JPH09222037A - Control device for cylinder direct injection type internal combustion engine - Google Patents

Control device for cylinder direct injection type internal combustion engine

Info

Publication number
JPH09222037A
JPH09222037A JP8030997A JP3099796A JPH09222037A JP H09222037 A JPH09222037 A JP H09222037A JP 8030997 A JP8030997 A JP 8030997A JP 3099796 A JP3099796 A JP 3099796A JP H09222037 A JPH09222037 A JP H09222037A
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
lower limit
fuel supply
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8030997A
Other languages
Japanese (ja)
Other versions
JP3814858B2 (en
Inventor
Keisuke Suzuki
敬介 鈴木
Nobutaka Takahashi
伸孝 高橋
Toshio Matsumura
利夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP03099796A priority Critical patent/JP3814858B2/en
Publication of JPH09222037A publication Critical patent/JPH09222037A/en
Application granted granted Critical
Publication of JP3814858B2 publication Critical patent/JP3814858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To start the feed of fuel from an optimum cycle according to an engine state during the starting of a cylinder direct injection type internal combustion engine. SOLUTION: Based on the results of an operation state detecting means A to detect the operation state of an engine and a fuel feed amount computing means B to calculate a fuel feed amount during the starting of an engine, a fuel pressure lower limit value computing means C calculates the lower limit value (a fuel pressure lower limit value) of a fuel pressure demanded during starting and a fuel pressure estimating means D estimates a fuel pressure (a fuel pressure estimating value) after the feed of fuel. A fuel feed starting cylinder deciding means E compares the fuel pressure estimating value with the fuel pressure lower limit, and when the fuel pressure estimating value exceeds the fuel pressure lower limit, fuel is fed to a cylinder to which a fuel feed timing comes. When the fuel pressure estimating value is below the fuel pressure lower limit, the feed of fuel is not effected and at a next fuel feed timing, similar processing described above is effected and a cylinder to start the feed of fuel is decided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関の制御装置に関し、特に、燃料を高圧で気筒内に直接
噴射する直噴用インジェクタを備えた筒内直接噴射式内
燃機関の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an internal combustion engine of an automobile or the like, and more particularly to a control device for a direct injection type internal combustion engine having a direct injection injector for directly injecting fuel at high pressure into the cylinder. Regarding

【0002】[0002]

【従来の技術】筒内直接噴射式内燃機関では、始動時に
機関が確実に始動するように、燃料の微粒化を考えて、
燃料圧力(以下、燃圧という)が高くなってから供給す
ることが望ましい。このため、従来、燃費や効率をも考
慮して、機械駆動式の高圧燃料ポンプを用いて高い燃圧
を発生している。
2. Description of the Related Art In a cylinder direct injection type internal combustion engine, in consideration of atomization of fuel, the engine is surely started at the time of starting.
It is desirable to supply after the fuel pressure (hereinafter referred to as fuel pressure) becomes high. Therefore, conventionally, a high fuel pressure is generated using a mechanically driven high-pressure fuel pump in consideration of fuel consumption and efficiency.

【0003】しかし、機関始動時にはこの高圧燃料ポン
プが負荷となり、機関回転数の上昇が遅れ、ひいては燃
圧の上昇も遅れてしまうため、燃圧が十分に上昇するの
を待ってから燃料供給を行うのでは、結果的に機関の始
動が遅くなってしまう場合がある。また、始動を速くす
るために燃圧が不足したまま燃料供給を早めすぎると、
運転条件によっては燃料供給量が不足して燃焼不良や失
火を生じ、排気や始動性の悪化につながる場合もある。
However, when the engine is started, the high-pressure fuel pump becomes a load, and the increase in the engine speed is delayed, and the increase in the fuel pressure is also delayed. Therefore, the fuel is supplied after waiting for the fuel pressure to sufficiently increase. Then, as a result, the start of the engine may be delayed. Also, if the fuel supply is too early while the fuel pressure is insufficient to speed up the start,
Depending on the operating conditions, the fuel supply amount may be insufficient, resulting in poor combustion or misfire, which may lead to deterioration of exhaust gas or startability.

【0004】このような不都合を回避するため、特開平
4-311637号公報には、直噴用インジェクタを備えた内燃
機関において、始動時の機関回転数が所定値よりも低い
場合には、圧縮行程末期に燃料の供給を開始して、噴射
した燃料が点火栓回りで成層となるようにし、また、機
関回転数が所定値よりも高い場合には、排気弁が閉弁す
る頃に燃料供給を行って、燃焼室内に均一混合気を形成
するようにして燃焼させる技術が開示されている。これ
は、排気や始動性を悪化させることなく機関回転数の急
速な上昇を実現しようとするものである。
In order to avoid such an inconvenience
In the 4-311637 publication, in an internal combustion engine equipped with a direct injection injector, when the engine speed at startup is lower than a predetermined value, the supply of fuel is started at the end of the compression stroke, and the injected fuel is injected. Is stratified around the spark plug, and when the engine speed is higher than a predetermined value, fuel is supplied when the exhaust valve closes to form a uniform mixture in the combustion chamber. There is disclosed a technique for burning the fuel. This is intended to realize a rapid increase in engine speed without deteriorating exhaust gas and startability.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の筒内直接噴射式内燃機関の制御装置にあって
は、機関始動時の回転数にのみ着目しており、燃料供給
量や燃圧の状態は考慮されておらず、始動時最初の燃料
供給は常に所定のサイクルで開始されている。このた
め、燃料供給開始のサイクルを早めに設定してある場
合、燃圧が低いと供給量が不足し、燃焼不良や失火によ
り排気を悪化させる可能性があり、逆に、燃料供給開始
のサイクルを遅めに設定している場合には、温度が高く
素早い始動が可能であるような良い条件の場合でも機関
の始動に必要以上の時間がかかってしまうという問題点
があった。
However, in such a conventional control apparatus for a direct injection type internal combustion engine, only the rotational speed at the time of engine start is focused, and the fuel supply amount and the fuel pressure are controlled. The state is not taken into consideration, and the first fuel supply at the start is always started in a predetermined cycle. For this reason, if the fuel supply start cycle is set earlier, the supply amount may be insufficient if the fuel pressure is low, and exhaust failure may be deteriorated due to poor combustion or misfire. When set late, there is a problem that it takes more time than necessary to start the engine even under good conditions where the temperature is high and quick start is possible.

【0006】本発明は、このような従来の問題点に鑑
み、機関始動時の回転数、燃料供給量、燃料ポンプの燃
圧上昇特性、燃圧検出値、燃温検出値等に基づき、その
ときの運転状態に応じて燃料供給開始のサイクルを可変
に制御し、最適なサイクルから燃料の供給を開始するこ
とのできる筒内直接噴射式内燃機関の制御装置を提供す
ることを目的とする。
In view of the above-mentioned conventional problems, the present invention is based on the engine speed at the engine start, the fuel supply amount, the fuel pressure increase characteristic of the fuel pump, the fuel pressure detection value, the fuel temperature detection value, etc. An object of the present invention is to provide a control device for a direct injection type internal combustion engine, capable of variably controlling a fuel supply start cycle in accordance with an operating state and starting fuel supply from an optimum cycle.

【0007】[0007]

【課題を解決するための手段】このため、本発明は、低
温時のように、始動時に多量の燃料を供給する必要があ
り、かつ機関回転数が低く燃圧の上昇が遅いような条件
では、燃圧が十分に上昇するのを待って燃料供給を行う
ことにより、排気や始動性の悪化を防止することを基本
としている。一方、高温時のように、始動時に少量の燃
料供給で済み、かつ機関回転数が高く燃圧の上昇が速い
ような条件では、比較的早いサイクルで燃料供給を開始
することにより、機関の素早い始動を実現する。
Therefore, according to the present invention, under the condition that a large amount of fuel needs to be supplied at the time of starting and the engine speed is low and the increase in fuel pressure is slow, such as when the temperature is low, Basically, the fuel is supplied after waiting for the fuel pressure to rise sufficiently to prevent exhaust and startability from deteriorating. On the other hand, under conditions where a small amount of fuel needs to be supplied at startup and the engine speed is high and the fuel pressure rises quickly, such as when the temperature is high, by starting fuel supply in a relatively early cycle, the engine starts quickly. To realize.

【0008】具体的には、請求項1に係る発明では、直
噴用インジェクタにより気筒内に直接燃料を高圧で噴射
供給する筒内直接噴射式内燃機関の制御装置において、
図1に示すように、機関の運転状態を検出する運転状態
検出手段Aと、機関始動時の燃料供給量を算出する燃料
供給量演算手段Bと、前記運転状態検出手段の検出結果
と前記燃料供給量演算手段の算出結果とに基づき、始動
時に要求される燃料圧力の下限値を算出する燃圧下限値
演算手段Cと、前記運転状態検出手段の検出結果と、前
記燃料供給量演算手段の算出結果とに基づいて燃料供給
を行った場合の燃料圧力の変化を推定する燃圧推定手段
Dと、前記燃圧下限値演算手段の算出結果と前記燃圧推
定手段の推定結果とに基づき、始動時に燃料供給を開始
する気筒を判断する燃料供給開始気筒判断手段Eと、を
含んで構成されることを特徴とする。
Specifically, in the invention according to claim 1, in a control device for a direct injection type internal combustion engine, in which fuel is directly injected into a cylinder at a high pressure by a direct injection injector,
As shown in FIG. 1, an operating state detecting means A for detecting an operating state of the engine, a fuel supply amount calculating means B for calculating a fuel supply amount at the time of starting the engine, a detection result of the operating state detecting means and the fuel. Based on the calculation result of the supply amount calculation means, the fuel pressure lower limit value calculation means C for calculating the lower limit value of the fuel pressure required at the time of starting, the detection result of the operating state detection means, and the calculation of the fuel supply amount calculation means Based on the result, the fuel pressure estimating means D for estimating the change of the fuel pressure when the fuel is supplied, the fuel pressure lower limit value calculating means and the fuel pressure estimating means, and the fuel supply at the time of starting. And a fuel supply start cylinder determining means E for determining a cylinder to start the fuel injection.

【0009】また、請求項2に係る発明では、前記運転
状態検出手段Aは、前記内燃機関に設置されたクランク
角センサにより、機関のクランク角を検出し、これに基
づいて機関の回転数を算出するものであることを特徴と
する。また、請求項3に係る発明では、前記燃料供給量
演算手段Bは、機関始動時の燃料供給量を機関の冷却水
温度に基づいて決定するものであることを特徴とする。
Further, in the invention according to claim 2, the operating state detecting means A detects the crank angle of the engine by the crank angle sensor installed in the internal combustion engine, and based on this, the engine speed is determined. It is characterized by being calculated. Further, the invention according to claim 3 is characterized in that the fuel supply amount calculation means B determines the fuel supply amount at the time of starting the engine based on the cooling water temperature of the engine.

【0010】また、請求項4に係る発明では、前記燃圧
下限値演算手段Cは、前記運転状態検出手段Aで検出し
たクランク角に基づいて算出される燃料供給が可能な最
大時間と、前記燃料供給量演算手段Bで算出された供給
量とから、前記最大時間内で前記供給量を供給し終える
ために必要な燃圧の下限値を算出するものであることを
特徴とする。
Further, in the invention according to claim 4, the fuel pressure lower limit value calculating means C has a maximum time during which fuel can be supplied, which is calculated based on the crank angle detected by the operating state detecting means A, and the fuel. From the supply amount calculated by the supply amount calculation means B, the lower limit value of the fuel pressure required to finish supplying the supply amount within the maximum time is calculated.

【0011】また、請求項5に係る発明では、前記燃圧
下限値演算手段Cは、燃圧下限値の最低値を制限するリ
ミッタを設け、前記算出した燃圧の下限値を補正する燃
圧下限値補正手段を含んで構成されることを特徴とす
る。また、請求項6に係る発明では、前記燃圧推定手段
Dは、前記運転状態検出手段Aで検出したクランク角
と、前記燃料供給量演算手段Bで算出した燃料供給量
と、既知の燃料ポンプの特性とから、燃料供給後の燃圧
の変化を推定するものであることを特徴とする。
Further, in the invention according to claim 5, the fuel pressure lower limit value calculating means C is provided with a limiter for limiting the minimum value of the fuel pressure lower limit value, and the fuel pressure lower limit value correcting means for correcting the calculated lower limit value of the fuel pressure. It is characterized in that it is configured to include. Further, in the invention according to claim 6, the fuel pressure estimating means D is a crank angle detected by the operating state detecting means A, a fuel supply amount calculated by the fuel supply amount calculating means B, and a known fuel pump. It is characterized in that a change in fuel pressure after fuel supply is estimated from the characteristics.

【0012】また、請求項7に係る発明では、前記内燃
機関は燃料圧力を検出する燃圧センサを備える一方、前
記燃圧推定手段Dは、前記運転状態検出手段Aで検出し
たクランク角と、前記燃料供給量演算手段Bで算出した
燃料供給量と、既知の燃料ポンプの特性と、前記燃圧セ
ンサの出力とから、燃圧の変化を推定するものであるこ
とを特徴とする。
Further, in the invention according to claim 7, the internal combustion engine is provided with a fuel pressure sensor for detecting fuel pressure, while the fuel pressure estimating means D has a crank angle detected by the operating state detecting means A and the fuel. It is characterized in that the change in fuel pressure is estimated from the fuel supply amount calculated by the supply amount calculation means B, the known characteristics of the fuel pump, and the output of the fuel pressure sensor.

【0013】また、請求項8に係る発明では、前記内燃
機関は燃料温度を検出する燃温センサを備える一方、前
記燃圧推定手段Dは、前記運転状態検出手段Aで検出し
たクランク角と、前記燃料供給量演算手段Bで算出した
燃料供給量と、既知の燃料ポンプの特性と、前記燃温セ
ンサの出力とから、燃圧の変化を推定するものであるこ
とを特徴とする。
Further, in the invention according to claim 8, the internal combustion engine is provided with a fuel temperature sensor for detecting a fuel temperature, while the fuel pressure estimating means D has a crank angle detected by the operating state detecting means A, and It is characterized in that a change in fuel pressure is estimated from the fuel supply amount calculated by the fuel supply amount calculation means B, the known characteristics of the fuel pump, and the output of the fuel temperature sensor.

【0014】また、請求項9に係る発明では、前記燃料
供給開始気筒判断手段Eは、前記燃圧推定手段Dにより
算出された前記燃料供給後の燃圧の推定値と、前記燃圧
下限値演算手段Cにより算出された前記燃圧下限値とを
比較し、前記燃圧推定値が前記燃圧下限値以上の場合に
は燃料供給タイミングが訪れている気筒に燃料供給を行
い、前記燃圧推定値が前記燃圧下限値よりも小さくなる
場合には燃料供給を行わず、次の燃料供給タイミングで
同様の処理を行って燃料供給を開始する気筒を決定する
ものであることを特徴とする。
Further, in the invention according to claim 9, the fuel supply start cylinder determination means E, the estimated value of the fuel pressure after the fuel supply calculated by the fuel pressure estimation means D, and the fuel pressure lower limit value calculation means C. The fuel pressure lower limit value calculated by the above is compared, and when the fuel pressure estimated value is equal to or higher than the fuel pressure lower limit value, fuel is supplied to the cylinder at the fuel supply timing, and the fuel pressure estimated value is the fuel pressure lower limit value. When it is smaller than the above, the fuel supply is not performed, and the same processing is performed at the next fuel supply timing to determine the cylinder to start the fuel supply.

【0015】また、請求項10に係る発明では、機関の始
動後、所定期間が経過したら本制御を終了することを特
徴とする。
Further, the invention according to claim 10 is characterized in that the present control is terminated when a predetermined period has elapsed after the engine was started.

【0016】[0016]

【発明の効果】本発明では、機関始動時の回転数、燃料
供給量、燃料ポンプの特性による燃圧の上昇特性、燃圧
検出値、燃温検出値等を用いて、そのときの運転状態に
応じて燃料供給開始のサイクルを可変に制御する構成と
している。これにより、低温時のように始動時に多量の
燃料を供給する必要があり、かつ機関回転数が低く、燃
圧の上昇が遅いような条件では、燃圧が十分に上昇する
のを待って燃料供給を行うことにより排気の悪化を防止
できるという効果がある。また、高温時のように始動時
に少量の燃料供給で済み、かつ機関回転数が高く燃圧の
上昇が速いような条件では、比較的早いサイクルで燃料
供給を開始して機関の素早い始動を実現することによ
り、燃焼の悪化あるいは失火を生じることによる排気の
悪化や、始動性の悪化を防止することができるという効
果が得られる。
According to the present invention, the engine speed at start-up, the fuel supply amount, the fuel pressure increase characteristic due to the characteristics of the fuel pump, the fuel pressure detection value, the fuel temperature detection value, etc. are used to determine the operating state at that time. In this configuration, the fuel supply start cycle is variably controlled. Due to this, under conditions where it is necessary to supply a large amount of fuel at the time of starting, such as when the temperature is low, the engine speed is low, and the rise in fuel pressure is slow, wait until the fuel pressure rises sufficiently before supplying fuel. By doing so, it is possible to prevent deterioration of exhaust gas. Further, under a condition where a small amount of fuel is supplied at the time of starting, such as when the temperature is high, and the engine speed is high and the fuel pressure rises quickly, fuel supply is started in a relatively early cycle to achieve a quick start of the engine. As a result, it is possible to prevent deterioration of exhaust gas due to deterioration of combustion or misfire and deterioration of startability.

【0017】すなわち、請求項1に係る発明によれば、
筒内直接噴射式内燃機関で始動時の燃料供給開始タイミ
ングを判断し、燃焼の悪化や失火による排気の悪化や、
始動の遅れを防止できるという効果がある。また、請求
項2に係る発明によれば、機関の運転状態を容易かつ正
確に検出することができ、これに基づき的確な制御を行
うことができるという効果がある。
That is, according to the invention of claim 1,
Judging the fuel supply start timing at the time of starting with the direct injection type internal combustion engine, the deterioration of combustion and the deterioration of exhaust due to misfire,
This has the effect of preventing a delay in starting. Further, according to the invention of claim 2, there is an effect that the operating state of the engine can be detected easily and accurately, and the accurate control can be performed based on this.

【0018】また、請求項3に係る発明によれば、始動
時の燃料供給量を容易に算出できるという効果がある。
また、請求項4に係る発明によれば、当該燃料供給量と
機関回転数とに基づき最適な燃圧下限値を演算するた
め、始動時の燃料供給量や機関回転数が異なる場合で
も、排気や始動性が悪化するのを防止できるという効果
がある。
According to the invention of claim 3, there is an effect that the fuel supply amount at the time of starting can be easily calculated.
According to the invention of claim 4, the optimum fuel pressure lower limit value is calculated based on the fuel supply amount and the engine speed. Therefore, even if the fuel supply amount and the engine speed at the start are different, This has the effect of preventing the startability from deteriorating.

【0019】また、請求項5に係る発明によれば、燃圧
下限値の最低値を制限して補正を行う構成としたため、
燃料供給量が少なく、機関回転数が遅いような場合で
も、燃料の微粒化が不十分となることにより排気や始動
性が悪化することを防止できるという効果がある。ま
た、請求項6に係る発明によれば、予めわかっている燃
料ポンプの特性から燃圧の変化を推定するため、容易に
精度よく燃圧を推定することができるという効果があ
る。
Further, according to the invention of claim 5, since the correction is made by limiting the minimum value of the fuel pressure lower limit value,
Even when the fuel supply amount is small and the engine speed is slow, it is possible to prevent exhaust and startability from being deteriorated due to insufficient atomization of fuel. Further, according to the invention of claim 6, since the change of the fuel pressure is estimated from the characteristic of the fuel pump which is known in advance, there is an effect that the fuel pressure can be estimated easily and accurately.

【0020】また、請求項7に係る発明によれば、燃圧
センサの出力値を用いて、次回以降に燃料供給タイミン
グが訪れる気筒に燃料供給を行った場合の燃圧の変化を
推定することにより、さらに正確に燃圧を推定すること
ができるという効果がある。また、請求項8に係る発明
によれば、燃温の違いにより燃料性状が変化し、燃料ポ
ンプの燃圧上昇特性が変化する場合でも、燃圧を精度良
く推定することができるという効果がある。
Further, according to the invention of claim 7, the output value of the fuel pressure sensor is used to estimate the change in fuel pressure when fuel is supplied to the cylinder where the fuel supply timing comes from the next time onward. There is an effect that the fuel pressure can be estimated more accurately. Further, according to the invention of claim 8, there is an effect that the fuel pressure can be accurately estimated even when the fuel property changes due to the difference in the fuel temperature and the fuel pressure increase characteristic of the fuel pump changes.

【0021】また、請求項9に係る発明によれば、燃料
供給後の燃圧が燃圧下限値を下回らないようにすること
により、燃料供給を良好かつ確実に行うことができると
いう効果がある。また、請求項10に係る発明によれば、
本制御の実行を始動後の所定期間に限定しているため、
始動後の通常運転中に誤って本制御による燃料供給の停
止が行われることを防止できるという効果がある。
According to the ninth aspect of the invention, there is an effect that the fuel can be satisfactorily and surely supplied by preventing the fuel pressure after the fuel supply from falling below the lower limit value of the fuel pressure. According to the invention of claim 10,
Since the execution of this control is limited to the predetermined period after starting,
There is an effect that it is possible to prevent the fuel supply from being erroneously stopped by this control during the normal operation after the start.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図2は、本発明の一実施例を示す
直接噴射式内燃機関の断面図である。機関1では、スロ
ットルバルブ2、サージタンク3、吸気マニホールド4
および吸気バルブ5を介して吸気が行われ、直噴用イン
ジェクタ6より燃焼室7に直接燃料が噴射供給される。
また、点火プラグ8は、点火のための電極を燃焼室7内
に臨ませて設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view of a direct injection internal combustion engine showing an embodiment of the present invention. In the engine 1, the throttle valve 2, surge tank 3, intake manifold 4
Intake is performed via the intake valve 5, and fuel is directly injected and supplied from the direct injection injector 6 into the combustion chamber 7.
Further, the spark plug 8 is provided so that an electrode for ignition faces the combustion chamber 7.

【0023】機関1の運転状態を検出する手段として、
スロットルバルブ2の上流に設けられて吸入空気量を計
測するエアフローメータ9、機関1のクランク角位置を
計測する図示しないクランク角センサ(図示せず)、等
が設けてある。クランク角センサはクランク軸あるいは
これと連動して回転するカム軸に直接あるいはギアを介
して間接的に接続され、クランク角位置(クランク角
度)や、機関1の回転数を算出する。
As a means for detecting the operating state of the engine 1,
An air flow meter 9 provided upstream of the throttle valve 2 for measuring the amount of intake air, a crank angle sensor (not shown) for measuring the crank angle position of the engine 1, and the like are provided. The crank angle sensor is directly or indirectly connected to a crank shaft or a cam shaft that rotates in conjunction with the crank shaft through a gear, and calculates the crank angle position (crank angle) and the rotation speed of the engine 1.

【0024】また、供給燃料の燃圧を検出する燃圧セン
サ10を備え、空燃比は直噴用インジェクタ6により燃料
噴射量を調整することにより制御する。この他、エンジ
ンの冷却水温を計測する水温センサ11や、排気中の酸素
濃度を計測するO2 センサ12等を備えている。外部との
情報の入出力、種々の演算は、図3に示されるマイクロ
コンピュータを中心とする回路で実現される。入力ポー
ト13には、前述のエアフローメータ9をはじめとした各
種センサが接続されており、それらの情報が入力され
る。A/D変換器14では、入力ポート13を介して各種セ
ンサから得られた信号のうち、アナログ信号がコンピュ
ータで扱えるようにA/D変換される。そして、CPU
15は入力データに基づき所定の演算を実行し、その結果
は出力ポート16から外部の機器を駆動・制御するための
信号として出力される。
Further, the fuel pressure sensor 10 for detecting the fuel pressure of the supplied fuel is provided, and the air-fuel ratio is controlled by adjusting the fuel injection amount by the direct injection injector 6. In addition, a water temperature sensor 11 for measuring the engine cooling water temperature, an O 2 sensor 12 for measuring the oxygen concentration in the exhaust gas, and the like are provided. Input / output of information to / from the outside and various calculations are realized by a circuit centered on the microcomputer shown in FIG. Various sensors such as the air flow meter 9 described above are connected to the input port 13, and the information thereof is input. In the A / D converter 14, an analog signal of the signals obtained from various sensors via the input port 13 is A / D converted so that it can be handled by a computer. And CPU
15 executes a predetermined calculation based on the input data, and the result is output from the output port 16 as a signal for driving / controlling an external device.

【0025】また、ROM17は後述する制御プログラム
や各種データ等をあらかじめ記憶し、RAM18はプログ
ラム実行中に一時的に情報の記憶を行うものである。前
述した従来の筒内直接噴射式内燃機関では、始動時の燃
料供給量は水温等に基づいて決定されるが、燃料供給を
開始するサイクルは一般に固定されている。また、筒内
直接噴射式内燃機関では、短時間に燃料を微粒化して供
給するために燃料を高圧にする必要があり、燃費や効率
を考慮してカム軸等で駆動する機械式の高圧燃料ポンプ
を用いている。
The ROM 17 previously stores a control program, various data, etc., which will be described later, and the RAM 18 temporarily stores information during execution of the program. In the above-mentioned conventional direct injection type internal combustion engine, the fuel supply amount at the start is determined based on the water temperature and the like, but the cycle for starting the fuel supply is generally fixed. Further, in the direct injection type internal combustion engine, it is necessary to make the fuel high pressure in order to atomize and supply the fuel in a short time, and in consideration of fuel efficiency and efficiency, a mechanical high pressure fuel driven by a camshaft etc. It uses a pump.

【0026】よって、燃料を供給して機関を始動するた
めには、まず、ポンプが高圧の燃料を吐出する必要があ
る。また、ポンプが回転して高圧の燃料を吐出するため
には、機関が所定速度で回転していなければならない。
ここで、バッテリの電圧が低い等の理由により始動時の
機関の回転数が低く、しかも、低温時であるために多め
の燃料を供給しなければならない場合には、低い燃圧で
多量の燃料を供給しようとするため、結果的に燃圧がさ
らに低下し、供給量や燃料の微粒化が不十分となる。こ
れにより、始動時の燃焼が悪化し、最悪の場合には失火
を生じて、排気や始動性の悪化につながる場合がある。
Therefore, in order to supply the fuel and start the engine, the pump must first discharge the high-pressure fuel. Further, in order for the pump to rotate and discharge the high-pressure fuel, the engine must rotate at a predetermined speed.
Here, when the engine speed at start is low due to low battery voltage, etc., and when a large amount of fuel needs to be supplied because the temperature is low, a large amount of fuel should be supplied at a low fuel pressure. As a result, the fuel pressure is further reduced, and the supply amount and atomization of the fuel become insufficient. As a result, combustion at the time of starting may be deteriorated, and in the worst case, misfire may occur, leading to exhaust and deterioration of startability.

【0027】いま、筒内直接噴射式内燃機関において、
始動時に吸気行程で燃料噴射を行う場合を考える。一般
に、吸気バルブおよび排気バルブの開閉タイミングは、
図4のように設定されている。ここで、吸気行程の初期
には排気バルブが開いており、燃料供給を行うと燃料は
そのまま排気される可能性があるために燃料供給はでき
ない。また、吸気行程前半も、ピストンがあまり下がっ
ておらず、燃料供給を行うと燃料がピストンに付着して
霧化が不十分となり排気を悪化させる可能性がある。一
方、吸気バルブが閉じる直前に燃料供給を行うと、ピス
トンが上昇を開始し、混合気が吸気ポート側へ押し戻さ
れてしまう可能性がある。よって、燃料供給を行うクラ
ンク角は、図4の「燃料供給可能区間」のような範囲を
選択することが望ましい。
Now, in the cylinder direct injection internal combustion engine,
Consider the case where fuel injection is performed in the intake stroke at the start. Generally, the opening and closing timing of the intake valve and exhaust valve is
It is set as shown in FIG. Here, the exhaust valve is opened at the beginning of the intake stroke, and if fuel is supplied, the fuel may be exhausted as it is, so fuel cannot be supplied. In the first half of the intake stroke as well, the piston is not lowered so much, and when fuel is supplied, fuel adheres to the piston and atomization becomes insufficient, which may deteriorate exhaust gas. On the other hand, if fuel is supplied immediately before the intake valve is closed, the piston may start rising, and the air-fuel mixture may be pushed back to the intake port side. Therefore, it is desirable to select a range of the crank angle for fuel supply such as the "fuel supply possible section" in FIG.

【0028】一般に、燃料供給量は、燃料供給雰囲気圧
力(この場合、筒内圧力)と燃圧との差圧と、燃料供給
時間との積で決定される。ここで、始動時の筒内圧力は
ほぼ大気圧であることから、燃料供給量Ti が一定の場
合、燃圧Pfuelと燃料供給時間Tpulse との関係は図5
のようになる。また、その時の機関回転数Nと、図4の
燃料供給可能区間とから、燃料供給が可能な時間の上限
値T1 が算出でき、燃料供給量をTi1とすると、図5の
関係により、そのときに燃料供給量Ti1を供給するのに
必要な燃圧の下限値P1 が求められる。
Generally, the fuel supply amount is determined by the product of the fuel supply time and the differential pressure between the fuel supply atmosphere pressure (in this case, the cylinder pressure) and the fuel pressure. Here, since the in-cylinder pressure at the time of starting is almost atmospheric pressure, when the fuel supply amount Ti is constant, the relationship between the fuel pressure Pfuel and the fuel supply time Tpulse is shown in FIG.
become that way. Further, the upper limit value T1 of the fuel supply time can be calculated from the engine speed N at that time and the fuel supply possible section of FIG. 4, and if the fuel supply amount is Ti1, then according to the relationship of FIG. The lower limit value P1 of the fuel pressure required to supply the fuel supply amount Ti1 to the fuel cell is obtained.

【0029】また、機関回転数Nが低く、燃料供給時間
を長くとれる場合であっても、燃圧はいくら低くてもよ
いわけではなく、供給燃料を微粒化するのに最低限必要
な燃圧がある。そこで、これを考慮する場合には、図5
から求めた燃圧下限値にさらに補正を行う必要がある。
あるいは、図5に示すように、あらかじめ燃圧下限値の
下限リミッタを設けてもよい。
Even when the engine speed N is low and the fuel supply time can be long, the fuel pressure does not have to be low, and there is a minimum required fuel pressure for atomizing the supplied fuel. . Therefore, when this is taken into consideration, FIG.
It is necessary to further correct the fuel pressure lower limit value obtained from
Alternatively, as shown in FIG. 5, a lower limit limiter for the fuel pressure lower limit may be provided in advance.

【0030】図6は、筒内への燃料供給を行わない場合
の、燃料ポンプによる始動時の燃圧上昇特性を示したも
のであり、時間の経過とともに順調に燃圧が上昇してい
る。しかし、実際には、燃料供給を行うと燃圧の低下が
生じ、前述の燃圧下限値P1を下回った場合には、燃料
供給量が不足することになる。以下に、4気筒の筒内直
接噴射式内燃機関において、機関2回転につき燃料ポン
プが4回の吐出を行うものを用いた場合を例に説明す
る。すべて、バッテリの状態、始動時のクランキング回
転数および燃料供給時間の上限値T1 は同一とする。ま
た、図5を参照し、高温時の燃料供給量をTi1とし(燃
圧下限値はP1 )、低温時の燃料供給量をTi2(燃圧下
限値はP2 )とする。直噴であるにもかかわらず温度に
よって始動時の燃料供給量が異なるのは、例えば低温時
は供給燃料がシリンダからクランクケースに掻き落とさ
れる量が多いために燃焼に必要な量以上の燃料を供給し
なければならないのに対し、高温時はクランクケースへ
かき落とされる燃料はほとんどないため、燃焼に必要な
量のみを供給すればよいからである。また、温度によっ
て空気密度が異なるため必要な燃料量が異なることも理
由としてあげられる。
FIG. 6 shows the fuel pressure increasing characteristics at the time of starting by the fuel pump when the fuel is not supplied into the cylinder, and the fuel pressure is steadily increasing with the passage of time. However, in reality, the fuel pressure decreases when fuel is supplied, and when the fuel pressure falls below the above-described fuel pressure lower limit value P1, the fuel supply amount becomes insufficient. An example will be described below in which a four-cylinder in-cylinder direct injection internal combustion engine uses a fuel pump that discharges four times per two revolutions of the engine. In all cases, the battery state, the cranking speed at the time of starting, and the upper limit value T1 of the fuel supply time are the same. Further, referring to FIG. 5, the fuel supply amount at high temperature is Ti1 (fuel pressure lower limit value is P1), and the fuel supply amount at low temperature is Ti2 (fuel pressure lower limit value is P2). Despite direct injection, the amount of fuel supplied at startup varies depending on the temperature.For example, when the temperature is low, the supplied fuel is scraped off from the cylinder to the crankcase so much that more fuel than is required for combustion is consumed. This is because the fuel must be supplied, but at the time of high temperature, almost no fuel is scraped off to the crankcase, so only the amount required for combustion needs to be supplied. Another reason is that the air density varies depending on the temperature, so that the required fuel amount varies.

【0031】高温で燃料供給量が相対的に少ないTi1の
場合は、図7に示すように最初に吸気行程をむかえる気
筒(#1気筒)から燃料噴射パルスを出力しても、燃圧
Pfuelはそれほど大きく低下せず、#1気筒が初爆を生
じる前でも燃圧下限値P1 を下回ることはなく、以降の
気筒(#3〜)への燃料供給も順調に行われるため、回
転数Nは速やかに上昇し目標回転数へ到達する。
In the case of Ti1 where the fuel supply amount is relatively small at high temperature, as shown in FIG. 7, even if the fuel injection pulse is output from the cylinder (# 1 cylinder) which first undergoes the intake stroke, the fuel pressure Pfuel is not so high. The fuel pressure does not drop significantly below the lower limit of the fuel pressure P1 even before the first explosion in the # 1 cylinder, and fuel is smoothly supplied to the subsequent cylinders (# 3 ~). It rises and reaches the target speed.

【0032】これに対し、低温で燃料供給量が比較的多
いTi2の場合には、図8に示すように、最初に吸気行程
をむかえる気筒(#1気筒)に燃料供給を行うと燃圧が
低下して燃圧下限値P2 を下回ってしまい、#1気筒が
初爆を生じるまでの各気筒(#3、#4気筒)の燃料供
給量が不足してしまう場合がある。その結果、初爆が生
じてもそれらの気筒(#1、#3、#4気筒)の燃料供
給量が不足しているため燃焼は悪化し、回転数の上昇も
遅く、始動性が悪くなり、同時に排気も悪化する。
On the other hand, in the case of Ti2 where the fuel supply amount is relatively large at a low temperature, as shown in FIG. 8, when the fuel is first supplied to the cylinder (# 1 cylinder) which undergoes the intake stroke, the fuel pressure decreases. Then, the fuel pressure becomes lower than the lower limit P2, and the fuel supply amount of each cylinder (# 3 and # 4 cylinders) before the first explosion of the # 1 cylinder may be insufficient. As a result, even if the initial explosion occurs, the fuel supply amount to those cylinders (# 1, # 3, and # 4 cylinders) is insufficient, so the combustion deteriorates, the increase in rotational speed slows, and the startability deteriorates. At the same time, the exhaust gas deteriorates.

【0033】しかし、このような場合、#1気筒に燃料
供給を行う前に、燃料供給による燃圧変化を高圧燃料ポ
ンプの特性、燃圧センサの出力、燃温センサの出力等か
らあらかじめ推定し、燃料供給の可否を判断すること
で、前述のような不都合を回避することができる。すな
わち、図9に示すように、燃圧下限値P2 を下回ると推
定された場合、#1気筒への燃料供給を行わずに燃圧の
上昇を待つようにする。そして、つぎの#3気筒への供
給前に再度燃料供給の可否の判断を行い、#3気筒に燃
料供給を行っても燃圧が燃圧下限値P2 を下回らないと
判断したら#3気筒から燃料供給を開始する。このよう
にすれば、燃焼の悪化、あるいは失火による排気の悪化
を防止することができ、結果的に、低い燃圧で最初の気
筒から燃料供給を行った場合よりも速やかに目標回転数
へ到達することも可能となる。
However, in such a case, before the fuel is supplied to the # 1 cylinder, the fuel pressure change due to the fuel supply is estimated in advance from the characteristics of the high-pressure fuel pump, the output of the fuel pressure sensor, the output of the fuel temperature sensor, etc. By determining whether the supply is possible, it is possible to avoid the inconvenience as described above. That is, as shown in FIG. 9, when it is estimated that the fuel pressure is lower than the lower limit P2, the fuel supply to the # 1 cylinder is not performed and the fuel pressure is increased. Then, it is judged again whether or not fuel can be supplied before the fuel is supplied to the next # 3 cylinder. If it is judged that the fuel pressure does not fall below the fuel pressure lower limit P2 even if the fuel is supplied to the # 3 cylinder, the fuel is supplied from the # 3 cylinder. To start. By doing so, it is possible to prevent deterioration of combustion or deterioration of exhaust gas due to misfire, and as a result, the target rotational speed is reached faster than when fuel is supplied from the first cylinder at a low fuel pressure. It is also possible.

【0034】このような処理を行う第1の実施例につい
て以下に説明する。図10は、運転状態を検出するルーチ
ンであり、運転状態検出手段Aに相当する。ここでは一
定時間(10 ms )毎に実行されるものとするが、バック
グランドジョブ等の異なるタイミングで実行されるもの
としてもよい。ステップ1001(図中S1001と示す、以下
同様)ではクランク角センサの出力を読み込む。ステッ
プ1002では、ステップ1001で読み込んだデータから現在
のクランク角を検出する。そして、ステップ1003では、
ステップ1001で読み込んだデータから機関の回転数N r
pm を算出して、このルーチンを終了する。
A first embodiment for performing such processing will be described below. FIG. 10 is a routine for detecting the operating state, which corresponds to the operating state detecting means A. Here, it is assumed that the job is executed every fixed time (10 ms), but it may be executed at different timings such as a background job. In step 1001 (denoted as S1001 in the figure, the same applies hereinafter), the output of the crank angle sensor is read. In step 1002, the current crank angle is detected from the data read in step 1001. And in step 1003,
From the data read in step 1001, the engine speed N r
Calculate pm and exit this routine.

【0035】図11は、燃料供給量を算出するルーチンで
あり、燃料供給量演算手段Bに相当する。これは、クラ
ンク角センサから180 CA° 毎に出力されるリファレン
ス信号に同期して実行される。ステップ1101では水温セ
ンサ11から水温Tw を読み込み、ステップ1102では、図
17に示すようなテーブルから、前段で読み込んだ現在の
水温Tw に対応する始動時の燃料供給量Ti の値を読み
込んで(例えば、水温がTw1であった場合燃料供給量は
Ti1)、このルーチンを終了する。
FIG. 11 shows a routine for calculating the fuel supply amount, which corresponds to the fuel supply amount calculating means B. This is executed in synchronization with the reference signal output from the crank angle sensor every 180 CA °. In step 1101, the water temperature Tw is read from the water temperature sensor 11, and in step 1102, the
From the table shown in FIG. 17, the value of the fuel supply amount Ti at the time of starting corresponding to the current water temperature Tw read in the previous stage is read (for example, if the water temperature is Tw1, the fuel supply amount Ti1), and this routine To finish.

【0036】図12は、燃圧の下限値を算出するルーチン
で、リファレンス信号毎に実行される。これが、燃圧下
限値演算手段Cに相当する。ステップ1201では、図4に
示す所定の燃料供給可能区間Cpulse °CA を読み込
み、ステップ1202では、図10のステップ1003で算出した
回転数Nを読み込む。ステップ1203では、読み込んだC
pulse とNとから、次式により燃料供給時間の上限値T
1 を演算する。
FIG. 12 is a routine for calculating the lower limit value of the fuel pressure, which is executed for each reference signal. This corresponds to the fuel pressure lower limit value calculation means C. In step 1201, the predetermined fuel supplyable section C pulse ° CA shown in FIG. 4 is read, and in step 1202, the rotation speed N calculated in step 1003 of FIG. 10 is read. In step 1203, the read C
From pulse and N, the upper limit value T of fuel supply time is calculated by the following formula.
Calculate 1

【0037】T1 =Cpulse ×1000/(6×N) ms 続くステップ1204では、ステップ1203で演算したT1
と、図11のステップ1102で読み込んだ燃料供給量とに基
づき、図5に示すようなテーブルから燃圧下限値Pを算
出して、終了する。いま、燃料供給量がTi1ならば、図
5より燃圧下限値はP1 となる。
T1 = Cpulse × 1000 / (6 × N) ms In the following step 1204, T1 calculated in step 1203 is calculated.
Then, based on the fuel supply amount read in step 1102 of FIG. 11, the fuel pressure lower limit value P is calculated from the table as shown in FIG. 5, and the process ends. If the fuel supply amount is Ti1, the fuel pressure lower limit value is P1 from FIG.

【0038】図13は、燃圧の推定を行うルーチンで、リ
ファレンス毎に実行される。これが、燃圧推定手段Dに
相当する。ここで、図18はクランク角に対応した燃料ポ
ンプの燃圧上昇特性であるが、これは実験等により既知
であることを前提とする。ステップ1301では、前回の燃
圧推定値Pest を読み込む。但し、始動後の最初のリフ
ァレンスの場合は前回の推定値が存在しないため、始動
時のクランク角と図18の特性の一部とに基づき、前回の
燃圧推定値Pest を作り出すものとする。
FIG. 13 is a routine for estimating the fuel pressure, which is executed for each reference. This corresponds to the fuel pressure estimating means D. Here, FIG. 18 shows the fuel pressure increase characteristics of the fuel pump corresponding to the crank angle, but it is premised that this is already known from experiments and the like. In step 1301, the previous estimated fuel pressure value Pest is read. However, since there is no previous estimated value in the case of the first reference after starting, the previous fuel pressure estimated value Pest is created based on the crank angle at the time of starting and a part of the characteristics of FIG. 18.

【0039】ステップ1302では、図20に示すように、そ
の後クランク角が180 CA ° 進む間の高圧燃料ポンプ
による燃圧Ppumpの推移を、ステップ1301で読み込んだ
前回の燃圧推定値の最終値を初期値として、図18の特性
から推定する。続くステップ1303では、図11のルーチン
で求めた燃料供給量Ti1を読み込み、ステップ1304で
は、この燃料供給量Ti1と1302で推定した高圧燃料ポン
プの燃圧Ppumpとに基づき、図5の関係から燃料供給時
間Tpulse を算出する。
In step 1302, as shown in FIG. 20, the transition of the fuel pressure Ppump by the high-pressure fuel pump while the crank angle advances by 180 CA °, the final value of the previous estimated fuel pressure value read in step 1301 is set to the initial value. Is estimated from the characteristics of FIG. In the following step 1303, the fuel supply amount Ti1 obtained in the routine of FIG. 11 is read, and in step 1304, the fuel supply amount Ti1 is calculated from the relationship of FIG. 5 based on the fuel supply amount Ti1 and the fuel pressure Ppump of the high pressure fuel pump estimated in 1302. Calculate the time Tpulse.

【0040】ステップ1305では、その燃料供給時間Tpu
lse のパルスを出力したときの燃圧低下割合を、実験等
であらかじめ調べてある特性から算出する。燃料噴射パ
ルス幅が同一であるとき、燃圧が高い場合は多くの燃料
が噴射されて燃圧が大きく低下するが、燃圧が低い場合
には少量の燃料しか供給されないため、燃圧の低下量も
小さいので、燃圧と燃圧低下量との割合はどちらの場合
も結局同一になると考えられる。このため、燃料供給時
間Tpulse と燃圧低下割合とが単純に比例する図19に示
すようなテーブルを用いることができる。
In step 1305, the fuel supply time Tpu
The fuel pressure decrease rate when the lse pulse is output is calculated from the characteristics that have been examined in advance by experiments. When the fuel injection pulse width is the same, a large amount of fuel is injected when the fuel pressure is high, and the fuel pressure drops significantly, but when the fuel pressure is low, only a small amount of fuel is supplied, so the amount of decrease in fuel pressure is also small. It is considered that the ratio between the fuel pressure and the fuel pressure decrease amount is the same in both cases. Therefore, a table as shown in FIG. 19 in which the fuel supply time Tpulse and the fuel pressure decrease rate are simply proportional to each other can be used.

【0041】ステップ1306では、ステップ1302で推定し
たポンプの燃圧Ppump(図20)とステップ1305で求めた
燃圧値低下割合とから、燃料供給時の燃圧の推移Pdown
を、図21に示すように推定して、このルーチンを終了す
る。図14は、燃料供給開始気筒の判断を行うルーチン
で、リファレンス毎に実行される。これが、燃料供給気
筒判断手段Eに相当する。
In step 1306, the fuel pressure transition Pdown during fuel supply is calculated from the fuel pressure Ppump of the pump estimated in step 1302 (FIG. 20) and the fuel pressure value reduction rate obtained in step 1305.
Is estimated as shown in FIG. 21, and this routine is finished. FIG. 14 is a routine for determining a cylinder for starting fuel supply, which is executed for each reference. This corresponds to the fuel supply cylinder determination means E.

【0042】ステップ1401では、図13のルーチンで推定
した燃料供給時の低下した燃圧値Pdownを読み込み、ス
テップ1402では、図12のルーチンで算出した燃圧下限値
P1を読み込む。次のステップ1403では両者を比較し、
推定燃圧値Pdownが燃圧下限値P1 と同じかあるいは大
きい場合(Pdown≧P1 )はステップ1404へ進み、燃料
供給タイミングが来る気筒へ予定通りに燃料を供給する
ことを決定し、ステップ1405で燃料供給時間Tpulse の
噴射パルスを設定し、ステップ1406でPdownをPest に
代入し終了する。
In step 1401, the reduced fuel pressure value Pdown during fuel supply estimated in the routine of FIG. 13 is read, and in step 1402, the fuel pressure lower limit value P1 calculated in the routine of FIG. 12 is read. In the next step 1403, the two are compared,
When the estimated fuel pressure value Pdown is equal to or larger than the fuel pressure lower limit value P1 (Pdown ≧ P1), the routine proceeds to step 1404, where it is decided to supply fuel to the cylinder at the fuel supply timing as scheduled, and at step 1405, fuel supply is performed. The injection pulse of time Tpulse is set, and Pdown is substituted for Pest in step 1406, and the process is ended.

【0043】一方、ステップ1403で推定燃圧値Pdownが
燃圧下限値P1 よりも小さい場合(Pdown<P1 )はス
テップ1407へ進み、つぎに燃料供給タイミングが来る気
筒への供給を中止して燃料供給を延期することを決定
し、ステップ1408で、Pest に燃料供給を行わなかった
場合の推定燃圧値Ppumpを代入し、終了する。以上の処
理により、始動時の燃料供給量Ti1と回転数Nとに基づ
き、燃焼の悪化や失火等を発生させることなく、そのと
きの状態に応じて確実に機関を始動することが可能とな
る。
On the other hand, when the estimated fuel pressure value Pdown is smaller than the fuel pressure lower limit value P1 in step 1403 (Pdown <P1), the routine proceeds to step 1407, where the supply to the cylinder at the next fuel supply timing is stopped and the fuel is supplied. It is decided to postpone, and in step 1408, the estimated fuel pressure value Ppump when fuel is not supplied is substituted for Pest, and the process ends. With the above processing, based on the fuel supply amount Ti1 and the rotation speed N at the time of starting, it is possible to reliably start the engine according to the state at that time without causing deterioration of combustion or misfire. .

【0044】図11〜図14のルーチンはすべてリファレン
スジョブであるが、これらのルーチンは図の昇順に順次
実行されるものとする。また、本制御は始動時から実行
し、最初の燃料供給を行った後、所定時間(例えば5 s
)あるいは所定燃焼サイクル(例えば50燃焼サイク
ル)経過後、実行を終了する。次に、第2の実施例を示
す。
Although the routines shown in FIGS. 11 to 14 are all reference jobs, these routines are assumed to be sequentially executed in the ascending order of the figure. Also, this control is executed from the start, and after the first fuel supply is performed, a predetermined time (for example, 5 s
) Or after a predetermined combustion cycle (for example, 50 combustion cycles) has elapsed, the execution is terminated. Next, a second embodiment will be described.

【0045】第1の実施例では、図12のステップ1204で
燃圧下限値P1 を算出する際に特に制限を設けなかっ
た。しかし、燃料供給量が少ないときや回転数が低く燃
料供給時間が長くとれる場合などに燃圧下限値が非常に
低く算出され、極めて低い燃圧を許容してしまい、燃料
の微粒化が不十分になる可能性がある。この点を補うた
め、燃圧下限値の最低値を制限する下限リミッタを設
け、算出した燃圧下限値を補正するようにしてもよい。
この下限リミッタの値は、図22に示すような機関回転数
Nと燃料供給量Ti とから定まるマップ値としてもよい
し、図5に示すように運転条件によらず一定の値として
もよい。
In the first embodiment, there is no particular limitation when calculating the fuel pressure lower limit P1 in step 1204 of FIG. However, when the fuel supply amount is small or the rotation speed is low and the fuel supply time can be long, the fuel pressure lower limit value is calculated to be extremely low, and an extremely low fuel pressure is allowed, resulting in insufficient atomization of fuel. there is a possibility. To compensate for this point, a lower limit limiter for limiting the minimum fuel pressure lower limit may be provided to correct the calculated fuel pressure lower limit.
The value of the lower limiter may be a map value determined from the engine speed N and the fuel supply amount Ti as shown in FIG. 22, or may be a constant value as shown in FIG. 5 regardless of operating conditions.

【0046】この場合、燃圧下限値演算手段Cとして、
図12のルーチンに代えて図15のルーチンを用いる。図15
のルーチンはリファレンス毎に実行され、ステップ1501
〜1504で第1の実施例と同様にして燃圧下限値P1 を算
出した後、ステップ1505で下限リミッタによる補正を行
う。これが燃圧下限値補正手段に相当する。これによ
り、燃料供給量Ti が少ないときや回転数Nが低い場合
でも燃圧下限値P1 が極端に低くなることはなく、燃料
が十分に微粒化されるため、燃焼の悪化や失火を防止で
きる。
In this case, as the fuel pressure lower limit value calculating means C,
The routine of FIG. 15 is used instead of the routine of FIG. Fig. 15
Routine is executed for each reference, step 1501
At 1504, the fuel pressure lower limit value P1 is calculated in the same manner as in the first embodiment, and at step 1505 correction is performed by the lower limit limiter. This corresponds to the fuel pressure lower limit correction means. As a result, even when the fuel supply amount Ti is small or the rotational speed N is low, the fuel pressure lower limit value P1 does not become extremely low, and the fuel is sufficiently atomized, so that deterioration of combustion and misfire can be prevented.

【0047】第3の実施例を示す。第1の実施例では、
図20の推定燃圧値Ppumpを推定する際に、前回の推定値
に基づいて今後の推定を行っていたが、前回の燃圧デー
タは燃圧センサ10による実測値を用い、今後の燃圧を推
定する際には前回の推定値と前回の実測値から補正計数
を算出して図18の燃圧上昇特性に補正を行い、それを用
いて今後の推定を行うようにしてもよい。
A third embodiment will be shown. In the first embodiment,
When estimating the estimated fuel pressure value Ppump in FIG. 20, the future estimation was performed based on the previous estimated value, but the previous fuel pressure data uses the actual measurement value by the fuel pressure sensor 10 and estimates the future fuel pressure. Alternatively, a correction coefficient may be calculated from the previous estimated value and the previous measured value to correct the fuel pressure increase characteristic of FIG. 18, and the future estimation may be performed using the correction coefficient.

【0048】この場合、燃圧推定手段Dとして、第1の
実施例の図13のルーチンに代えて、図16のルーチンを用
いる。図16のルーチンはリファレンス毎に実行される。
ステップ1601では、図23に示すような前回の所定期間
(リファレンス間)の燃圧センサ検出値Psen を読み込
み、続くステップ1602ではそれらセンサ検出値Psen に
対応する前回用いた燃圧推定値Pest を読み込む。ステ
ップ1603では、ステップ1601とステップ1602とで読み込
んだデータから燃圧推定値の補正係数αを算出する。具
体的には、それぞれの平均値の比として、次式によって
補正係数αを求る。
In this case, as the fuel pressure estimating means D, the routine of FIG. 16 is used instead of the routine of FIG. 13 of the first embodiment. The routine of FIG. 16 is executed for each reference.
In step 1601, the fuel pressure sensor detection value Psen in the previous predetermined period (between references) as shown in FIG. 23 is read, and in the following step 1602, the previously used fuel pressure estimated value Pest corresponding to the sensor detection value Psen is read. In step 1603, the correction coefficient α of the estimated fuel pressure value is calculated from the data read in step 1601 and step 1602. Specifically, the correction coefficient α is obtained by the following equation as the ratio of the respective average values.

【0049】α=Ave(Psen )/Ave(Pest ) ステップ1604では、第1の実施例と同様に図18の特性か
ら高圧燃料ポンプによる燃圧Ppumpを推定し、ステップ
1605では、ステップ1603で算出した補正係数αにより推
定値Ppumpを次式により補正し、P'pump を得る。 P'pump = Ppump×α 以後、ステップ1606からステップ1609の各ステップで
は、この補正後の推定値P'pump を用いて第1の実施例
の図13の手続きと同様に演算し、燃料供給を行った場合
の低下した燃圧値Pdownを図23のように推定して、この
ルーチンを終了する。
Α = Ave (Psen) / Ave (Pest) In step 1604, the fuel pressure Ppump by the high-pressure fuel pump is estimated from the characteristic of FIG. 18 as in the first embodiment, and the step is executed.
In 1605, the estimated value Ppump is corrected by the following equation using the correction coefficient α calculated in step 1603 to obtain P'pump. P′pump = Ppump × α After that, in each step from step 1606 to step 1609, the corrected estimated value P′pump is used to calculate in the same manner as the procedure of FIG. 13 of the first embodiment to supply the fuel. When the fuel pressure value Pdown is decreased, the fuel pressure value Pdown is estimated as shown in FIG. 23, and this routine ends.

【0050】これにより、燃料供給を行った場合に燃圧
値がどのように変化するかをより正確に推定できるよう
になる。本実施例では、燃圧推定値の補正係数αを算出
するのに、前回の燃圧推定値列の平均値Ave(Pest )
とセンサ出力列の平均値Ave(Psen )との比を用いた
が、これは、所定のクランク角におけるデータのみから
計算してもよい。また、ここでは前回燃焼分のデータの
みを用いたが、過去数燃焼分のデータを用いて補正係数
を求めてもよい。
As a result, it becomes possible to more accurately estimate how the fuel pressure value changes when fuel is supplied. In this embodiment, in order to calculate the correction coefficient α of the estimated fuel pressure value, the average value Ave (Pest) of the previous estimated fuel pressure value series is calculated.
The average value Ave (Psen) of the sensor output sequence was used, but this may be calculated only from the data at a predetermined crank angle. Although only the data of the previous combustion is used here, the correction coefficient may be obtained using the data of the past several combustions.

【0051】センサ出力に基づく補正は、燃料ポンプの
特性Ppumpに対してのみならず、燃料供給時間Tpulse
に対する燃圧低下割合の特性(図19)に対して行っても
よい。この場合、燃料供給を行ったときの燃圧低下割合
をセンサ出力から検出し、このデータに基づいて補正値
βを設定すればよい。尚、本制御は第1の実施例と同
様、始動時から実行し、最初の燃料供給を行った後、所
定時間(例えば(5 s )あるいは所定燃焼サイクル
(例えば50燃焼サイクル)経過したならば、実行を終了
するものとする。
The correction based on the sensor output is applied not only to the characteristic Ppump of the fuel pump, but also to the fuel supply time Tpulse.
May be performed for the characteristic of the fuel pressure decrease ratio with respect to (FIG. 19). In this case, the fuel pressure decrease rate when fuel is supplied may be detected from the sensor output, and the correction value β may be set based on this data. As in the first embodiment, this control is executed from the start, and if a predetermined time (for example, (5 s) or a predetermined combustion cycle (for example, 50 combustion cycles) elapses after the first fuel supply is performed. , End execution.

【0052】また、本実施例でも、第2の実施例と同様
にして燃圧下限値P1 に下限リミッタを設ければ、より
正確に、燃料供給を行うか延期するかの判断を行うこと
ができる。第4の実施例を示す。第1、第2の実施例で
は、図21の推定燃圧値を推定する際に、燃料ポンプの燃
圧上昇特性Ppumpは全運転で同一としていた(図18)。
しかし、機関が燃料の温度(以下、燃温という)を検知
する燃温センサ19を備える場合には、燃温の違いに基づ
く燃料性状の微妙な変化による燃圧上昇特性の違いをあ
らかじめ実験的に調べておくことにより、そのときの燃
温によってポンプの燃圧上昇特性をより正確に推定する
ことが可能となる。
Also in this embodiment, if a lower limit limiter is provided for the fuel pressure lower limit value P1 as in the second embodiment, it is possible to more accurately determine whether the fuel supply or the fuel postponement is postponed. . A fourth embodiment will be described. In the first and second embodiments, when estimating the estimated fuel pressure value of FIG. 21, the fuel pressure increase characteristic Ppump of the fuel pump is the same in all operations (FIG. 18).
However, when the engine is equipped with the fuel temperature sensor 19 that detects the temperature of fuel (hereinafter referred to as the fuel temperature), the difference in the fuel pressure increase characteristics due to the subtle change in the fuel property based on the difference in the fuel temperature has been experimentally tested in advance. By investigating beforehand, it becomes possible to more accurately estimate the fuel pressure increase characteristic of the pump based on the fuel temperature at that time.

【0053】この場合、燃圧推定手段Dとして、図13の
ルーチンに代えて図24のルーチンを用い、図18のテーブ
ルに代えて図25のテーブルを用いる。図24のルーチンは
リファレンス毎に実行され、ステップ2401で前回の燃圧
推定値Pest を読み込んだ後、ステップ2402で燃温を読
み込み、ステップ2403ではその燃温に基づいて、図25の
データからそのときの高圧燃料ポンプの燃圧推定値Ppu
mpを算出する。その後は、図13と同様にステップ2404〜
2407により燃料供給時の低下燃圧値(Pdown)を推定す
る。
In this case, as the fuel pressure estimating means D, the routine of FIG. 24 is used instead of the routine of FIG. 13, and the table of FIG. 25 is used instead of the table of FIG. The routine of FIG. 24 is executed for each reference. After reading the previous estimated fuel pressure value Pest in step 2401, the fuel temperature is read in step 2402, and in step 2403, based on the fuel temperature, the data of FIG. Estimated Fuel Pressure Ppu of High Pressure Fuel Pump
Calculate mp. After that, as in FIG. 13, steps 2404 to
The 2407 estimates the reduced fuel pressure value (Pdown) during fuel supply.

【0054】ここで、第3の実施例に示したように燃圧
センサ10を用いた構成の場合には、燃温の違いによる燃
料ポンプの燃圧上昇特性の違いも燃圧センサ10の検出値
に基づいて補正されていると考えられるため、図24およ
び図25を用いる必要ない。以上に示した各実施例では、
機関1は4気筒で、燃料ポンプは機関2回転につき4回
燃料を吐出するものとしたが、これに限られるものでは
なく、燃料ポンプの燃料吐出周期は、クランク角に対す
る燃圧の特性がわかっていれば、必ずしも機関回転と同
一周期でなくてもよい。
Here, in the case where the fuel pressure sensor 10 is used as shown in the third embodiment, the difference in the fuel pressure increase characteristic of the fuel pump due to the difference in the fuel temperature is also based on the detected value of the fuel pressure sensor 10. It is not necessary to use FIG. 24 and FIG. 25 because they are considered to have been corrected. In each of the embodiments described above,
The engine 1 has four cylinders, and the fuel pump discharges fuel four times for every two revolutions of the engine. However, the fuel discharge cycle of the fuel pump is not limited to this, and the characteristic of the fuel pressure with respect to the crank angle is known. If so, the period does not necessarily have to be the same as the engine rotation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の基本構成を示すブロック図FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】 本発明の一実施例の機関部分を示すシステム
構成図
FIG. 2 is a system configuration diagram showing an engine portion of an embodiment of the present invention.

【図3】 本発明の一実施例の回路部分を示すシステム
構成図
FIG. 3 is a system configuration diagram showing a circuit portion of an embodiment of the present invention.

【図4】 吸気バルブ、排気バルブの開閉タイミングを
表す図
FIG. 4 is a diagram showing opening and closing timings of an intake valve and an exhaust valve.

【図5】 燃料供給量一定のときの燃圧と燃料供給時間
の関係を表す図
FIG. 5 is a diagram showing the relationship between the fuel pressure and the fuel supply time when the fuel supply amount is constant.

【図6】 燃料ポンプによる燃圧上昇過程を表す図FIG. 6 is a diagram showing a process of increasing fuel pressure by a fuel pump.

【図7】 始動時の燃料供給量が少ない場合の、燃圧と
回転数との変化を表す図
FIG. 7 is a diagram showing changes in fuel pressure and rotational speed when the fuel supply amount at start is small.

【図8】 始動時の燃料供給量が多い場合の、燃圧と回
転数との変化を表す図
FIG. 8 is a diagram showing changes in fuel pressure and rotation speed when a large amount of fuel is supplied at startup.

【図9】 始動時の燃料供給量が多い場合に、本発明の
方法を適用したときの燃圧と回転数との変化を表す図
FIG. 9 is a diagram showing changes in fuel pressure and rotation speed when the method of the present invention is applied, when the fuel supply amount at startup is large.

【図10】 運転状態検出の手続きを表すフローチャートFIG. 10 is a flowchart showing a procedure for detecting an operating state.

【図11】 燃料供給量演算の手続きを表すフローチャー
FIG. 11 is a flowchart showing a procedure for calculating a fuel supply amount.

【図12】 燃圧の下限値を算出する手続きを表すフロー
チャート
FIG. 12 is a flowchart showing a procedure for calculating the lower limit value of the fuel pressure.

【図13】 燃圧を推定する手続きを表すフローチャートFIG. 13 is a flowchart showing a procedure for estimating fuel pressure.

【図14】 燃料供給をするか否かの判断の手続きを表す
フローチャート
FIG. 14 is a flowchart showing a procedure for determining whether to supply fuel.

【図15】 燃圧の下限値を算出する第2の手続きを表す
フローチャート
FIG. 15 is a flowchart showing a second procedure for calculating the lower limit value of the fuel pressure.

【図16】 燃圧を推定する第2の手続きを表すフローチ
ャート
FIG. 16 is a flowchart showing a second procedure for estimating the fuel pressure.

【図17】 始動時の水温と燃料供給量との関係を表す図FIG. 17 is a diagram showing the relationship between the water temperature at startup and the fuel supply amount.

【図18】 クランク角に対する、燃料ポンプによる燃圧
上昇の特性を表す図
FIG. 18 is a diagram showing a characteristic of fuel pressure increase by a fuel pump with respect to a crank angle.

【図19】 燃料噴射パルス幅と燃圧低下幅の関係を表す
FIG. 19 is a diagram showing a relationship between a fuel injection pulse width and a fuel pressure decrease width.

【図20】 燃料ポンプによる燃圧変化の推定の様子を表
す図
[Fig. 20] Fig. 20 is a diagram showing how the fuel pressure is estimated by the fuel pump.

【図21】 燃料ポンプによる燃圧変化と、燃料供給によ
る燃圧低下との両者の影響を考慮した、燃圧変化の推定
の様子を表す図
FIG. 21 is a diagram showing how the fuel pressure change is estimated in consideration of both the fuel pressure change due to the fuel pump and the fuel pressure decrease due to the fuel supply.

【図22】 下限リミッタマップの一例を表す図FIG. 22 is a diagram illustrating an example of a lower limit limiter map.

【図23】 燃圧センサを備えている場合に、燃料ポンプ
による燃圧変化と、燃料供給による燃圧低下の両者の影
響を考慮した、燃圧変化の推定の様子を表す図
FIG. 23 is a diagram showing how fuel pressure change is estimated in consideration of both the fuel pressure change due to the fuel pump and the fuel pressure decrease due to fuel supply when the fuel pressure sensor is provided.

【図24】 燃圧を推定する第3の手続きを表すフローチ
ャート
FIG. 24 is a flowchart showing a third procedure for estimating fuel pressure.

【図25】 燃温が異なる場合の、クランク角に対する、
燃料ポンプによる燃圧上昇の特性を表す図
[Fig. 25] For the crank angle when the fuel temperature is different,
Diagram showing the characteristics of fuel pressure increase by fuel pump

【符号の説明】[Explanation of symbols]

1 機関 2 スロットルバルブ 3 サージタンク 4 吸気マニホールド 5 吸気バルブ 6 直噴用インジェクタ 7 燃焼室 8 点火プラグ 9 エアフローメータ 10 燃圧センサ 19 燃温センサ 1 Engine 2 Throttle Valve 3 Surge Tank 4 Intake Manifold 5 Intake Valve 6 Direct Injection Injector 7 Combustion Chamber 8 Spark Plug 9 Air Flow Meter 10 Fuel Pressure Sensor 19 Fuel Temperature Sensor

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】直噴用インジェクタにより気筒内に直接燃
料を高圧で噴射供給する筒内直接噴射式内燃機関の制御
装置において、 機関の運転状態を検出する運転状態検出手段と、 機関始動時の燃料供給量を算出する燃料供給量演算手段
と、 前記運転状態検出手段の検出結果と前記燃料供給量演算
手段の算出結果とに基づいて始動時に要求される燃料圧
力の下限値を算出する燃圧下限値演算手段と、 前記運転状態検出手段の検出結果と前記燃料供給量演算
手段の算出結果とに基づいて燃料供給を行った場合の燃
料圧力の変化を推定する燃圧推定手段と、 前記燃圧下限値演算手段の算出結果と前記燃圧推定手段
の推定結果とに基づいて始動時に燃料供給を開始する気
筒を判断する燃料供給開始気筒判断手段と、 を含んで構成されることを特徴とする筒内直接噴射式内
燃機関の制御装置。
1. A control device for a direct injection type internal combustion engine, in which fuel is directly injected into a cylinder at a high pressure by a direct injection injector, and an operating condition detecting means for detecting an operating condition of the engine; A fuel supply amount calculation means for calculating a fuel supply amount, and a fuel pressure lower limit for calculating a lower limit value of the fuel pressure required at the time of start based on the detection result of the operating state detection means and the calculation result of the fuel supply amount calculation means. Value calculation means, fuel pressure estimation means for estimating a change in fuel pressure when fuel is supplied based on the detection result of the operating state detection means and the calculation result of the fuel supply amount calculation means, and the fuel pressure lower limit value Fuel supply start cylinder determination means for determining a cylinder to start fuel supply at the time of starting based on the calculation result of the calculation means and the estimation result of the fuel pressure estimation means. Control devices that direct injection internal combustion engine.
【請求項2】前記運転状態検出手段は、前記内燃機関に
設置されたクランク角センサにより、機関のクランク角
を検出し、これに基づいて機関の回転数を算出するもの
であることを特徴とする請求項1記載の筒内直接噴射式
内燃機関の制御装置。
2. The operating state detecting means detects a crank angle of the engine by a crank angle sensor installed in the internal combustion engine, and calculates an engine speed based on the detected crank angle. The control device for a direct injection type internal combustion engine according to claim 1, wherein:
【請求項3】前記燃料供給量演算手段は、機関の冷却水
温度に基づいて、所定のテーブルから機関始動時の燃料
供給量を決定するものであることを特徴とする請求項1
または請求項2記載の筒内直接噴射式内燃機関の制御装
置。
3. The fuel supply amount calculation means determines the fuel supply amount at the time of starting the engine from a predetermined table based on the temperature of the cooling water of the engine.
Alternatively, the control device for the in-cylinder direct injection internal combustion engine according to claim 2.
【請求項4】前記燃圧下限値演算手段は、燃料供給が可
能なクランク角区間と前記運転状態検出手段で検出した
機関回転数とに基づいて算出される燃料供給が可能な最
大時間と、前記燃料供給量演算手段で算出された燃料供
給量とから、前記最大時間内で前記燃料供給量を供給し
終えるために必要な燃圧の下限値を所定のテーブルから
算出するものであることを特徴とする請求項1〜請求項
3のいずれか1つに記載の筒内直接噴射式内燃機関の制
御装置。
4. The fuel pressure lower limit value calculating means, a crank angle section in which fuel can be supplied, and a maximum fuel supply time calculated based on an engine speed detected by the operating state detecting means, From the fuel supply amount calculated by the fuel supply amount calculation means, a lower limit value of the fuel pressure required to finish supplying the fuel supply amount within the maximum time is calculated from a predetermined table. The control device for a cylinder direct injection internal combustion engine according to any one of claims 1 to 3.
【請求項5】前記燃圧下限値演算手段は、燃圧下限値の
最低値を制限するリミッタを設け、前記算出した燃圧の
下限値を補正する燃圧下限値補正手段を含んで構成され
ることを特徴とする請求項4記載の筒内直接噴射式内燃
機関の制御装置。
5. The fuel pressure lower limit value calculating means is provided with a limiter for limiting the minimum value of the fuel pressure lower limit value, and is configured to include a fuel pressure lower limit value correcting means for correcting the calculated lower limit value of the fuel pressure. The control device for a direct injection internal combustion engine according to claim 4, wherein.
【請求項6】前記燃圧推定手段は、前記運転状態検出手
段で検出したクランク角と、前記燃料供給量演算手段で
算出した燃料供給量と、所定の燃料ポンプ特性とから、
燃料供給後の燃圧の変化を推定するものであることを特
徴とする請求項1〜請求項5のいずれか1つに記載の筒
内直接噴射式内燃機関の制御装置。
6. The fuel pressure estimating means, based on a crank angle detected by the operating state detecting means, a fuel supply amount calculated by the fuel supply amount calculating means, and a predetermined fuel pump characteristic,
The control device for a direct injection internal combustion engine, according to any one of claims 1 to 5, which estimates a change in fuel pressure after fuel supply.
【請求項7】前記内燃機関は燃料圧力を検出する燃圧セ
ンサを備える一方、前記燃圧推定手段は、前記運転状態
検出手段で検出したクランク角と、前記燃料供給量演算
手段で算出した燃料供給量と、既知の燃料ポンプの特性
と、前記燃圧センサの出力とから、燃圧の変化を推定す
るものであることを特徴とする請求項1〜請求項5のい
ずれか1つに記載の筒内直接噴射式内燃機関の制御装
置。
7. The internal combustion engine comprises a fuel pressure sensor for detecting fuel pressure, while the fuel pressure estimating means calculates a crank angle detected by the operating state detecting means and a fuel supply amount calculated by the fuel supply amount calculating means. The in-cylinder direct according to any one of claims 1 to 5, wherein a change in fuel pressure is estimated from a known characteristic of a fuel pump and an output of the fuel pressure sensor. Control device for internal combustion engine.
【請求項8】前記内燃機関は燃料温度を検出する燃温セ
ンサを備える一方、前記燃圧推定手段は、前記運転状態
検出手段で検出したクランク角と、前記燃料供給量演算
手段で算出した燃料供給量と、既知の燃料ポンプの特性
と、前記燃温センサの出力とから、燃圧の変化を推定す
るものであることを特徴とする請求項1〜請求項5のい
ずれか1つに記載の筒内直接噴射式内燃機関の制御装
置。
8. The internal combustion engine includes a fuel temperature sensor for detecting a fuel temperature, while the fuel pressure estimating means calculates a crank angle detected by the operating state detecting means and a fuel supply calculated by the fuel supply amount calculating means. The cylinder according to any one of claims 1 to 5, wherein a change in fuel pressure is estimated from an amount, a known characteristic of a fuel pump, and an output of the fuel temperature sensor. Control device for internal direct injection internal combustion engine.
【請求項9】前記燃料供給開始気筒判断手段は、前記燃
圧推定手段により算出された前記燃料供給後の燃圧の推
定値と、前記燃圧下限値演算手段により算出された前記
燃圧下限値とを比較し、前記燃圧推定値が前記燃圧下限
値以上の場合には燃料供給タイミングが訪れている気筒
に燃料供給を行い、前記燃圧推定値が前記燃圧下限値よ
りも小さくなる場合には燃料供給を行わず、次の燃料供
給タイミングで同様の処理を行って燃料供給を開始する
気筒を決定するものであることを特徴とする請求項1〜
請求項8のいずれか1つに記載の筒内直接噴射式内燃機
関の制御装置。
9. The fuel supply start cylinder determination means compares the estimated value of the fuel pressure after the fuel supply calculated by the fuel pressure estimation means with the fuel pressure lower limit value calculated by the fuel pressure lower limit value calculation means. However, if the estimated fuel pressure is equal to or higher than the lower limit of fuel pressure, fuel is supplied to the cylinder whose fuel supply timing is approaching, and if the estimated fuel pressure is smaller than the lower limit of fuel pressure, fuel is supplied. First, the same process is performed at the next fuel supply timing to determine the cylinder to start the fuel supply.
The control device for a direct injection type internal combustion engine, according to claim 8.
【請求項10】機関の始動後、所定期間が経過したら本制
御を終了することを特徴とする請求項1〜請求項9のい
ずれか1つに記載の筒内直接噴射式内燃機関の制御装
置。
10. The control device for a direct injection type internal combustion engine, according to claim 1, characterized in that the control is terminated when a predetermined period has elapsed after the engine was started. .
JP03099796A 1996-02-19 1996-02-19 In-cylinder direct injection internal combustion engine control device Expired - Lifetime JP3814858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03099796A JP3814858B2 (en) 1996-02-19 1996-02-19 In-cylinder direct injection internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03099796A JP3814858B2 (en) 1996-02-19 1996-02-19 In-cylinder direct injection internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPH09222037A true JPH09222037A (en) 1997-08-26
JP3814858B2 JP3814858B2 (en) 2006-08-30

Family

ID=12319242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03099796A Expired - Lifetime JP3814858B2 (en) 1996-02-19 1996-02-19 In-cylinder direct injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3814858B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013914A1 (en) * 1998-12-24 2000-06-28 Magneti Marelli France Fuel injection system for an internal combustion engine
US6450148B2 (en) 1999-11-30 2002-09-17 Unisia Jecs Corporation Fuel pressure control device of engine
EP1496227A2 (en) * 2003-07-08 2005-01-12 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
JP2008019874A (en) * 2007-10-04 2008-01-31 Denso Corp Variable valve timing control device for internal combustion engine
JP2009114919A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Abnormality diagnostic device of fuel pump
JP2010090901A (en) * 2009-12-04 2010-04-22 Denso Corp Variable valve timing control device for internal combustion engine
JP2010116845A (en) * 2008-11-13 2010-05-27 Toyota Motor Corp Fuel supply device for internal combustion engine
JP2011085026A (en) * 2009-10-13 2011-04-28 Denso Corp Internal combustion engine control device
JP2015183601A (en) * 2014-03-25 2015-10-22 富士重工業株式会社 Fuel pressure control device of in-cylinder injection engine
JP2015203316A (en) * 2014-04-11 2015-11-16 株式会社デンソー fuel supply control device
DE102006000167B4 (en) * 2005-04-08 2017-04-13 Denso Corporation Start control device and start control method for an in-cylinder internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294235B2 (en) * 2020-05-21 2023-06-20 トヨタ自動車株式会社 Fuel pressure estimation system, data analysis device, control device for fuel supply device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787832A1 (en) * 1998-12-24 2000-06-30 Magneti Marelli France FUEL SUPPLY CIRCUIT OF AN INTERNAL COMBUSTION ENGINE
EP1013914A1 (en) * 1998-12-24 2000-06-28 Magneti Marelli France Fuel injection system for an internal combustion engine
DE10059570B4 (en) * 1999-11-30 2006-07-13 Hitachi, Ltd. Fuel pressure control device of an engine
US6450148B2 (en) 1999-11-30 2002-09-17 Unisia Jecs Corporation Fuel pressure control device of engine
CN100337019C (en) * 2003-07-08 2007-09-12 日产自动车株式会社 Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
EP1496227A3 (en) * 2003-07-08 2006-02-08 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
EP1496227A2 (en) * 2003-07-08 2005-01-12 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
DE102006000167B4 (en) * 2005-04-08 2017-04-13 Denso Corporation Start control device and start control method for an in-cylinder internal combustion engine
JP2008019874A (en) * 2007-10-04 2008-01-31 Denso Corp Variable valve timing control device for internal combustion engine
JP2009114919A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Abnormality diagnostic device of fuel pump
JP2010116845A (en) * 2008-11-13 2010-05-27 Toyota Motor Corp Fuel supply device for internal combustion engine
JP2011085026A (en) * 2009-10-13 2011-04-28 Denso Corp Internal combustion engine control device
JP2010090901A (en) * 2009-12-04 2010-04-22 Denso Corp Variable valve timing control device for internal combustion engine
JP2015183601A (en) * 2014-03-25 2015-10-22 富士重工業株式会社 Fuel pressure control device of in-cylinder injection engine
JP2015203316A (en) * 2014-04-11 2015-11-16 株式会社デンソー fuel supply control device

Also Published As

Publication number Publication date
JP3814858B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US7841316B2 (en) Controller for direct injection engine
JP2935000B2 (en) Fuel property detection device for internal combustion engine
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP2003322044A (en) Fuel injection control device of intra-cylinder injection type internal-combustion engine
JP3814858B2 (en) In-cylinder direct injection internal combustion engine control device
US6672284B2 (en) Fuel supply amount control apparatus for internal combustion engine
EP1433939A2 (en) Engine fuel injection control device
US6568371B2 (en) Fuel injection control for internal combustion engine
JP3427683B2 (en) Fuel supply device for internal combustion engine
JP2005048659A (en) Fuel temperature estimation device
JP2007077892A (en) Control device for internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP2010156248A (en) Control device for internal combustion engine
JP2884386B2 (en) Fuel property detection device for internal combustion engine
US9856807B2 (en) Control apparatus for internal combustion engine, and control method for internal combustion engine
JPH09166039A (en) Fuel injector for inter-cylinder direct injection type spark ignition internal combustion engine
JPH08326581A (en) Fuel injection quantity control device for internal combustion engine
JPH10246138A (en) Fuel injection control device for cylinder direct injection spark ignition internal combustion engine
JP3401131B2 (en) Fuel property detection device for internal combustion engine
JPH02259251A (en) Combustion control device for internal combustion engine
JPH1136936A (en) Fuel injection control device for internal combustion engine
GB2447181A (en) (EN) air-fuel ratio judging method in internal combustion engine based in ion current (JA)
JP2008128034A (en) Control device for internal combustion engine
US7246603B2 (en) Control unit for an internal combustion engine
JP2750797B2 (en) Engine surge detector and air-fuel ratio controller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

EXPY Cancellation because of completion of term