JPH09215115A - Operation controller of pole change motor - Google Patents

Operation controller of pole change motor

Info

Publication number
JPH09215115A
JPH09215115A JP8016338A JP1633896A JPH09215115A JP H09215115 A JPH09215115 A JP H09215115A JP 8016338 A JP8016338 A JP 8016338A JP 1633896 A JP1633896 A JP 1633896A JP H09215115 A JPH09215115 A JP H09215115A
Authority
JP
Japan
Prior art keywords
command
torque
pole
switching
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8016338A
Other languages
Japanese (ja)
Inventor
Katashige Yamada
堅滋 山田
Haruhiko Iwasa
春彦 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8016338A priority Critical patent/JPH09215115A/en
Publication of JPH09215115A publication Critical patent/JPH09215115A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the pole change with no torque shock possible by an operation controller of a pole change motor and eliiminate an uncomfortable feeling of an operator in the electric vehicle. SOLUTION: This device is provided with a change limiter 21 which not only outputs a change command by a rotating speed hysteresis comparator 10 but also outputs a change command only when a torque command is smaller than a reference value of a torque hysteresis comparator 22, to a command calculating section 11 in a pole change motor controlling block to which a torque command T*, a detected rotating sepeed ωr, and a change command are input.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘導電動機をベク
トル制御に基づいてインバータを用いて可変速制御し且
つ極数切替により広範囲な定出力運転を可能とする運転
制御装置に関し、特に極数切替時のトルク変動を抑制す
るように工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device which controls a variable speed of an induction motor using an inverter based on vector control and enables a wide range of constant output operation by switching the number of poles, and more particularly to switching the number of poles. It was devised to suppress torque fluctuations over time.

【0002】[0002]

【従来の技術】誘導電動機の可変速制御には、インバー
タを電源とする周波数制御が多く採用されている。この
時の最大トルク特性は図2に破線の特性T′で示すよう
に、速度(モータ回転数または周波数)の上昇に比例さ
せてインバータからの供給電圧を高めることができる範
囲では定トルク特性であるが、それ以上では電源電圧V
の制限により周波数fの2乗に反比例した1/f2 のカ
ーブでトルクが低下する。これに対し、誘導電動機を駆
動源とする電気自動車などでは、負荷の要求トルク特性
は図2の実線の特性Tで示すように、定トルク範囲の速
度を越えると定出力範囲となり、周波数fの増加に反比
例した1/fのカーブでトルクが低下する。そのため、
最大トルク特性T′と負荷の要求トルク特性Tとの交点
になる周波数afより高い回転数では、最大トルク特性
Tで出力トルクが制限されることになる。aは一般に2
より大きい任意の数であるが、1以上であれば成り立
つ。
2. Description of the Related Art Frequency control using an inverter as a power source is often employed for variable speed control of an induction motor. The maximum torque characteristic at this time is a constant torque characteristic in the range in which the supply voltage from the inverter can be increased in proportion to the increase in speed (motor rotation speed or frequency), as shown by the broken line characteristic T'in FIG. Yes, but above that, power supply voltage V
Due to the restriction of 1), the torque decreases with a curve of 1 / f 2 which is inversely proportional to the square of the frequency f. On the other hand, in an electric vehicle or the like that uses an induction motor as a drive source, the required torque characteristic of the load becomes the constant output range when the speed exceeds the constant torque range as shown by the characteristic T of the solid line in FIG. The torque decreases with a 1 / f curve that is inversely proportional to the increase. for that reason,
At a rotational speed higher than the frequency af at which the maximum torque characteristic T ′ and the required torque characteristic T of the load intersect, the output torque is limited by the maximum torque characteristic T. a is generally 2
It is an arbitrary larger number, but it holds if it is 1 or more.

【0003】誘導電動機を定出力範囲で運転するとき、
高速域になるほど負荷トルクが低下するが、前述の如く
誘導電動機の最大トルク特性でトルクが制限されるた
め、負荷によってはトルク不足を招くことがある。
When the induction motor is operated in the constant output range,
Although the load torque decreases in the higher speed range, the torque is limited by the maximum torque characteristic of the induction motor as described above, and therefore torque shortage may occur depending on the load.

【0004】このトルク不足を解消する技術として、下
記文献により誘導電動機における固定子巻線構造を3相
巻線をN個(Nは偶数)備えたのと等価な巻線構造と
し、ベクトル制御に基づいて各相巻線の電圧の位相と周
波数をインバータにより制御することにより、低速運転
領域では誘導電動機を2N極にして駆動し、高速運転領
域では誘導電動機をN極にして駆動する技術が公表され
ている。 文献:電気自動車用極数切換誘導電動機の六相絶対変換
回転dq軸による解析、水野等、電気学会回転機研究
会、平成6年10月3日発表。
As a technique for solving this torque shortage, a stator winding structure in an induction motor is made into a winding structure equivalent to having three three-phase windings (N is an even number) according to the following document, and is used for vector control. Based on this, by controlling the phase and frequency of the voltage of each phase winding with an inverter, the technology to drive the induction motor with 2N poles in the low speed operation region and drive it with the N poles in the high speed operation region was announced. Has been done. Literature: Six-phase absolute conversion rotation dq axis analysis of pole switching induction motors for electric vehicles, Mizuno et al., Institute of Electrical Engineers, Rotating Machinery Research Society, published October 3, 1994.

【0005】例えばN=2とし、6相の固定子巻線構造
を有する誘導電動機に対しては、インバータにより供給
する電圧の位相と周波数を制御することにより、低速運
転領域では4極にして駆動し、高速運転領域では2極に
して駆動する。このとき、図3に示すように、2極運転
時の最大トルクは4極運転時の最大トルクの約2倍にな
る。このため、図3に示すような回転数ωnで極数切替
を行うと、負荷の要求トルクTに対して誘導電動機の最
大トルクT′に余裕ができ、4極のみで運転する場合に
比べて広範囲での定出力運転が可能になる。また、同一
回転数において運転する場合には、2極運転時の周波数
は4極運転時の周波数のほぼ1/2となるので、2極運
転に切り替えることにより、誘導電動機の損失低減やイ
ンバータの制御性向上が図れる。
For example, for an induction motor having a 6-phase stator winding structure with N = 2, by controlling the phase and frequency of the voltage supplied by an inverter, it is driven with 4 poles in the low speed operation region. However, in the high-speed operation area, the driving is performed with two poles. At this time, as shown in FIG. 3, the maximum torque during the 2-pole operation is about twice the maximum torque during the 4-pole operation. Therefore, when the number of poles is switched at the rotation speed ωn as shown in FIG. 3, the maximum torque T ′ of the induction motor has a margin with respect to the required torque T of the load, and compared with the case where only four poles are operated. Enables constant output operation over a wide range. In addition, when operating at the same number of revolutions, the frequency during 2-pole operation is almost half of the frequency during 4-pole operation. Therefore, switching to 2-pole operation reduces loss in the induction motor and inverter. Controllability can be improved.

【0006】誘導電動機の6相の固定子巻線構造の巻線
配置を例示すると図4のように表わすことができる。但
し、各巻線は、4極に対しては120°相帯でほぼ全節
巻、2極に対しては60°相帯で磁極ピッチのほぼ1/
2となる短節巻が施されているものとする。従って、2
極とするためには向い合う巻線が異極となる磁束を作る
ように電圧を加えれば良く、各相の電圧Va1 ,Vb1 ,V
c1 ,Vd1 ,Ve1 ,Vf1を次に示す[数1]のようにすれ
ば良い。また、4極とするためには向い合う巻線が同極
となる磁束を作るように電圧を加えれば良く、各相の電
圧Va2 ,Vb2 ,Vc2 ,Vd2 ,Ve2 ,Vf2を次に示す[数
2]のようにすれば良い。但し、式中で、V1m ,ω1,
φ1は2極運転時の相電圧最大値,電源角周波数,位相
角である。また、V2m ,ω2 ,φ2は4極運転時の相電
圧最大値,電源角周波数,位相角である。
An example of the winding arrangement of a 6-phase stator winding structure of an induction motor can be represented as shown in FIG. However, each winding is almost full-pitch winding in the 120 ° phase band for 4 poles and approximately 1/1 of the magnetic pole pitch in the 60 ° phase band for 2 poles.
It is assumed that there are 2 short-pitch windings. Therefore, 2
In order to make the poles, it is sufficient to apply a voltage so that the windings facing each other generate a magnetic flux, and the voltages Va1, Vb1, V of each phase are applied.
c1, Vd1, Ve1 and Vf1 may be set as shown in [Equation 1] below. Further, in order to have four poles, it is sufficient to apply a voltage so as to generate a magnetic flux so that the windings facing each other have the same pole. The voltages Va2, Vb2, Vc2, Vd2, Ve2, Vf2 of each phase are shown below. 2]. However, in the formula, V1m, ω1,
φ1 is the maximum value of the phase voltage, the power supply angular frequency, and the phase angle during the two-pole operation. Further, V2m, ω2, and φ2 are the maximum value of the phase voltage, the power source angular frequency, and the phase angle during the 4-pole operation.

【0007】[0007]

【数1】 [Equation 1]

【0008】[0008]

【数2】 [Equation 2]

【0009】図4に示す6相巻線にあっては、ベクトル
制御の観点から、2極の回転座標軸(d1−q1軸)と
4極の回転座標軸(二倍角d2−q2軸)とを用意し
て、これらのdq軸(二軸)による座標軸を検討する
と、次式[数3],[数4]が得られる。
In the 6-phase winding shown in FIG. 4, a two-pole rotating coordinate axis (d1-q1 axis) and a four-pole rotating coordinate axis (double angle d2-q2 axis) are prepared from the viewpoint of vector control. Then, when the coordinate axes based on these dq axes (two axes) are examined, the following equations [Equation 3] and [Equation 4] are obtained.

【0010】[0010]

【数3】 (Equation 3)

【0011】[0011]

【数4】 (Equation 4)

【0012】[数3]と[数4]の式中、添え字1は2
極機を、添え字2は4極機を示す。また、添え字sは固
定子(stator)即ち電機子の巻線に関するdq軸を、添
え字rは回転子(rotor )の巻線に関するdq軸を表わ
す。また、式中、2極のモータ定数にあっては、Rs1:
一次抵抗、Ls1:一次自己インダクタンス、Msr1 :相
互インダクタンス、Rr1:二次抵抗、Lr1:二次自己イ
ンダクタンス、Rm1:鉄損抵抗である。4極のモータ定
数にあっては、Rs2:一次抵抗、Ls2:一次自己インダ
クタンス、Msr2 :相互インダクタンス、Rr2:二次抵
抗、Lr2:二次自己インダクタンス、Rm2:鉄損抵抗で
ある。
In the formulas [3] and [4], the subscript 1 is 2
A pole machine is shown, and a subscript 2 shows a four pole machine. Further, the subscript s represents the dq axes related to the stator or armature winding, and the subscript r represents the dq axes related to the rotor winding. Further, in the formula, when the motor constant of 2 poles is used, Rs1:
Primary resistance, Ls1: primary self-inductance, Msr1: mutual inductance, Rr1: secondary resistance, Lr1: secondary self-inductance, Rm1: iron loss resistance. The four-pole motor constants are Rs2: primary resistance, Ls2: primary self-inductance, Msr2: mutual inductance, Rr2: secondary resistance, Lr2: secondary self-inductance, Rm2: iron loss resistance.

【0013】上記「数3」にあって2極運転での電機子
巻線側電圧Vds1 ,Vqs1 の式中において、ベクトル制
御が行われている時を考えると、 Idr1 =0、Iqr1 =(−Msr1 /Lr1)・Iqs1 が成立する。
Considering the time when vector control is performed in the formula of the armature winding side voltages Vds1 and Vqs1 in the two-pole operation in the above "Formula 3", Idr1 = 0, Iqr1 = (- Msr1 / Lr1) .Iqs1 is established.

【0014】更に、鉄損抵抗をRm1=Rm2=0として無
視すると、上述の電圧Vds1 ,Vqs1 は次式[数5]と
なる。[数4]における4極運転での電機子巻線側電圧
Vds2 ,Vqs2 の式中でも、ベクトル制御が行われてい
る場合は同様に、Idr2 =0、Iqr2 =(−Msr2 /L
r2)・Iqs2 が成立するので、これらの電圧Vds2 ,V
qs2 も次式[数5]となる。
Further, ignoring the iron loss resistance as Rm1 = Rm2 = 0, the above-mentioned voltages Vds1 and Vqs1 are given by the following equation [Equation 5]. Even in the equations of the armature winding side voltages Vds2 and Vqs2 in the four-pole operation in [Equation 4], Idr2 = 0 and Iqr2 = (-Msr2 / L) similarly when vector control is performed.
r2) · Iqs2 holds, so these voltages Vds2, V
qs2 is also the following expression [Equation 5].

【0015】[0015]

【数5】 (Equation 5)

【0016】結果的に電機子巻線側電圧を、2極運転時
には次式[数6]のVds1 ,Vqs1の如く制御し、4極
運転時には次式[数7]のVds2 ,Vqs2 の如く制御す
れば良い。
As a result, the armature winding side voltage is controlled as in the following equation [Equation 6] Vds1 and Vqs1 during 2-pole operation, and as in the following equation [Equation 7] Vds2 and Vqs2 during 4-pole operation. Just do it.

【0017】[0017]

【数6】 (Equation 6)

【0018】[0018]

【数7】 (Equation 7)

【0019】結局、ベクトル制御演算において、速度指
令等からトルク指令を求め、このトルク指令から[数
3]に示した励磁電流指令Ids1 ,トルク電流指令Iqs
1 を求め、このd軸,q軸の電流指令Ids1 ,Iqs1 か
ら[数6]に示したd軸,q軸の電圧指令Vds1 ,Vqs
1 を求め、この電圧指令から[数1]に示した各相交流
電圧Va1 ,Vb1 ,Vc1 ,Vd1 ,Ve1 ,Vf1を求めて、こ
の各相交流電圧をインバータにより誘導電動機に供給す
ることにより2極運転を行うことができる。同様に、ベ
クトル制御演算において、速度指令等からトルク指令を
求め、このトルク指令から[数4]に示したd軸,q軸
の電流指令Ids2 ,Iqs2 を求め、この電流指令から
[数7]に示したd軸,q軸の電圧指令Vds2 ,Vqs2
を求め、この電圧指令から[数2]に示した各相交流電
圧Va2 ,Vb2 ,Vc2 ,Vd2 ,Ve2 ,Vf2を求めて、この
各相交流電圧をインバータにより誘導電動機に供給する
ことにより4極運転を行うことができる。
After all, in the vector control calculation, the torque command is obtained from the speed command or the like, and the exciting current command Ids1 and torque current command Iqs shown in [Equation 3] are obtained from the torque command.
1 is calculated, and the d-axis and q-axis voltage commands Vds1 and Vqs shown in [Equation 6] are calculated from the d-axis and q-axis current commands Ids1 and Iqs1.
1 is obtained, AC voltages Va1, Vb1, Vc1, Vd1, Ve1 and Vf1 of each phase shown in [Equation 1] are calculated from this voltage command, and the AC voltage of each phase is supplied to the induction motor by the inverter. Polar operation can be performed. Similarly, in the vector control calculation, the torque command is obtained from the speed command, etc., and the d-axis and q-axis current commands Ids2 and Iqs2 shown in [Equation 4] are obtained from this torque command, and the [Equation 7] is obtained from this current command. D-axis and q-axis voltage commands Vds2 and Vqs2 shown in
Then, the AC voltage Va2, Vb2, Vc2, Vd2, Ve2, Vf2 of each phase shown in [Equation 2] is calculated from this voltage command, and the AC voltage of each phase is supplied to the induction motor by an inverter to obtain four poles. You can drive.

【0020】上述したような誘導電動機の各相巻線の電
圧の位相と周波数を切り替えることにより極数切替を行
う技術を、電気自動車に適用した場合の極性切替電動機
の運転制御装置の構成例を、図5を参照して説明する。
An example of the configuration of the operation control device for the polarity switching motor when the technology for switching the number of poles by switching the phase and frequency of the voltage of each phase winding of the induction motor as described above is applied to an electric vehicle , Will be described with reference to FIG.

【0021】図5において、誘導電動機1は図4に例示
した6相の固定子巻線構造を有する極数切替誘導電動機
(PCIM:ポールチェンジ・インダクションモータ)
であり、3相の固定子巻線を2個(N=2)備えたのと
等価であって、4極と2極との間で極数切替を行うこと
ができる。この誘導電動機1の回転子には回転数センサ
5が結合されており、誘導電動機1の実速度(実際のモ
ータ回転数)ωrを検出する。また、誘導電動機1の各
相に流れる電流Ia,Ib,Ic,Id,Ie,Ifを
検出するように電流検出器6が設けられている。本例で
は、電気自動車を想定し、バッテリ−3を電源に用いて
いる。
In FIG. 5, the induction motor 1 is a pole number switching induction motor (PCIM: pole change induction motor) having the six-phase stator winding structure illustrated in FIG.
Is equivalent to having two three-phase stator windings (N = 2), and the number of poles can be switched between four poles and two poles. A rotation speed sensor 5 is coupled to the rotor of the induction motor 1 and detects the actual speed (actual motor rotation speed) ωr of the induction motor 1. A current detector 6 is provided so as to detect the currents Ia, Ib, Ic, Id, Ie, If flowing in each phase of the induction motor 1. In this example, an electric vehicle is assumed and battery-3 is used as a power source.

【0022】図5に例示した運転制御装置は、ヒステリ
シスコンパレータ10と、指令演算部11と、電流制御
部12と、インバータ駆動用の座標変換部13と、6相
のインバータ14と、電流フィードバック用の座標変換
部15とを有している。図中の符号で右肩に*印を付し
たものは各種指令であることを示す。
The operation control device illustrated in FIG. 5 includes a hysteresis comparator 10, a command calculation unit 11, a current control unit 12, a coordinate conversion unit 13 for driving an inverter, a six-phase inverter 14, and a current feedback unit. The coordinate conversion unit 15 of FIG. The symbols in the figure with * on the right shoulder indicate various commands.

【0023】ヒステリシスコンパレータ10は、例えば
2極から4極又はその逆の切替指令を出力するもので、
モータ回転数ωrと切替回転数とを比較し、2極から4
極又は4極から2極への切替え時ヒステリシスを持たせ
て切替え指令を出力しており、所定回転数での切替えの
チャタリングを防止するものである。そして、このヒス
テリシスコンパレータ10の切替指令によって切替制御
が行われることになる。
The hysteresis comparator 10 outputs a switching command of, for example, 2 poles to 4 poles or vice versa.
The motor rotation speed ωr is compared with the switching rotation speed, and from 2 poles to 4
The switching command is output with a hysteresis when switching from the four poles to the four poles to prevent chattering of switching at a predetermined rotation speed. Then, the switching control is performed by the switching command of the hysteresis comparator 10.

【0024】指令演算部11は新たなトルク指令T*'と
誘導電動機1の実速度ωrを入力して、ベクトル制御に
必要なトルク電流指令(q軸)と励磁電流指令(d軸)
と電源角周波数指令とを求めて出力するルートを2極用
と4極用の2系統有し、ヒステリシスコンパレータ10
の出力指令による極数切替期間ではトルク電流指令と励
磁電流指令とを一方の系統では徐々に立上げて出力し、
他方の系統では徐々に立下げて出力する。
The command calculation unit 11 inputs a new torque command T * 'and the actual speed ωr of the induction motor 1 to generate a torque current command (q axis) and an exciting current command (d axis) necessary for vector control.
The hysteresis comparator 10 has two routes, one for a two-pole and one for a four-pole for obtaining and outputting the
During the pole number switching period by the output command of, the torque current command and the excitation current command are gradually raised and output in one system,
The other system gradually drops and outputs.

【0025】指令演算部11の具体的例の構成をあげる
と図6に示すものがあり、2極用系統は電流指令演算部
11a1と、割算部11b1と、係数部11c1と、実角周波
数算出部11d1と、加算部11e1からなり、4極用系統
は電流指令演算部11a2と、割算部11b2と、係数部1
1c2と、実角周波数算出部11d2と、加算部11e2から
なる。そして、この2極用系統と4極用系統は、図5に
示すヒステリシスコンパレータ10からの切替指令にて
切替えられる。
A specific example of the configuration of the command calculation unit 11 is shown in FIG. 6. The two-pole system has a current command calculation unit 11a1, a division unit 11b1, a coefficient unit 11c1, and a real angular frequency. The 4-pole system includes a current command calculation unit 11a2, a division unit 11b2, and a coefficient unit 1 that includes a calculation unit 11d1 and an addition unit 11e1.
1c2, a real angular frequency calculation unit 11d2, and an addition unit 11e2. The 2-pole system and 4-pole system are switched by a switching command from the hysteresis comparator 10 shown in FIG.

【0026】まず、2極系統について説明すると、モー
タ軸トルクはトルク電流と励磁電流の積に比例すること
から、電流指令演算部11a1は基本的には、トルク指令
*'とモータ実速度ωrと2極運転時のモータ定数(R
s1 ,Ls1 ,Msr1 ,Rr1 ,Lr1 ,Rm1)を用いて、前述
の[数3]よりトルク指令T*'に対応する2極運転用の
トルク電流指令Iqs1*と、励磁電流指令Ids1*を求め
る。このトルク電流指令Iqs1*を割算部11b1にて励磁
電流指令Ids1*で割り、その商に係数部11c1にてRr1
/Lr1を掛けることにより、トルク指令T*'を満たす2
極運転時のすべり角周波数指令ωs1* を求める。一方、
実角周波数算出部11d1により、モータ実速度ωrに極
対数P1 (=1)を加味して2極運転時の実角周波数を
求める。そして、加算部11e1により、実角周波数にす
べり角周波数指令ωs1* を加えて、2極運転時の電源角
周波数指令ω1* を求める。
First, the two-pole system will be described. Since the motor shaft torque is proportional to the product of the torque current and the exciting current, the current command calculation unit 11a1 basically controls the torque command T * 'and the actual motor speed ωr. And the motor constant (R
s1, Ls1, Msr1, Rr1, Lr1, Rm1) is used to obtain the torque current command Iqs1 * for two-pole operation and the exciting current command Ids1 * corresponding to the torque command T * 'from [Equation 3] above. . This torque current command Iqs1 * is divided by the exciting current command Ids1 * in the division unit 11b1, and the quotient is Rr1 in the coefficient unit 11c1.
Multiply / Lr1 to satisfy torque command T * '2
Obtain the slip angular frequency command ωs1 * during polar operation. on the other hand,
The real angular frequency calculation unit 11d1 calculates the real angular frequency during the two-pole operation by adding the pole pair number P 1 (= 1) to the motor actual speed ωr. Then, the adder 11e1 adds the slip angular frequency command ωs1 * to the real angular frequency to obtain the power supply angular frequency command ω1 * during the two-pole operation.

【0027】次に、4極系統について説明すると、電流
指令演算部11a2は基本的には、トルク指令T*'とモー
タ実速度ωrと4極運転時のモータ定数(Rs2 ,Ls2 ,
Msr2 ,Rr2 ,Lr2 ,Rm2)を用いて、前述の[数4]
よりトルク指令T*'に対応する4極運転用のトルク電流
指令Iqs2*と、励磁電流指令Ids2*を求める。このトル
ク電流指令Iqs2*を割算部11b2にて励磁電流指令Ids
2*で割り、その商に係数部11c2にてRr2/Lr2を掛け
ることにより、トルク指令T*'を満たす4極運転時のす
べり角周波数指令ωs2* を求める。一方、実角周波数算
出部11d2により、モータ実速度ωrに極対数P2 (=
2)を加味して4極運転時の実角周波数を求める。そし
て、加算部11e2により、実角周波数にすべり角周波数
指令ωs2 * を加えて、4極運転時の電源角周波数指令ω
* を求める。
Next, the 4-pole system will be explained.
The command calculation unit 11a2 basically has a torque command T*'And Mo
Actual speed ωr and motor constants (Rs2, Ls2,
Msr2, Rr2, Lr2, Rm2), using the above [Equation 4]
Torque command T*'Corresponding to the torque current for 4-pole operation
Command Iqs2*And the excitation current command Ids2*Ask for. This tor
Current command Iqs2*The exciting current command Ids is calculated by the division unit 11b2.
Two*Divide by and multiply the quotient by Rr2 / Lr2 in coefficient part 11c2
The torque command T*'In four pole operation
Slip angular frequency command ωs2*Ask for. On the other hand, real angle frequency calculation
By the output part 11d2, the number of pole pairs P is added to the actual motor speed ωr.Two(=
2) is taken into consideration to find the real angular frequency during 4-pole operation. Soshi
Then, the addition unit 11e2 changes the slip angular frequency to the real angular frequency.
Command ωs2 *Power source angular frequency command ω during 4-pole operation
2*Ask for.

【0028】更に、2極系統の電流指令演算部11a1と
4極系統の電流指令演算部11a2では、極数切替期間中
は、モータ軸トルクをトルク指令T*'通りに保つよう
に、極数切替方向に応じて一方が電流指令を徐々に立上
げ、他方が電流指令を徐々に立下げる。具体的には、誘
導電動機1の2極運転時の二次時定数Tr1を用いて、回
転数上昇時に4極から2極に切替える場合は、[数8]
に示す関係で2極運転用のトルク電流指令Iqs1*と励磁
電流指令Ids1*を徐々に立上げ、4極運転用のトルク電
流指令Iqs2*と励磁電流指令Iqs2*は徐々に立下げる。
[数8]中の記号tは時間を表わす。また、回転数下降
時に2極から4極に切替える場合は、[数9]に示す関
係で4極運転用のトルク電流指令Iqs2*と励磁電流指令
Ids2*を徐々に立上げ、2極運転用のトルク電流指令I
qs1*と励磁電流指令Ids1*は徐々に立下げる。[数9]
中の記号tも時間を表わす。
Further, in the two-pole system current command calculation unit 11a1 and the four-pole system current command calculation unit 11a2, the number of poles is maintained so that the motor shaft torque is maintained as the torque command T * 'during the number of poles switching period. According to the switching direction, one gradually raises the current command and the other gradually lowers the current command. Specifically, using the secondary time constant Tr1 when the induction motor 1 operates in two poles, when switching from four poles to two poles when the rotation speed increases, [Equation 8]
Gradually the torque current command for the 2-pole operation IQs1 * excitation current command Ids1 * with the relationship shown in commissioning, the torque current command for quadrupole operation IQs2 * and the excitation current command IQs2 * lowers gradually falling.
The symbol t in [Equation 8] represents time. When switching from 2 poles to 4 poles when the rotation speed is decreasing, the torque current command Iqs2 * and the excitation current command Ids2 * for 4-pole operation are gradually raised in accordance with the relationship shown in [Equation 9]. Torque current command I
qs1 * and the exciting current command Ids1 * gradually fall. [Equation 9]
The symbol t inside also represents time.

【0029】[0029]

【数8】 (Equation 8)

【0030】[0030]

【数9】 [Equation 9]

【0031】以下に、前式[数8]、[数9]について
説明する。一般に、同一の誘導電動機をN極と2N極
(Nは偶数)との間で切替える場合、N極時の二次時定
数Tr1は2N極時の二次時定数Tr2に比べて4倍近く長
い。今、回転数上昇時に2N極からN極に極数を切替え
るとして、N極用励磁電流指令Ids1*をその定格値にス
テップ状に変化させると、この励磁電流指令に基づく磁
束Φr1は次式のようにN極時の二次時定数Tr1にて一次
遅れの立上りとなる。 Φr1=Φr1*(1−e(-t/Tr1)) 従って、切替初期時には磁束が略ゼロとなるため、トル
ク電流をステップ状に立上げるとトルクに振動が生じ
る。そこで、トルク電流指令Iqs1*も磁束Φr1の応答と
同様に、N極時の二次時定数Tr1により次式のように一
次遅れの立上りとする。 Iqs1*∝1−e(-t/Tr1) この結果、N極運転で発生するモータ軸トルクT1は、
トルク指令T*' に対し、次式で示すような二次遅れの
立上りとなる。 T1=T*'(1−e(-t/Tr1))2 この時のトルク不足分を2N極運転で補償するには、2
N極運転で発生すべきモータ軸トルクT2を、次式で示
すように次第に下げる必要がある。 T2=T*'−T1 =T*'(2e−(-t/Tr1)−e(-2t/Tr1)) そこで、このトルクT2を発生させる2N極運転用のト
ルク電流指令Iqs2*と励磁電流指令Ids2*を、トルク電
流と励磁電流の比が一定となることを条件に求めれば良
い。つまり、[数8]に示すような関係でこれらの電流
指令Ids2*,Iqs2*をそれぞれ極数切替時の定格値から
次第に立下げる。この場合、2N極運転での二次時定数
はTr1に比べて小さいから、何の問題はない。なお、N
極側のトルクが十分立上ったら、2N極側の電流制御を
停止する。また、励磁電流の最小値は制御の安定性を考
慮して定格値の20%程度とする。
The above equations [Equation 8] and [Equation 9] will be described below. Generally, when the same induction motor is switched between N pole and 2N pole (N is an even number), the secondary time constant Tr1 at the N pole is nearly four times longer than the secondary time constant Tr2 at the 2N pole. . Now, assuming that the number of poles is switched from the 2N pole to the N pole when the number of revolutions increases, and the N pole exciting current command Ids1 * is changed stepwise to its rated value, the magnetic flux Φr1 based on this exciting current command is Thus, the first-order lag rises at the second-order time constant Tr1 at the N pole. .PHI.r1 = .PHI.r1 * (1-e (-t / Tr1) ) Therefore, since the magnetic flux becomes substantially zero in the initial stage of switching, when the torque current is stepped up, the torque vibrates. Therefore, similarly to the response of the magnetic flux Φr1, the torque current command Iqs1 * is also made to rise with a first-order lag as shown in the following equation by the secondary time constant Tr1 at the time of the N pole. Iqs1 * ∝1-e (-t / Tr1) As a result, the motor shaft torque T1 generated in N pole operation is
A second-order lag rises with respect to the torque command T * 'as shown in the following equation. T1 = T * '(1-e (-t / Tr1) ) 2 To compensate for the torque shortage at this time by 2N pole operation, 2
It is necessary to gradually reduce the motor shaft torque T2 that should be generated in the N pole operation as shown by the following equation. T2 = T * '-T1 = T * ' ( 2e- (-t / Tr1) -e (-2t / Tr1) ) Then, the torque current command Iqs2 * and the exciting current for 2N pole operation that generate this torque T2. The command Ids2 * may be obtained on the condition that the ratio of the torque current and the exciting current is constant. That is, these current commands Ids2 * and Iqs2 * are gradually lowered from the rated values when the number of poles is switched, in the relationship shown in [Equation 8]. In this case, since the secondary time constant in 2N pole operation is smaller than Tr1, there is no problem. Note that N
When the torque on the pole side rises sufficiently, the current control on the 2N pole side is stopped. Further, the minimum value of the exciting current is set to about 20% of the rated value in consideration of control stability.

【0032】他方、回転数下降時にN極から2N極に極
数を切替える場合に、N極運転用の励磁電流指令を切替
瞬時にゼロにすると、この時の磁束Φr1の応答もN極時
の二次時定数Tr1により一次遅れの立下りとなる。 Φr1=Φr1*・e(-t/Tr1) そこで、N極運転用のトルク電流指令Iqs1*もN極時の
二次時定数Tr1により一次遅れで立下げる。これによ
り、2極運転によるモータ軸トルクT1は次式で示すよ
うな二次遅れの立下りとなる。 T1=T*'・e(-2t/Tr1) この時のトルク不足分を、4極運転のトルクT2で補償
するには、次式で示すように立上げる必要がある。 T2=T*'−T1 =T*'(1−e(-2t/Tr1)) そこで、このトルクT2を発生させる2N極運転用のト
ルク電流指令Iqs2*と励磁電流指令Ids2*を、トルク電
流と励磁電流の比が一定となることを条件に求めれば良
い。つまり、[数9]に示すような関係でこれらの電流
指令Ids2* ,Iqs2*をそれぞれ極数切替時の定格値か
ら次第に立上げる。この場合も、2N極運転での二次時
定数はTr1に比べて小さいから、何の問題はない。な
お、2N極側のトルクが十分立上ったら、N極側の電流
制御を停止する。また、励磁電流の最小値は制御の安定
性を考慮して定格値の20%程度とする。
On the other hand, when the number of poles is switched from the N pole to the 2N pole when the number of revolutions is decreased, if the exciting current command for N pole operation is instantly switched to zero, the response of the magnetic flux Φr1 at this time is also that of the N pole. Due to the secondary time constant Tr1, the trailing edge is delayed by the primary delay. Φr1 = Φr1 * · e (-t / Tr1) Therefore, the torque current command Iqs1 * for N-pole operation is also delayed by the first-order lag due to the secondary time constant Tr1 at the N-pole. As a result, the motor shaft torque T1 due to the two-pole operation becomes the trailing edge of the secondary delay as shown by the following equation. T1 = T * '· e (-2t / Tr1) In order to compensate the torque shortage at this time with the torque T2 of the 4-pole operation, it is necessary to start up as shown by the following equation. T2 = T * '-T1 = T * ' (1-e (-2t / Tr1) ) Then, the torque current command Iqs2 * and the exciting current command Ids2 * for the 2N pole operation that generate the torque T2 are set to the torque current. It suffices to obtain it on the condition that the ratio of the exciting current to be constant is constant. That is, these current commands Ids2 * and Iqs2 * are gradually raised from the rated values when the number of poles is switched, in the relationship as shown in [Equation 9]. In this case as well, there is no problem because the secondary time constant in 2N pole operation is smaller than Tr1. When the torque on the 2 N pole side has risen sufficiently, the current control on the N pole side is stopped. Further, the minimum value of the exciting current is set to about 20% of the rated value in consideration of control stability.

【0033】電流制御部12は2極用電流制御系121
と4極用電流制御系122からなり、指令演算部11が
出力する2系統の指令から各系統のd軸及びq軸の電圧
指令を生成し、インバータ駆動用の座標変換部13に与
える。
The current controller 12 is a two-pole current control system 121.
And the 4-pole current control system 122, the d-axis and q-axis voltage commands of each system are generated from the two-system commands output from the command calculation unit 11, and the voltage commands are supplied to the inverter-driving coordinate conversion unit 13.

【0034】2極用電流制御系121は、指令演算部1
1から与えられる2極運転用のd軸電流指令(励磁電流
指令)Ids1*、q軸電流指令(トルク電流指令)Iqs1*
及び電源角周波数指令ω1* 、並びに座標変換部15か
らフィードバックされる2極運転でのd軸電流(励磁電
流)検出値Ids1 及びq軸電流(トルク電流)検出値I
qs1 を入力して、これらからIds1 =Ids1*、Iqs1 =
Iqs1*とするに必要なd軸及びq軸の電圧指令Vds1*
Vqs1*をPI制御、非干渉PI制御、IP制御、非干渉
IP制御などにより生成し、インバータ駆動用の座標変
換部13に与える。
The two-pole current control system 121 includes a command calculation unit 1
D-axis current command (excitation current command) Ids1 * and q-axis current command (torque current command) Iqs1 * for 2-pole operation given from 1
And the power source angular frequency command ω1 * , and the d-axis current (excitation current) detection value Ids1 and the q-axis current (torque current) detection value I in the two-pole operation fed back from the coordinate conversion unit 15.
Enter qs1 and from these Ids1 = Ids1 * , Iqs1 =
IQs1 * and the voltage command of the d-axis and q-axis required to Vds1 *,
Vqs1 * is generated by PI control, non-interference PI control, IP control, non-interference IP control, etc., and given to the coordinate conversion unit 13 for driving the inverter.

【0035】同様に、4極用電流制御系122は、指令
演算部11から与えられる4極運転用のd軸電流指令
(励磁電流指令)Ids2*、q軸電流指令(トルク電流指
令)Iqs2*及び電源角周波数指令ω2* 、並びに座標変
換部15からフィードバックされる4極運転でのd軸電
流(励磁電流)検出値Ids2 及びq軸電流(トルク電
流)検出値Iqs2 を入力して、これらからIds2 =Ids
2*,Iqs2 =Iqs2*とするに必要なd軸及びq軸の電圧
指令Vds2*,Vqs2*をPI制御、非干渉PI制御、IP
制御、非干渉IP制御などにより生成し、インバータ駆
動用の座標変換部13に与える。
Similarly, the 4-pole current control system 122 receives the d-axis current command (excitation current command) Ids2 * and the q-axis current command (torque current command) Iqs2 * for the 4-pole operation given from the command calculator 11 . And the power source angular frequency command ω2 * , the d-axis current (excitation current) detection value Ids2 and the q-axis current (torque current) detection value Iqs2 in the 4-pole operation fed back from the coordinate conversion unit 15, and input from these. Ids2 = Ids
2 *, Iqs2 = Iqs2 * and the voltage command of the d-axis and q-axis required to Vds2 *, Vqs2 * PI control, non-interference PI control, IP
It is generated by control, non-interference IP control or the like, and given to the coordinate conversion unit 13 for driving the inverter.

【0036】ここで、電流フィードバック用の座標変換
部15は、電流検出器6で検出された誘導電動機1の6
相の各電流値Ia〜Ifを、2極運転での回転子位置角
θ1に基づいて2極運転での励磁電流Ids1 とトルク電
流Iqs1 に変換し、また、4極運転での回転子位置角θ
2に基づいて4極運転での励磁電流Ids2 とトルク電流
Iqs2 に変換することにより、これらIds1 ,Iqs1 ,
Ids2 及びIqs2 をフィードバック用電流検出値とす
る。
Here, the coordinate conversion unit 15 for current feedback uses the 6 of the induction motor 1 detected by the current detector 6.
The current values Ia to If of the phases are converted into the exciting current Ids1 and the torque current Iqs1 in the two-pole operation based on the rotor position angle θ1 in the two-pole operation, and the rotor position angle in the four-pole operation. θ
By converting into the exciting current Ids2 and the torque current Iqs2 in the 4-pole operation based on 2, Ids1, Iqs1,
Let Ids2 and Iqs2 be feedback current detection values.

【0037】回転子位置角θ1,θ2を検出する部分1
6には2極用として積分部16a1と加算部16b1と実角
周波数算出部16c1があり、4極用に積分部16a2と加
算部16b2と実角周波数算出部16c2がある。そして、
各極数毎に、モータ実速度ωrに極対数(2極ではP1
=1、4極ではP2=2)を加味して誘導電動機1の実
角周波数を求め、これにすべり角周波数(ωs1,ωs2)
を加えたものを積分することにより、θ1及びθ2を求
める。なお、指令演算部11が生成した電源角周波数指
令ω1* ,ω2* を直接積分しても良い。
Part 1 for detecting rotor position angles θ1 and θ2
6 includes an integrating unit 16a1, an adding unit 16b1, and a real angular frequency calculating unit 16c1 for two poles, and an integrating unit 16a2, an adding unit 16b2, and a real angular frequency calculating unit 16c2 for four poles. And
For each pole number, the actual motor speed ωr has the number of pole pairs (for two poles, P 1
= 1, 4 poles, P 2 = 2) is added to obtain the real angular frequency of the induction motor 1, and the slip angular frequency (ωs1, ωs2)
Θ1 and θ2 are obtained by integrating the value obtained by adding. The power source angular frequency commands ω1 * and ω2 * generated by the command calculator 11 may be directly integrated.

【0038】インバータ駆動用の座標変換部13は、2
極運転用のd軸電圧指令Vds1*とq軸電圧指令Vqs1*
電源角周波数指令ω1* と回転子位置角θ1とを用い
て、これらの電圧指令Vds1*,Vqs1*を2極運転用の6
相の交流電圧指令に変換し、また4極運転用のd軸電圧
指令Vds2*とq軸電圧指令Vqs2*と電源角周波数指令ω
* と回転子位置角θ2とを用いて、これらの電圧指令
Vds2*,Vqs2*を4極運転用の6相の交流電圧指令に変
換する。
The coordinate conversion unit 13 for driving the inverter has two
By using the electrode operation d-axis voltage command for Vds1 * and q-axis voltage command Vqs1 * and the power source angular frequency command .omega.1 * and the rotor position angle .theta.1, these voltage commands Vds1 *, for two-pole driving Vqs1 * 6
Phase AC voltage command, and d-axis voltage command Vds2 * , q-axis voltage command Vqs2 * and power source angular frequency command ω for 4-pole operation
By using 2 * and the rotor position angle θ2, these voltage commands Vds2 * , Vqs2 * are converted into 6-phase AC voltage commands for 4-pole operation.

【0039】但し、座標変換部13がインバータ14に
与える6相の交流電圧指令Va* ,Vb* ,Vc* ,V
* ,Ve* ,Vf* は、2極のみの運転時には2極運
転用の変換で得た6相の交流電圧指令に等しく、4極の
みの運転時には4極運転用の変換で得た6相の交流電圧
指令に等しいが、極数切替期間中はこれら2極用と4極
用の各6相の交流電圧指令が合成されたものとなる。
However, the six-phase AC voltage commands Va * , Vb * , Vc * , V given by the coordinate conversion unit 13 to the inverter 14 are given.
d * , Ve * , and Vf * are equal to the 6-phase AC voltage command obtained by the conversion for 2-pole operation when only 2 poles are operated, and 6 obtained when converted for 4-pole operation when only 4 poles are operated. Although equal to the AC voltage command for each phase, the AC voltage commands for each of the two phases and the four phases for the six poles are combined during the pole number switching period.

【0040】インバータ14は1台の6相インバータ、
または2台の3相インバータで構成されており、座標変
換部13から与えられる6相の交流電圧指令Va* 〜V
*に応じた相電圧最大値と位相と周波数を持つ6相交
流電圧を出力し、誘導電動機1を駆動する。
The inverter 14 is one 6-phase inverter,
Alternatively, it is composed of two three-phase inverters, and the six-phase AC voltage commands Va * to V are given from the coordinate conversion unit 13.
The induction motor 1 is driven by outputting a 6-phase AC voltage having the maximum value of phase voltage, phase and frequency according to f * .

【0041】以上の構成により、モータ回転数が極数切
替回転数(基底回転数の2倍程度)以下の低速運転領域
では、誘導電動機1を4極にして駆動し、極数切替回転
数以上の高速運転領域では、誘導電動機1を2極にして
駆動し、極数切替期間では4極駆動と2極駆動を併用し
極数切替方向に応じて一方から他方へ徐々に切替えるこ
とになる。
With the above configuration, the induction motor 1 is driven with four poles in a low speed operation region where the motor rotation speed is equal to or lower than the pole number switching rotation number (about twice the base rotation number), and the pole number switching rotation number or more is set. In the high speed operation region, the induction motor 1 is driven with two poles, and in the pole number switching period, four pole driving and two pole driving are used in combination and gradually switched from one to the other in accordance with the pole number switching direction.

【0042】[0042]

【発明が解決しようとする課題】以上説明の如く従来提
案されているインバータを用いた誘導電動機制御にあっ
て、極数切替えによるトルク補償を行なうに際し、トル
ク変動を抑える切替法が2極電流指令と4極電流指令と
の間で互いに徐々に立上げつつ立下げることにより行な
える。この場合、インバータ14の出力電圧波形すなわ
ち誘導電動機の端子電圧波形は、図7(a)に示すよう
に極数切替の前後とは異なり4極と2極との各電圧成分
の合成波形となるので、極数切替期間Aでは極数切替期
間以外Bよりも高電圧が出力されることになる。
As described above, in the conventionally proposed induction motor control using the inverter, when performing torque compensation by switching the number of poles, a switching method for suppressing torque fluctuation is a two-pole current command. And the quadrupole current command can be performed by gradually raising and lowering each other. In this case, the output voltage waveform of the inverter 14, that is, the terminal voltage waveform of the induction motor is a composite waveform of each voltage component of 4 poles and 2 poles before and after switching the number of poles as shown in FIG. 7A. Therefore, in the pole number switching period A, a voltage higher than that in B is output except during the pole number switching period.

【0043】他方、前述の従来説明の如く誘導電動機や
インバータの小型化を図るうえから、最大トルクを出力
したときのモータ端子電圧はインバータ出力可能電圧に
近い値に設定される。ここにおいて、極数切替期間中が
軽負荷時の場合インバータ出力電圧が増大しても出力可
能電圧までに余裕があって上限値より小さく、モータト
ルクの変動なく切替えが可能であるが、重負荷時の場合
にはインバータ出力可能電圧まで余裕がなくインバータ
出力電圧は上限値で規制されてしまい、出力電圧が飽和
して図7(b)に示すように出力トルクが変動(低下)
する。かかるトルクの変動は、電気自動車に応用した場
合の運転者に不快感を与える。
On the other hand, in order to reduce the size of the induction motor and the inverter as described above, the motor terminal voltage when the maximum torque is output is set to a value close to the inverter output voltage. Here, when the number of poles is lightly loaded during the period of switching the number of poles, even if the inverter output voltage increases, there is a margin to the voltage that can be output and the output voltage is smaller than the upper limit value. In this case, there is no margin for the inverter output voltage, and the inverter output voltage is regulated by the upper limit value, and the output voltage is saturated and the output torque fluctuates (decreases) as shown in FIG. 7B.
I do. Such a torque fluctuation gives a driver discomfort when applied to an electric vehicle.

【0044】本発明は、例えば基底回転数の2倍程度の
切替回転数の場合にインバータ出力可能電圧の余裕が少
ないことに基因する出力トルク変動を防止し、電気自動
車に適用して運転者の不快感を除去する極数切替電動機
の運転制御装置を提供する。
The present invention prevents the output torque fluctuation due to a small margin of the inverter output voltage when the switching speed is, for example, about twice the basic speed, and is applied to an electric vehicle to reduce the driver's output. (EN) Provided is an operation control device for a pole number switching electric motor which eliminates discomfort.

【0045】[0045]

【課題を解決するための手段】上述の目的を達成する本
発明は次のように特定される。トルク指令、極数切替指
令、及び検出回転数を指令演算部に入力してトルク電流
と励磁電流とを生成し、上記指令演算部の電流出力を電
流制御系に入力して電圧を生成し、上記電流制御系の出
力を座標変換してインバータに入力し極数切替電動機を
制御する運転制御装置において、アクセルペダル踏み込
み量を上記トルク指令とし、上記アクセルペダル踏み込
み量を基準値と比較するトルクヒステリシスコンパレー
タと検出回転数と基準値とを比較して切替出力を得る回
転数ヒステリシスコンパレータと、この回転数ヒステリ
シスコンパレータによる切換出力後上記トルクヒステシ
スコンパレータによるアクセルペダル踏込み量が基準値
より小さくなったときの切替出力を上記指令演算部へ出
力する切替制限器と、を有することを特徴とする。
The present invention which achieves the above object is specified as follows. A torque command, a pole number switching command, and a detected rotation speed are input to a command calculation unit to generate a torque current and an exciting current, and the current output of the command calculation unit is input to a current control system to generate a voltage, In an operation control device for converting the output of the current control system into coordinates and inputting it to an inverter to control the pole number switching motor, a torque hysteresis that compares the accelerator pedal depression amount with a reference value by using the accelerator pedal depression amount as the torque command. A rotation speed hysteresis comparator that obtains a switching output by comparing the detected rotation speed and a reference value with a comparator, and when the accelerator pedal depression amount by the torque hysteresis comparator after the switching output by this rotation speed hysteresis comparator becomes smaller than the reference value. A switching limiter that outputs the switching output of the above to the command calculation unit.

【0046】回転数による切替指令のみならずアクセル
ペダル踏込み量を加味して切替指令を出力することによ
り、電圧飽和なく極数切替が可能となる。
The number of poles can be switched without voltage saturation by outputting the switching command in consideration of the accelerator pedal depression amount as well as the switching command based on the rotation speed.

【0047】[0047]

【発明の実施の形態】以下、本発明の実施の形態を図1
を参照しつつ説明する。なお、図1において図6と同一
部分には同符号を付す。すなわち、10は極数切替回転
数によりヒステリシスを持たせて極数切替を行なうヒス
テリシスコンパレータ、11はトルク指令T*と電動機
実速度ωrとから2極又は4極用のトルク電流指令及び
励磁電流指令を作る指令演算部、12は2極用電流制御
軽121と4極用電流制御軽122からなり、指令演算
部11が出力する2系統の指令から各系統のd軸及びq
軸の電圧指令を生成する電流制御部、13はインバータ
駆動用座標変換部、14は6相インバータ、15は検出
電流からd軸及びq軸電流検出値を得るフィードバック
系での座標変換部である。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIG. In FIG. 1, the same parts as those in FIG. 6 are designated by the same reference numerals. That is, 10 is a hysteresis comparator for switching the number of poles by giving hysteresis depending on the number of poles switching rotation speed, and 11 is a torque current command and an excitation current command for two or four poles from the torque command T * and the actual motor speed ωr. Is composed of a current control light 121 for two poles and a current control light 122 for four poles. The two systems of commands output from the command computation unit 11 are used to output the d-axis and q of each system.
A current control unit that generates a voltage command for the axis, 13 is an inverter driving coordinate conversion unit, 14 is a 6-phase inverter, and 15 is a coordinate conversion unit in a feedback system that obtains the d-axis and q-axis current detection values from the detected current. .

【0048】本形態においては、指令演算部11に入力
されるトルク指令T*はアクセルペダル20の踏み込み
量換言すればアクセル開度信号にて得られるものであ
り、また極数切替指令は、実回転数ωrと切替回転数と
の比較に基づくヒステリシスコンパレータ10での切替
指令による。
In the present embodiment, the torque command T * input to the command calculator 11 is obtained by the depression amount of the accelerator pedal 20, in other words, the accelerator opening signal, and the pole number switching command is actually calculated. By the switching command in the hysteresis comparator 10 based on the comparison between the rotation speed ωr and the switching rotation speed.

【0049】本発明では、更にヒステリシスコンパレー
タ10の後段に切替制限器21が接続され、この切替制
限器21の入力としては、トルク指令を基準値と比較し
てヒステリシスを持たせて出力するヒステリシスコンパ
レータ22の出力を得ると共に、前述した回転数に基づ
くヒステリシスコンパレータ出力を得る。すなわち、ア
クセルペダル20の踏み込み量を極数切替条件として追
加したものである。
In the present invention, a switching limiter 21 is further connected to the latter stage of the hysteresis comparator 10, and the input of the switching limiter 21 is to compare the torque command with a reference value and output with hysteresis. The output of 22 and the output of the hysteresis comparator based on the rotational speed described above are obtained. That is, the depression amount of the accelerator pedal 20 is added as a pole number switching condition.

【0050】すなわち、ヒステリシスコンパレータ22
では、トルク指令基準値とアクセルペダル20の踏み込
み量とを比較するものであるが、チャタリングを防止す
べく基準値を越えて大きくなる時(方向)と基準値を越
えて小さくなる時(方向)とでヒステリシスを設けてい
る。
That is, the hysteresis comparator 22
Then, the torque command reference value and the depression amount of the accelerator pedal 20 are compared, but when the torque exceeds the reference value to prevent chattering (direction) and when it exceeds the reference value and decreases (direction). And have hysteresis.

【0051】切替制限器21は、切替回転数によるヒス
テリシスコンパレータ10の切替指令出力を条件として
切替指令を出力するものであるが、更にトルク指令に係
るヒステリシスコンパレータ22の出力が加味される。
すなわち、トルク指令が基準値よりも大きい場合アクセ
ルペダルが踏み込まれ出力電圧が高い状態であるので、
このまま極数を切替えた場合には電圧飽和によるトルク
ショックを伴なうこととなるが、アクセルペダルの踏み
込みすなわち高負荷出力を持続することが少ないという
特性のために、アクセルペダルの踏み込み量が少なくな
ったトルク指令が基準値より小さい場合に極数の切替え
を行なうようにて、電圧飽和のないトルクショックのな
い極数切替としたものである。
The switching limiter 21 outputs a switching command on the condition of the switching command output of the hysteresis comparator 10 depending on the switching speed, and the output of the hysteresis comparator 22 relating to the torque command is further added.
That is, when the torque command is larger than the reference value, the accelerator pedal is depressed and the output voltage is high.
If the number of poles is changed as it is, a torque shock due to voltage saturation will be accompanied, but due to the characteristic that the accelerator pedal is not depressed, that is, the high load output is not sustained, the accelerator pedal depression amount is small. The number of poles is switched when the resulting torque command is smaller than the reference value, so that the number of poles is switched without voltage saturation and without torque shock.

【0052】[0052]

【発明の効果】以上説明したように本発明によれば、極
数切替に際して回転数のみならずアクセルペダルをあま
り踏み込んでいない低電圧による切替えのためにトルク
ショックの無い極数切替が可能となる。
As described above, according to the present invention, it is possible to switch the number of poles without torque shock because the number of poles is switched not only by the number of revolutions but also by a low voltage that does not depress the accelerator pedal too much. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の制御ブロック図。FIG. 1 is a control block diagram according to an embodiment of the present invention.

【図2】回転数−トルク特性図。FIG. 2 is a rotational speed-torque characteristic diagram.

【図3】極数切替えの特性図。FIG. 3 is a characteristic diagram of switching the number of poles.

【図4】三相−六相の説明図。FIG. 4 is an explanatory diagram of three-phase to six-phase.

【図5】従来の制御ブロック図。FIG. 5 is a conventional control block diagram.

【図6】指令演算部のブロック図。FIG. 6 is a block diagram of a command calculation unit.

【図7】極数切換時の電圧波形、及びトルク波形図。FIG. 7 is a voltage waveform chart and a torque waveform chart when switching the number of poles.

【符号の説明】[Explanation of symbols]

10 ヒステリシスコンパレータ 11 指令演算部 12 電流制御系 13,15 座標変換部 14 インバータ 20 アクセルペダル 21 切替制限器 22 ヒステリシスコンパレータ 10 Hysteresis Comparator 11 Command Calculation Unit 12 Current Control System 13, 15 Coordinate Conversion Unit 14 Inverter 20 Accelerator Pedal 21 Switching Limiter 22 Hysteresis Comparator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トルク指令、極数切替指令、及び検出回
転数を指令演算部に入力してトルク電流と励磁電流とを
生成し、 上記指令演算部の電流出力を電流制御系に入力して電圧
を生成し、 上記電流制御系の出力を座標変換してインバータに入力
し極数切替電動機を制御する運転制御装置において、 アクセルペダル踏み込み量を上記トルク指令とし、上記
アクセルペダル踏み込み量を基準値と比較するトルクヒ
ステリシスコンパレータと、 検出回転数と基準値とを比較して切替出力を得る回転数
ヒステリシスコンパレータと、 この回転数ヒステリシスコンパレータによる切換出力後
上記トルクヒステシスコンパレータによるアクセルペダ
ル踏込み量が基準値より小さくなったときの切替出力を
上記指令演算部へ出力する切替制限器と、を有する極数
切替電動機の運転制御装置。
1. A torque command, a pole number switching command, and a detected rotation speed are input to a command calculation unit to generate a torque current and an exciting current, and the current output of the command calculation unit is input to a current control system. In an operation control device that generates voltage, converts the output of the current control system into coordinates, and inputs it to the inverter to control the pole number switching motor, the accelerator pedal depression amount is used as the torque command, and the accelerator pedal depression amount is used as a reference value. The torque hysteresis comparator to compare with the rotation speed hysteresis comparator that obtains the switching output by comparing the detected rotation speed with the reference value, and the switching amount output from this rotation speed hysteresis comparator after the switching output is based on the accelerator pedal depression amount by the torque hysteresis comparator. And a switching limiter that outputs the switching output when it becomes smaller than the value to the command calculation unit. Operation control device for a very few switching motor.
JP8016338A 1996-02-01 1996-02-01 Operation controller of pole change motor Withdrawn JPH09215115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016338A JPH09215115A (en) 1996-02-01 1996-02-01 Operation controller of pole change motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016338A JPH09215115A (en) 1996-02-01 1996-02-01 Operation controller of pole change motor

Publications (1)

Publication Number Publication Date
JPH09215115A true JPH09215115A (en) 1997-08-15

Family

ID=11913635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016338A Withdrawn JPH09215115A (en) 1996-02-01 1996-02-01 Operation controller of pole change motor

Country Status (1)

Country Link
JP (1) JPH09215115A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005122A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Motor controlling device of an electric vehicle and method thereof
KR100440122B1 (en) * 2001-10-11 2004-07-12 현대자동차주식회사 An apparatus for controlling motor of an electric vehicle and a method thereof
JP2010206926A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Control method of drive device for electric vehicle and the drive device for electric vehicle
JP2010206924A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
JP2010206927A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Motor control method for electric vehicle and drive device for the electric vehicle
JP2010206925A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
JP2010206923A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
KR101434100B1 (en) * 2013-01-31 2014-08-25 가부시키가이샤 야스카와덴키 Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
JP2018125958A (en) * 2017-01-31 2018-08-09 株式会社デンソー Control apparatus of pole change electric motor
JP2021532717A (en) * 2018-07-26 2021-11-25 ヴァレオ エキプマン エレクトリク モトゥール Rotating electric machine with optimized configuration

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440122B1 (en) * 2001-10-11 2004-07-12 현대자동차주식회사 An apparatus for controlling motor of an electric vehicle and a method thereof
KR20040005122A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Motor controlling device of an electric vehicle and method thereof
JP2010206926A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Control method of drive device for electric vehicle and the drive device for electric vehicle
JP2010206924A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
JP2010206927A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Motor control method for electric vehicle and drive device for the electric vehicle
JP2010206925A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
JP2010206923A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Method of controlling motor for electric vehicle, and drive device for electric vehicle
KR101434100B1 (en) * 2013-01-31 2014-08-25 가부시키가이샤 야스카와덴키 Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
JP2018125958A (en) * 2017-01-31 2018-08-09 株式会社デンソー Control apparatus of pole change electric motor
JP2021532717A (en) * 2018-07-26 2021-11-25 ヴァレオ エキプマン エレクトリク モトゥール Rotating electric machine with optimized configuration

Similar Documents

Publication Publication Date Title
JP4205157B1 (en) Electric motor control device
US6008616A (en) Pole change induction motor and control apparatus and method for the same
KR100666812B1 (en) Motor control apparatus
JPH09215115A (en) Operation controller of pole change motor
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JP3097610B2 (en) Induction machine variable speed drive
JP2014155254A (en) Motor controller
JP3796556B2 (en) Method and apparatus for controlling magnet-embedded synchronous motor
JPH09233899A (en) Number-of-pole changing and driving device for motor
JP2005287148A (en) Vector controller of winding field type synchronous machine
JPH09201093A (en) Operation control apparatus for variable pole motor
JP3229216B2 (en) Beatless control device
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP4144446B2 (en) Power converter
JP3840030B2 (en) Electric vehicle drive control device
JP2000308400A (en) Vector controller for induction motor of elevator
JPH07236295A (en) Method for driving and controlling internal-magnet type brushless dc motor
JP3474730B2 (en) Vector control device for linear induction motor
US5627446A (en) Induction motor control method
JPH0557835B2 (en)
JP4655405B2 (en) Vector control method and vector control apparatus for induction motor
JP2625969B2 (en) Vector controller for induction motor
JPH1014299A (en) Control method for synchronous motor
JP5351205B2 (en) Control device for rotating electrical machine
JPH11235075A (en) Flat linear induction motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401