JPH09217079A - Fuel consumption reducing type lubricating oil - Google Patents

Fuel consumption reducing type lubricating oil

Info

Publication number
JPH09217079A
JPH09217079A JP5483297A JP5483297A JPH09217079A JP H09217079 A JPH09217079 A JP H09217079A JP 5483297 A JP5483297 A JP 5483297A JP 5483297 A JP5483297 A JP 5483297A JP H09217079 A JPH09217079 A JP H09217079A
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
viscosity
mineral
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5483297A
Other languages
Japanese (ja)
Other versions
JP2912286B2 (en
Inventor
Yasushi Naito
康司 内藤
Hitoshi Hamaguchi
仁 浜口
Mitsufumi Matsunaga
充史 松永
Kazumitsu Fujiwara
一光 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12981628&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09217079(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5483297A priority Critical patent/JP2912286B2/en
Publication of JPH09217079A publication Critical patent/JPH09217079A/en
Application granted granted Critical
Publication of JP2912286B2 publication Critical patent/JP2912286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a lubricating oil useful for an engine of an automobile, capable of reducing friction loss, excellent in energy saving, low in viscosity and small in evaporation amount and improved in shear stability, by blending a specific mineral oil-based base oil with a prescribed amount of an organomolybdenum compound. SOLUTION: (A) A mineral oil-based base oil having 3-5cSt dynamic viscosity at 100 deg.C and >=135 viscosity index (e.g. one obtained by hydrogenating and isomerizing a slack wax having 300-700 deg.C boiling point, 20-70 carbons and 4-10cSt dynamic viscosity at 100 deg.C to give an isomerized oil, dewaxing and distilling the oil) is mixed with (B) 50-1,000ppm calculated as weight of molybdenum of an organomolybdenum compound such as molybdenum dithiophosphate or molybdenum dithiocarbamate to give the objective fuel consumption reducing type lubricating oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関用の省燃費型
潤滑油に関し、より詳しくは、ガソリンエンジン用の潤
滑油として好適であり、低粘度でありながら蒸発量が少
なく、省エネルギー性、剪断安定性に優れた潤滑油に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel-saving lubricating oil for an internal combustion engine, and more particularly, it is suitable as a lubricating oil for a gasoline engine, has a low viscosity and a small amount of evaporation, and is energy-saving. The present invention relates to a lubricating oil having excellent shear stability.

【0002】[0002]

【従来の技術】エネルギーの節約並びに地球温暖化の一
因とされる炭酸ガスの排出抑制の観点から、自動車の燃
費を向上させることが要求されている。自動車の燃費を
改善するため、自動車の軽量化が図られており、自動車
に搭載される潤滑油の量は、減少する傾向にある。この
ため、より一層高性能な潤滑油が求められている。エン
ジン用の潤滑油は、本来、エンジン内を清浄に保ち、軸
受、ピストン/シリンダ間、動弁系等の摺動部の摩擦ロ
スを低減し、摩耗を防止する等の作用によって、エンジ
ンを円滑に動かすために使用されている。しかし、前述
のような動きの中で、潤滑油に対して、更に省燃費性能
を付与することが期待されてきている。
2. Description of the Related Art From the viewpoint of saving energy and suppressing carbon dioxide emission, which is one of the causes of global warming, it is required to improve fuel efficiency of automobiles. The weight of automobiles has been reduced in order to improve the fuel consumption of automobiles, and the amount of lubricating oil mounted on automobiles tends to decrease. Therefore, higher performance lubricating oil is required. Lubricating oil for engines originally keeps the engine clean, reduces friction loss in sliding parts such as bearings, pistons / cylinders, valve trains, etc. Is used to move to. However, in the above-mentioned movement, it is expected that the lubricating oil will be further provided with fuel saving performance.

【0003】[0003]

【発明が解決しようとする課題】エンジン油による摩擦
ロスを低減するためには、エンジン油の低粘度化が有効
であり、種々検討されている。しかし、潤滑油を単に低
粘度化させただけでは、摺動部での摩耗が増大するう
え、潤滑油の蒸発損失が増加して排気ガスの性状が悪化
したり、油量が減少して潤滑油の劣化速度が速くなった
りする。このうえ更に、高温域における潤滑油の粘度が
低下し、動弁系部や軸受部等の摺動部で、焼き付き摩耗
のおそれが増大する。
In order to reduce friction loss due to engine oil, lowering the viscosity of engine oil is effective and various studies have been made. However, simply lowering the viscosity of the lubricating oil will increase the wear on the sliding parts, increase the evaporation loss of the lubricating oil, and deteriorate the properties of the exhaust gas. The deterioration speed of oil becomes faster. Furthermore, the viscosity of the lubricating oil in the high temperature range is further lowered, and the risk of seizure and wear is increased at the sliding parts such as the valve train and bearings.

【0004】潤滑油の蒸発損失の増加を抑制するために
は、沸点の範囲が狭い合成潤滑油を使用する方法があ
る。しかし、合成潤滑油を使用すると、鉱油系基油を使
用した場合に比べて、著しくコストが高くなる。また、
潤滑油の粘度の低下による上記の焼き付き摩耗を防止す
るためには、極圧剤、摩耗防止剤あるいは摩擦緩和剤と
いった添加剤を添加する方法がある。しかし、極圧剤、
摩耗防止剤あるいは摩擦緩和剤等の添加剤を添加して
も、潤滑油の蒸発損失を防ぐことはできない。
In order to suppress an increase in evaporation loss of the lubricating oil, there is a method of using a synthetic lubricating oil having a narrow boiling point range. However, the cost of using the synthetic lubricating oil is significantly higher than that of using the mineral base oil. Also,
In order to prevent the above-mentioned seizure wear due to the decrease in the viscosity of the lubricating oil, there is a method of adding an additive such as an extreme pressure agent, an antiwear agent or a friction modifier. But extreme pressure agents,
Addition of additives such as antiwear agents or friction modifiers cannot prevent evaporation loss of the lubricating oil.

【0005】本発明の課題は、低コストの鉱油系基油を
用いた潤滑油において、内燃機関用油による摩擦ロスの
低減効果が大きく、省エネルギー性に優れ、低粘度であ
りながら蒸発量が少なく、高温域における潤滑油の粘度
の低下が少なく、剪断安定性に優れた、内燃機関用の省
燃費型潤滑油を提供することである。
An object of the present invention is to provide a lubricating oil using a low-cost mineral base oil, which has a large effect of reducing friction loss due to the internal combustion engine oil, is excellent in energy saving, has a low viscosity, and has a small evaporation amount. It is an object of the present invention to provide a fuel-saving lubricating oil for internal combustion engines, which has less deterioration in viscosity of the lubricating oil in a high temperature range and has excellent shear stability.

【0006】[0006]

【課題を解決するための手段】本発明に係る内燃機関用
の省燃費型潤滑油は、100°Cにおける動粘度が3〜
5cStであり、粘度指数が135以上である鉱油系基
油に、有機モリブデン化合物が、モリブデン量に換算し
て50〜1000ppm(重量)配合されていることを
特徴とする。本発明の好適な実施形態では、ワックスを
水添異性化して得られた鉱油系基油を使用する。
The fuel-saving lubricating oil for internal combustion engines according to the present invention has a kinematic viscosity of 3 to 100 ° C.
It is characterized in that an organic molybdenum compound is blended in an amount of 5 to 1000 ppm (weight) in terms of molybdenum in a mineral oil base oil having a viscosity index of 5 or more and a viscosity index of 135 or more. In a preferred embodiment of the present invention, a mineral base oil obtained by hydroisomerizing wax is used.

【0007】[0007]

【作用】本発明者等は、内燃機関用の潤滑油基油の物
性、添加剤の効用等について、鋭意検討した結果、特定
の添加剤の効能が、特定の基油物性と組み合わせること
によって、予想を遙かに越えて著しく発揮されることを
見出し、本発明を完成するに至った。
The present inventors have conducted extensive studies on the physical properties of lubricating base oils for internal combustion engines, the effects of additives, etc., and as a result, the effects of specific additives have been combined with specific physical properties of base oils. The present invention has been completed by discovering that the performance will be far exceeded that expected.

【0008】本発明で使用される鉱油系基油は、低粘度
で、粘度指数の高い鉱油であることが重要である。具体
的には、100°Cにおける動粘度が3〜5cStであ
り、粘度指数が135以上である鉱油系基油を使用しな
ければならない。
It is important that the mineral base oil used in the present invention is a mineral oil having a low viscosity and a high viscosity index. Specifically, a mineral oil base oil having a kinematic viscosity at 100 ° C. of 3 to 5 cSt and a viscosity index of 135 or more must be used.

【0009】鉱油系基油の動粘度が3cSt未満である
と、粘度指数が135以上であっても蒸発損失が多い。
一方、動粘度が5cStを超えると、期待する省エネル
ギー性能が得られない。鉱油系基油の粘度指数が135
未満であると、同等の動粘度を有する鉱油系基油に比べ
て蒸発損失が多くなるうえ、粘度の温度依存性が大きく
なるために、150°C程度以上の高温で粘度が大きく
低下し、潤滑性が悪化し、上記の焼き付き摩耗のおそれ
が増大する。
When the kinematic viscosity of the mineral base oil is less than 3 cSt, evaporation loss is large even if the viscosity index is 135 or more.
On the other hand, if the kinematic viscosity exceeds 5 cSt, the expected energy saving performance cannot be obtained. The viscosity index of mineral base oil is 135
When it is less than 1, since the evaporation loss is larger than that of a mineral oil-based base oil having an equivalent kinematic viscosity, and the temperature dependence of the viscosity is large, the viscosity is greatly reduced at a high temperature of about 150 ° C or higher, Lubricity deteriorates and the risk of seizure wear increases.

【0010】更に興味深いことに、粘度指数135以上
の基油に対し、モリブデンジチオホスフェイト(MoD
TP)、モリブデンジチオカーバメイト(MoDTC)
等の有機モリブデン化合物を添加すると、潤滑性が相乗
的に向上するという効果があり、潤滑油の省エネルギー
性能が格段に向上することを見いだした。たとえ動粘度
が3〜5cStの鉱油系基油であっても、その粘度指数
が135未満である場合には、有機モリブデン化合物を
添加すれば、省エネルギー性能がある程度は向上するも
のの、本発明ほどの顕著な相乗的効果は認められない。
そのうえ、潤滑油の蒸発性や剪断安定性が悪化する。鉱
油系基油の粘度指数を140以上とすると、潤滑油の省
エネルギー性能が、更に一層向上する。
More interestingly, molybdenum dithiophosphate (MoD
TP), molybdenum dithiocarbamate (MoDTC)
It was found that the addition of such an organic molybdenum compound has the effect of synergistically improving the lubricity, and the energy saving performance of the lubricating oil is remarkably improved. Even if the mineral oil base oil has a kinematic viscosity of 3 to 5 cSt and its viscosity index is less than 135, the addition of an organic molybdenum compound improves the energy saving performance to some extent, No significant synergistic effect is observed.
In addition, the evaporation property and the shear stability of the lubricating oil deteriorate. When the viscosity index of the mineral base oil is 140 or more, the energy saving performance of the lubricating oil is further improved.

【0011】なお、鉱油系基油の全炭素に対する、パラ
フィンを構成する炭素の比率(%Cp、以下単に「パラ
フィン比率」という)は、90%以上であることが好ま
しく、95%以上であることが一層好ましい。これによ
って、一層優れた酸化安定性、熱安定性が潤滑油に付与
される。
The ratio of carbon constituting paraffin (% Cp, hereinafter simply referred to as "paraffin ratio") to the total carbon of the mineral base oil is preferably 90% or more, and 95% or more. Is more preferable. This gives the lubricating oil more excellent oxidation stability and thermal stability.

【0012】更に、鉱油系基油の流動点が−10°C以
下であることが好ましく、沸点が初留点330°C以上
であることが好ましい。流動点が−10°Cを超える
と、低温粘度が上昇し、低温での潤滑性に支障をきた
し、自動車に実装したとき、良好な低温始動性が得られ
なくなる傾向がある。また、沸点が初留点330°C未
満である留分が入ると、引火点が低くなるとともに、粘
度指数が135以上でも蒸発損失が増大する傾向があ
る。更に好ましくは、流動点−15°C以下、沸点が初
留点340°C以上の鉱油系基油を使用する。
Further, the pour point of the mineral base oil is preferably -10 ° C or lower, and the boiling point thereof is preferably 330 ° C or higher. If the pour point exceeds −10 ° C., the low temperature viscosity increases, impairing the lubricity at low temperatures, and when mounted in an automobile, good low temperature startability tends not to be obtained. In addition, when a fraction having a boiling point of less than 330 ° C enters, the flash point tends to be low and the evaporation loss tends to increase even when the viscosity index is 135 or more. More preferably, a mineral base oil having a pour point of −15 ° C. or lower and a boiling point of 340 ° C. or higher is used.

【0013】上記の鉱油系基油としては、前述の各性状
を満足する鉱油であればよく、特に制限なく様々な鉱油
を使用できる。
As the above-mentioned mineral oil base oil, any mineral oil satisfying the above-mentioned properties may be used, and various mineral oils can be used without particular limitation.

【0014】通常、鉱油系の潤滑油基油を得るには、ま
ず、パラフィン基系原油や中間基系原油を常圧蒸留し、
あるいは常圧蒸留残渣を更に減圧蒸留して留出油を得
る。ついで、水素化精製、脱蝋(溶剤脱蝋、水素化脱
蝋)、溶剤抽出(フルフラール等)、アルカリ蒸留、硫
酸洗浄、白土処理等の公知の精製プロセスを単独である
いは数種のプロセスを適宜の順序で組み合わせて、留出
油を処理することにより、鉱油系基油が得られる。しか
し、原油を厳選し、上記の精製プロセスを複雑に組み合
わせて処理し、中間製品の品質も厳しく管理しても、1
00°Cにおける動粘度が3〜5cStであり、かつ粘
度指数が135以上である、本発明で使用可能な鉱油系
基油を得ることは、実用的には殆ど不可能である。
Usually, in order to obtain a mineral oil-based lubricating base oil, first, paraffin-based crude oil or intermediate base-based crude oil is distilled under atmospheric pressure,
Alternatively, the atmospheric distillation residue is further distilled under reduced pressure to obtain a distillate oil. Next, known purification processes such as hydrorefining, dewaxing (solvent dewaxing, hydrodewaxing), solvent extraction (furfural, etc.), alkaline distillation, sulfuric acid washing, clay treatment, etc. may be used alone or in appropriate several types of processes. The mineral oil base oil is obtained by treating the distillate oil in combination in the order of. However, even if the crude oil is carefully selected, the above refining processes are complicatedly combined, and the quality of intermediate products is strictly controlled,
It is practically almost impossible to obtain a mineral base oil which can be used in the present invention and has a kinematic viscosity at 00 ° C of 3 to 5 cSt and a viscosity index of 135 or more.

【0015】また、鉱油系潤滑油を製造する際の脱蝋工
程で副生するスラックワックス、あるいはフィッシャー
・トロプシュ合成で得られたワックス(以下、F/Tワ
ックスという)を水添異性化し、分留後脱蝋し又は脱蝋
後分留すると、低粘度、高粘度指数の上記性状を有する
鉱油系基油を、比較的容易に、高収率で得ることがで
き、これに有機モリブデン化合物を添加すると、潤滑性
が相乗的に向上するという効果がある。
Further, the slack wax produced as a by-product in the dewaxing process in producing a mineral oil-based lubricating oil or the wax obtained by the Fischer-Tropsch synthesis (hereinafter referred to as F / T wax) is hydroisomerized and separated. By dewaxing after distillation or fractional distillation after dewaxing, a mineral oil-based base oil having the above-mentioned properties of low viscosity and high viscosity index can be obtained relatively easily and in high yield. When added, there is an effect that the lubricity is synergistically improved.

【0016】例えば、沸点範囲300〜700°C、炭
素数20〜70、100°Cにおける動粘度4〜10c
Stのスラックワックスを、アルミナ担体にNi−Mo
又はNi−Wを担持させた触媒の存在下に、水素分圧5
0〜260Kg/cm2 、温度300〜410°C、L
HSV 0.1〜2.0Hr-1 の反応条件下に水添異
性化し、異性化油を得る。次いで、メエチルエチルケト
ン(MEK)/トルエン等の混合溶媒を油に対して2〜
5倍量使用して、温度−10〜−25°Cで異性化油を
脱蝋し、脱蝋工程の前で又は後で必要に応じて蒸留する
ことによって、初留点330°C、動粘度3〜5cSt
(100°C)、粘度指数135以上以上の鉱油を、約
40〜60%程度の高収率で得ることができる。
For example, kinematic viscosity in the boiling range of 300 to 700 ° C, carbon number of 20 to 70, and 100 ° C is 4 to 10c.
Stuck slack wax on an alumina carrier Ni-Mo
Alternatively, in the presence of a catalyst supporting Ni-W, the hydrogen partial pressure is 5
0-260 Kg / cm 2 , temperature 300-410 ° C, L
Hydroisomerization is carried out under a reaction condition of HSV 0.1 to 2.0 Hr -1 to obtain an isomerized oil. Then, a mixed solvent such as meethylethylketone (MEK) / toluene is added to the oil in an amount of 2 to 2
Dewaxing the isomerized oil at a temperature of -10 to -25 ° C using 5 volumes and distilling as needed before or after the dewaxing step to obtain an initial boiling point of 330 ° C, a dynamic Viscosity 3-5cSt
(100 ° C.), a mineral oil having a viscosity index of 135 or more can be obtained in a high yield of about 40 to 60%.

【0017】F/Tワックスも、前述のスラックワック
スと同様に処理することで、本発明の潤滑油において、
好ましく用いることができる。なお、F/Tワックスを
得るには、炭化水素含有物質(例えば天然ガスや石炭)
を、公知の方法によって一酸化炭素と水素との混合物に
転化し、この一酸化炭素と水素との混合物から、鉄、ル
テニウム又はコバルト触媒を用いて炭化水素を合成(フ
ィッシャー・トロプシュ合成)する。この合成された炭
化水素の重質留分がここで言うF/Tワックスである。
F/Tワックスは、原油を精製して得られるワックスと
は異なり、硫黄、窒素、金属不純物等を含有せず、直鎖
パラフィン含有量が高く、通常固体のパラフィンワック
スである。
By treating the F / T wax in the same manner as the above-mentioned slack wax, in the lubricating oil of the present invention,
It can be preferably used. In addition, in order to obtain F / T wax, a hydrocarbon-containing substance (for example, natural gas or coal)
Is converted into a mixture of carbon monoxide and hydrogen by a known method, and a hydrocarbon is synthesized from this mixture of carbon monoxide and hydrogen using an iron, ruthenium or cobalt catalyst (Fischer-Tropsch synthesis). The heavy fraction of the synthesized hydrocarbon is the F / T wax referred to here.
Unlike waxes obtained by refining crude oil, F / T waxes are normal solid paraffin waxes that do not contain sulfur, nitrogen, metal impurities, etc., have a high linear paraffin content.

【0018】本発明における潤滑油の鉱油系基油として
は、上記の粘度、粘度指数の範囲内であれば、(A)通
常の潤滑油製造方法で得られた鉱油、(B)スラックワ
ックスを水添異性化して得られた鉱油、(C)F/Tワ
ックスを水添異性化して得られた鉱油を、使用すること
ができる。この中で特に(B)、(C)が好ましく、
(B)スラックワックスを水添異性化して得られた鉱油
が一層好ましい。当然、粘度指数の低い鉱油であって
も、粘度指数の高い前述の水添異性化油と混合し、混合
鉱油として上記の粘度、粘度指数の範囲に調整されてい
れば、この混合鉱油を本発明で使用でき、本発明の効果
を享受できる。また、こうした鉱油系基油に対し、ポリ
アルファオレフィン、アルキルベンゼン、ポリアルキレ
ングリコール、エステル等の合成油などを、本発明の効
果を損なわない範囲で適宜混合することができる。
As the mineral oil base oil of the lubricating oil of the present invention, if the viscosity and viscosity index are within the above ranges, (A) a mineral oil obtained by a conventional lubricating oil production method and (B) a slack wax. The mineral oil obtained by hydroisomerization and the mineral oil obtained by hydroisomerizing (C) F / T wax can be used. Of these, (B) and (C) are particularly preferable,
(B) Mineral oil obtained by hydroisomerizing slack wax is more preferable. Naturally, even if the mineral oil has a low viscosity index, it is mixed with the above-mentioned hydroisomerized oil having a high viscosity index, and if the above-mentioned viscosity and viscosity index are adjusted as the mixed mineral oil, this mixed mineral oil is It can be used in the invention and can enjoy the effects of the present invention. Further, synthetic oils such as polyalphaolefins, alkylbenzenes, polyalkylene glycols, esters, etc. can be appropriately mixed with such mineral oil base oils within a range that does not impair the effects of the present invention.

【0019】本発明で使用する有機モリブデン化合物
は、低粘度で、粘度指数の高い前記の鉱油系基油と相俟
って相乗的に作用し、優れた省エネルギー性能及び実用
性能を発揮することが、明らかになった。
The organic molybdenum compound used in the present invention has a low viscosity and can act synergistically with the above-mentioned mineral base oil having a high viscosity index to exhibit excellent energy saving performance and practical performance. ,It was revealed.

【0020】例えば、粘度指数の異なる同等の粘度の基
油に対して有機モリブデン化合物を添加した場合、粘度
指数の低い鉱油系基油における摩擦低減の効果よりも、
粘度指数の高い鉱油系基油における摩擦低減の効果の方
が、遙かに大きい。
For example, when an organic molybdenum compound is added to base oils having different viscosities and equivalent viscosities, the friction-reducing effect of a mineral oil-based base oil having a low viscosity index is more
The effect of reducing friction in a mineral base oil having a high viscosity index is far greater.

【0021】有機モリブデン化合物としては、モリブデ
ンジチオホスフェイト(MoDTP)、モリブデンジチ
オカーバメイト(MoDTC)、モリブデンアミン錯体
などを例示出来る。この中でも、MoDTP、MoDT
Cが、より一層好ましい。
Examples of the organic molybdenum compound include molybdenum dithiophosphate (MoDTP), molybdenum dithiocarbamate (MoDTC) and molybdenum amine complex. Among these, MoDTP and MoDT
C is even more preferred.

【0022】有機モリブデン化合物は、仕上り状態の潤
滑油(組成物)全体に対して、モリブデン量に換算して
50〜1000ppm(重量)添加、配合すれば良い。
この配合量が50ppm未満であると、本発明の効果が
顕著ではない。一方1000ppmを超えて有機モリブ
デン化合物を添加しても、添加量の増加に見合うほど効
果は増加しない。200〜500ppm添加すること
が、より一層好ましい。
The organic molybdenum compound may be added and mixed in an amount of 50 to 1000 ppm (weight) in terms of molybdenum, based on the entire finished lubricating oil (composition).
If the blending amount is less than 50 ppm, the effect of the present invention is not remarkable. On the other hand, even if the organomolybdenum compound is added in excess of 1000 ppm, the effect does not increase to the extent that the added amount increases. It is even more preferable to add 200 to 500 ppm.

【0023】前記の鉱油系基油及び有機モリブデン化合
物を用い、更に適宜公知方法で後述のその他の添加剤を
添加して、本発明の潤滑油を容易に調製することができ
る。潤滑油の粘度分類は、SAE粘度分類0W−20、
0W−30、5W−20又は5W−30グレードとする
ことが好ましい。本発明の潤滑油は、CEC L−40
−T−87に規定する方法での蒸発性試験(Noac
k)において、蒸発量が15%以下の性状を有するもの
が好ましく、13%以下の性状を有するものが一層好ま
しい。このような潤滑油は、低粘度でありながら蒸発量
が少なく、省エネルギー性能、実用性能に優れ、かつこ
れらの高性能が維持される。
The lubricating oil of the present invention can be easily prepared by using the above-mentioned mineral oil-based base oil and organic molybdenum compound and further adding other additives described below by a known method as appropriate. The viscosity classification of lubricating oil is SAE viscosity classification 0W-20,
It is preferably 0W-30, 5W-20 or 5W-30 grade. The lubricating oil of the present invention is CEC L-40.
-Evaporation test by the method specified in T-87 (Noac
In k), those having an evaporation amount of 15% or less are preferable, and those having an evaporation amount of 13% or less are more preferable. Such a lubricating oil has a low viscosity and a small amount of evaporation, is excellent in energy saving performance and practical performance, and maintains these high performances.

【0024】本発明の潤滑油中には、必要に応じて、更
に、一般の内燃機関用潤滑油に添加、配合されている各
種の添加剤を、添加することができる。このような添加
剤としては、酸化防止剤〔直鎖または分岐のアルキル基
を有するアルキルジチオリン酸亜鉛(ZnDTP)、ビ
スフェノール、ジフェニルアミン等〕、粘度指数向上剤
〔ポリメタクリレート(PMA)、オレフィン共重合体
等〕、金属系清浄剤〔Ca、Mg、Ba、Na等の各種
金属のスルホネート、フィネート、サリシレート、ホス
ホネート等〕、無灰系分散剤(アルケニルコハク酸イミ
ド等)、その他流動点降下剤、防錆剤等を例示できる。
これらの添加剤を適宜の割合で、基油の性状、用途その
他状況に応じて添加することができる。これらの添加剤
をそれぞれ個々に鉱油系基油に対して添加してもよく、
これらの添加剤を予め適宜の割合でブレンドしておき、
いわゆるパッケージの形で、鉱油系基油に対して添加し
てもよい。
If desired, the lubricating oil of the present invention may further contain various additives that have been added to and blended with general lubricating oils for internal combustion engines. Such additives include antioxidants [zinc alkyldithiophosphate (ZnDTP) having a linear or branched alkyl group, bisphenol, diphenylamine, etc.], viscosity index improvers [polymethacrylate (PMA), olefin copolymers Etc.], metal-based detergents [sulfonates, finates, salicylates, phosphonates of various metals such as Ca, Mg, Ba, and Na], ashless dispersants (alkenyl succinimides, etc.), other pour point depressants, and protective agents. Examples include rust agents.
These additives can be added in an appropriate ratio according to the properties of the base oil, the application and other circumstances. Each of these additives may be added individually to the mineral oil base oil,
Blend these additives in advance in an appropriate ratio,
It may be added to the mineral base oil in the form of a so-called package.

【0025】[0025]

【実施例】以下、実施例により、本発明をより具体的に
説明する。 (原料となる鉱油系基油の製法及び性状)潤滑油の基材
としては、次のようにして製造した鉱油系基油を用い
た。各鉱油系基油の性状は、表1に示す。
The present invention will be described more specifically with reference to the following examples. (Manufacturing Method and Properties of Mineral Oil Base Oil as Raw Material) As the base material of the lubricating oil, the mineral oil base oil manufactured as follows was used. The properties of each mineral base oil are shown in Table 1.

【0026】VHVI1:沸点400〜550°Cのス
ラックワックスを、Ni−Mo担持アルミナ触媒の存在
下に、水素分圧約80Kg/cm2 、温度約390°
C、LHSV 0.5Hr-1の反応条件で水添異性化し
た。得られた異性化油を蒸留し、350℃以下の留分を
留去して得た留分を、MEK/トルエン混合溶媒を用い
て−20℃で脱蝋し、VHVI1を得た。
VHVI1: slack wax having a boiling point of 400 to 550 ° C., in the presence of an Ni-Mo supported alumina catalyst, hydrogen partial pressure of about 80 Kg / cm 2 , temperature of about 390 °
Hydroisomerization was carried out under the reaction conditions of C and LHSV 0.5 Hr -1 . The obtained isomerized oil was distilled, and the fraction obtained by distilling off the fraction at 350 ° C. or lower was dewaxed at −20 ° C. using a MEK / toluene mixed solvent to obtain VHVI1.

【0027】VHVI2:VHVI1を減圧蒸留して得
られた、初留から50容量%までの留出分である軽質鉱
油系基油。 VHVI3:VHVI1を減圧蒸留したとき、軽質鉱油
であるVHVI2が留出した後の、残りの50%の残渣
分である重質鉱油系基材。
VHVI2: A light mineral base oil obtained by distilling VHVI1 under reduced pressure, which is a distillate from the initial distillation to 50% by volume. VHVI3: A heavy mineral oil-based material that is the remaining 50% of the residue after VHVI2, which is a light mineral oil, is distilled off when VHVI1 is distilled under reduced pressure.

【0028】SRO1:アラビアンライト原油の沸点
(常圧換算)350〜500°Cの留分を、フルフラー
ル溶剤抽出、水素化精製、MEK/トルエン溶剤脱蝋し
て得られた鉱油系基油。 SRO2:アラビアンライト原油の沸点(常圧換算)2
50〜450°Cの留分を、フルフラール溶剤抽出、水
素化精製、MEK/トルエン溶剤脱蝋して得られた鉱油
系基油。
SRO1: A mineral oil base oil obtained by subjecting a fraction of Arabian light crude oil having a boiling point (converted to atmospheric pressure) of 350 to 500 ° C. to furfural solvent extraction, hydrorefining, and MEK / toluene solvent dewaxing. SRO2: Boiling point of Arabian light crude oil (at atmospheric pressure) 2
Mineral base oil obtained by furfural solvent extraction, hydrorefining, and MEK / toluene solvent dewaxing of a fraction at 50 to 450 ° C.

【0029】HCO:アラビアンライト原油の沸点(常
圧換算)250〜650°Cの留分を、分解率60%の
反応率で水素化分解し、常圧蒸留で沸点270°C以下
を除去して残油を得た。この残油を減圧蒸留して沸点
(常圧換算)300〜500°Cの留分を得、この留分
をフルフラール溶剤精製、水素化精製、溶剤脱蝋処理
し、HCOを得た。
HCO: Arabian light crude oil having a boiling point (at atmospheric pressure) of 250 to 650 ° C is hydrolyzed at a reaction rate of 60%, and distilled at atmospheric pressure to remove a boiling point of 270 ° C or lower. To obtain residual oil. This residual oil was distilled under reduced pressure to obtain a fraction having a boiling point (normal pressure conversion) of 300 to 500 ° C. This fraction was subjected to furfural solvent refining, hydrorefining and solvent dewaxing treatment to obtain HCO.

【0030】[0030]

【表1】 [Table 1]

【0031】(潤滑油の製造)前記の各鉱油系基油を主
原料とし、実施例1〜7、比較例1〜11の各例の潤滑
油を調製した。まず、前記の各鉱油系基油を、表2、表
3の上段に示す割合(容量比で、単独で又は複数混合
し、各実施例、比較例の鉱油系基油を製造した。各実施
例、比較例の鉱油系基油について、粘度指数、動粘度
(100°C)(cSt)、蒸発量(Noack)、パ
ラフィン比率(%Cp)、流動点(°C)、初留点(°
C)を測定した。これらの測定結果を、表2、表3の下
段に示し、測定方法を、以下に示す。
(Production of Lubricating Oil) Using each of the above-mentioned mineral base oils as main raw materials, lubricating oils of Examples 1 to 7 and Comparative Examples 1 to 11 were prepared. First, the above mineral oil base oils were mixed in proportions shown in the upper rows of Tables 2 and 3 (by volume ratio, alone or in combination, to produce the mineral oil base oils of Examples and Comparative Examples. Regarding the mineral base oils of Examples and Comparative Examples, viscosity index, kinematic viscosity (100 ° C) (cSt), evaporation amount (Noack), paraffin ratio (% Cp), pour point (° C), initial boiling point (°
C) was measured. The measurement results are shown in the lower part of Tables 2 and 3, and the measuring method is shown below.

【0032】粘度指数:JIS K2283 動粘度(100°C)(cSt):JIS K2283 蒸発量(Noack)(重量%):CEC L−40−
T−87 パラフィン比率(%):ASTM D3238 流動点(°C):JIS K2269 初留点:ASTM D2887
Viscosity index: JIS K2283 Kinematic viscosity (100 ° C) (cSt): JIS K2283 Evaporation amount (Noack) (wt%): CEC L-40-
T-87 Paraffin ratio (%): ASTM D3238 Pour point (° C): JIS K2269 Initial boiling point: ASTM D2887

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】そして、各例の鉱油系基油に対してそれぞ
れ、表4、表5に示す各添加剤(重量%)を添加した。
添加剤としては、モリブデンジチオホスフェイト(Mo
DTP)、モリブデンジチオカーバメイト(MoDT
C)、アミンタイプ摩擦緩和剤、SGパッケージ及びポ
リメタクリレート/オレフィン共重合体混合物の粘度指
数向上剤(VII)を用いた。SGパッケージは、Ca
スルホネート、Caフィネート、ZnDTP、コハク酸
イミド誘導体及び防錆剤の混合物である。仕上り状態の
潤滑油100重量部における有機モリブデン化合物の含
有量(配合量)を、表4及び表5の下段に、モリブデン
量に換算して、重量ppmで示す。
Then, the additives (% by weight) shown in Tables 4 and 5 were added to the mineral base oil of each example.
As an additive, molybdenum dithiophosphate (Mo
DTP), molybdenum dithiocarbamate (MoDT
C), amine type friction modifier, SG package and viscosity index improver (VII) of polymethacrylate / olefin copolymer mixture. SG package is Ca
It is a mixture of sulfonate, Ca finate, ZnDTP, succinimide derivative and rust preventive. The content (blending amount) of the organic molybdenum compound in 100 parts by weight of the finished lubricating oil is shown in weight ppm in terms of molybdenum in the lower part of Tables 4 and 5.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】こうして得られた各例の潤滑油についてそ
れぞれ、動粘度、HTHS粘度、CCS粘度、を測定し
た。更に潤滑油の性能を、蒸発量(Noack)、剪断
安定性、燃費向上率及び摩擦係数で評価した。各例の潤
滑油の物性値及び評価試験結果を、実施例1─7につい
ては表6に示し、比較例1─11については表7に示し
た。
The kinematic viscosity, the HTHS viscosity, and the CCS viscosity of the thus obtained lubricating oils of the respective examples were measured. Further, the performance of the lubricating oil was evaluated by the evaporation amount (Noack), shear stability, fuel consumption improvement rate and friction coefficient. The physical property values and evaluation test results of the lubricating oil of each example are shown in Table 6 for Examples 1-7 and Table 7 for Comparative Examples 1-11.

【0039】なお、各例の潤滑油の物性値の測定及び評
価試験は、次の方法に準拠して行った。 動粘度(100°C)(cSt):JIS K2283 HTHS粘度(cP):ASTM D4683 CCS粘度(−25°C)(cP):JIS K221
5 蒸発量(Noack)(重量%):CEC L−40−
T−87 剪断安定性(cSt):ASTM STP 509A
PartBの試験を行い、10時間後に潤滑油を採取
し、脱ガス後の動粘度を測定した(L38軸受摩耗試
験)。
The measurement of physical properties of the lubricating oil of each example and the evaluation test were carried out according to the following methods. Kinematic viscosity (100 ° C) (cSt): JIS K2283 HTHS viscosity (cP): ASTM D4683 CCS viscosity (-25 ° C) (cP): JIS K221
5 Evaporation amount (Noack) (% by weight): CEC L-40-
T-87 Shear Stability (cSt): ASTM STP 509A
A Part B test was performed, and after 10 hours, the lubricating oil was sampled and the kinematic viscosity after degassing was measured (L38 bearing wear test).

【0040】また、燃費向上率は、次の試験条件に基づ
いて試験し、次のようにして評価した。 試験条件:2000cc直列4気筒ガソリンエンジンを
用い、エンジン回転数を2000rpmとし、ダイナモ
トルクを8kgf・m とし、油温を80℃とし、水温
を70℃とした。燃料消費量を測定した。
The fuel efficiency improvement rate was tested under the following test conditions and evaluated as follows. Test conditions: A 2000 cc inline 4-cylinder gasoline engine was used, the engine speed was 2000 rpm, the dynamo torque was 8 kgf · m, the oil temperature was 80 ° C, and the water temperature was 70 ° C. The fuel consumption was measured.

【0041】評価 :動粘度10.3cSt、全酸価
1.6mgKOH/g、全塩基価5.01mgKOH/
gのSAE30グレードの潤滑油を用い、上記と同じ試
験条件で試験し、燃料消費量を測定し、この測定値をリ
ファレンスとした。各例における燃料消費量の測定値と
リファレンスの差をリファレンスで除し、燃費向上率
(%)を百分率で示した。
Evaluation: Kinematic viscosity 10.3 cSt, total acid number 1.6 mgKOH / g, total base number 5.01 mgKOH /
g of SAE30 grade lubricating oil was used and tested under the same test conditions as above, fuel consumption was measured, and this measured value was used as a reference. The difference between the measured fuel consumption amount and the reference in each example was divided by the reference, and the fuel efficiency improvement rate (%) was shown as a percentage.

【0042】更に、境界潤滑下における摩擦係数を、3
ピンオンディスク試験機を用いて、次の試験条件で測定
した。 試験条件 材質(ピン、ディスク) FC30 荷重 2500N 回転数 700rpm 油温 80℃
Further, the coefficient of friction under boundary lubrication is 3
It measured on the following test conditions using the pin-on-disk tester. Test conditions Material (pin, disk) FC30 Load 2500N Rotation speed 700 rpm Oil temperature 80 ° C

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【表7】 [Table 7]

【0045】表2─表7の試験結果から、実施例及び比
較例の潤滑油について、以下のことが判る。実施例1─
4のSAE 5W−30グレードの潤滑油は、燃費試験
におけるリファレンスのSAE30グレードの潤滑油組
成物より、4.5%以上燃費が改善されており、剪断安
定性にも優れており、蒸発も少ない。実施例1─4のな
かでは、実施例1、4が、鉱油系基油の粘度指数が14
0以上であり、初留点が330°C以上である。そし
て、実施例1、4の潤滑油は、燃費の改善、剪断安定
性、蒸発量の少なさの点で、特に優れている。
From the test results shown in Tables 2 to 7, the following can be understood for the lubricating oils of Examples and Comparative Examples. Example 1
The SAE 5W-30 grade lubricating oil of No. 4 has improved fuel economy by 4.5% or more, superior shear stability and less evaporation than the reference SAE30 grade lubricating oil composition in the fuel economy test. . Among Examples 1-4, in Examples 1 and 4, the mineral oil base oil had a viscosity index of 14
It is 0 or more, and the initial boiling point is 330 ° C or more. The lubricating oils of Examples 1 and 4 are particularly excellent in terms of improvement in fuel consumption, shear stability, and low evaporation amount.

【0046】実施例5の潤滑油は、SAE 5W−20
に処方したものであり、実施例1─4と同様に良好な性
能を示している。実施例6、7の潤滑油は、動粘度3〜
4cStの鉱油系基油を用いて、それぞれSAE 5W
−30、5W−20に処方したものである。鉱油系基油
の蒸発量を18重量%と、実施例1─5よりも大きめに
選択しているので、潤滑油の蒸発量は増加するが、省燃
費性能が一段と優れている。なお、実施例1〜7の潤滑
油は全てAPI SH級の性能を満足している。
The lubricating oil of Example 5 was SAE 5W-20.
Nos. 3 and 4 showed good performance as in Examples 1-4. The lubricating oils of Examples 6 and 7 have kinematic viscosities of 3 to
SAE 5W with 4 cSt mineral base oil
-30, 5W-20. Since the evaporation amount of the mineral oil-based base oil is 18% by weight, which is larger than those in Examples 1 to 5, the evaporation amount of the lubricating oil is increased, but the fuel saving performance is further excellent. The lubricating oils of Examples 1 to 7 all satisfy the API SH class performance.

【0047】一方、比較例1─3の潤滑油では、粘度指
数135以上、動粘度3─5cStの鉱油系基油を用い
ているが、有機モリブデン化合物を添加していない。こ
のため、燃費向上率は、2.5%以下に過ぎないし、摩
擦係数は0.11を越える。比較例4の潤滑油でも、粘
度指数143、動粘度4.5cStの鉱油系基油を用い
ているが、有機モリブデン化合物の添加量が、モリブデ
ン量に換算して40ppmである。このため、燃費向上
率は3.0%に過ぎないし、摩擦係数も高い。
On the other hand, in the lubricating oils of Comparative Examples 1-3, a mineral oil base oil having a viscosity index of 135 or more and a kinematic viscosity of 3-5 cSt was used, but no organic molybdenum compound was added. Therefore, the fuel efficiency improvement rate is only 2.5% or less, and the friction coefficient is more than 0.11. The lubricating oil of Comparative Example 4 also uses a mineral oil-based base oil having a viscosity index of 143 and a kinematic viscosity of 4.5 cSt, but the addition amount of the organic molybdenum compound is 40 ppm in terms of molybdenum amount. Therefore, the fuel consumption improvement rate is only 3.0% and the friction coefficient is high.

【0048】比較例5の潤滑油は、鉱油系基油としてV
HVI1を用い、有機モリブデン化合物の替わりにアミ
ンタイプ摩擦緩和剤を用いたものであるが、燃費向上
率、摩擦係数の点で、有機モリブデン化合物を用いた本
発明の潤滑油ほどの効果は得られていない。
The lubricating oil of Comparative Example 5 was V as a mineral base oil.
Although HVI1 was used and an amine type friction modifier was used instead of the organic molybdenum compound, in terms of the fuel efficiency improvement rate and the friction coefficient, the same effect as the lubricating oil of the present invention using the organic molybdenum compound was obtained. Not not.

【0049】比較例6〜8の潤滑油は、鉱油系基油の動
粘度、粘度指数が本発明の範囲外である。これらは、S
AE 5W−30グレードの潤滑油であるが、剪断安定
性(L38軸受摩耗試験:10時間後の粘度 前述)が
悪く、SH級の規格の規格値9.3〜12.5を満足し
ていない。
In the lubricating oils of Comparative Examples 6 to 8, the kinematic viscosity and viscosity index of the mineral base oil are outside the scope of the present invention. These are S
Although it is an AE 5W-30 grade lubricating oil, the shear stability (L38 bearing wear test: viscosity after 10 hours described above) is poor and it does not satisfy the specification value of 9.3 to 12.5 of the SH class specification. .

【0050】比較例9、10の潤滑油は、鉱油系基油の
粘度指数が100以下である。比較例11の潤滑油は、
鉱油系基油の動粘度が5cStを超えている。これらの
潤滑油においても、有機モリブデン化合物を添加して
も、満足できる燃費性能等が得られていない。
The lubricating oils of Comparative Examples 9 and 10 have a mineral oil base oil having a viscosity index of 100 or less. The lubricating oil of Comparative Example 11 was
The kinematic viscosity of the mineral oil base oil exceeds 5 cSt. Even with these lubricating oils, even if an organic molybdenum compound is added, satisfactory fuel economy performance and the like have not been obtained.

【0051】[0051]

【発明の効果】以上のように、本発明の内燃機関用の省
燃費型潤滑油は、低コストの鉱油系基油を用いた潤滑油
において、摩擦ロスの低減効果が大きく、省エネルギー
性に優れ、低粘度でありながら蒸発量が少なく、高温域
における潤滑油の粘度の低下が少なく、剪断安定性に優
れている。従って、特に自動車のエンジン用潤滑油とし
て、極めて有用である。
INDUSTRIAL APPLICABILITY As described above, the fuel-saving lubricating oil for an internal combustion engine of the present invention has a great effect of reducing friction loss and is excellent in energy saving in a lubricating oil using a low-cost mineral oil base oil. It has a low viscosity, a small amount of evaporation, a small decrease in the viscosity of the lubricating oil in the high temperature range, and excellent shear stability. Therefore, it is extremely useful especially as a lubricating oil for automobile engines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10N 20:02 30:06 30:08 40:25 (72)発明者 藤原 一光 埼玉県戸田市新曽南3丁目17番35号 株式 会社ジャパンエナジー内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C10N 20:02 30:06 30:08 40:25 (72) Inventor Kazumi Fujiwara Toda City, Saitama Prefecture Shinsōnan 3-chome No.17-35, Japan Energy Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 100°Cにおける動粘度が3〜5cS
tであり、粘度指数が135以上である鉱油系基油に、
有機モリブデン化合物が、モリブデン量に換算して50
〜1000ppm(重量)配合されていることを特徴と
する、内燃機関用の省燃費型潤滑油。
1. A kinematic viscosity at 100 ° C. of 3 to 5 cS.
t is a mineral oil base oil having a viscosity index of 135 or more,
Organic molybdenum compound is converted to molybdenum amount of 50
A fuel-saving lubricating oil for an internal combustion engine, characterized in that it is blended in an amount of up to 1000 ppm (weight).
【請求項2】 前記鉱油系基油が、ワックスを水添異性
化して得られた鉱油系基油であることを特徴とする、請
求項1記載の内燃機関用の省燃費型潤滑油。
2. The fuel-saving lubricating oil for an internal combustion engine according to claim 1, wherein the mineral oil-based base oil is a mineral oil-based base oil obtained by hydroisomerizing wax.
JP5483297A 1997-03-10 1997-03-10 Fuel-saving lubricating oil Expired - Lifetime JP2912286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5483297A JP2912286B2 (en) 1997-03-10 1997-03-10 Fuel-saving lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5483297A JP2912286B2 (en) 1997-03-10 1997-03-10 Fuel-saving lubricating oil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5096034A Division JP2693698B2 (en) 1993-04-22 1993-04-22 Fuel-efficient lubricating oil

Publications (2)

Publication Number Publication Date
JPH09217079A true JPH09217079A (en) 1997-08-19
JP2912286B2 JP2912286B2 (en) 1999-06-28

Family

ID=12981628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5483297A Expired - Lifetime JP2912286B2 (en) 1997-03-10 1997-03-10 Fuel-saving lubricating oil

Country Status (1)

Country Link
JP (1) JP2912286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080388A (en) * 1998-09-03 2000-03-21 Tonen Corp Lubricant composition
JP2010095662A (en) * 2008-10-17 2010-04-30 Cosmo Oil Lubricants Co Ltd Engine oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080388A (en) * 1998-09-03 2000-03-21 Tonen Corp Lubricant composition
JP2010095662A (en) * 2008-10-17 2010-04-30 Cosmo Oil Lubricants Co Ltd Engine oil

Also Published As

Publication number Publication date
JP2912286B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP2693698B2 (en) Fuel-efficient lubricating oil
JP5108200B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
JP5390737B2 (en) Lubricating oil composition
JP5551599B2 (en) Lubricating oil composition for internal combustion engines
RU2464302C2 (en) Combined packet of lubricant oil and fuel for use in internal combustion engine
US20090312205A1 (en) Lubricant composition for use the reduction of piston ring fouling in an internal combustion engine
JP2020525573A (en) Low viscosity engine oil containing isomerized phenolic detergent
JP2000080388A (en) Lubricant composition
JP5271566B2 (en) Fuel-saving engine oil composition
JP5600677B2 (en) Fuel-saving engine oil composition
JP2005171186A (en) Heat-resistant fuel cost-saving type engine oil
US20100004148A1 (en) Low sulfur, low sulfated ash, low phosphorus and highly paraffinic lubricant composition
JP5214173B2 (en) Lubricating oil composition for internal combustion engines
JP5170637B2 (en) Long-life fuel-saving engine oil composition
JP2012180535A (en) Lubricant base oil and method for producing the same, and lubricant composition containing the same
JP6936041B2 (en) Lubricating oil composition for internal combustion engine
JP5362228B2 (en) Low deposit fuel-saving engine oil composition
JP2912286B2 (en) Fuel-saving lubricating oil
JP2011201962A (en) Fuel-saving engine oil composition
JPH09328694A (en) Lubricating oil composition for internal combustion engine
JP5078116B2 (en) Long-life fuel-saving engine oil composition
JP4613265B2 (en) Lubricating oil composition for roller follower type valve operating system engine
JP2004137317A (en) Lubricating oil for fuel consumption saving type internal combustion engine
JP2001131570A (en) Engine oil
JP2000144166A (en) Lubricating oil composition for internal-combustion engine