JPH09219521A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09219521A
JPH09219521A JP9070280A JP7028097A JPH09219521A JP H09219521 A JPH09219521 A JP H09219521A JP 9070280 A JP9070280 A JP 9070280A JP 7028097 A JP7028097 A JP 7028097A JP H09219521 A JPH09219521 A JP H09219521A
Authority
JP
Japan
Prior art keywords
region
drain region
drain
source region
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9070280A
Other languages
Japanese (ja)
Inventor
Ryuhei Miyagawa
隆平 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9070280A priority Critical patent/JPH09219521A/en
Publication of JPH09219521A publication Critical patent/JPH09219521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the junction breakdown and the insulating film breakdown caused by high voltage and static electricity encountered in microscopic formation of a MOSIC. SOLUTION: The second conductive source region 11 and a drain region 12 are formed with a space of 1.8μm between them in the first conductive region of the semiconductor substrate 10 of this device. In this case, the shortest distance between the side face of the contact hole 14 for electrode connection provided on the drain region 12 or the source region 11 and the side face end part of the gate electrode 25 is 3μm or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置、特にM
OS型電界効果トランジスタの集積装置「以下MOSI
Cと呼ぶ。」に関する。本発明の目的は、MOSICの
静電気や定格以上のサージ電圧による破壊に対する耐量
を改善することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, particularly M
Integrated device of OS type field effect transistor "hereinafter MOSI
Call C. About. An object of the present invention is to improve the withstand capability of the MOSIC against breakdown due to static electricity or surge voltage higher than the rating.

【0002】[0002]

【従来の技術】MOSICの静電気などの過大サージ電
圧による破壊現象は、その開発当初からの問題であった
ため、これまでに各種の対策が提案され改良の手が加え
られてきた。従来のMOSlCの出力端子における代表
的な静電気保護回路は、図2に示すように、ボンディン
グパッド1に接続された配線が、保護抵抗2、クランプ
ダイオード3、4を経たのち、出力トランジスタのドレ
イン部5に接続される。あるいは図3における出力トラ
ンジスタのチャネル幅Wが長く、またドレイン領域22
が大きな面積を有する場合は、ボンディングパッド1と
ドレイン領域5が直接接続され、ドレイン領域22と半
導体基板20で形成される出力トランジスタのドレイン
寄生容量6と、寄生クランプダイオード7の電圧分割及
び電圧制限により静電気からトランジスタを保護するの
が一般的である。
2. Description of the Related Art Since the destruction phenomenon of MOSIC due to an excessive surge voltage such as static electricity has been a problem from the beginning of its development, various countermeasures have been proposed and improved. As shown in FIG. 2, a typical static electricity protection circuit at an output terminal of a conventional MOSIC has a wiring connected to a bonding pad 1 after passing through a protection resistor 2 and clamp diodes 3 and 4, and then a drain portion of an output transistor. Connected to 5. Alternatively, the channel width W of the output transistor in FIG.
Has a large area, the bonding pad 1 and the drain region 5 are directly connected to each other, the drain parasitic capacitance 6 of the output transistor formed by the drain region 22 and the semiconductor substrate 20, the voltage division of the parasitic clamp diode 7, and the voltage limitation. It is common to protect the transistor from static electricity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図3に
示すように、MOSICの縮小化にともない、出力トラ
ンジスタのチャネル部26の長さLが短くなるとともに
ドレイン拡散層22の深さDも浅くなると、さらにまた
高密度集積化のために、チャネル端部とドレインコンタ
クト孔24もしくはソースコンタクト孔23までの距離
L1、L2が狭まると、ドレイン拡散層22と半導体基
板20で形成される、図2におけるダイオード7の逆方
向極性に流せられる電流容量「以下逆方向電流と呼
ぶ。」が減少し、接合破壊が生じやすくなる。また高電
圧が加わった瞬間、ドレイン拡散層22のチャネル26
側端部でのアバランシェ降伏により、基板内20に大量
のホットエレクトロンが誘起し、これがチャネル26上
のゲート絶縁膜25に流れ込んで、トランジスタの特性
劣化ひいてはゲート絶縁膜破壊を起こすという問題が顕
在化してきた。
However, as shown in FIG. 3, when the length L of the channel portion 26 of the output transistor becomes shorter and the depth D of the drain diffusion layer 22 becomes smaller as the size of the MOSIC becomes smaller. Further, when the distances L1 and L2 from the channel end to the drain contact hole 24 or the source contact hole 23 are narrowed for high density integration, the drain diffusion layer 22 and the semiconductor substrate 20 are formed, as shown in FIG. The current capacity “hereinafter, referred to as a reverse current” that flows in the reverse polarity of the diode 7 decreases, and the junction is easily broken. At the moment when a high voltage is applied, the channel 26 of the drain diffusion layer 22 is
The avalanche breakdown at the side edges induces a large amount of hot electrons in the substrate 20, which flows into the gate insulating film 25 on the channel 26, which causes the problem that the characteristics of the transistor are deteriorated and the gate insulating film is destroyed. I've been

【0004】それゆえ本発明では、1.8μm以下のチ
ャネル幅を有する入出力トランジスタに対し、各種の静
電気による破壊実験結果を検討し、ドレイン、ソース拡
散層に設けられたコンタクト孔と、該拡散層端部との距
離を適切化し、MOSICの破壊耐量を向上させること
を目的とする。
Therefore, in the present invention, with respect to an input / output transistor having a channel width of 1.8 μm or less, the results of various static electricity destruction experiments are examined, and the contact holes provided in the drain and source diffusion layers and the diffusion The purpose is to optimize the distance to the edge of the layer and improve the breakdown resistance of the MOSIC.

【0005】[0005]

【課題を解決するための手段】半導体基板上の第1導電
型領域中に、第2導電型のソース領域とドレイン領域
が、1.8μm以下の距離をおいて平行に形成され、前
記ドレイン領域並びにソース領域中に設けられた、少な
くとも二つ以上の電極接続用コンタクト孔を介して、該
ドレイン領域は入出力端子に、また該ソース領域は第一
導電型領域と同じ電位に接続されているMOS型電界効
果半導体装置において、上記ソース領域に面したドレイ
ン領域端部と、該ドレイン領域中に形成されたコンタク
ト孔との最短距離、並びに上記ドレイン領域に面したソ
ース領域端部と該ソース領域中に形成されたコンタクト
孔との最短距離がともに3μm以上であることを特徴と
する。
A source region and a drain region of a second conductivity type are formed in parallel in a first conductivity type region on a semiconductor substrate with a distance of 1.8 μm or less. Also, the drain region is connected to the input / output terminal and the source region is connected to the same potential as the first conductivity type region through at least two or more electrode connecting contact holes provided in the source region. In a MOS field effect semiconductor device, the shortest distance between a drain region end facing the source region and a contact hole formed in the drain region, and a source region end facing the drain region and the source region The shortest distance to the contact hole formed therein is both 3 μm or more.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施例であるNM
OSICについて図面を参照しながら述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The NM which is an embodiment of the present invention will be described below.
OSIC will be described with reference to the drawings.

【0007】図1(a),(b)に示すように、P型基
板10にNチャネルトランジスタのN型ソース領域11
とドレイン領域12を作り、該ソース領域はコンタクト
孔13で、また該ドレイン領域はコンタクト孔14でそ
れぞれ電源配線17とボンディングパッドにつながる出
力配線18に接続される。
As shown in FIGS. 1A and 1B, an N-type source region 11 of an N-channel transistor is formed on a P-type substrate 10.
A drain region 12 is formed, and the source region is connected to a contact hole 13 and the drain region is connected to a power supply wire 17 and an output wire 18 connected to a bonding pad, respectively, through a contact hole 14.

【0008】ここで前記コンタクト孔14とドレイン領
域端部との距離L1及び前記コンタクト孔13とソース
領域端部との距離L2を3μm以上離すようにする。実
際の実施例におけるトランジスタのチャネル長16は
1,5μm、L1とL2はともに4μmである。この構
造を有するトランジスタに、P型基板とドレイン領域か
らなるPN接合の逆極性となるようなサージ電圧が加わ
った場合、ダイオードの逆極性上、アバランシェ降伏点
はまずPN接合部の一点、とくにドレイン領域のチャネ
ル側端部に集中するが、コンタクト孔とドレイン領域端
部との間に分布する拡散抵抗により、PN接合の逆方向
電流値は負帰還を受け電流制限される。またドレイン拡
散層端部とゲート絶縁膜15との間の電界強度も低減さ
れるため、ゲート絶縁膜に流れ込むホットエレクトロン
の発生も抑制されゲート絶縁膜の破壊が起こりにくくな
る。
Here, the distance L1 between the contact hole 14 and the end of the drain region and the distance L2 between the contact hole 13 and the end of the source region are separated by 3 μm or more. In the actual embodiment, the channel length 16 of the transistor is 1.5 μm, and L1 and L2 are both 4 μm. When a surge voltage that has the reverse polarity of the PN junction composed of the P-type substrate and the drain region is applied to the transistor having this structure, the avalanche breakdown point is the first point of the PN junction, especially the drain, due to the reverse polarity of the diode. Although it concentrates on the channel side end of the region, the reverse direction current value of the PN junction is negatively fed back and limited by the diffusion resistance distributed between the contact hole and the drain region end. Further, since the electric field strength between the end portion of the drain diffusion layer and the gate insulating film 15 is also reduced, the generation of hot electrons flowing into the gate insulating film is suppressed, and the gate insulating film is less likely to be destroyed.

【0009】[0009]

【発明の効果】本発明のNMOSトランジスタと従来の
コンタクト孔とドレイン端との距離を考慮しないNMO
Sトランジスタを、日本電子機械工業会規格(EIA
J)の方法20に記述された静電気試験により比較して
みると、チャネル長1.5μm、チャネル幅300μm
を有する従来のものは250ボルトで破壊するのに対
し、同じトランジスタサイズで本発明のものは600ボ
ルト以上の耐量を有していた。
The NMO without considering the distance between the NMOS transistor of the present invention and the conventional contact hole and drain end.
The S-transistor is compliant with the Japan Electronic Machinery Manufacturers Association Standard (EIA
When compared by the electrostatic test described in Method 20 of J), the channel length is 1.5 μm and the channel width is 300 μm.
Whereas the conventional one having a breakdown voltage of 250 V breaks, the one of the present invention having the same transistor size has a withstand voltage of 600 V or more.

【0010】以上のように本発明は、MOSICの微細
化を進める上で遭遇する高電圧や静電気による接合破
壊、絶縁膜破壊を防止する上で、十分な効果を期待でき
る。
As described above, the present invention can be expected to have a sufficient effect in preventing the junction breakdown and the insulating film breakdown due to the high voltage and static electricity that are encountered in promoting the miniaturization of MOSIC.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)は本発明による破壊保護機構を
示す平面図(a)、断面図(b)である。
1 (a) and 1 (b) are a plan view (a) and a sectional view (b) showing a destruction protection mechanism according to the present invention.

【図2】従来のCMOSICの出力端子における静電気
保護回路図である。
FIG. 2 is a static electricity protection circuit diagram at an output terminal of a conventional CMOS IC.

【図3】従来のMOSICの構造を説明するための斜視
図。
FIG. 3 is a perspective view for explaining the structure of a conventional MOSIC.

【符号の説明】[Explanation of symbols]

6・・・・・ドレイン領域が形成する寄生容量 7・・・・・ドレイン領域が形成する寄生ダイオード 10・・・・・P型半導体基板 11・・・・・N型ソース領域 12・・・・・N型ドレイン領域 13、14・・コンタクト孔 15・・・・・ゲート絶緑膜 16・・・・・チャネル領域 17、18・・配線層 6 ... Parasitic capacitance formed by drain region 7 ... Parasitic diode formed by drain region 10 ... P-type semiconductor substrate 11 ... N-type source region 12 ... ..N-type drain regions 13 and 14 ..Contact holes 15 ..gate insulation film 16 ..channel regions 17 and 18 ..wiring layers

【手続補正書】[Procedure amendment]

【提出日】平成9年4月21日[Submission date] April 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図3に
示すように、MOSICの縮小化にともない、出力トラ
ンジスタのチャネル部26の長さLが短くなるとともに
ドレイン拡散層22の深さDも浅くなると、さらにまた
高密度集積化のために、チャネル端部とドレインコンタ
クト孔24もしくはソースコンタクト孔23までの距離
L1、L2が狭まると、ドレイン拡散層22と半導体基
板20で形成される、図2におけるダイオード7の逆方
向極性に流せられる電流容量「以下逆方向電流と呼
ぶ。」が減少し、接続破壊が生じやすくなる。また高電
圧が加わった瞬間、ドレイン拡散層22のチャネル26
側端部でのアバランシェ降伏により、基板内20に大量
のホットエレクトロンが誘起し、これがチャネル26上
のゲート絶縁膜15に流れ込んで、トランジスタの特性
劣化ひいてはゲート絶縁膜破壊を起こすという問題が顕
在化してきた。
However, as shown in FIG. 3, when the length L of the channel portion 26 of the output transistor becomes shorter and the depth D of the drain diffusion layer 22 becomes smaller as the size of the MOSIC becomes smaller. Further, when the distances L1 and L2 from the channel end to the drain contact hole 24 or the source contact hole 23 are narrowed for high density integration, the drain diffusion layer 22 and the semiconductor substrate 20 are formed, as shown in FIG. The current capacity “hereinafter, referred to as a reverse current” that flows in the reverse polarity of the diode 7 decreases, and the connection is easily broken. At the moment when a high voltage is applied, the channel 26 of the drain diffusion layer 22 is
The avalanche breakdown at the side edges induces a large amount of hot electrons in the substrate 20, which flows into the gate insulating film 15 on the channel 26, which causes deterioration of the characteristics of the transistor and eventually the breakdown of the gate insulating film. I've been

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】ここで前記コンタクト孔14とドレイン領
域端部との距離L1及び前記コンタクト孔13とソース
領域端部との距離L2を3μm以上離すようにする。実
際の実施例におけるトランジスタのチャネル長16は
1.5μm、L1とL2はともに4μmである。この構
造を有するトランジスタに、P型基板とドレイン領域か
らなるPN接合の逆極性となるようなサージ電圧が加わ
った場合、ダイオードの逆極性上、アバランシェ降伏点
はまずPN接合部の一点、とくにドレイン領域のチャネ
ル側端部に集中するが、コンタクト孔とドレイン領域端
部との間に分布する拡散抵抗により、PN接合の逆方向
電流値は負帰還を受け電流制御される。したがって、ド
レイン領域に設けられた電極接続用コンタクト孔側面と
ゲート電極側面端部と最短距離を3μm以上としても良
い。また、上述のように、アバランシェ降伏点は、特に
ドレイン領域のチャネル部に集中するが、電極接続用コ
ンタクト孔間で抵抗を設けるような構造をとれば、絶縁
膜破壊を防止できるので、結果的にソース領域に設けら
れた電極接続用コンタクト孔側面とゲート電極側面端部
との最短距離を3μm以上とするだけでも良い。またド
レイン拡散層端部とゲート絶縁膜15との間の電界強度
も低減されるため、ゲート絶縁膜の破壊が起こりにくく
なる。
Here, the distance L1 between the contact hole 14 and the end of the drain region and the distance L2 between the contact hole 13 and the end of the source region are separated by 3 μm or more. In the actual embodiment, the channel length 16 of the transistor is 1.5 μm, and L1 and L2 are both 4 μm. When a surge voltage that has the reverse polarity of the PN junction composed of the P-type substrate and the drain region is applied to the transistor having this structure, the avalanche breakdown point is the first point of the PN junction, especially the drain, due to the reverse polarity of the diode. Although concentrated on the channel side end of the region, the reverse direction current value of the PN junction is negatively fed back and current is controlled by the diffusion resistance distributed between the contact hole and the drain region end. Therefore, the shortest distance between the side surface of the contact hole for electrode connection provided in the drain region and the end portion of the side surface of the gate electrode may be 3 μm or more. Further, as described above, the avalanche breakdown point is particularly concentrated in the channel portion of the drain region, but if a structure is provided in which a resistance is provided between the contact holes for electrode connection, the insulation film breakdown can be prevented, and as a result, The shortest distance between the side surface of the contact hole for electrode connection provided in the source region and the end portion of the side surface of the gate electrode may be set to 3 μm or more. Further, since the electric field strength between the end of the drain diffusion layer and the gate insulating film 15 is also reduced, the gate insulating film is less likely to be destroyed.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 [Figure 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の第1導電型領域中に、第
2導電型のソース領域とドレイン領域が、1.8μm以
下の距離をおいて平行に形成され、前記ドレイン領域並
びにソース領域中に設けられた、少なくとも二つ以上の
電極接続用コンタクト孔を介して、該ドレイン領域は入
出力端子に、また該ソース領域は第一導電型領域と同じ
電位に接続されている半導体装置において、上記ソース
領域に面したドレイン領域端部と、該ドレイン領域中に
形成されたコンタクト孔との最短距離、並びに上記ドレ
イン領域に面したソース領域端部と該ソース領域中に形
成されたコンタクト孔との最短距離がともに3μm以上
であることを特徴とする半導体装置。
1. A source region and a drain region of the second conductivity type are formed in parallel in a first conductivity type region on a semiconductor substrate with a distance of 1.8 μm or less, and the drain region and the source region are formed. In the semiconductor device in which the drain region is connected to the input / output terminal and the source region is connected to the same potential as the first conductivity type region through at least two or more electrode connecting contact holes provided in The shortest distance between the drain region end facing the source region and the contact hole formed in the drain region, and the source region end facing the drain region and the contact hole formed in the source region. The semiconductor device is characterized in that both of the shortest distances are 3 μm or more.
JP9070280A 1997-03-24 1997-03-24 Semiconductor device Pending JPH09219521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9070280A JPH09219521A (en) 1997-03-24 1997-03-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9070280A JPH09219521A (en) 1997-03-24 1997-03-24 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63024393A Division JPH01199467A (en) 1988-02-04 1988-02-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09219521A true JPH09219521A (en) 1997-08-19

Family

ID=13426934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9070280A Pending JPH09219521A (en) 1997-03-24 1997-03-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09219521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189127A (en) * 2008-02-05 2009-08-20 Mitsumi Electric Co Ltd Semiconductor integrated circuit
CN106298165A (en) * 2016-09-29 2017-01-04 宇龙计算机通信科技(深圳)有限公司 A kind of voltage-controlled controllable impedance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189127A (en) * 2008-02-05 2009-08-20 Mitsumi Electric Co Ltd Semiconductor integrated circuit
CN106298165A (en) * 2016-09-29 2017-01-04 宇龙计算机通信科技(深圳)有限公司 A kind of voltage-controlled controllable impedance

Similar Documents

Publication Publication Date Title
JP3161508B2 (en) Semiconductor device
JP2810874B2 (en) Semiconductor device
US7777294B2 (en) Semiconductor device including a high-breakdown voltage MOS transistor
KR100311578B1 (en) Semiconductor device
JP2002522906A (en) Integrated circuit with ESD protection means
US5710452A (en) Semiconductor device having electrostatic breakdown protection circuit
KR100387189B1 (en) Semiconductor device on insulator and its protection circuit
US4476479A (en) Semiconductor device with operating voltage coupling region
JP3472911B2 (en) Semiconductor device
KR100206675B1 (en) Semiconductor integrated circuit device
KR20020015199A (en) Electrostatic discharge protection device in a semiconductor device
JPH09219521A (en) Semiconductor device
JPS63244874A (en) Input protective circuit
JPH02238668A (en) Semiconductor device
JP4435672B2 (en) Semiconductor integrated circuit device
JPH10270704A (en) Semiconductor integrated circuit device
JP3283736B2 (en) Semiconductor integrated circuit device
JP3446569B2 (en) Semiconductor device
JPH0691206B2 (en) Semiconductor device
JPH01199467A (en) Semiconductor device
JP4174836B2 (en) Semiconductor device
JP2949769B2 (en) Semiconductor input protection device
US5432369A (en) Input/output protection circuit
JP4006023B2 (en) Integrated circuit
JPH03184369A (en) Semiconductor device