JPH09223930A - Colpitts oscillation circuit - Google Patents

Colpitts oscillation circuit

Info

Publication number
JPH09223930A
JPH09223930A JP5101796A JP5101796A JPH09223930A JP H09223930 A JPH09223930 A JP H09223930A JP 5101796 A JP5101796 A JP 5101796A JP 5101796 A JP5101796 A JP 5101796A JP H09223930 A JPH09223930 A JP H09223930A
Authority
JP
Japan
Prior art keywords
circuit
oscillator
capacitor
colpitts
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5101796A
Other languages
Japanese (ja)
Other versions
JP3322791B2 (en
Inventor
Yasuo Tsuzuki
泰雄 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP05101796A priority Critical patent/JP3322791B2/en
Publication of JPH09223930A publication Critical patent/JPH09223930A/en
Application granted granted Critical
Publication of JP3322791B2 publication Critical patent/JP3322791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Colpitts oscillation circuit with stable oscillation activation characteristics without delaying the rise of an oscillation level at the time of supplying power. SOLUTION: In this Colpitts oscillation circuit composed of a piezoelectric vibrator, an amplification element and a capacitor to be a part of load capacity, etc., one end of the piezoelectric vibrator is grounded through a power supply line. The capacitor CA is inserted between the base and emitter of a transistor, the capacitor CB and a resistor RE are inserted between the emitter and ground, a crystal resonator is inserted between the base and the power supply line and a required bias voltage is supplied to the transistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコルピッツ発振回
路、特に電源投入時の発振起動を確実にしたコルピッツ
発振回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Colpitts oscillating circuit, and more particularly to a Colpitts oscillating circuit in which oscillation start is surely performed when power is turned on.

【0002】[0002]

【従来の技術】マイクロプロセッサ等のデジタル機器或
いは水晶時計、及び移動体通信には安定なデジタルクロ
ック信号が必要であるが、近年そのための発振回路とし
てトランジスタを増幅素子とし、圧電振動子として水晶
振動子を利用したコルピッツ発振回路が一般的である。
その基本的な回路を示せば図7の通りであって、トラン
ジスタのベースとエミッタ間にコンデンサCA を、エミ
ッタと接地間にコンデンサCB 及び抵抗RE を、ベース
と接地間に抵抗RB 及び水晶振動子XA 、さらに必要に
応じて周波数調整用として可変コンデンサCS を挿入し
たものである。端子VCCは直流電源を加える端子であ
る。
2. Description of the Related Art A stable digital clock signal is required for a digital device such as a microprocessor or a quartz clock, and mobile communication. In recent years, a transistor is used as an amplification element as an oscillation circuit for that purpose, and a quartz oscillator is used as a piezoelectric vibrator. A Colpitts oscillator circuit using a child is common.
The basic circuit is shown in FIG. 7, in which a capacitor C A is connected between the base and emitter of the transistor, a capacitor C B and a resistor R E are connected between the emitter and ground, and a resistor R B is connected between the base and ground. In addition, a crystal oscillator X A and, if necessary, a variable capacitor C S for frequency adjustment are inserted. The terminal V CC is a terminal for applying a DC power supply.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
コルピッツ発振回路では電源投入時直後の発振出力の立
ち上がりが遅れたり、或いは周波数の安定に時間を要す
る等の問題があった。更に著しい場合には、発振が正常
に起動せず、不発に終わることがあった。本発明は上述
した如き発振回路が有する欠点を除去する為になされた
ものであって、電源投入時の発振レベルの立ち上がりが
遅れることがなく、安定した発振起動特性を持ったコル
ピッツ発振回路を提供することを目的とする。
However, the Colpitts oscillating circuit described above has a problem in that the rise of the oscillation output is delayed immediately after the power is turned on, or it takes time to stabilize the frequency. In a more significant case, the oscillation may not start normally and may end unintentionally. The present invention has been made in order to eliminate the drawbacks of the oscillation circuit as described above, and provides a Colpitts oscillation circuit having a stable oscillation starting characteristic without delaying the rise of the oscillation level when the power is turned on. The purpose is to do.

【0004】[0004]

【課題を解決する為の手段】上述の目的を達成するため
本発明に係わる発振回路は、圧電振動子と増幅素子と負
荷容量の一部となるコンデンサ等からなるコルピッツ発
振回路において、圧電振動子の一方端を電源ラインを介
して接地したことによって電源投入時の立ち上がりを速
く且つ確実にしたものである。
In order to achieve the above object, an oscillator circuit according to the present invention is a Colpitts oscillator circuit including a piezoelectric oscillator, an amplifying element, and a capacitor which is a part of a load capacitance. By grounding one end through the power supply line, the rise at the time of turning on the power is made quick and reliable.

【0005】[0005]

【発明の実施の形態】以下、本発明を実施例を示す図面
に基づいて詳細に説明する。図1は本発明の一実施例を
示す回路図であって、この回路図が前記従来の回路図と
異なる点は水晶振動子の一端を電源ラインを介して接地
するよう構成したものである。基本的な回路は同図に示
すように、トランジスタのベースとエミッタ間にコンデ
ンサCA を、エミッタと接地間にコンデンサCB と抵抗
E を、ベースと接地間に抵抗RB 、必要に応じて可変
コンデンサCS を挿入し、水晶振動子XA の一端を電源
ラインに一端をトランジスタのベースに接続したもので
ある。従来のコルピッツ発振回路で端子VCCに直流電圧
を加えた後の動作は、トランジスタが動作状態になるま
で、起動時間全体では無視できる程度の短時間の領域
で、振動子はほぼ一定振幅で振動する。電源投入直後の
動作は図2に示す等価回路で考えることができ、電源投
入直後にはRC 、トランジスタのベースコレクタ間容量
BC、2つの容量CA 、CB の直列回路に充電電流が流
れ、その時定数は小さいのでベース側には次式で決まる
小振幅のステップ電圧Vtが生じる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments. FIG. 1 is a circuit diagram showing an embodiment of the present invention. This circuit diagram is different from the conventional circuit diagram described above in that one end of a crystal oscillator is configured to be grounded via a power supply line. As shown in the figure, the basic circuit is a capacitor C A between the base and the emitter of the transistor, a capacitor C B and a resistor R E between the emitter and the ground, and a resistor R B between the base and the ground. A variable capacitor C S is inserted by connecting the one end of the crystal unit X A to the power supply line and the other end to the base of the transistor. In the conventional Colpitts oscillator circuit, the operation after applying a DC voltage to the terminal V CC is such that the oscillator oscillates with a substantially constant amplitude in a region where the entire startup time is negligible until the transistor enters the operating state. To do. The operation immediately after the power is turned on can be considered by the equivalent circuit shown in FIG. 2. Immediately after the power is turned on, the charging current is applied to the series circuit of R C , the base-collector capacitance C BC of the transistor, the two capacitances C A and C B. Since the current flows, and its time constant is small, a small-amplitude step voltage Vt determined by the following equation is generated on the base side.

【0006】Vt=(CBC/(CBC+Ct))VCC ただし、CtはCA とCB の直列容量 Ct=CAB /(CA +CB ) であり、振動子の影響は無視してある。このステップ電
圧により振動子が励振され、振動子等価回路のL1 、C
1 、R1 の直列共振片を流れる高周波電流(振動子の振
動振幅に比例する。以下、共振電流と呼ぶ。)の初期振
幅は、 10 =√(C1 /L1 )×Vt と示すことができる。
Vt = (C BC / (C BC + Ct)) V CC However, Ct is the series capacitance of C A and C B Ct = C A C B / (C A + C B ) and the influence of the oscillator is I ignored it. This step voltage excites the oscillator, and L 1 and C of the oscillator equivalent circuit
The initial amplitude of the high-frequency current (proportional to the vibration amplitude of the oscillator; hereinafter referred to as the resonance current) flowing through the series resonance element of R 1 and R 1 is shown as 1 0 = √ (C 1 / L 1 ) × Vt be able to.

【0007】前述のように、電源投入直後の振動子電流
は振動子に加わる電圧に比例するので、本発明のように
構成すれば振動子には電源電圧とほぼ同じ大きさ、即
ち、最大のステップ電圧が加わることとなるので、振動
子は最も高い振動レベルで始動することとなり、コルピ
ッツ発振回路の起動時間の短縮となる。また、水晶振動
子は、振動子電流即ち振動子励振レベルが変動しても等
価直列抵抗が変化しないことが望ましいが、低励振レベ
ルとなると抵抗値が数10%も増加するような振動子が
少なからずある。前記振動子の低励振レベルにおける等
価抵抗が大幅に大きい場合は、発振回路が不発となって
しまう恐れがある。
As described above, since the oscillator current immediately after the power is turned on is proportional to the voltage applied to the oscillator, the oscillator according to the present invention has almost the same magnitude as the power source voltage, that is, the maximum. Since the step voltage is applied, the vibrator starts at the highest vibration level, which shortens the startup time of the Colpitts oscillator circuit. In addition, it is desirable for the crystal oscillator that the equivalent series resistance does not change even if the oscillator current, that is, the oscillator excitation level, changes. However, when the excitation level becomes low, the resistance value increases by several tens of percent. Not a few. If the equivalent resistance of the vibrator at a low excitation level is significantly large, the oscillation circuit may fail to fire.

【0008】しかし、振動子では励振レベルを低くする
と等価抵抗は増加する傾向を持っている。従って発振回
路の不発を減少させるためには高い励振レベルで振動子
を始動させればよく、前述のように振動子の接続を変更
することによって最大のステップ電圧が加わることとな
るので、振動子は最も高い振動レベルで始動することと
なり、不発となることのない発振回路を実現するという
効果を有する。本願発明は前述した回路のみならず、図
3に示すようなカスコード型のコルピッツ回路に適用す
ることができる。カスコード型コルピッツ発振回路は携
帯電話等に多用されており、頻繁に発振器の電源のON
―OFFを繰り返す場合に特に有効であろう。
However, in the oscillator, the equivalent resistance tends to increase as the excitation level is lowered. Therefore, in order to reduce the oscillation failure of the oscillation circuit, it is sufficient to start the oscillator at a high excitation level, and by changing the connection of the oscillator as described above, the maximum step voltage is applied, so Will start at the highest vibration level, and has the effect of realizing an oscillation circuit that does not fail. The present invention can be applied not only to the circuit described above, but also to a cascode type Colpitts circuit as shown in FIG. The cascode Colpitts oscillator circuit is widely used in mobile phones and the like, and the power of the oscillator is frequently turned on.
-It will be especially effective when repeating OFF.

【0009】前記カスコード形コルピッツ発振回路は、
ふたつのトランジスタが直列に接続しており、バッファ
としてカスコード接続されたベース接地回路にはベース
と接地間に大容量のコンデンサが接続されているため、
電源投入直後の振動子の起動レベルは通常のコルピッツ
回路より大幅に低くなり、起動時間も長くなる。しかし
圧電振動子の一端を電源を介して接地すれば、通常のコ
ルピッツ回路を変形した場合と同一のレベルで始動する
ことになり、起動時間短縮の効果は一段と著しいことと
なる。
The cascode type Colpitts oscillator circuit is
Two transistors are connected in series, and a large-capacity capacitor is connected between the base and ground in the grounded base circuit that is cascode-connected as a buffer.
Immediately after the power is turned on, the starting level of the vibrator is significantly lower than that of a normal Colpitts circuit, and the starting time is longer. However, if one end of the piezoelectric vibrator is grounded via the power supply, the piezoelectric vibrator starts at the same level as when the ordinary Colpitts circuit is deformed, and the effect of shortening the starting time becomes more remarkable.

【0010】前述のカスコード形発振回路を、コンピュ
ータ解析により起動時間短縮の効果を検証した。発振回
路の条件は、発振周波数:10MHz, 電源電圧:5
V, 振動子電流:1mA,振動子の負荷容量:30p
F, 負性抵抗余裕:振動子等価抵抗の3倍 振動子の等価回路定数値は、L1 =18.7mH, C
1 =0.0135pF, R1 =11.9Ω,C0
2.75pF, fs=10.0MHz Re=14.2Ω(負荷容量30pFのときの等価抵
抗) とし、以上に基づき図3の回路定数を次のように定め
た。(トランジスタは2SC1359) RA =68KΩ, RB =62KΩ, RC =1.8K
Ω,RD =47KΩ, RE =5.1KΩ, CA =1
80pF,CB =220pF, CD =10nF,CS
=42.3pF,(能動回路側の等価容量を30pFに
する値) なお、図3の回路の出力端には、負荷インピーダンスと
して10KΩと10pFの並列回路を付加してあり、負
荷側に電流が分流するために始動レベルはさらに低下す
る。従来のカスコード形コルピッツ発振回路、および振
動子を電源側に接続変更した発振回路について、電源投
入後の0〜0.3μs(10MHzでは3周期)の間の
振動子電圧と共振電流とを解析して得られた結果を表1
に示す。
The effect of shortening the starting time of the above-mentioned cascode type oscillation circuit was verified by computer analysis. Oscillation circuit conditions are: oscillation frequency: 10 MHz, power supply voltage: 5
V, oscillator current: 1mA, oscillator load capacity: 30p
F, Negative resistance margin: 3 times the equivalent resistance of the oscillator The equivalent circuit constant value of the oscillator is L 1 = 18.7 mH, C
1 = 0.0135 pF, R 1 = 11.9Ω, C 0 =
2.75 pF, fs = 10.0 MHz Re = 14.2 Ω (equivalent resistance when the load capacitance is 30 pF), and based on the above, the circuit constants in FIG. 3 were determined as follows. (Transistor is 2SC1359) R A = 68KΩ, R B = 62KΩ, R C = 1.8K
Ω, R D = 47KΩ, R E = 5.1KΩ, C A = 1
80 pF, C B = 220 pF, C D = 10 nF, C S
= 42.3 pF, (value that makes the equivalent capacitance on the active circuit side 30 pF) Note that a parallel circuit of 10 KΩ and 10 pF as load impedance is added to the output end of the circuit of FIG. The start level is further reduced due to the diversion. Regarding the conventional cascode type Colpitts oscillator circuit and the oscillator circuit in which the oscillator is connected to the power source side, the oscillator voltage and the resonance current during 0 to 0.3 μs (3 cycles at 10 MHz) after power-on are analyzed. Table 1 shows the results obtained
Shown in

【0011】[0011]

【表1】 従来の発振回路では電源投入直後にパルス状の微小電圧
が振動子に加わり、振動子は極めて低レベルの0.1n
Aで始動するが、接続を変更した回路では振動子には電
源電圧の5ボルトの変化がほぼそのまま加わり、従来の
回路より約4万倍の4μAで振動子は始動する。前述の
始動電流の式、 I0 =√(C1 /L1 )×Vt ・・・・(1) でVt を4.8ボルトとするとIO は4.1μAとな
り、表1の値とよく一致している。前述と異なる評価方
法として、共振電流が90%に達するまでの時間、及び
発振周波数の周波数許容偏差が1ppmとなる起動時間
について解析した。振動子を接続変更した回路の場合は
短縮量14.6msを差し引いて表2の結果を得た。
[Table 1] In the conventional oscillator circuit, a pulsed minute voltage is applied to the vibrator immediately after the power is turned on, and the vibrator has an extremely low level of 0.1n.
The circuit starts with A, but in the circuit where the connection is changed, the change of the power supply voltage of 5 V is applied to the vibrator almost as it is, and the vibrator starts at 4 μA, which is about 40,000 times that of the conventional circuit. In the above equation of the starting current, I 0 = √ (C 1 / L 1 ) × V t ... (1) When V t is set to 4.8 V, I O becomes 4.1 μA, and the values in Table 1 are obtained. Is in good agreement with. As an evaluation method different from the above, the time until the resonance current reaches 90% and the starting time at which the frequency tolerance of the oscillation frequency becomes 1 ppm were analyzed. In the case of the circuit in which the connection of the oscillator was changed, the shortening amount of 14.6 ms was subtracted to obtain the results of Table 2.

【0012】なお起動時間の短縮量とは、振動子始動電
流の増大比がわかっている場合、線形LCR回路につい
ての周知の解析結果から簡単に算出でき、振動子の等価
直列インダクタンスL1に直列になる抵抗分は振動子の
等価直列抵抗R1と振動子並列容量CO を含めた発振回
路側の小信号負性抵抗−RLO’の和(R1−RLO’)で
あり、RLO’は振動子接続端子から見た発振回路側の小
信号負性抵抗−RLO’から次式で求められる。 RLO’≒RLO/(1+C0/CL)・・・・(2) ただしCLは振動子の負荷容量である。損失の小さい線
形LCR回路における交流振幅Iの変化は、周知のよう
に次式になる。 I=I0 exp{(−P/2L)t}・・・・(3) 共振電流の初期振幅がI0 からI1 に増大する起動時間
の短縮量tS は、上式がI1 になるまでの時間であるか
ら次式で求められる。
The reduction amount of the startup time can be easily calculated from the well-known analysis result of the linear LCR circuit when the increase ratio of the oscillator starting current is known, and it can be calculated in series with the equivalent series inductance L1 of the oscillator. Is the sum (R1−R LO ′) of the oscillator's equivalent series resistance R1 and the small signal negative resistance −R LO ′ on the oscillator circuit side including the oscillator parallel capacitance C O , and R LO ′ is It is calculated from the small signal negative resistance -R LO 'on the oscillator circuit side as seen from the oscillator connection terminal by the following equation. R LO '≈ R LO / (1 + C0 / CL) ... (2) where CL is the load capacitance of the vibrator. As is well known, the change of the AC amplitude I in the linear LCR circuit with small loss is given by the following equation. I = I 0 exp {(− P / 2L) t} (3) The starting time reduction amount t S at which the initial amplitude of the resonance current increases from I 0 to I 1 becomes I 1 in the above formula. Since it is the time until it becomes, it can be calculated by the following formula.

【0013】 ts ={2L1 /(RLO’−R1)}In・(I1 /I0 )・・・・(4) 表1の結果から従来の発振回路と本発明による発振回路
の共振電流の比4.1×104 を式(4)に代入すると
起動時間の短縮量は14.6msとなる。
T s = {2L 1 / (R LO ′ −R1)} In · (I 1 / I 0 ) ... (4) From the results in Table 1, the results of the conventional oscillation circuit and the oscillation circuit according to the present invention are shown. Substituting the resonance current ratio of 4.1 × 10 4 into the equation (4), the shortening amount of the startup time becomes 14.6 ms.

【0014】[0014]

【表2】 定義によって相違はあるが、起動時間は約1/2から約
1/3にまで大幅に短縮される。なお、カスコード回路
の場合はベース接地回路のベース接地用コンデンサCD
の容量が大きいため発振用トランジスタが動作状態にな
るまでに時間が長いが(時定数約0.4ms)、その前
記コンデンサによる遅れ時間の影響は解析を簡易化する
ために無視してある。さらに本願発明は、振動子の基本
振動を利用する回路だけでなく、図4に示すような3次
振動、5次振動などのオーバートーン振動を利用する回
路にも適用できる。CE は交流の短絡用、LB とCB
並列回路は振動子の基本波周波数では誘導性リアクタン
スとなりオーバートーン周波数では容量性リアクタンス
となる回路であって、動作原理は通常のコルピッツ回路
と同じである。この回路も、振動子の一端を電源に接続
して接地することにより、起動の安定したオーバートー
ン発振回路となる。尚、以上本発明の発振回路の増幅素
子をトランジスタとして構成したものを例として説明し
たが、本発明はこれに限定されるものではなく、図5、
図6に示すような、増幅素子を接合型FET、或いはM
OS型FETに変更して構成したコルピッツ発振回路に
おいても、振動子の一端を電源ラインを介して接地する
回路構成であってもよく、同様の効果を得ることは当業
者にとって周知事項である。
[Table 2] Depending on the definition, the startup time is greatly reduced from about 1/2 to about 1/3. In the case of the cascode circuit, the base grounding capacitor C D of the base grounding circuit
Since the capacitance is large, it takes a long time for the oscillation transistor to operate (time constant of about 0.4 ms), but the influence of the delay time due to the capacitor is neglected in order to simplify the analysis. Furthermore, the present invention can be applied not only to a circuit that uses the fundamental vibration of a vibrator, but also to a circuit that uses overtone vibration such as tertiary vibration and fifth vibration as shown in FIG. C E is for AC short circuit, and the parallel circuit of L B and C B is a circuit that has an inductive reactance at the fundamental frequency of the oscillator and a capacitive reactance at the overtone frequency. The operating principle is that of a normal Colpitts circuit. Is the same. This circuit also becomes an overtone oscillation circuit with stable startup by connecting one end of the vibrator to the power supply and grounding. Although the oscillation circuit of the present invention is configured by using the transistor as the amplification element in the above description, the present invention is not limited to this.
As shown in FIG. 6, an amplifying element is a junction type FET or M
The Colpitts oscillator circuit configured by changing to the OS type FET may have a circuit configuration in which one end of the vibrator is grounded via the power supply line, and it is well known to those skilled in the art to obtain the same effect.

【0015】[0015]

【発明の効果】本発明は以上説明した如く圧電振動子の
一方端を電源ラインを介して接地するよう構成するもの
であるから、起動の安定したコルピッツ発振回路を得る
上で著しい効果を発揮する。
As described above, the present invention is constructed such that one end of the piezoelectric vibrator is grounded through the power supply line, and therefore, a remarkable effect is obtained in obtaining a Colpitts oscillation circuit with stable startup. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるコルピッツ発振回路を示す回路
図。
FIG. 1 is a circuit diagram showing a Colpitts oscillator circuit according to the present invention.

【図2】コルピッツ発振回路の起動状態を示す回路図。FIG. 2 is a circuit diagram showing a startup state of a Colpitts oscillator circuit.

【図3】本発明をカスコード形コルピッツ発振回路に適
用した回路図。
FIG. 3 is a circuit diagram in which the present invention is applied to a cascode Colpitts oscillator circuit.

【図4】本発明をオーバートーン発振回路に適用した回
路図。
FIG. 4 is a circuit diagram in which the present invention is applied to an overtone oscillator circuit.

【図5】本発明に係わる増幅素子を接合型FETに適用
した回路図。
FIG. 5 is a circuit diagram in which the amplification element according to the present invention is applied to a junction type FET.

【図6】本発明に係わる増幅素子をMOS型FETに適
用した回路図。
FIG. 6 is a circuit diagram in which the amplification element according to the present invention is applied to a MOS type FET.

【図7】従来のコルピッツ発振回路を示す回路図。FIG. 7 is a circuit diagram showing a conventional Colpitts oscillator circuit.

【符号の説明】[Explanation of symbols]

A 、CB 、CC 、CD ……コンデンサ CS ……可変コンデンサ RA 、RB 、RC 、RE ……抵抗 XA ……振動子 VCC……電源端子C A , C B , C C , C D・ ・ ・ Capacitor C S・ ・ ・ Variable capacitor R A , R B , R C , R E・ ・ ・ Resistor X A・ ・ ・ Resonator V CC・ Power supply terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧電振動子と増幅素子と負荷容量の一部
となるコンデンサ等からなるコルピッツ発振回路におい
て、圧電振動子の一方端を電源ラインを介して接地した
ことを特徴とするコルピッツ発振回路。
1. A Colpitts oscillator circuit comprising a piezoelectric oscillator, an amplifying element, and a capacitor which is a part of a load capacitance, wherein one end of the piezoelectric oscillator is grounded through a power supply line. .
【請求項2】 トランジスタのベースとエミッタ間にコ
ンデンサCA を、エミッタと接地間にコンデンサCB
抵抗RE を、ベースと電源ライン間に水晶振動子を挿入
すると共に、トランジスタに所要のバイアス電圧を与え
るよう構成したことを特徴とする請求項1記載のコルピ
ッツ発振回路。
2. A capacitor C A is inserted between the base and the emitter of the transistor, a capacitor C B and a resistor R E are inserted between the emitter and the ground, and a crystal oscillator is inserted between the base and the power supply line, and a required bias is applied to the transistor. The Colpitts oscillator circuit according to claim 1, wherein the Colpitts oscillator circuit is configured to apply a voltage.
【請求項3】 接合型FETのゲートとソース間にコン
デンサCA を、ソースと接地間にコンデンサCB と抵抗
S を、ゲートと電源ライン間に水晶振動子を挿入する
と共に、接合型FETに所要のバイアス電圧を与えるよ
う構成したことを特徴とする請求項1記載のコルピッツ
発振回路。
3. A junction type FET, wherein a capacitor C A is inserted between the gate and the source of the junction type FET, a capacitor C B and a resistor R S are inserted between the source and the ground, and a crystal oscillator is inserted between the gate and the power supply line. 2. The Colpitts oscillator circuit according to claim 1, wherein the Colpitts oscillator circuit is configured to apply a required bias voltage to.
【請求項4】 MOS型FETのゲートとソース間にコ
ンデンサCA を、ソースと接地間にコンデンサCB と抵
抗RS を、ゲートと電源ライン間に水晶振動子を挿入す
ると共に、MOS型FETに所要のバイアス電圧を与え
るよう構成したことを特徴とする請求項1記載のコルピ
ッツ発振回路。
4. A MOS type FET, wherein a capacitor C A is inserted between the gate and source of the MOS type FET, a capacitor C B and a resistor R S are inserted between the source and ground, and a crystal oscillator is inserted between the gate and the power supply line. 2. The Colpitts oscillator circuit according to claim 1, wherein the Colpitts oscillator circuit is configured to apply a required bias voltage to.
JP05101796A 1996-02-14 1996-02-14 Colpitts oscillation circuit Expired - Lifetime JP3322791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05101796A JP3322791B2 (en) 1996-02-14 1996-02-14 Colpitts oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05101796A JP3322791B2 (en) 1996-02-14 1996-02-14 Colpitts oscillation circuit

Publications (2)

Publication Number Publication Date
JPH09223930A true JPH09223930A (en) 1997-08-26
JP3322791B2 JP3322791B2 (en) 2002-09-09

Family

ID=12875030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05101796A Expired - Lifetime JP3322791B2 (en) 1996-02-14 1996-02-14 Colpitts oscillation circuit

Country Status (1)

Country Link
JP (1) JP3322791B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049566A1 (en) * 1998-03-25 1999-09-30 Rohm Co., Ltd. Oscillation circuit
US6496695B1 (en) 1998-07-27 2002-12-17 Hitchi, Ltd. Resource-saving event-driven monitoring system and method
WO2004042914A1 (en) * 2002-11-07 2004-05-21 Niigata Seimitsu Co., Ltd. Crystal oscillator and semiconductor device
CN1312844C (en) * 2003-02-18 2007-04-25 株式会社村田制作所 Oscillator and high-frequency superposing module for driving laser diode
JP2017060067A (en) * 2015-09-18 2017-03-23 新日本無線株式会社 Oscillation circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049566A1 (en) * 1998-03-25 1999-09-30 Rohm Co., Ltd. Oscillation circuit
US6496695B1 (en) 1998-07-27 2002-12-17 Hitchi, Ltd. Resource-saving event-driven monitoring system and method
WO2004042914A1 (en) * 2002-11-07 2004-05-21 Niigata Seimitsu Co., Ltd. Crystal oscillator and semiconductor device
CN1312844C (en) * 2003-02-18 2007-04-25 株式会社村田制作所 Oscillator and high-frequency superposing module for driving laser diode
JP2017060067A (en) * 2015-09-18 2017-03-23 新日本無線株式会社 Oscillation circuit

Also Published As

Publication number Publication date
JP3322791B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP2626432B2 (en) Oscillation circuit
JP2003243932A (en) Temperature compensated crystal oscillator
JPH09223930A (en) Colpitts oscillation circuit
US4843349A (en) UHF crystal oscillator
US7205856B2 (en) Piezoelectric oscillator
JP3689981B2 (en) Oscillator circuit
JP3299706B2 (en) Crystal oscillation circuit
JPH066594Y2 (en) Overtone crystal oscillator circuit
JP2004304667A (en) Piezoelectric oscillator
EP1892826A1 (en) Oscillator
JP2004048689A (en) Hartley piezoelectric oscillator
JP2003142944A (en) Piezoelectric oscillator
JP2956985B2 (en) Drive circuit for crystal oscillator
JPH09162641A (en) Voltage control oscillator
JP3004817B2 (en) Crystal oscillation circuit
JP2576193B2 (en) Oscillation circuit
JPH061857B2 (en) Oscillator circuit
JP2004104609A (en) Temperature compensation type piezoelectric oscillator
JP4190874B2 (en) Piezoelectric oscillation circuit
JP3239077B2 (en) Oscillation circuit
JP4604825B2 (en) Piezoelectric oscillator
JP2002261546A (en) Piezoelectric oscillator
JP2003060434A (en) Oscillator and electronic apparatus using the same
JPH10303643A (en) Voltage-controlled oscillation circuit
JP2001144540A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

EXPY Cancellation because of completion of term