JPH09217039A - Inorganic adhesive, semiconductor device using the same and its production - Google Patents

Inorganic adhesive, semiconductor device using the same and its production

Info

Publication number
JPH09217039A
JPH09217039A JP8022260A JP2226096A JPH09217039A JP H09217039 A JPH09217039 A JP H09217039A JP 8022260 A JP8022260 A JP 8022260A JP 2226096 A JP2226096 A JP 2226096A JP H09217039 A JPH09217039 A JP H09217039A
Authority
JP
Japan
Prior art keywords
oxide
inorganic adhesive
glass
wiring board
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8022260A
Other languages
Japanese (ja)
Inventor
Atsuko Iida
敦子 飯田
Seisaburo Shimizu
征三郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8022260A priority Critical patent/JPH09217039A/en
Publication of JPH09217039A publication Critical patent/JPH09217039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the joint between semiconductor chips and a glass circuit board to increase their reliability more. SOLUTION: This inorganic adhesive comprises find glass particles 1 coated with an oxide layer 8 and is arranged between the silicon chip 3 and the glass circuit board 5. Then, they are hot-pressed to fuse the oxide and form a network of fine glass particles. The mechanical joint between the silicon chip 3 and the glass circuit board is attained by this network of the fine glass particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明は主として無機材料
同士の接着にもちいる無機接着剤、及びこれを用いた半
導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic adhesive mainly used for adhering inorganic materials to each other, a semiconductor device using the same, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図15に従来のシリコンチップをガラス
基板上に実装する方法としてフリップチップボンディン
グ法による実装構造を示す。シリコンチップ40側に形
成した絶縁性の感光性接着樹脂43でシリコンチップ4
0とガラス基板44との固定を行い、電気的接続はチッ
プ側に形成したアルミニウム電極41上のインジウム金
属バンプ42とガラス基板44上のITO電極45とを
接触させて行う。
2. Description of the Related Art FIG. 15 shows a mounting structure by a flip chip bonding method as a conventional method for mounting a silicon chip on a glass substrate. Insulating photosensitive adhesive resin 43 formed on the silicon chip 40 side is used for the silicon chip 4
0 and the glass substrate 44 are fixed, and electrical connection is made by bringing the indium metal bump 42 on the aluminum electrode 41 formed on the chip side into contact with the ITO electrode 45 on the glass substrate 44.

【0003】この製造方法としては、先ずアルミ電極パ
ッド41にインジウムバンプ42が形成されたシリコン
チップ40上に、感光性接着樹脂層をスピンコートで塗
布形成しプリベークした後マスクを介してフォトリソグ
ラフィで感光性接着樹脂層をパターニングし、インジウ
ムバンプ上の樹脂を除去して選択的に感光性接着樹脂4
3を残す。
In this manufacturing method, first, a photosensitive adhesive resin layer is applied by spin coating on a silicon chip 40 on which an aluminum electrode pad 41 is formed with indium bumps 42, prebaked, and then photolithographically performed through a mask. The photosensitive adhesive resin layer is patterned, the resin on the indium bumps is removed, and the photosensitive adhesive resin 4 is selectively formed.
Leave 3.

【0004】次にガラス基板44の電極45とインジウ
ムバンプ42とを位置合せした後、圧接ヘッドにより加
熱加圧した状態で低温で仮接合を行う。この状態でチッ
プの検査を行い、不良がある場合はシリコンチップ40
を剥がし再度接続する。検査の上電気接続が良好である
ことを確認した後フルキュアで樹脂を硬化させ、チップ
と基板との固定を完了する。
Next, after the electrodes 45 of the glass substrate 44 and the indium bumps 42 are aligned with each other, temporary bonding is carried out at a low temperature while being heated and pressed by a pressure welding head. In this state, the chip is inspected, and if there is a defect, the silicon chip 40
Remove and reconnect. After the inspection, after confirming that the electrical connection is good, the resin is cured by full cure to complete the fixing between the chip and the substrate.

【0005】この構造では、電気的接続はインジウムバ
ンプ42とITO電極45との接触で達成されており、
接触を保持する力として硬化した樹脂の収縮力を利用し
ている。
In this structure, electrical connection is achieved by contact between the indium bump 42 and the ITO electrode 45,
The contracting force of the cured resin is used as the force for holding the contact.

【0006】しかしながら、この方法では樹脂とシリコ
ンチップ及びガラス配線基板との熱膨脹差が大きいた
め、樹脂の接合部分に応力がかかりクラックが発生し
て、バンプとITO電極との電気的接続を可能とする保
持力が弱まり、信頼性が低下するという問題点がある。
この解決の為にはシリコンチップ及びガラス基板と熱膨
脹が近い材料で接続することが望ましい。未だ良好な接
続を形成する材料は見いだされていない。
However, in this method, the difference in thermal expansion between the resin and the silicon chip or the glass wiring board is large, so stress is applied to the joint portion of the resin and cracks occur, and the bumps and the ITO electrodes can be electrically connected. However, there is a problem in that the holding power of the device is weakened and the reliability is lowered.
In order to solve this problem, it is desirable to connect the silicon chip and the glass substrate with a material having a similar thermal expansion. No material has yet been found that forms a good connection.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたもので、シリコンやガラスといった無機
材料と熱膨張率がほぼ等しく、かつこれらの無機材料同
士を良好に接着することができる無機接着剤を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a coefficient of thermal expansion substantially equal to that of an inorganic material such as silicon or glass, and these inorganic materials can be well bonded to each other. An object is to provide an inorganic adhesive that can be used.

【0008】また本発明は無機材料からなる半導体チッ
プを無機材料からなる配線基板上に良好に接着させかつ
熱膨張率がこれらの無機材料とほぼ等しい無機接着剤を
用いることにより極めて信頼性の高い半導体装置及びそ
の製造方法を提供することを目的とする。
Further, according to the present invention, a semiconductor chip made of an inorganic material is satisfactorily adhered to a wiring board made of an inorganic material, and an inorganic adhesive having a coefficient of thermal expansion substantially equal to those of the inorganic materials is used, whereby the reliability is extremely high. An object of the present invention is to provide a semiconductor device and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明(請求項1)は、複数のガラス微粒子と、この
ガラス微粒子の表面の少なくとも一部に形成された融点
が400℃以下の無機酸化物層とを具備することを特徴
とする無機接着剤を提供する。
In order to achieve the above object, the present invention (Claim 1) comprises a plurality of glass fine particles and a melting point of 400 ° C. or less formed on at least a part of the surface of the glass fine particles. An inorganic adhesive comprising an inorganic oxide layer.

【0010】また本発明(請求項2)は、前記酸化物層
は、酸化硼素、酸化インジウム、酸化クロム、酸化マン
ガン、酸化ニオブ、酸化銅、酸化レジウム、酸化オスミ
ウム、酸化アンチモン、酸化スズ、酸化ビスマスから選
ばれる少なくとも1種類以上からなることを特徴とする
無機接着剤を提供する。
According to the present invention (claim 2), the oxide layer comprises boron oxide, indium oxide, chromium oxide, manganese oxide, niobium oxide, copper oxide, rheium oxide, osmium oxide, antimony oxide, tin oxide, and oxide. An inorganic adhesive comprising at least one selected from bismuth.

【0011】また本発明(請求項3)は、突起電極を表
面に有する半導体チップと、この突起電極に対応する位
置に電極が形成され前記半導体チップと対面配置された
配線基板と、前記半導体チップと前記配線基板との間に
配され、前記配線基板上に前記半導体チップを機械的に
固着させかつ前記突起電極と前記配線基板上の電極とを
電気的に接続する無機接着剤とを具備し、この無機接着
剤は、ガラス微粒子が無機酸化物層を介してネットワー
ク状に接続されていることを特徴とする半導体装置を提
供する。
According to the present invention (claim 3), a semiconductor chip having a bump electrode on its surface, a wiring substrate having an electrode formed at a position corresponding to the bump electrode and facing the semiconductor chip, and the semiconductor chip And an inorganic adhesive for mechanically fixing the semiconductor chip on the wiring board and electrically connecting the protruding electrodes and the electrodes on the wiring board. This inorganic adhesive provides a semiconductor device in which glass particles are connected in a network form via an inorganic oxide layer.

【0012】また本発明(請求項4)は、前記無機接着
剤が、請求項1或いは請求項2記載の無機接着剤である
ことを特徴とする半導体装置を提供する。また本発明
(請求項5)は、前記配線基板と前記半導体チップとの
間に選択的に請求項1或いは請求項2記載の無機接着剤
を配置する工程と、400℃以下の熱処理によって前記
酸化物層を溶融させる工程とを具備し、この熱処理の後
冷却し、前記半導体チップ、前記ガラス微粒子、及び前
記配線基板を前記酸化物層を介して機械的に固着させ同
時に前記突起電極と前記配線基板の電極とを電気的に接
続することを特徴とする請求項3記載の半導体装置の製
造方法を提供する。
The present invention (Claim 4) provides the semiconductor device, wherein the inorganic adhesive is the inorganic adhesive according to Claim 1 or Claim 2. According to the present invention (Claim 5), the step of selectively disposing the inorganic adhesive according to claim 1 or 2 between the wiring board and the semiconductor chip, and the oxidation by the heat treatment at 400 ° C. or lower. Melting the material layer, cooling after this heat treatment, mechanically fixing the semiconductor chip, the glass particles, and the wiring substrate through the oxide layer, and at the same time, the protruding electrode and the wiring. A method for manufacturing a semiconductor device according to claim 3, wherein the electrode of the substrate is electrically connected.

【0013】[0013]

【発明の実施の形態】以下図面を参照し本発明を詳細に
説明する。但し以下に挙げる実施例は、発明の理解を助
けるためのものであり、本発明はこれらに限定されるも
のではない。本発明によると、ガラス微粒子の表面に、
酸化物層を極薄膜状にコートしたものを無機接着剤とし
て用いる。この無機接着剤はシリコンチップ及びガラス
基板と熱膨脹率が近く、かつ400℃以下の低温で融着
するので、チップを基板に装着後装置の信頼性を著しく
向上することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. However, the following examples are for helping understanding of the invention, and the invention is not limited thereto. According to the present invention, on the surface of the glass fine particles,
An ultra-thin oxide layer is used as an inorganic adhesive. Since this inorganic adhesive has a thermal expansion coefficient close to that of the silicon chip and the glass substrate and is fused at a low temperature of 400 ° C. or lower, the reliability of the device can be significantly improved after the chip is mounted on the substrate.

【0014】ここでガラス微粒子の表面には酸化物膜層
を極薄くコートしているので、400℃以下の加熱加圧
処理においても、酸化物薄膜層が容易に溶融し互いに融
着して接着力を発現することが可能となる。こうしてシ
リコンチップとガラス基板間にこの無機接着剤を挿入し
400℃以下で加熱加圧処理することで、機械的接合を
得ることができる。
Since the surface of the glass fine particles is coated with an extremely thin oxide film layer, the oxide thin film layers are easily melted and adhered to each other even by heat and pressure treatment at 400 ° C. or less. It becomes possible to express force. In this way, by inserting this inorganic adhesive between the silicon chip and the glass substrate and heating and pressing at 400 ° C. or less, mechanical bonding can be obtained.

【0015】酸化物としては、酸化硼素、酸化インジウ
ム、酸化クロム、酸化マンガン、酸化ニオブ、酸化銅、
酸化レジウム、酸化オスミウム、酸化アンチモン、酸化
スズ、酸化ビスマスから選択された少なくとも1種類以
上の酸化物を用いることができる。これらの酸化物は比
較的バルクでの融点が低く、さらに50nmから10n
mの間の粒径を持つ微粒子状態にすると表面が非常に活
性な状態となり、バルクの融点より数十℃から200℃
近く下がった低温での融解が可能となる。従ってこれら
微粒子の融解する温度領域では融けない様な材料、例え
ば粒径が100nmより大きい通常のガラス粒子を用
い、その表面に酸化物微粒子を部分的に被覆した複合ガ
ラス粒子を作成し、この酸化物被覆層の表面積が大きい
状態を保持してやると、上記の低温で該複合ガラス粒子
表面の酸化物被覆層が融解する。この現象を利用して、
400℃以下の加熱処理により酸化物被覆層の融着によ
り複合ガラス粒子同士、複合ガラス粒子とシリコンチッ
プ、及び複合ガラス粒子とガラス基板との接合が可能と
なり、シリコンチップとガラス基板間、若しくはガラス
基板間、シリコンチップ同士の間の接合が達成できる。
As the oxide, boron oxide, indium oxide, chromium oxide, manganese oxide, niobium oxide, copper oxide,
At least one kind of oxide selected from rheium oxide, osmium oxide, antimony oxide, tin oxide, and bismuth oxide can be used. These oxides have a relatively low melting point in the bulk, and further 50 nm to 10 n
The surface becomes very active when it is made into fine particles having a particle size of between m and several tens to 200 ° C from the melting point of the bulk.
It is possible to melt at a low temperature that has dropped to near. Therefore, using a material that does not melt in the temperature range in which these fine particles melt, for example, ordinary glass particles having a particle size of more than 100 nm, and forming composite glass particles partially coated with oxide fine particles on the surface, If the surface area of the material coating layer is kept large, the oxide coating layer on the surface of the composite glass particles melts at the above low temperature. Utilizing this phenomenon,
It becomes possible to bond the composite glass particles to each other, the composite glass particles and the silicon chip, and the composite glass particle and the glass substrate by fusing the oxide coating layer by heat treatment at 400 ° C. or less, and between the silicon chip and the glass substrate, or the glass. Bonding between substrates and between silicon chips can be achieved.

【0016】酸化物をガラス微粒子上へ被覆する方法
は、低圧中で原料となる酸化物粉体を気化させ、高周波
磁場内で発生した熱プラズマにより酸化物を100nm
から1nmの間の粒径を持つ微粒子状態とする方法があ
る。
The method of coating the oxide particles on the glass fine particles is carried out by vaporizing the oxide powder as a raw material under a low pressure, and the oxide is 100 nm by thermal plasma generated in a high frequency magnetic field.
There is a method of forming fine particles having a particle size of from 1 to 1 nm.

【0017】また、真空槽内にガラス微粒子を保持して
気化した微粒子をガラス粒子表面に被覆する気相法があ
る。この時、導入ガスの種類や圧力、印加電力を制御す
る事により酸化膜微粒子の粒径や形状として所望のもの
を得る事が出来、従ってガラス粒子上への被覆領域や膜
厚の制御が可能で、酸化物被覆部分の融解温度の制御も
可能となる。
Further, there is a vapor phase method in which glass particles are held in a vacuum chamber and vaporized particles are coated on the surface of the glass particles. At this time, by controlling the type and pressure of the introduced gas and the applied power, it is possible to obtain the desired particle size and shape of the oxide film fine particles, and thus it is possible to control the coating area and film thickness on the glass particles. Thus, it becomes possible to control the melting temperature of the oxide coated portion.

【0018】また、ガラス微粒子表面に塗布後乾燥させ
る事により酸化物層が形成される様な有機金属酸、アル
コキシド、弗化水素酸を用い、これらを含んだ溶液へガ
ラス微粒子を浸漬した後、乾燥する工程を経て酸化物層
を被覆した該複合ガラス微粒子を得る液相法がある。
Further, after the glass particles are soaked in a solution containing an organic metal acid, an alkoxide or hydrofluoric acid which forms an oxide layer by coating on the surface of the glass particles and then drying, There is a liquid phase method for obtaining the composite glass fine particles coated with an oxide layer through a drying step.

【0019】またガラス微粒子をそれより粒径の小さい
酸化物微粒子と機械的に混合する事により酸化物層を被
覆する固相法がある。これらの場合もコーティング面積
や厚みを制御する事により、コーティング部分の融解温
度を変える事が出来る。
There is also a solid phase method in which glass particles are mechanically mixed with oxide particles having a smaller particle size to coat the oxide layer. Also in these cases, the melting temperature of the coated portion can be changed by controlling the coating area and thickness.

【0020】シリコンチップやガラス基板の所望の領域
に無機接着剤を形成する方法として、無機接着剤を主成
分としバインダー樹脂を用いてペースト状とし、ディス
ペンサ或いはスクリーン印刷により所望の場所に塗布す
る方法がある。
As a method of forming an inorganic adhesive on a desired region of a silicon chip or a glass substrate, a method of forming a paste using an inorganic adhesive as a main component and a binder resin and applying it to a desired place by a dispenser or screen printing There is.

【0021】また、無機接着剤を粉体状のまま乾式トナ
ーとして静電転写法により所望の場所に配置する方法が
ある。また、無機接着剤を揮発性の溶媒中に分散した液
体をインクとして用い、インクジェット法により所望の
場所に配置する方法等がある。
There is also a method in which the inorganic adhesive is placed as a dry toner in a powdery state at a desired position by an electrostatic transfer method. In addition, there is a method in which a liquid in which an inorganic adhesive is dispersed in a volatile solvent is used as an ink and the ink is arranged at a desired place by an inkjet method.

【0022】また本発明の無機接着剤を用いた半導体基
板では、シリコンチップとガラス基板との接合後、電気
試験を行い、接続不良の場合には、再び酸化物層の融解
温度以上に上げる事により容易にチップを剥離する事が
出来る。その際、基板側に残った無機接着剤を利用して
新しいチップの接合を行う事も出来る。このように無機
接着剤は何度でも繰り返し使用可能であり、接着の為の
量が不足であれば、上記のディスペンサ法や静電転写
法、或いはインクジェット法で部分的に複合ガラス粒子
を所望の位置に補充する事により接合に十分な量が簡単
に得られる。従って本発明ではリペア工程の簡易化が図
れる。
In addition, in the semiconductor substrate using the inorganic adhesive of the present invention, an electrical test is conducted after joining the silicon chip and the glass substrate, and in the case of connection failure, the temperature is raised again to the melting temperature of the oxide layer or higher. The chip can be peeled off easily. At that time, a new chip can be joined by using the inorganic adhesive remaining on the substrate side. In this way, the inorganic adhesive can be used repeatedly as many times as desired, and if the amount for adhesion is insufficient, it is possible to partially obtain the composite glass particles by the dispenser method, the electrostatic transfer method, or the inkjet method. A sufficient amount for joining can easily be obtained by refilling the position. Therefore, in the present invention, the repair process can be simplified.

【0023】本発明の製造方法によれば、ディスペンサ
法や印刷法、静電転写法、或いはインクジェット法を用
いる事により、所望の領域に適量の無機接着剤を簡単に
形成出来る。ディスペンサ法ではディスペンサと熱圧着
工程からなる簡単なバンプ形成装置が、印刷法ではスク
リーン印刷機と熱圧着工程からなる簡単なバンプ形成装
置が、静電転写法では帯電工程と現像工程、及び熱圧着
工程からなるレーザプリンタの様な簡単なバンプ形成装
置が、またインクジェット法では印字工程と熱圧着工程
からなるインクジェットプリンタの様な簡単なバンプ形
成装置が、それぞれ基本構成となり、いずれも小規模で
卓上の製造機で可能である。
According to the manufacturing method of the present invention, by using the dispenser method, the printing method, the electrostatic transfer method, or the ink jet method, an appropriate amount of the inorganic adhesive can be easily formed in a desired region. In the dispenser method, a simple bump forming device consisting of a dispenser and a thermocompression bonding process, in the printing method a simple bump forming device consisting of a screen printing machine and a thermocompression bonding process, and in the electrostatic transfer method a charging and developing process and thermocompression bonding process. A simple bump forming device such as a laser printer consisting of processes, and a simple bump forming device such as an inkjet printer consisting of a printing process and a thermocompression bonding process in the inkjet method each have a basic configuration. It is possible with the manufacturing machine.

【0024】このようにスピンコート法やフォトリソグ
ラフィ工程を必要とする通常の樹脂接着剤と比較して、
本発明は工程の削減が達成出来る事、余剰材や溶剤がな
く省資源が可能である事、溶剤関連の処理施設が不要な
事から、省資源、省エネルギーでかつ対環境性を考慮し
た製造業の基本姿勢を満足させた新しい製造方法を達成
できる。
As described above, in comparison with the ordinary resin adhesive which requires the spin coating method and the photolithography process,
The present invention is a manufacturing industry that considers resource saving, energy saving, and environmental friendliness because it can achieve process reduction, resource saving without surplus materials and solvents, and no need for solvent-related processing facilities. It is possible to achieve a new manufacturing method that satisfies the basic attitude of.

【0025】また、本発明によれば、既に部品が搭載さ
れ、表面に凹凸を有する基板でも選択的にかつ容易に複
合ガラス粒子からなる無機接着剤領域を形成出来るとい
う利点があり、また、モジュールの端面や3次元的形状
を持つ部分等、従来のフォトリソグラフィ法が適応不可
であった領域にも容易に形成可能となり、次世代の3次
元実装に適するものである。
Further, according to the present invention, there is an advantage that the inorganic adhesive region composed of the composite glass particles can be selectively and easily formed even on the substrate on which the parts are already mounted and the surface thereof has irregularities. Since it can be easily formed in a region where the conventional photolithography method cannot be applied, such as an end face of the substrate or a portion having a three-dimensional shape, it is suitable for the next-generation three-dimensional mounting.

【0026】さらに本発明では無機接着剤を用いてチッ
プ若しくはモジュールと基板間の機械的固定を行い、電
気的接続は実施例図中に例示した様な金属電極の接触の
みで達成している事から再加熱によりチップ、モジュー
ルのリペアが容易で、チップ、モジュールの部分的な交
換によりモジュールや配線基板自体のバージョンアップ
も容易となり、配線基板のリサイクルを実現する事が可
能となる。 (実施例1)図1に本発明の無機接着剤の1つの微粒子
を示す。
Further, in the present invention, the inorganic adhesive is used to mechanically fix the chip or module to the substrate, and the electrical connection is achieved only by the contact of the metal electrodes as illustrated in the drawings of the embodiments. Therefore, the chip and the module can be easily repaired by reheating, and the module and the wiring board itself can be easily upgraded by partially replacing the chip and the module, and the wiring board can be recycled. (Example 1) FIG. 1 shows one fine particle of the inorganic adhesive of the present invention.

【0027】図に示すようにガラス微粒子1の表面に酸
化薄膜2が形成されている。ガラス微粒子としては、石
英ガラス、ソーダガラス、ホウケイ酸ガラス、鉛ガラス
等が用いられ、酸化薄膜としては、酸化硼素、酸化イン
ジウム、酸化クロム、酸化マンガン、酸化ニオブ、酸化
銅、酸化レジウム、酸化オスミウム、酸化アンチモン、
酸化スズ、酸化ビスマス等が用いられる。この無機接着
剤を加熱加圧処理することで酸化薄膜2が溶融融着され
図2に示すようにガラス微粒子1が互いにネットワーク
状に接続されることになる。
As shown in the figure, an oxide thin film 2 is formed on the surface of glass fine particles 1. Quartz glass, soda glass, borosilicate glass, lead glass or the like is used as the glass particles, and boron oxide, indium oxide, chromium oxide, manganese oxide, niobium oxide, copper oxide, rheium oxide, osmium oxide is used as the oxide thin film. , Antimony oxide,
Tin oxide, bismuth oxide, etc. are used. By heating and pressing this inorganic adhesive, the oxide thin film 2 is melted and fused, and the glass particles 1 are connected to each other in a network form as shown in FIG.

【0028】図3にこの無機接着剤によって半導体チッ
プと配線基板とを機械的に接合した半導体装置を示す。
シリコンチップ3は、表面に酸化薄膜2が形成されたガ
ラス微粒子を主成分とする無機接着剤4により配線基板
5上に機械的に固定され、シリコンチップ3の突起電極
6と配線基板5上の電極7とは接触により電気的接続が
達成されている。図4に無機接着剤4の部分の拡大図を
示す。このように各ガラス微粒子1は酸化物薄膜が溶融
し固着した部分8によってネットワーク状に接合され、
これによってシリコンチップ3と配線基板5が機械的に
固定されている。このときガラス微粒子の平均粒径は3
〜5μmであり、このガラス微粒子表面には、部分的に
硼素酸化物の薄膜が付着しており、酸化物の厚みは50
〜10nmで、付着面積は35%であった。通常バルク
のIn酸化物の融点は450℃であるが、本発明の硼素
酸化物層は膜厚が小さく、かつ微小面積の島状構造であ
るため膜表面が非常に活性な状態にあり、350℃で膜
が融解することができる。従って本実施例では、350
℃で酸化物薄膜層が接触した部分で融着を起こし、ガラ
ス微粒子同士の接合が可能となる。
FIG. 3 shows a semiconductor device in which a semiconductor chip and a wiring board are mechanically joined by this inorganic adhesive.
The silicon chip 3 is mechanically fixed on the wiring board 5 by the inorganic adhesive 4 containing glass fine particles as a main component, on the surface of which the oxide thin film 2 is formed, and the protruding electrodes 6 of the silicon chip 3 and the wiring board 5 are fixed. An electrical connection is achieved by contact with the electrode 7. FIG. 4 shows an enlarged view of the portion of the inorganic adhesive 4. In this way, the glass particles 1 are joined in a network by the portions 8 where the oxide thin film is melted and fixed,
Thereby, the silicon chip 3 and the wiring board 5 are mechanically fixed. At this time, the average particle size of the glass particles is 3
˜5 μm, a thin film of boron oxide partially adheres to the surface of the glass particles, and the thickness of the oxide is 50
The adhesion area was 35% at -10 nm. Usually, the melting point of bulk In oxide is 450 ° C., but since the boron oxide layer of the present invention has a small film thickness and has an island structure with a minute area, the film surface is in a very active state. The membrane can melt at ° C. Therefore, in this embodiment, 350
At a temperature of ℃, the oxide thin film layer is fused at the contact portion, and it becomes possible to bond the glass fine particles to each other.

【0029】このように本実施例では無機接着剤をシリ
コンチップ1とガラス基板5との間に挿入する事によ
り、シリコンチップを350℃、ガラス基板を80℃に
保持し酸化物層の融着によりチップと基板との接合が可
能になった。次にこの製造方法を説明する。
As described above, in this embodiment, by inserting the inorganic adhesive between the silicon chip 1 and the glass substrate 5, the silicon chip is kept at 350 ° C. and the glass substrate is kept at 80 ° C. to fuse the oxide layers. This made it possible to bond the chip to the substrate. Next, this manufacturing method will be described.

【0030】先ず図5に示すように、硼素酸化物薄膜が
表面に付着した無機接着剤を、酢酸n−ブチルを溶媒と
して重量比で95対5で混合したペースト9を作成し、
ディスペンサ10によりガラス基板5上の所望の領域に
塗布する。
First, as shown in FIG. 5, a paste 9 was prepared by mixing an inorganic adhesive having a boron oxide thin film on its surface in a weight ratio of 95: 5 using n-butyl acetate as a solvent.
The desired area on the glass substrate 5 is coated with the dispenser 10.

【0031】次に図6に示すように、ヒータ(図示せ
ず)により基板5の接合領域を局所的に80℃に保持
し、シリコンチップ3を位置合わせしてガラス基板5に
搭載し、加熱加圧ヘッド11を用いてシリコンチップ3
を350℃、5Kgfで5秒間加圧する事により溶媒を
蒸発させ、酸化物薄膜層を溶融融着させて機械的固定を
行った。接合後の電気試験から、突起電極6と電極7の
間で電気的に良好な接続が確認された。また、シリコン
チップ3の垂直引っ張り試験結果から接合強度は3Kg
fで、機械的にも良好な接合が得られた。
Next, as shown in FIG. 6, the bonding region of the substrate 5 is locally maintained at 80 ° C. by a heater (not shown), the silicon chip 3 is aligned and mounted on the glass substrate 5, and heated. Silicon chip 3 using pressure head 11
Was heated at 350 ° C. and 5 Kgf for 5 seconds to evaporate the solvent, and the oxide thin film layer was melted and fused to perform mechanical fixation. From the electrical test after joining, electrically good connection was confirmed between the protruding electrode 6 and the electrode 7. The vertical tensile test result of the silicon chip 3 shows that the bonding strength is 3 kg.
At f, a good mechanical bond was obtained.

【0032】この配線基板を−50℃と150℃の間の
温度サイクルをかける熱衝撃試験において1000サイ
クル経た後の密着強度は3Kgfで、抵抗値変化は3%
以内であり、また60℃90%R.H.の恒温恒湿雰囲
気中で1000時間放置後の密着強度は3Kgfで、抵
抗値変化は10%以内で、機械的、電気的接続に問題は
無く、高い信頼性が得られる事が分かった。
In a thermal shock test in which this wiring board was subjected to a temperature cycle between -50 ° C. and 150 ° C., the adhesion strength after 1000 cycles was 3 Kgf and the change in resistance value was 3%.
Within 60 ° C. and 90% R.S. H. It was found that the adhesion strength after standing for 1000 hours in a constant temperature and humidity atmosphere was 3 Kgf, the resistance change was within 10%, there was no problem in mechanical and electrical connection, and high reliability was obtained.

【0033】また、配線基板上に無機接着剤の形成を行
う場合の様に、比較的ピッチが大きい時には、無機接着
剤含有ペースト9を用いて、スクリーン印刷法により無
機接着剤を一括形成する方法を行うことができる。
When the inorganic adhesive is formed on the wiring board and the pitch is relatively large, the inorganic adhesive-containing paste 9 is used to collectively form the inorganic adhesive by the screen printing method. It can be performed.

【0034】ここで図7により無機接着剤の製造方法を
示す。先ず平均粒径3〜5μmのガラス微粒子1を真空
槽12内のステージ13に固定し、るつぼ14に硼素酸
化物粉15を入れた状態で10-3Paまで引き、ガス圧
が1.0Paになる様にアルゴンガスを流入し、高周波
磁場をかけて熱プラズマを発生させる(図示せず)。同
時に、るつぼ14を加熱して酸化物を蒸発させて、酸化
物を50nmから10nmの間の粒径を持つ微粒子状態
とし、ガラス微粒子1に被覆した。
Here, FIG. 7 shows a method for producing an inorganic adhesive. First, glass fine particles 1 having an average particle size of 3 to 5 μm are fixed to a stage 13 in a vacuum chamber 12, and boron oxide powder 15 is put in a crucible 14 to 10 −3 Pa, and a gas pressure is 1.0 Pa. Argon gas is introduced so that a high frequency magnetic field is applied to generate thermal plasma (not shown). At the same time, the crucible 14 was heated to evaporate the oxide, and the oxide was made into a fine particle state having a particle size of 50 nm to 10 nm, and the glass fine particle 1 was coated with the oxide.

【0035】ガラス微粒子1は途中で攪拌し、裏になっ
ていた面をるつぼ側に向けさせ、被覆厚さが50〜10
nm程度で、表面積で20%程度が酸化物薄膜でおおわ
れたガラス微粒子が得られた。被覆厚と被覆面積は、ガ
ス圧と投入パワー、及び被覆時間により制御でき、これ
によって酸化物層の融解温度もまた制御可能となる。 (実施例2)図8、図9は本発明の実施例2の半導体装
置の製造方法を示す工程図である。
The glass fine particles 1 are stirred in the middle so that the back surface is directed to the crucible side and the coating thickness is 50 to 10
As a result, glass fine particles having a surface area of about 20 nm and a surface area of about 20% were covered with an oxide thin film. The coating thickness and coating area can be controlled by the gas pressure, the input power and the coating time, which also makes it possible to control the melting temperature of the oxide layer. (Embodiment 2) FIGS. 8 and 9 are process diagrams showing a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【0036】先ずシリコンチップ3上に形成された突起
電極6間の所望領域に対応させ、窓を開けたパターンの
メタルマスクを用いて、マスクをチップに被せた状態で
Wワイヤによりチップの露出部を帯電させる(図示せ
ず)。次に露出部の領域のみに静電潜像17を形成する
(図8)。無機接着剤として、平均粒径1μm以下のガ
ラス微粒子表面に、部分的にIn酸化物の薄膜が付着し
たものを用いた。このとき酸化薄膜の厚みは10nm以
下で、付着面積は40%であった。通常バルクのIn酸
化物の融点は327℃であるが、本発明のIn酸化物層
は膜表面が非常に活性な状態にあり、200℃で膜が融
解した。従ってこの複合ガラス粒子同士は、200℃で
表面の酸化物層が融解し、酸化物層が接触した部分の融
着によりガラス微粒子同士、及び配線基板の接合が可能
になる。この複合ガラス粒子を現像剤としてチップ上に
散布すると静電潜像16に対応した現像部17が形成さ
れる(図9)。
First, using a metal mask having a pattern in which a window is opened so as to correspond to a desired region between the protruding electrodes 6 formed on the silicon chip 3, the exposed portion of the chip is covered by the W wire with the mask covering the chip. Are charged (not shown). Next, the electrostatic latent image 17 is formed only on the exposed area (FIG. 8). As the inorganic adhesive, one having a thin film of In oxide partially adhered to the surface of glass fine particles having an average particle diameter of 1 μm or less was used. At this time, the thickness of the oxide thin film was 10 nm or less and the adhesion area was 40%. Usually, the melting point of bulk In oxide is 327 ° C., but the film surface of the In oxide layer of the present invention was in a very active state, and the film melted at 200 ° C. Therefore, in the composite glass particles, the oxide layer on the surface melts at 200 ° C., and the glass fine particles can be bonded to each other and the wiring board can be bonded by fusing the portions in contact with the oxide layer. When the composite glass particles are dispersed as a developer on the chip, a developing portion 17 corresponding to the electrostatic latent image 16 is formed (FIG. 9).

【0037】また、帯電工程において静電気によるチッ
プ破壊等が問題になる場合は、図10に示したように、
シリコンチップ3の所望領域に対応する感光ドラム18
上の領域に静電潜像を形成し(図示せず)、酸化物薄膜
が形成されたガラス微粒子を現像剤として現像を行い、
現像部19を形成した後、この現像部19を中間転写用
ローラ20上に一旦転写し、赤外線ヒータ21で仮固着
した後、チップ3上に転写する二段転写方式を用いた。 (実施例3)図11は本発明の実施例3にかかる半導体
装置で、シリコンチップ3とガラス基板5の固定と封止
を行った構成を模式的に示した断面図である。
Further, in the case where chip damage due to static electricity or the like becomes a problem in the charging step, as shown in FIG.
The photosensitive drum 18 corresponding to the desired area of the silicon chip 3.
An electrostatic latent image is formed in the upper area (not shown), and development is performed using the glass particles on which the oxide thin film is formed as a developer.
After forming the developing portion 19, the developing portion 19 was once transferred onto the intermediate transfer roller 20, temporarily fixed by the infrared heater 21, and then transferred onto the chip 3 in a two-stage transfer system. (Embodiment 3) FIG. 11 is a sectional view schematically showing a structure in which a silicon chip 3 and a glass substrate 5 are fixed and sealed in a semiconductor device according to Embodiment 3 of the present invention.

【0038】実施例2で用いたIn酸化物層を被覆した
ガラス微粒子からなる無機接着剤を、エタノールを溶媒
として重量比でほぼ1対4となる様に混合、分散したも
のをインクとして準備し、このインクを20μmφのノ
ズルから1kg/cm2 の圧力で噴出させて、シリコン
チップ3の中央と、突起電極6の外周部に付着させた
(図示せず)。溶媒の揮発後、チップ3の中央と、突起
電極6の外周部にそれぞれ無機接着剤を残した。その
後、シリコンチップ3をガラス基板5に位置合わせし、
加熱加圧ヘッドを用いてシリコンチップ3を200℃、
5Kgfで10秒間加圧する事により酸化物層を融着さ
せ、シリコンチップ3の下部とガラス基板5との隙間が
ほぼ無機接着剤4で充填された状態とし、機械的固定と
同時に封止を行った(図7)。
An inorganic adhesive composed of glass fine particles coated with an In oxide layer used in Example 2 was mixed and dispersed in ethanol at a weight ratio of about 1: 4 to prepare an ink. This ink was ejected from a nozzle of 20 μmφ at a pressure of 1 kg / cm 2 and adhered to the center of the silicon chip 3 and the outer peripheral portion of the bump electrode 6 (not shown). After the solvent was volatilized, the inorganic adhesive was left in the center of the chip 3 and in the outer peripheral portion of the bump electrode 6. Then, align the silicon chip 3 with the glass substrate 5,
The silicon chip 3 is heated to 200.degree.
The oxide layer is fused by applying a pressure of 5 Kgf for 10 seconds, and the gap between the lower portion of the silicon chip 3 and the glass substrate 5 is almost filled with the inorganic adhesive 4. Mechanical fixing and sealing are performed at the same time. (Fig. 7).

【0039】接合後の電気試験から、突起電極6と電極
7の間で電気的に良好な接続が確認され、また、チップ
の垂直引っ張り試験結果から接合強度は6Kgfで、機
械的にも良好な接合が得られた。この配線基板を−50
℃と150℃の間の温度サイクルをかける熱衝撃試験に
おいて1000サイクル経た後の機械的密着強度は6K
gfで変化が無く、抵抗値変化は3%以内で、また60
℃90%R.H.の恒温恒湿雰囲気中で1000時間放
置後も機械的密着強度は5Kgfで、抵抗値変化は5%
以内で、やはり機械的、電気的接続に問題は無く、高い
信頼性が得られる事が分かった。
From the electrical test after joining, an electrically good connection was confirmed between the protruding electrode 6 and the electrode 7, and from the result of the vertical tensile test of the chip, the joining strength was 6 Kgf, which was also mechanically good. A bond was obtained. This wiring board is -50
The mechanical adhesion strength after 1000 cycles in the thermal shock test with temperature cycle between 6 ℃ and 150 ℃ is 6K.
There is no change in gf, resistance change is within 3%, and 60
90% R.C. H. After being left for 1000 hours in a constant temperature and humidity atmosphere, the mechanical adhesion strength is 5 kgf and the change in resistance value is 5%.
Within that, it turned out that there was no problem in mechanical and electrical connection and high reliability was obtained.

【0040】他の封止方法として、実施例1の、硼素酸
化物層を付着したガラス微粒子含有ペーストを用いたデ
ィスペンサによりチップ中央に形成した無機接着剤4−
1を350℃で熱圧着し、チップと基板の固定したあ
と、実施例2の、In酸化物層を付着したガラス微粒子
含有ペースト4−2を用いたディスペンサにより突起電
極6の外周部にペーストを塗布し、200℃で外周部の
無機接着剤を融着させ、封止を行ってもよい(図1
2)。
As another sealing method, an inorganic adhesive 4-formed in the center of the chip by a dispenser using the glass fine particle-containing paste to which the boron oxide layer is adhered in Example 1 4-
1 was thermocompression-bonded at 350 ° C. to fix the chip and the substrate, and then the paste was applied to the outer peripheral portion of the bump electrode 6 by a dispenser using the glass fine particle-containing paste 4-2 with the In oxide layer of Example 2 attached. The coating may be applied, and the inorganic adhesive on the outer periphery may be fused at 200 ° C. to perform sealing (FIG. 1).
2).

【0041】また、より耐湿性を考慮する必要がある場
合には、封止材料として、シリコンチップ3中央に形成
した本発明の無機接着剤4の融点以上の熱硬化性樹脂や
光硬化性樹脂、熱可塑性樹脂を主成分とする封止樹脂材
料22を用いて封止を行ってもよい(図13)。この場
合、突起電極6の外周部は完全に封止樹脂22で封止さ
れているが、シリコンチップ3中央の無機接着剤4と封
止樹脂22との間には空間が残る構成になっており、ま
た、封止に要した樹脂量も少ない為、従来例の様にチッ
プと基板との間が完全に樹脂で埋められている場合に比
べて、熱膨脹差による信頼性の低下は防ぐ事が出来る。 (実施例4)図14は本発明の実施例4で、本発明の無
機接着剤を用いてそれぞれ制御回路用モジュールと入出
力用コネクタを接続した液晶用配線基板を模式的に示し
た断面図である。
When it is necessary to further consider the moisture resistance, a thermosetting resin or a photocurable resin having a melting point higher than that of the inorganic adhesive 4 of the present invention formed in the center of the silicon chip 3 is used as a sealing material. Alternatively, sealing may be performed using the sealing resin material 22 containing a thermoplastic resin as a main component (FIG. 13). In this case, the outer peripheral portion of the bump electrode 6 is completely sealed with the sealing resin 22, but a space remains between the inorganic adhesive 4 in the center of the silicon chip 3 and the sealing resin 22. In addition, since the amount of resin required for sealing is small, it is necessary to prevent the decrease in reliability due to the difference in thermal expansion compared to the case where the chip and the substrate are completely filled with resin as in the conventional example. Can be done. (Embodiment 4) FIG. 14 is a sectional view schematically showing a liquid crystal wiring board in which a control circuit module and an input / output connector are connected to each other using the inorganic adhesive of the present invention, which is Embodiment 4 of the present invention. Is.

【0042】先ず実施例2に示す静電転写法により、制
御用回路を形成したモジュール24の端子部と、外部入
出力用コネクタ25の端子部の所望領域にそれぞれ無機
接着剤を形成した。次に予め液晶セル23を搭載した配
線基板5に、モジュール24とコネクタ25を位置合わ
せして加圧ヘッドで押さえながら配線基板側から赤外線
ヒータにより局所的に加熱する事により酸化物層を融着
させ、それぞれモジュール24とコネクタ25の接続を
行った。
First, by the electrostatic transfer method shown in the second embodiment, an inorganic adhesive was formed on the desired portion of the terminal portion of the module 24 in which the control circuit was formed and the terminal portion of the external input / output connector 25. Then, the module 24 and the connector 25 are aligned with the wiring substrate 5 in which the liquid crystal cell 23 is previously mounted, and the oxide layer is fused by locally heating from the wiring substrate side with an infrared heater while pressing the module with the pressure head. Then, the module 24 and the connector 25 were connected to each other.

【0043】接合後の電気試験から、電気的に良好な接
続が確認され、また、垂直引っ張り試験結果からコネク
タの接合強度は500Kgf、コネクタの接合強度は4
00Kgfで、機械的にも良好な接合が得られた。この
配線基板を熱衝撃試験と耐湿試験に掛けた結果、機械
的、電気的接続に問題は無く、高い信頼性が得られる事
が分かった。
From the electrical test after joining, a good electrical connection was confirmed, and from the results of the vertical pull test, the joining strength of the connector was 500 Kgf and the joining strength of the connector was 4
At 00 Kgf, good mechanical bonding was obtained. As a result of subjecting this wiring board to a thermal shock test and a moisture resistance test, it was found that there was no problem in mechanical and electrical connection and high reliability was obtained.

【0044】また、配線基板やモジュール、コネクタの
端子電極は規格化されており、現状のモジュールの無機
接着剤の融着温度以上に上げ、モジュールを剥離して、
より上位機種のモジュールに交換、再接合する事により
配線基板自体のバージョンアップが可能となり、配線基
板のリサイクルが可能となる。
Further, the wiring board, the module, and the terminal electrode of the connector are standardized, and the module is peeled off by raising the temperature above the fusion temperature of the inorganic adhesive of the current module.
The wiring board itself can be upgraded by replacing it with a module of a higher model and rejoining it, and the wiring board can be recycled.

【0045】本発明の実施例では、配線基板としてガラ
ス基板を用いたが、樹脂基板上にチップを接合する場合
でも、無機接着剤が複合ガラス粒子同士の点接触に近い
構造であり、部分的に空間を持つ無機接着剤がチップと
樹脂基板の熱膨脹差を吸収し、接着性樹脂で接合した場
合に比べて、応力によるクラックの発生を防ぐ効果が上
げられる。
In the examples of the present invention, the glass substrate was used as the wiring substrate. However, even when the chip is bonded onto the resin substrate, the inorganic adhesive has a structure close to point contact between the composite glass particles, and the The inorganic adhesive having a space at the end absorbs the difference in thermal expansion between the chip and the resin substrate, and is more effective in preventing the occurrence of cracks due to stress, as compared with the case of bonding with an adhesive resin.

【0046】また、本発明の実施例では局所加熱に赤外
線ヒータを用いたが、レーザ光による加熱を行う事も可
能で、ともに、コネクタやモジュール、基板にダメージ
を与えず、無機接着剤のみを効率良く昇温する為、対応
する赤外領域やレーザ波長に吸収を持つ顔料や染料で着
色した複合ガラス粒子や熱伝導性のフィラーを混入して
用いるとさらに効果的である。
Further, although the infrared heater is used for local heating in the embodiment of the present invention, it is also possible to perform heating by laser light, and neither of them damages the connector, the module or the substrate, and only the inorganic adhesive is used. In order to efficiently raise the temperature, it is more effective to mix and use composite glass particles colored with a pigment or dye having absorption in the corresponding infrared region or laser wavelength or a thermally conductive filler.

【0047】[0047]

【発明の効果】本発明による無機接着剤は、無機材料と
熱膨張率がほぼ等しいため接着後の信頼性向上を図るこ
とができる。またガラス微粒子を酸化物層で融着してい
るので強固な接合が実現できる。
The inorganic adhesive according to the present invention has a coefficient of thermal expansion substantially equal to that of the inorganic material, so that the reliability after adhesion can be improved. Further, since the glass particles are fused by the oxide layer, a strong bond can be realized.

【0048】また本発明の半導体装置では、半導体チッ
プ及びガラス配線基板との接合を無機接着剤にて接合し
ているので、樹脂を用いて接着した場合に比べて、熱膨
脹率の差が小さく、応力によるクラックの発生がもたら
す信頼性の低下を防ぐ事が可能となる。
Further, in the semiconductor device of the present invention, since the semiconductor chip and the glass wiring board are bonded with an inorganic adhesive, the difference in coefficient of thermal expansion is small as compared with the case of bonding with a resin, It is possible to prevent a decrease in reliability caused by the generation of cracks due to stress.

【0049】また本発明の半導体装置の製造方法によれ
ば、無機接着剤の選択的な形成方法として、ディスペン
サ法や印刷法、静電転写法、或いはインクジェット法を
用いて所望の領域に適量の無機接着剤を簡単に形成出来
る事から、通常の樹脂を用いた場合に比べて、スピンコ
ート法やフォトリソグラフィ工程が不要となり工程の削
減が達成出来る。また余剰材や溶剤がなく省資源が可能
である。さらに溶剤関連の処理施設が不要な事から、省
資源、省エネルギーでかつ対環境性を考慮した新しい製
造方法が達成出来る。
Further, according to the method of manufacturing a semiconductor device of the present invention, a dispenser method, a printing method, an electrostatic transfer method, or an inkjet method is used as a method for selectively forming an inorganic adhesive, and an appropriate amount is formed in a desired region. Since the inorganic adhesive can be easily formed, the spin coating method and the photolithography process are not required as compared with the case of using a normal resin, and the number of processes can be reduced. In addition, there is no surplus material or solvent and resource saving is possible. Furthermore, since no solvent-related processing facility is required, a new manufacturing method that saves resources and energy and is environmentally friendly can be achieved.

【0050】また、本発明の半導体の製造方法によれ
ば、既に部品が搭載され、表面に凹凸を有する基板でも
選択的にかつ容易に複合ガラス粒子からなる無機接着剤
を形成出来るという利点があり、また、モジュールの端
面や3次元的形状を持つ部分等、従来のフォトリソグラ
フィ法が適応不可であった領域にも容易に形成可能とな
り、次世代の3次元実装に適する製造方法が提供出来
る。
Further, according to the semiconductor manufacturing method of the present invention, there is an advantage that an inorganic adhesive composed of composite glass particles can be selectively and easily formed even on a substrate on which components are already mounted and whose surface has irregularities. Further, it becomes possible to easily form in a region where the conventional photolithography method cannot be applied, such as an end surface of a module or a portion having a three-dimensional shape, and a manufacturing method suitable for next-generation three-dimensional mounting can be provided.

【0051】さらに、本発明の半導体装置では、無機接
着剤によりチップ若しくはモジュールを機械的に基板に
固定し、電気的接続は金属電極の機械的接触のみで達成
している事から、無機接着剤の融着温度以上に上げる事
により、チップ、モジュールのリペアが可能で、チッ
プ、モジュールの部分的な交換によりモジュールや配線
基板自体のバージョンアップが容易に達成出来、配線基
板のリサイクルを実現する事が可能となる。
Further, in the semiconductor device of the present invention, since the chip or module is mechanically fixed to the substrate by the inorganic adhesive and the electrical connection is achieved only by the mechanical contact of the metal electrode, the inorganic adhesive is used. It is possible to repair the chip and module by raising the temperature above the fusion temperature of the module, and it is possible to easily upgrade the module and the wiring board itself by partially replacing the chip and module, and realize recycling of the wiring board. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の無機接着剤の1つのガラス微粒子の
FIG. 1 is a diagram of one glass fine particle of the inorganic adhesive of the present invention.

【図2】 本発明の無機接着剤の酸化物が溶融融着しガ
ラス微粒子がネットワーク状に接合している図。
FIG. 2 is a diagram in which oxides of the inorganic adhesive of the present invention are melt-fused and glass fine particles are bonded in a network form.

【図3】 本発明の実施例1で、無機接着剤により半導
体チップと配線基板との機械的な固定を行った半導体装
置の断面図
FIG. 3 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention in which a semiconductor chip and a wiring board are mechanically fixed with an inorganic adhesive.

【図4】 実施例1の半導体装置の無機接着剤がネット
ワークを形成したところの拡大図
FIG. 4 is an enlarged view of the semiconductor device of Example 1 in which the inorganic adhesive forms a network.

【図5】 本発明の実施例1の半導体装置の製造方法の
ディスペンサ法で無機接着剤を形成する工程を示した模
式図
FIG. 5 is a schematic diagram showing a step of forming an inorganic adhesive by a dispenser method of the method for manufacturing a semiconductor device according to the first embodiment of the present invention.

【図6】 無機接着剤を加熱加圧処理により接着させる
工程を示した模式図
FIG. 6 is a schematic diagram showing a step of bonding an inorganic adhesive by heat and pressure treatment.

【図7】 本発明の無機接着剤の製造法を示した模式図FIG. 7 is a schematic diagram showing a method for producing an inorganic adhesive of the present invention.

【図8】 本発明の実施例2の半導体装置の製造方法
で、静電転写法で無機接着剤を形成する領域を帯電させ
る工程を示した模式図
FIG. 8 is a schematic diagram showing a step of charging a region where an inorganic adhesive is formed by an electrostatic transfer method in the method for manufacturing a semiconductor device according to the second embodiment of the present invention.

【図9】 本発明の実施例2の半導体装置の製造方法
で、無機接着剤を帯電した領域に選択的に配置する工程
を示した模式図
FIG. 9 is a schematic diagram showing a step of selectively disposing an inorganic adhesive in a charged region in a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図10】 本発明の実施例2の半導体装置の製造方法
で、二段転写を行う静電転写法を用いた製造方法の模式
FIG. 10 is a schematic diagram of a method for manufacturing a semiconductor device according to a second embodiment of the present invention, which uses an electrostatic transfer method in which two-step transfer is performed.

【図11】 本発明の実施例3の半導体装置の断面図FIG. 11 is a sectional view of a semiconductor device according to a third embodiment of the present invention.

【図12】 本発明の実施例3の半導体装置の変形例を
示す断面図
FIG. 12 is a sectional view showing a modified example of the semiconductor device according to the third embodiment of the present invention.

【図13】 本発明の実施例3の半導体装置の変形例を
示す断面図
FIG. 13 is a sectional view showing a modified example of the semiconductor device according to the third embodiment of the present invention.

【図14】 本発明の実施例4で、無機接着剤を用いて
それぞれ制御回路用モジュールと入出力用コネクタを接
続した液晶用配線基板を模式的に示した断面図
FIG. 14 is a cross-sectional view schematically showing a liquid crystal wiring board in which a control circuit module and an input / output connector are connected to each other using an inorganic adhesive in Example 4 of the present invention.

【図15】 従来の半導体装置の断面図FIG. 15 is a sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…ガラス微粒子 2…酸化物薄膜 3…シリコンチップ 4…無機接着剤 5…基板 6…突起電極 7…電極 8…酸化物の融着部 9…無機接着剤を有するペースト 10…ディスペンサ 11…加熱加圧ヘッド 12…真空槽 13…ステージ 14…るつぼ 15…金属酸化物原料 16…静電潜像 17…現像部 18…感光ドラム 19…現像部 20…中間転写用ローラ 21…赤外線ヒータ 22…封止樹脂 23…液晶セル 24…モジュール 25…コネクター 26…接合部 40…半導体チップ 41…アルミニウム電極 42…突起電極 43…接合樹脂 44…ガラス基板 45…電極 DESCRIPTION OF SYMBOLS 1 ... Glass fine particles 2 ... Oxide thin film 3 ... Silicon chip 4 ... Inorganic adhesive 5 ... Substrate 6 ... Projection electrode 7 ... Electrode 8 ... Oxide fusion part 9 ... Paste containing inorganic adhesive 10 ... Dispenser 11 ... Heating Pressure head 12 ... Vacuum tank 13 ... Stage 14 ... Crucible 15 ... Metal oxide raw material 16 ... Electrostatic latent image 17 ... Developing section 18 ... Photosensitive drum 19 ... Developing section 20 ... Intermediate transfer roller 21 ... Infrared heater 22 ... Sealing Stopping resin 23 ... Liquid crystal cell 24 ... Module 25 ... Connector 26 ... Bonding part 40 ... Semiconductor chip 41 ... Aluminum electrode 42 ... Projection electrode 43 ... Bonding resin 44 ... Glass substrate 45 ... Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数のガラス微粒子と、 このガラス微粒子の表面の少なくとも一部に形成された
融点が400℃以下の無機酸化物層とを具備することを
特徴とする無機接着剤。
1. An inorganic adhesive comprising a plurality of glass fine particles and an inorganic oxide layer having a melting point of 400 ° C. or less formed on at least a part of the surface of the glass fine particles.
【請求項2】前記酸化物層は、酸化硼素、酸化インジウ
ム、酸化クロム、酸化マンガン、酸化ニオブ、酸化銅、
酸化レジウム、酸化オスミウム、酸化アンチモン、酸化
スズ、酸化ビスマスから選ばれる少なくとも1種類以上
からなることを特徴とする請求項1記載の無機接着剤
2. The oxide layer comprises boron oxide, indium oxide, chromium oxide, manganese oxide, niobium oxide, copper oxide,
The inorganic adhesive according to claim 1, comprising at least one selected from rheium oxide, osmium oxide, antimony oxide, tin oxide, and bismuth oxide.
【請求項3】突起電極を表面に有する半導体チップと、 この突起電極に対応する位置に電極が形成され前記半導
体チップと対面配置された配線基板と、 前記半導体チップと前記配線基板との間に配され、前記
配線基板上に前記半導体チップを機械的に固着させかつ
前記突起電極と前記配線基板上の電極とを電気的に接続
する無機接着剤とを具備し、 この無機接着剤は、ガラス微粒子が無機酸化物層を介し
てネットワーク状に接続されていることを特徴とする半
導体装置。
3. A semiconductor chip having a protruding electrode on the surface, a wiring substrate having electrodes formed at positions corresponding to the protruding electrode and facing the semiconductor chip, and between the semiconductor chip and the wiring substrate. And an inorganic adhesive for mechanically fixing the semiconductor chip on the wiring board and electrically connecting the protruding electrodes and the electrodes on the wiring board. A semiconductor device in which fine particles are connected in a network through an inorganic oxide layer.
【請求項4】前記無機接着剤が、請求項1或いは請求項
2記載の無機接着剤であることを特徴とする請求項3記
載の半導体装置。
4. The semiconductor device according to claim 3, wherein the inorganic adhesive is the inorganic adhesive according to claim 1 or 2.
【請求項5】前記配線基板と前記半導体チップとの間に
選択的に請求項1或いは請求項2記載の無機接着剤を配
置する工程と、 400℃以下の熱処理によって前記酸化物層を溶融させ
る工程とを具備し、 この熱処理の後冷却し、前記半導体チップ、前記ガラス
微粒子、及び前記配線基板を前記酸化物層を介して機械
的に固着させ同時に前記突起電極と前記配線基板の電極
とを電気的に接続することを特徴とする請求項3記載の
半導体装置の製造方法。
5. A step of selectively disposing the inorganic adhesive according to claim 1 or 2 between the wiring board and the semiconductor chip, and melting the oxide layer by heat treatment at 400 ° C. or lower. After the heat treatment, the semiconductor chip, the glass fine particles, and the wiring board are mechanically fixed to each other through the oxide layer, and at the same time, the protruding electrode and the electrode of the wiring board are attached. The method for manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is electrically connected.
JP8022260A 1996-02-08 1996-02-08 Inorganic adhesive, semiconductor device using the same and its production Pending JPH09217039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8022260A JPH09217039A (en) 1996-02-08 1996-02-08 Inorganic adhesive, semiconductor device using the same and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8022260A JPH09217039A (en) 1996-02-08 1996-02-08 Inorganic adhesive, semiconductor device using the same and its production

Publications (1)

Publication Number Publication Date
JPH09217039A true JPH09217039A (en) 1997-08-19

Family

ID=12077810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8022260A Pending JPH09217039A (en) 1996-02-08 1996-02-08 Inorganic adhesive, semiconductor device using the same and its production

Country Status (1)

Country Link
JP (1) JPH09217039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095368A (en) * 2005-09-27 2007-04-12 Tokai Rika Co Ltd Connector with electronic component
JP2010519725A (en) * 2007-02-19 2010-06-03 カール・ツァイス・エスエムティー・アーゲー Manufacturing method of facet mirror and projection exposure apparatus
JP2016500625A (en) * 2012-09-27 2016-01-14 ガーディアン・インダストリーズ・コーポレーション Low temperature hermetic sealing by laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095368A (en) * 2005-09-27 2007-04-12 Tokai Rika Co Ltd Connector with electronic component
JP2010519725A (en) * 2007-02-19 2010-06-03 カール・ツァイス・エスエムティー・アーゲー Manufacturing method of facet mirror and projection exposure apparatus
JP2016500625A (en) * 2012-09-27 2016-01-14 ガーディアン・インダストリーズ・コーポレーション Low temperature hermetic sealing by laser

Similar Documents

Publication Publication Date Title
JPH03131089A (en) Connecting method for circuit board
US20110014731A1 (en) Method for sealing a photonic device
JPH0553129A (en) Liquid crystal display element and production
US6632532B1 (en) Particle material anisotropic conductive connection and anisotropic conductive connection material
US6512183B2 (en) Electronic component mounted member and repair method thereof
JPH03290936A (en) Method of mounting semiconductor device
JPH09217039A (en) Inorganic adhesive, semiconductor device using the same and its production
JPH02180036A (en) Formation of electrode
KR100355323B1 (en) Carrier, semiconductor device, and method of their mounting
JP2006049917A (en) Electrode joining method of plasma display panel, and plasma display panel
JP2000208561A (en) Production of packaging body structure and the packaging body structure
JPH0969538A (en) Semiconductor device and manufacture thereof
JP2002075580A (en) Manufacturing method for anisotropic conductive film
JP2004047773A (en) Method of manufacturing mounting board
JPS62169433A (en) Manufacture of semiconductor device
JP2012040522A (en) Method for manufacturing base material provided with adhesive layer
JP2623762B2 (en) Semiconductor element mounting structure
JP3672702B2 (en) Component mounting method
JPS6392036A (en) Packaging structure of semiconductor device
JP3719925B2 (en) Electrode bonding method for plasma display panel and plasma display panel
US20240136322A1 (en) Semiconductor package and manufacturing method therefor
CN102612273A (en) Method for manufacturing wiring board for mounting electronic component, wiring board for mounting electronic component, and method for manufacturing wiring board having an electronic component
US20240234364A9 (en) Semiconductor package and manufacturing method therefor
JP2959215B2 (en) Electronic component and its mounting method
JPH08102464A (en) Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method