2019-08-09 浙江树人学院(浙江树人大学) For the load zirconium biology compound adsorbent and regeneration method of removing fluor in water and application
CZ308219B6 (en) * 2019-02-18 2020-03-04 Unipetrol výzkumně vzdělávací centrum, a.s. Process for producing a catalytically active layer on zeolite foam
CN114917900A (en) * 2022-04-15 2022-08-19 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof
CN115608371A (en) * 2022-10-09 2023-01-17 中化泉州石化有限公司 Eggshell type residual oil hydrogenation catalyst and preparation method thereof
CN115608371B (en) * 2022-10-09 2024-04-30 中化泉州石化有限公司 Eggshell type residuum hydrogenation catalyst and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144131A (en) * 1993-07-16 1995-06-06 Hoechst Ag Surface-impregnated catalyst, its preparation and method for using it for manufacturing vinyl acetate
JPH07144130A (en) * 1993-07-16 1995-06-06 Hoechst Ag Catalyst, preparation thereof and method for using it for manufacturing vinyl acetate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144131A (en) * 1993-07-16 1995-06-06 Hoechst Ag Surface-impregnated catalyst, its preparation and method for using it for manufacturing vinyl acetate
JPH07144130A (en) * 1993-07-16 1995-06-06 Hoechst Ag Catalyst, preparation thereof and method for using it for manufacturing vinyl acetate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787501B2 (en) 2001-07-02 2004-09-07 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7160831B2 (en) 2001-07-02 2007-01-09 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7301065B2 (en) 2001-07-02 2007-11-27 Exxonmobil Chemical Patents Inc. Molecular-sieve catalyst composition, its making and use in conversion processes
US6872680B2 (en) 2002-03-20 2005-03-29 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7271123B2 (en) 2002-03-20 2007-09-18 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion process
JP2010540232A (en) * 2007-10-04 2010-12-24 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Sintering resistant catalyst used in hydrogenation and dehydrogenation reactions and process for producing the same
JP2010012468A (en) * 2009-10-19 2010-01-21 Idemitsu Kosan Co Ltd Isomerization catalyst of paraffinic hydrocarbon, its production method, and isomerization method
CN102553634A (en) * 2010-12-31 2012-07-11 中国石油化工股份有限公司 Catalyst for Fischer-Tropsch synthesis and application thereof
CN102626620A (en) * 2012-03-24 2012-08-08 中国石油化工股份有限公司 Preparation method of palladium carbon catalyst with controllable load depth
CN106457210A (en) * 2014-03-18 2017-02-22 巴斯夫欧洲公司 A process for the production of a carbon supported catalyst
CN106457210B (en) * 2014-03-18 2019-11-26 巴斯夫欧洲公司 The method for preparing catalysts supported on carbon
JP2018086647A (en) * 2016-11-29 2018-06-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Catalyst for selective hydrogenation of c3 hydrocarbon fractions from steam cracking and/or catalytic cracking
JP2018099679A (en) * 2016-11-29 2018-06-28 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Selective hydrogenation catalyst for c3 hydrocarbon cut
CZ308219B6 (en) * 2019-02-18 2020-03-04 Unipetrol výzkumně vzdělávací centrum, a.s. Process for producing a catalytically active layer on zeolite foam
CN110102265A (en) * 2019-04-04 2019-08-09 浙江树人学院(浙江树人大学) For the load zirconium biology compound adsorbent and regeneration method of removing fluor in water and application
CN114917900A (en) * 2022-04-15 2022-08-19 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof
CN114917900B (en) * 2022-04-15 2023-12-01 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof
CN115608371A (en) * 2022-10-09 2023-01-17 中化泉州石化有限公司 Eggshell type residual oil hydrogenation catalyst and preparation method thereof
CN115608371B (en) * 2022-10-09 2024-04-30 中化泉州石化有限公司 Eggshell type residuum hydrogenation catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3409072B2 (en) Catalyst for selective hydrogenation of highly unsaturated hydrocarbon compounds in olefin compounds
JP5108761B2 (en) Selective hydrogenation catalyst and production and use thereof
JPH09225305A (en) Production of egg shell-shaped metal catalyst
Fuente et al. Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation
KR102430712B1 (en) Method for preparing oxidative dehydrogenation catalyst using hydrothermal treatment and peroxide treatment
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
JP6876124B2 (en) The catalyst and the process for producing fluorinated hydrocarbons using this catalyst
JP2002177778A (en) Hydrogenation catalyst, process of preparing the same, method of using the same and method of preparing aniline and toluene-diamine
JP2019527134A (en) Hydrothermal treatment of ODH catalyst at controlled pressure
JP2015083588A (en) Cineole
AU644750B2 (en) Preparation of a catalyst from metal oxides by reduction and partial carburization by reaction gases
Álvarez-Rodríguez et al. Modifications of the citral hydrogenation selectivities over Ru/KL-zeolite catalysts induced by the metal precursors
CN111054326B (en) Supported catalyst, preparation method thereof and application of supported catalyst in catalyzing synthesis of indole from ethylene glycol and aniline
TW272146B (en) The preparation of eggshell catalysts having selective reversal or oxidation reaction
Janssens et al. Characterisation of alumina-and silica-supported vanadium sulphide catalysts and their performance in hydrotreating reactions
EP1411038B1 (en) Process for the preparation of phenol by means of the hydrodeoxygenation of benzene-diols
EP3287191A1 (en) Catalytically active compositions of matter
JP4481554B2 (en) Hydrogenation catalyst for petroleum resin and method for producing hydrogenated petroleum resin
JP2653208B2 (en) Method for producing chlorotrifluoroethylene
FR3069460A3 (en) PROCESS FOR PREPARING A HIERARCHIC ZEOLITE CATALYST FOR THE AROMATISATION OF C5 TO C9 ALKANES
WO2008060985A2 (en) Oxidation processes using functional surface catalyst composition
KR20050049527A (en) Mixed metal oxide catalyst and process for production of acetic acid
Špringerová et al. Selective hydrogenation of α, β-unsaturated carbonyl compounds on supported Ru-Sn catalysts
JPWO2020050160A1 (en) A catalyst for hydrogenation reaction used for hydrogenation of an amide compound and a method for producing an amine compound using the catalyst.
US10947172B2 (en) Highly active catalyst for dehydrogenation of alkanes and method of preparation thereof