JPH09214678A - Image reader - Google Patents

Image reader

Info

Publication number
JPH09214678A
JPH09214678A JP8046645A JP4664596A JPH09214678A JP H09214678 A JPH09214678 A JP H09214678A JP 8046645 A JP8046645 A JP 8046645A JP 4664596 A JP4664596 A JP 4664596A JP H09214678 A JPH09214678 A JP H09214678A
Authority
JP
Japan
Prior art keywords
scanning direction
sub
document
main scanning
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8046645A
Other languages
Japanese (ja)
Inventor
Kenichi Sasaki
憲一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8046645A priority Critical patent/JPH09214678A/en
Priority to US08/609,058 priority patent/US6118555A/en
Publication of JPH09214678A publication Critical patent/JPH09214678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holders For Sensitive Materials And Originals (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To read the image information on an original at high speed by efficiently illuminating this original by the luminous flux from a light source means. SOLUTION: An image formation is performed for the image information on an original 2 illuminated by the luminous flux from a light source means 1 on the surface of a reading means in which plural picture elements are one- dimensionally arrayed in a main scanning direction by an image formation means 3. When the reading is performed by relatively moving the original and the reading means 4 in the sub-scanning direction which is roughly orthogonal to this main scanning direction, the cross section shape of the surface on the side of the original surface that the light source means 1 injects the luminous flux is composed of the plane for the main scanning direction and is composed of the recessed surface for the sub-scanning direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は画像読取装置に関
し、特にCCD等の複数の画素(受光素子)を一次元方
向に配列した撮像手段(読取手段)を用いてフィルムや
OHPなどの原稿の画像情報を照明光の利用効率向上を
図りつつ、高精度に読み取るようにした画像読取装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading apparatus, and more particularly to an image of a document such as a film or OHP using an image pickup unit (reading unit) in which a plurality of pixels (light receiving elements) such as CCDs are arranged in a one-dimensional direction. The present invention relates to an image reading device which reads information with high accuracy while improving the utilization efficiency of illumination light.

【0002】[0002]

【従来の技術】従来より、フィルムやOHPなどの原稿
をCCD等の読取手段を用いて読み取る画像読取装置と
しては、図9に示したような構成が広く知られている。
2. Description of the Related Art Hitherto, as an image reading apparatus for reading a document such as a film or OHP by using a reading means such as CCD, a configuration as shown in FIG. 9 has been widely known.

【0003】図9は従来の透過型の画像読取装置の要部
概略図である。
FIG. 9 is a schematic view of a main part of a conventional transmissive image reading apparatus.

【0004】同図において91は光源手段としての管状
の蛍光灯(円筒蛍光管)であり、該蛍光灯は長手方向
(主走査方向)と短手方向(副走査方向)を有する線状
の光源より成っている。92は透過型の原稿(透過原
稿)であり、フィルム等より成っており、光源91から
の光束に照明される位置に配置されている。93は結像
手段としての結像レンズであり、原稿92の画像情報を
読取手段としてのラインセンサ(CCD)94面上に所
定の倍率で結像させている。
In the figure, reference numeral 91 denotes a tubular fluorescent lamp (cylindrical fluorescent tube) as a light source means, and the fluorescent lamp is a linear light source having a longitudinal direction (main scanning direction) and a lateral direction (sub scanning direction). Is made up of. Reference numeral 92 denotes a transmissive original (transparent original), which is made of a film or the like and is arranged at a position illuminated by the light flux from the light source 91. An image forming lens 93 serves as an image forming means, and forms image information of the original 92 on a surface of a line sensor (CCD) 94 serving as a reading means at a predetermined magnification.

【0005】同図において光源91にて照明された原稿
92面上の読取領域の画像は、結像レンズ93によりC
CD94面上に結像される。CCD94の受光領域の形
状は、通常画素(受光素子)が一列に直線上に配列され
ている。従ってCCD94の受光領域の像を結像レンズ
93にて原稿92面上に逆投影したときの該原稿92面
上の投影部分92aが、そのときCCD94に取り込ま
れる画像領域である。
In the figure, the image of the reading area on the surface of the original 92 illuminated by the light source 91 is C
An image is formed on the CD94 surface. Regarding the shape of the light receiving area of the CCD 94, usually pixels (light receiving elements) are arranged in a line in a straight line. Therefore, the projection portion 92a on the surface of the original 92 when the image of the light receiving area of the CCD 94 is back-projected on the surface of the original 92 by the imaging lens 93 is the image area captured by the CCD 94 at that time.

【0006】そして、このようにして原稿92面上のあ
る1次元領域(線像、厳密にはCCD受光領域を原稿面
上に逆投影した、ある幅を持った細長い帯状の領域であ
る)92aの画像の取り込みが完了し次第、該線像と直
交する方向(副走査方向)に取り込み領域を逐次移動し
て1次元画像を取り込み、該原稿92面上の所定の領域
にわたり同じ動作を繰り返すことにより原稿92全面を
2次元の画像として取り込むことができる。
In this way, a certain one-dimensional area (line image, strictly speaking, a CCD light receiving area is an elongated strip-like area having a certain width, which is back projected onto the original surface) 92a on the surface of the original 92. As soon as the acquisition of the image is completed, the acquisition area is sequentially moved in the direction (sub-scanning direction) orthogonal to the line image to acquire a one-dimensional image, and the same operation is repeated over a predetermined area on the original 92 surface. Thus, the entire surface of the original 92 can be captured as a two-dimensional image.

【0007】[0007]

【発明が解決しようとする課題】このような画像読取装
置において考慮されるべき重要な事柄の一つとして、原
稿読み取り速度が速いこと、換言すれば原稿読み取りに
要する時間が短いことがあげられる。
One of the important matters to be considered in such an image reading apparatus is that the document reading speed is fast, in other words, the time required for reading the document is short.

【0008】しかしながらこれはラインセンサとして使
用しているCCDの特性に左右される部分が大きい。即
ちCCDが入射した光束を電気信号に変換する際に、該
光束が所定の蓄積時間の間だけ、該CCDに照射され続
けていなければならないということである。
However, this largely depends on the characteristics of the CCD used as the line sensor. That is, when the light flux incident on the CCD is converted into an electric signal, the light flux must be continuously applied to the CCD for a predetermined accumulation time.

【0009】従って、CCDに入射する原稿の画像が、
該CCDによって電気信号に変換される為に必要な所定
の時間だけ、該原稿の同じ部分が該CCDに照射し続け
られる状態を保持しなければならない。よって、ある1
次元画像を取り込み、更に引き続いてその隣の1次元画
像を取り込むという連続動作の時間を短縮する際に、そ
の蓄積時間が完了しなければ原稿面上で隣のラインに読
み取りエリアを移動することができないというCCDの
特性がネックになる。
Therefore, the image of the original incident on the CCD is
The same portion of the original document must be kept illuminated for the predetermined time required to be converted into an electric signal by the CCD. Therefore, there is 1
When shortening the time of continuous operation of capturing a one-dimensional image and then capturing the next one-dimensional image, the reading area can be moved to the adjacent line on the original surface if the accumulation time is not completed. The characteristic of CCD that it cannot do is a bottleneck.

【0010】このように、原稿面上のある1次元画像を
取り終えて隣の1次元画像へ取り込みを移動する時間間
隔を短くすることが読み取り速度の高速化の妨げとな
る。そこでCCDの蓄積時間の短縮を図るほかないが、
同じCCDの場合、入射する光量に依存して蓄積時間が
変化する。従って、CCDへの到達光量(入射光量)を
増やしてやれば蓄積時間は短縮できるのである。
As described above, shortening the time interval for finishing moving one one-dimensional image on the document surface and moving the one-dimensional image to the adjacent one-dimensional image is an obstacle to increasing the reading speed. Therefore, there is no choice but to reduce the accumulation time of CCD,
In the case of the same CCD, the storage time changes depending on the amount of incident light. Therefore, the accumulation time can be shortened by increasing the quantity of light reaching the CCD (incident light quantity).

【0011】このCCDへの到達光量を増加させる為の
手段としては、 (1)結像レンズの明るさを増す (2)光源の光量を増やす 等の2点が基本的な解決策である。
As a means for increasing the amount of light reaching the CCD, two basic points are (1) increasing the brightness of the imaging lens and (2) increasing the light amount of the light source.

【0012】ところが結像レンズのFナンバーを明るく
することはレンズ枚数の増大、又それに伴う精度アップ
などコスト上昇を避けられない方法である。又光源の光
量を増やすことは消費電力の増大や、光源である蛍光灯
自体の高効率化などが要求され、大幅なコストアップが
余儀なくされる。特に従来からよく使われている管状の
蛍光灯の場合、光源の発光面の形状に起因する光量利用
効率が低くならざるを得ないという問題点がある。
However, making the F-number of the imaging lens brighter is an unavoidable method of increasing the number of lenses and the accompanying increase in cost. Further, increasing the amount of light from the light source requires an increase in power consumption and an increase in efficiency of the fluorescent lamp itself, which is a light source, which inevitably results in a significant cost increase. Particularly, in the case of a tubular fluorescent lamp that has been often used conventionally, there is a problem in that the light amount utilization efficiency due to the shape of the light emitting surface of the light source must be lowered.

【0013】この点に関しての説明を図9〜図15を用
いて詳述する。
A detailed description of this point will be given with reference to FIGS. 9 to 15.

【0014】図9において光源91は上述の如く管状の
蛍光灯(円筒蛍光管)である。この光源91の長手方向
(主走査方向)は同図に示すように原稿92面上の読み
取られる1次元画像92aの方向、即ちCCD94の受
光領域の延在する方向(主走査方向)に一致するように
配置されている。従って、光源91の発光面(管面)は
原稿92面側で凸のシリンドリカル面の形状である。
In FIG. 9, the light source 91 is a tubular fluorescent lamp (cylindrical fluorescent tube) as described above. The longitudinal direction (main scanning direction) of the light source 91 coincides with the direction of the one-dimensional image 92a to be read on the surface of the original 92, that is, the direction in which the light receiving area of the CCD 94 extends (main scanning direction), as shown in FIG. Are arranged as follows. Therefore, the light emitting surface (tube surface) of the light source 91 has a shape of a cylindrical surface which is convex on the original 92 surface side.

【0015】蛍光灯は周知のようにガラスの容器の内側
の面(内壁)に蛍光体を塗布してあり、該容器の内部で
発生する紫外線を受けて、外側に向けて可視光を放射す
る。又蛍光体の塗布された面は微小な発散光源の集合体
であると考えられる。従って、外部からは蛍光灯の発光
面は拡散面光源である。
As is well known, a fluorescent lamp has a fluorescent substance coated on the inner surface (inner wall) of a glass container, and receives visible light toward the outside upon receiving ultraviolet rays generated inside the container. . The surface coated with the phosphor is considered to be an aggregate of minute divergent light sources. Therefore, from the outside, the light emitting surface of the fluorescent lamp is a diffuse surface light source.

【0016】図10は光源の表面のある微小な面積を有
する部分からの放射のパターンを摸式的に示した摸式図
である。同図に示すように面の中心付近から発光面の法
線方向に放射される光束が最も強度が強く、その光線を
軸として周辺の各方向に拡散光の光線成分が分布する。
上述したように発光面から放射される光束は、これら微
小な面を集合させたものである。従って、面としての光
源から放射される光線束は図10に示すようなパターン
を発光面の形状に配列したものと等価である。図11は
これを摸式的に示した模式図である。
FIG. 10 is a schematic diagram schematically showing a radiation pattern from a portion having a very small area on the surface of the light source. As shown in the figure, the light flux emitted from the vicinity of the center of the surface in the normal direction of the light emitting surface has the highest intensity, and the light ray component of the diffused light is distributed in each of the peripheral directions around the light ray as an axis.
As described above, the luminous flux emitted from the light emitting surface is a collection of these minute surfaces. Therefore, the light flux emitted from the light source as a surface is equivalent to the pattern shown in FIG. 10 arranged in the shape of the light emitting surface. FIG. 11 is a schematic diagram schematically showing this.

【0017】そして、従来例のように発光面(管面)の
形状が凸のシリンダ形状である場合、光源の面としての
発光パターンもその形状を反映したものとなる。例えば
図13に示すように光源を短手方向断面(原稿副走査断
面)で見た場合、管状の蛍光灯の断面は円になり、この
断面での光束放射は図12に示すように全方向になる。
尚、図12内で示した矢印は各微小な発光面ごとの面法
線方向の最も強い光線束の放射する方向を示したもので
ある。従って、それぞれの矢印の周囲には図11で示し
たような拡散光成分が、とりまいているものが重ね合わ
せられている。
When the shape of the light emitting surface (tube surface) is a convex cylinder like the conventional example, the light emitting pattern as the surface of the light source also reflects the shape. For example, as shown in FIG. 13, when the light source is viewed in a short-side cross section (original sub-scanning cross section), the cross section of the tubular fluorescent lamp is circular, and the luminous flux in this cross section is omnidirectional as shown in FIG. become.
The arrow shown in FIG. 12 indicates the direction of emission of the strongest bundle of rays in the surface normal direction of each minute light emitting surface. Therefore, around the respective arrows, the diffused light components as shown in FIG. 11 are superimposed.

【0018】又、この種の画像読取系において、読取手
段としてのCCD(ラインセンサ)へ到達することがで
きる光束の光量は、当然ではあるがもともと結像レンズ
の物体側の開口角においてレンズの有効径内へ入射して
きた光束だけである。即ち、図15に示す副走査断面で
は結像レンズの物体側のマージナル光線a,bとの間を
通過してゆける光線成分のみである。又透過原稿はそれ
自体は照明する光線に対して強度の空間的変調をもたら
すだけであり、光線の方向は光源から放射されたままで
直進する。従って、いくら原稿を高い光量で照明できる
光源があったとしても、原稿を経た光線が結像レンズの
有効径内に入射しないのであれば、その光線束はCCD
には至らず、照明光源という意味では無意味である。
In this type of image reading system, the amount of light flux that can reach the CCD (line sensor) as the reading means is naturally, of course, originally at the object side aperture angle of the imaging lens. It is only the luminous flux that has entered the effective diameter. That is, in the sub-scanning cross section shown in FIG. 15, there are only light ray components that can pass between the object side marginal rays a and b of the imaging lens. Also, the transmissive original document itself causes only a spatial modulation of the intensity of the illuminating light beam, and the direction of the light beam goes straight while being emitted from the light source. Therefore, even if there is a light source that can illuminate a document with a high light amount, if the light beam that has passed through the document does not enter the effective diameter of the imaging lens, the light beam bundle is the CCD.
It is meaningless in the sense of an illumination light source.

【0019】図13、図14は各々従来の画像読取装置
の光源の短軸方向の断面図(副走査断面図)と長軸方向
の断面図(主走査断面図)を示したものであり、両図に
おいて図9に示した要素と同一要素には同符番を付して
いる。
FIG. 13 and FIG. 14 are cross-sectional views in the minor axis direction (sub-scan sectional view) and a major axis direction (main-scan sectional view) of the light source of the conventional image reading apparatus, respectively. In both figures, the same elements as those shown in FIG. 9 are designated by the same reference numerals.

【0020】図13に示すように、この短軸方向では原
稿92面上の読取領域は非常に狭く光軸上付近のみであ
る。これは原稿92面上の略1次元状の読取領域の短手
方向(副走査方向)に該当する方向である。CCDを構
成する複数の画素はこの短手方向には並んでいない。一
方、図14に示す長軸方向では原稿92面上の読取領域
は長手方向(主走査方向)である。
As shown in FIG. 13, in this minor axis direction, the reading area on the surface of the original 92 is very narrow and is only near the optical axis. This is the direction corresponding to the lateral direction (sub-scanning direction) of the substantially one-dimensional reading area on the original 92 surface. The plurality of pixels forming the CCD are not arranged in this lateral direction. On the other hand, in the major axis direction shown in FIG. 14, the reading area on the surface of the original 92 is the longitudinal direction (main scanning direction).

【0021】ここで図15に示すように光源91の短軸
方向の断面(副走査断面)では該光源91の光束放射面
(管面)が凸になっている為、原稿92を経た後、結像
レンズ93の物体側の開口角の内側に至る光束は非常に
少なくなってしまうことが明らかである。又図15中で
示したように光源91自体が放射する光束のうち斜線で
示した僅かな部分だけの光束がCCD94に到達し、大
部分の光束は結像レンズ93の有効径内に入ることがで
きない。
Here, as shown in FIG. 15, since the luminous flux emission surface (tube surface) of the light source 91 is convex in the cross section (sub-scanning cross section) in the minor axis direction of the light source 91, after passing through the original 92, It is clear that the light flux reaching the inside of the object-side aperture angle of the imaging lens 93 is extremely small. Also, as shown in FIG. 15, only a small portion of the light beam emitted by the light source 91 itself reaches the CCD 94, and most of the light beam enters the effective diameter of the imaging lens 93. I can't.

【0022】従って、従来の光源では光量の利用効率が
低くCCDに到達する光量が少ない為、該CCDの蓄積
時間を長く保つ必要があり、その為読み取り速度の高速
化が難しいという問題点があった。
Therefore, in the conventional light source, since the utilization efficiency of the light quantity is low and the light quantity reaching the CCD is small, it is necessary to keep the accumulation time of the CCD long, which makes it difficult to increase the reading speed. It was

【0023】又、上述した従来例ではFナンバー(FN
o)の小さい明るいレンズが必要になり、コストアップ
が余儀なくされ、又光源を無駄に光らせている為、電力
消費も多くなるという問題点もあった。
Further, in the above-mentioned conventional example, the F number (FN
There is also a problem in that a bright lens with a small o) is required, cost is inevitably increased, and the light source is wasted, so that power consumption increases.

【0024】本発明は原稿を照明する光源手段の光束放
射面(管面)の形状及び該光源手段を構成する各要素を
適切に設定することにより、該原稿を経て結像手段の物
体側から有効径内へ入射することができる光束を増大さ
せることができ、これにより読取速度の高速化を図るこ
とができる画像読取装置の提供を目的とする。
According to the present invention, by appropriately setting the shape of the luminous flux emitting surface (tube surface) of the light source means for illuminating the original document and each element constituting the light source means, the object side of the image forming means passes through the original document. It is an object of the present invention to provide an image reading apparatus that can increase the luminous flux that can enter the effective diameter and can increase the reading speed.

【0025】[0025]

【課題を解決するための手段】本発明の画像読取装置
は、 (1)光源手段からの光束で照明された原稿の画像情報
を結像手段により、複数の画素を1次元的に主走査方向
へ配列した読取手段面上に結像させ、該主走査方向と略
直交する副走査方向へ該原稿と該読取手段とを相対的に
移動して読み取る際、該光源手段は光束を射出する該原
稿面側の面の断面形状が、主走査方向に対して平面より
成り、且つ副走査方向に対して凹面より成ることを特徴
としている。
An image reading apparatus according to the present invention comprises: (1) a plurality of pixels in a one-dimensional main scanning direction by image forming means for image information of a document illuminated by a light beam from a light source means. The light source means emits a light beam when an image is formed on the surface of the reading means arranged in a line, and the original and the reading means are relatively moved in the sub-scanning direction substantially orthogonal to the main scanning direction for reading. It is characterized in that the cross-sectional shape of the surface on the document surface side is a flat surface in the main scanning direction and a concave surface in the sub scanning direction.

【0026】(2)光源手段からの光束で照明された原
稿の画像情報を結像手段により、複数の画素を1次元的
に主走査方向へ配列した読取手段面上に結像させ、該主
走査方向と略直交する副走査方向へ該原稿と該読取手段
とを相対的に移動して読み取る際、該光源手段は蛍光灯
を有しており、該蛍光灯は光束を射出する該原稿面側の
管面の断面形状が、主走査方向に対して平面より成り、
且つ副走査方向に対して凹面より成り、該管面の内側の
面に蛍光体を塗布したことを特徴としている。
(2) The image information of the document illuminated by the light beam from the light source means is imaged by the image forming means on the surface of the reading means in which a plurality of pixels are arranged one-dimensionally in the main scanning direction, When the document and the reading unit are relatively moved in the sub-scanning direction substantially orthogonal to the scanning direction for reading, the light source unit has a fluorescent lamp, and the fluorescent lamp emits a light beam. The cross-sectional shape of the tube surface on the side is a plane with respect to the main scanning direction,
Further, it is characterized in that it is made of a concave surface in the sub-scanning direction, and the phosphor is applied to the inner surface of the tube surface.

【0027】(3)光源手段からの光束で照明された原
稿の画像情報を結像手段により、複数の画素を1次元的
に主走査方向へ配列した読取手段面上に結像させ、該主
走査方向と略直交する副走査方向へ該原稿と該読取手段
とを相対的に移動して読み取る際、該光源手段は蛍光灯
を有しており、該蛍光灯は光束を射出する該原稿面側の
管面の断面形状が、主走査方向に対して平面より成り、
且つ副走査方向に対して凹面より成り、該管面の内側の
面と、該蛍光灯の内部で該原稿面側の管面と相対する管
面の内側の面とに蛍光体を塗布したことを特徴としてい
る。
(3) The image information of the document illuminated by the light beam from the light source means is imaged by the image forming means on the surface of the reading means in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, When the document and the reading unit are relatively moved in the sub-scanning direction substantially orthogonal to the scanning direction for reading, the light source unit has a fluorescent lamp, and the fluorescent lamp emits a light beam. The cross-sectional shape of the tube surface on the side is a plane with respect to the main scanning direction,
In addition, the phosphor is applied to the inner surface of the tube surface and the inner surface of the tube surface facing the original surface side tube surface inside the fluorescent lamp, which is a concave surface in the sub-scanning direction. Is characterized by.

【0028】特に上記(2),(3)において前記副走
査方向の断面において、前記原稿面上の一点から前記蛍
光灯の該原稿面側の管面の有効径において張る角度が、
その一点から前記結像手段の入射瞳の直径が張る角度と
略等しくなるように設定したことや、前記副走査方向の
断面において、前記蛍光灯は、その内部で該原稿面側の
管面と相対する管面の形状が平面より成ることや、前記
副走査方向の断面において、前記蛍光灯は、その内部で
該原稿面側の管面と相対する管面の形状が、該原稿面側
の管面と同じ極性を持つ凹面より成ることや、前記蛍光
灯の内部で前記原稿面側の管面と相対する管面の外側の
面に光束を反射させる反射手段を設けたことや、前記蛍
光灯の前記原稿面側の管面は凹のシリンドリカル面より
成ること等を特徴としている。
In particular, in the above (2) and (3), in the cross section in the sub-scanning direction, the angle between the point on the document surface and the effective diameter of the tube surface of the fluorescent lamp on the document surface side is:
It is set so that the diameter of the entrance pupil of the image forming means is set to be substantially equal to the angle from that one point, and in the cross section in the sub-scanning direction, the fluorescent lamp internally has a tube surface on the document surface side. In the cross section in the sub-scanning direction, the shape of the tube surface opposed to the tube surface on the side of the document surface is the shape of the tube surface on the side of the document surface. The fluorescent surface is formed of a concave surface having the same polarity as that of the tube surface, a reflection means for reflecting a light beam is provided on an outer surface of the tube surface facing the tube surface on the document surface side inside the fluorescent lamp, and the fluorescent light is used. The tube surface on the document surface side of the lamp is characterized by a concave cylindrical surface.

【0029】(4)光源手段からの光束で照明された原
稿の画像情報を結像手段により、複数の画素を1次元的
に主走査方向へ配列した読取手段面上に結像させ、該主
走査方向と略直交する副走査方向へ該原稿と該読取手段
とを相対的に移動して読み取る際、該光源手段は該原稿
面上の主走査方向の1次元状の読取領域の範囲をカバー
するように形成された拡散板と、複数の白熱灯を主走査
方向と副走査方向とにそれぞれ配列した光源部とを有
し、該拡散板は該原稿面と相対する拡散面の断面形状
が、主走査方向に対して平面より成り、且つ副走査方向
に対して凹面より成り該複数の白熱灯は該拡散板の外側
の面に沿って主走査方向と副走査方向とにそれぞれ配列
されていることを特徴としている。
(4) The image information of the original document illuminated by the light beam from the light source means is imaged by the image forming means on the surface of the reading means in which a plurality of pixels are one-dimensionally arranged in the main scanning direction. When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the scanning direction for reading, the light source unit covers the range of the one-dimensional reading region in the main scanning direction on the document surface. And a light source section in which a plurality of incandescent lamps are arranged in the main scanning direction and the sub-scanning direction, respectively, and the diffusion plate has a cross-sectional shape of the diffusion surface facing the document surface. A plurality of incandescent lamps are arranged in the main scanning direction and the sub scanning direction along the outer surface of the diffuser plate. It is characterized by being.

【0030】(5)光源手段からの光束で照明された原
稿の画像情報を結像手段により、複数の画素を1次元的
に主走査方向へ配列した読取手段面上に結像させ、該主
走査方向と略直交する副走査方向へ該原稿と該読取手段
とを相対的に移動して読み取る際、該光源手段は該原稿
面上の主走査方向の1次元状の読取領域の範囲をカバー
するように発光ダイオードを主走査方向と副走査方向と
にそれぞれ複数配列した光源部を有し、該光源部を構成
する複数の発光ダイオードの配列状態が、主走査方向に
対して平面的より成り、且つ副走査方向に対して凹面的
より成ることを特徴としている。
(5) The image information of the original document illuminated by the light beam from the light source means is imaged by the image forming means on the reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the scanning direction for reading, the light source unit covers the range of the one-dimensional reading region in the main scanning direction on the document surface. As described above, it has a light source section in which a plurality of light emitting diodes are arranged in the main scanning direction and the sub scanning direction, respectively, and the arrangement state of the plurality of light emitting diodes constituting the light source section is planar in the main scanning direction. And is concave in the sub-scanning direction.

【0031】[0031]

【発明の実施の形態】図1は本発明の実施形態1の要部
概略図である。図2は図1の主要部分の副走査方向の要
部断面図(副走査断面図)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. 2 is a cross-sectional view (sub-scanning cross-sectional view) of a main part of FIG. 1 in the sub-scanning direction.

【0032】尚、本実施形態では光源手段1からの光路
中、光軸と直交する面内において、読取手段4の複数の
画素の並び方向に相当する方向を主走査方向、これと直
交する方向を副走査方向としている。
In this embodiment, in the optical path from the light source means 1, in the plane orthogonal to the optical axis, the direction corresponding to the arrangement direction of the plurality of pixels of the reading means 4 is the main scanning direction, and the direction orthogonal to this direction. Is the sub-scanning direction.

【0033】図中、1は光源手段であり、熱陰極管又は
冷陰極管等の蛍光灯より成っており、該蛍光灯は光束を
射出する原稿2面側の管面1aの断面形状が、原稿2面
上の1次元状の読取領域の主走査方向(長手方向)に対
して平面より成り、且つ該読取領域の副走査方向(短手
方向)に対して凹面より成っている。この蛍光灯1の原
稿2面側の管面1aは凹のシリンドリカル面より成って
おり、該管面1aの内側の面(内壁)1cに蛍光体5を
塗布している。又副走査断面において蛍光灯は、その内
部で原稿2面側の管面1aと相対する管面1bの形状を
平面より形成している。
In the figure, reference numeral 1 denotes a light source means, which is composed of a fluorescent lamp such as a hot cathode tube or a cold cathode tube, and the fluorescent lamp has a cross-sectional shape of a tube surface 1a on the side of the original 2 which emits a light beam. The one-dimensional reading area on the second surface of the original is a flat surface in the main scanning direction (longitudinal direction) and is a concave surface in the sub-scanning direction (shorter direction) of the reading area. The tube surface 1a on the original 2 side of the fluorescent lamp 1 is formed of a concave cylindrical surface, and the phosphor 5 is applied to the inner surface (inner wall) 1c of the tube surface 1a. Further, in the sub-scanning cross section, the fluorescent lamp has a tube surface 1b which is opposed to the tube surface 1a on the side of the original 2 and is formed by a flat surface.

【0034】本実施形態では副走査断面(図2)におい
て、原稿2面上の一点Pから蛍光灯1の原稿2面側の管
面1aの有効径Dにおいて張る角度θ1が、その一点P
から後述する結像手段としての結像レンズ3の入射瞳の
直径が張る角度θ2と略等しくなるように設定してい
る。
In this embodiment, in the sub-scanning cross section (FIG. 2), the angle θ1 formed from the point P on the surface of the original 2 to the effective diameter D of the tube surface 1a of the fluorescent lamp 1 on the side of the original 2 is the point P.
The angle is set to be substantially equal to the angle θ2 at which the diameter of the entrance pupil of the image forming lens 3 as the image forming means described later is extended.

【0035】2はフィルム等の透過型の原稿(透過原
稿)であり、読み取りの為の画像情報が形成されてい
る。3は結像手段であり、結像レンズより成っており、
原稿2の画像情報を後述する読取手段4面上に結像させ
ている。4は読取手段としてのラインセンサ(CCD)
であり、複数の画素(受光素子)を主走査方向に一次元
的に配列している。
Reference numeral 2 is a transparent original (transparent original) such as a film, on which image information for reading is formed. Reference numeral 3 denotes an image forming means, which includes an image forming lens,
The image information of the original 2 is formed on the surface of the reading means 4 which will be described later. 4 is a line sensor (CCD) as a reading means
Thus, a plurality of pixels (light receiving elements) are arranged one-dimensionally in the main scanning direction.

【0036】本実施形態では上述した構成より成る蛍光
灯1からの光束で原稿2面上の1次元状の読取領域2a
を集中的に照明し、該原稿2上の画像情報を結像レンズ
3によりラインセンサ4面上に所定の倍率で結像させて
いる。そして原稿2とラインセンサ4との相対位置を変
化させて、本実施形態では原稿2を矢印A方向(副走査
方向)に移動(走査)させることにより、原稿2面上の
2次元的な画像情報をラインセンサ4で順次読み取るよ
うにしている。
In the present embodiment, the one-dimensional reading area 2a on the surface of the original 2 is formed by the light flux from the fluorescent lamp 1 having the above-mentioned configuration.
Is intensively illuminated and the image information on the original 2 is imaged on the surface of the line sensor 4 by the imaging lens 3 at a predetermined magnification. Then, by changing the relative position between the original 2 and the line sensor 4 and moving (scanning) the original 2 in the direction of arrow A (sub-scanning direction) in this embodiment, a two-dimensional image on the surface of the original 2 is obtained. Information is read sequentially by the line sensor 4.

【0037】ここで本実施形態の特徴とする原稿照明方
法について説明する。
Here, a document illuminating method which is a feature of this embodiment will be described.

【0038】本実施形態においては前述の如く図2に示
す副走査断面内において、原稿2面上の一点Pから蛍光
灯1の管面(拡散面表面)1aの有効径Dにおいて張る
角度θ1が、その一点Pから結像レンズ3の入射瞳の直
径が張る角度θ2と略等しくなるように設定している。
これにより蛍光灯1の原稿2面側の管面(拡散面表面)
1aから垂直に発する最も強度の高い光束成分の光束c
を結像レンズ3の物体側の開口角の範囲内に向けて放射
するようにし、原稿2面上の1次元状の読取領域2aを
集中的に照明している。そして結像レンズ3を経た光束
の大部分をラインセンサ4面上に入射させ、原稿2上の
画像情報を高速で読み取っている。
In the present embodiment, as described above, in the sub-scanning cross section shown in FIG. 2, the angle θ1 stretched from one point P on the surface of the original 2 to the effective diameter D of the tube surface (diffusing surface) 1a of the fluorescent lamp 1 is set. , And the angle P2 at which the diameter of the entrance pupil of the imaging lens 3 extends from the point P is set to be substantially equal.
As a result, the tube surface (diffusion surface) of the fluorescent lamp 1 on the side of the document 2 side
The luminous flux c of the highest luminous flux component emitted vertically from 1a
Is radiated toward the range of the aperture angle on the object side of the imaging lens 3 to intensively illuminate the one-dimensional reading area 2a on the surface of the original 2. Then, most of the light flux that has passed through the imaging lens 3 is made incident on the surface of the line sensor 4 and the image information on the original 2 is read at high speed.

【0039】このように本実施形態においては上述の如
く副走査断面において蛍光灯1の原稿2面側の管面1a
の形状を凹面とし、該凹面より成る管面1aの内側の面
(内壁)1cに蛍光体5を塗布することにより、照明の
各光線の進行方向が結像レンズ3の物体側のNAの内側
になるようにし、原稿2面上の1次元状(線状)の読取
領域2aを集中的に照明できるようにしている。これに
より本実施形態ではラインセンサ4への到達光量(入射
光量)を増大させることによって読取速度の高速化を図
ることができ、又結像レンズ3のFナンバーを暗くする
ことができ、レンズ枚数の削減等の低コスト化も図るこ
とができる。
As described above, in the present embodiment, as described above, the tube surface 1a of the fluorescent lamp 1 on the original 2 surface side in the sub-scan section.
Is a concave surface, and the phosphor 5 is applied to the inner surface (inner wall) 1c of the tube surface 1a formed of the concave surface so that the traveling direction of each light ray of illumination is inside the NA on the object side of the imaging lens 3. Therefore, the one-dimensional (linear) reading area 2a on the surface of the original 2 can be intensively illuminated. As a result, in the present embodiment, the reading speed can be increased by increasing the amount of light reaching the line sensor 4 (incident light amount), and the F number of the imaging lens 3 can be darkened. It is also possible to reduce costs such as reduction of

【0040】図3は本発明の実施形態2の副走査方向の
要部断面図(副走査断面図)である。同図において図2
に示した要素と同一要素には同符番を付している。
FIG. 3 is a sectional view (sub-scan sectional view) of a main part in the sub-scanning direction according to the second embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0041】本実施形態において前述の実施形態1と異
なる点は、蛍光灯31の内部で原稿2面側の管面31a
と相対する管面31bの内側の面(内壁)31dにも蛍
光体5を塗布したことである。その他の構成及び光学的
作用は前述の実施形態1と略同様であり、これにより同
様な効果を得ている。
The present embodiment differs from the first embodiment described above in that inside the fluorescent lamp 31, the tube surface 31a on the second surface side of the original document 31a.
That is, the phosphor 5 is also applied to the inner surface (inner wall) 31d of the tube surface 31b opposite to. Other configurations and optical actions are substantially the same as those in the first embodiment, and the same effect is obtained.

【0042】即ち、31は光源手段としての蛍光灯(熱
陰極管又は冷陰極管)であり、光束を射出する原稿2面
側の管面31aの断面形状を、該原稿2面上の1次元状
の読取領域の主走査方向に対して平面より形成し、且つ
該読取領域の副走査方向に対して凹面より形成してい
る。又この凹面より成る管面31aの内側の面31c
と、該蛍光灯31の内部で該管面31aと相対する管面
31bの内側の面31dとに蛍光体5を塗布している。
That is, 31 is a fluorescent lamp (hot cathode tube or cold cathode tube) as a light source means, and the cross-sectional shape of the tube surface 31a on the side of the two surfaces of the original which emits a light beam is one-dimensional on the two surfaces of the original. The reading area is formed of a flat surface in the main scanning direction, and is formed of a concave surface in the sub scanning direction of the reading area. Further, the inner surface 31c of the tube surface 31a composed of this concave surface
The phosphor 5 is applied to the inside surface 31d of the tube surface 31b facing the tube surface 31a inside the fluorescent lamp 31.

【0043】本実施形態では上述した構成より成る蛍光
灯31からの光束で原稿2面上の1次元状の読取領域2
aを集中的に照明し、該原稿2上の画像情報を結像レン
ズ3によりラインセンサ(不図示)面上に所定の倍率で
結像させている。そして原稿2とラインセンサとの相対
位置を変化させて、本実施形態では原稿2を矢印A方向
(副走査方向)に移動(走査)させることにより、原稿
2面上の2次元的な画像情報をラインセンサで順次読み
取るようにしている。
In the present embodiment, the one-dimensional reading area 2 on the surface of the original 2 is formed by the light flux from the fluorescent lamp 31 having the above-mentioned configuration.
A is intensively illuminated, and the image information on the original 2 is imaged on the surface of the line sensor (not shown) by the imaging lens 3 at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0044】このように本実施形態においては前述の実
施形態1と同様に図3に示す如く蛍光灯31の原稿2面
側の管面(拡散面表面)31aから垂直に発する最も強
度の高い光束成分の光束cを結像レンズ3の物体側の開
口角の範囲内に向けて放射している為、該結像レンズ3
を経た光束の大部分をラインセンサ面上に入射させるこ
とができる。
As described above, in this embodiment, as in the case of the first embodiment, as shown in FIG. 3, the strongest luminous flux emitted vertically from the tube surface (diffusion surface) 31a of the fluorescent lamp 31 on the second side of the original. Since the component light flux c is radiated toward the object side aperture angle range of the imaging lens 3, the imaging lens 3
Most of the light flux that has passed through can be incident on the line sensor surface.

【0045】更に本実施形態では蛍光灯31の内部で管
面31aと相対する管面31bの内側の面31dにも蛍
光体5を塗布したことにより、該内側の面(発光面)3
1dからの光量成分も得ることができ、これにより更に
全体としての光量を増大させることができる。
Further, in this embodiment, the phosphor 5 is also applied to the inner surface 31d of the tube surface 31b facing the tube surface 31a inside the fluorescent lamp 31, so that the inner surface (light emitting surface) 3
A light amount component from 1d can also be obtained, which can further increase the light amount as a whole.

【0046】図4は本発明の実施形態3の副走査方向の
要部断面図(副走査断面図)である。同図において図1
に示した要素と同一要素には同符番を付している。
FIG. 4 is a sectional view (sub-scanning sectional view) of a main part in the sub-scanning direction according to the third embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0047】本実施形態において前述の実施形態1と異
なる点は、蛍光灯41の内部で原稿2面側の管面41a
と相対する管面41bの形状を副走査断面において、該
管面41aと同じ極性を持つ凹面(凹のシリンドリカル
面)より形成し、更にこの管面41bの内側の面(内
壁)41dにも蛍光体5を塗布したことである。その他
の構成及び光学的作用は前述の実施形態1と略同様であ
り、これにより同様な効果を得ている。
The present embodiment differs from the first embodiment described above in that inside the fluorescent lamp 41, the tube surface 41a on the second surface side of the original is used.
The shape of the tube surface 41b opposed to is formed by a concave surface (concave cylindrical surface) having the same polarity as that of the tube surface 41a in the sub-scan section, and the inner surface (inner wall) 41d of the tube surface 41b is also fluorescent. That is, the body 5 was applied. Other configurations and optical actions are substantially the same as those in the first embodiment, and the same effect is obtained.

【0048】即ち、41は光源手段としての蛍光灯(熱
陰極管又は冷陰極管)であり、光束を射出する原稿2面
側の管面41aの断面形状を、該原稿2面上の1次元状
の読取領域の主走査方向に対して平面より形成し、且つ
該読取領域の副走査方向に対して凹面より形成してい
る。又蛍光灯41の内部でこの凹面より成る管面41a
と相対する管面41bの断面形状を副走査断面におい
て、該管面41aと同じ面の極性を持つ凹面(凹のシリ
ンドリカル面)より形成し、この管面41bの内側の面
41dにも蛍光体5を塗布している。
That is, reference numeral 41 is a fluorescent lamp (hot cathode tube or cold cathode tube) as a light source means, and the cross-sectional shape of the tube surface 41a on the side of the two surfaces of the original which emits the light beam is one-dimensional on the two surfaces of the original. The reading area is formed of a flat surface in the main scanning direction, and is formed of a concave surface in the sub scanning direction of the reading area. Also, inside the fluorescent lamp 41, the tube surface 41a composed of this concave surface
The cross-sectional shape of the tube surface 41b opposite to that is formed by a concave surface (concave cylindrical surface) having the same polarity as that of the tube surface 41a in the sub-scanning cross section, and the phosphor is also formed on the inner surface 41d of the tube surface 41b. 5 is applied.

【0049】本実施形態では上述した構成より成る蛍光
灯41からの光束で原稿2面上の1次元状の読取領域2
aを集中的に照明し、該原稿2上の画像情報を結像レン
ズ3によりラインセンサ(不図示)面上に所定の倍率で
結像させている。そして原稿2とラインセンサとの相対
位置を変化させて、本実施形態では原稿2を矢印A方向
(副走査方向)に移動(走査)させることにより、原稿
2面上の2次元的な画像情報をラインセンサで順次読み
取るようにしている。
In the present embodiment, the one-dimensional reading area 2 on the surface of the original 2 is formed by the light flux from the fluorescent lamp 41 having the above-described structure.
A is intensively illuminated, and the image information on the original 2 is imaged on the surface of the line sensor (not shown) by the imaging lens 3 at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0050】このように本実施形態においては前述の実
施形態1と同様に図4に示す如く蛍光灯41の原稿2面
側の管面(拡散面表面)41aから垂直に発する最も強
度の高い光束成分の光束cを結像レンズ3の物体側の開
口角の範囲内に向けて放射している為、該結像レンズ3
を経た光束の大部分をラインセンサ4面上に入射させる
ことができる。
As described above, in the present embodiment, as in the first embodiment, as shown in FIG. 4, the luminous flux having the highest intensity emitted vertically from the tube surface (diffusion surface) 41a of the fluorescent lamp 41 on the second side of the original. Since the component light flux c is radiated toward the object side aperture angle range of the imaging lens 3, the imaging lens 3
Most of the light flux that has passed through can be incident on the surface of the line sensor 4.

【0051】更に本実施形態では蛍光灯41の内部で管
面41aと相対する管面41bの断面形状を副走査断面
において、該管面41aと同じ極性を持つ凹面より形成
し、かつ管面41bの内側の面41dにも蛍光体5を塗
布することにより、この内側部分の面(発光面)41d
からの光量成分も得られ、これは原稿2面側の発光面4
1cと同様に光束を結像レンズ3の物体側の開口角の範
囲内に向ける効果があるので、更に全体としての光量を
増大させることができる。
Further, in this embodiment, the cross-sectional shape of the tube surface 41b facing the tube surface 41a inside the fluorescent lamp 41 is formed by a concave surface having the same polarity as the tube surface 41a in the sub-scan section, and the tube surface 41b. By applying the phosphor 5 also to the inner surface 41d of the inner surface 41d, the inner surface 41d (light emitting surface)
A light amount component from is also obtained, which is the light emitting surface 4 on the original 2 side.
Similar to 1c, it has the effect of directing the light flux within the range of the aperture angle of the imaging lens 3 on the object side, so that the light amount as a whole can be further increased.

【0052】図5は本発明の実施形態4の副走査方向の
要部断面図(副走査断面図)である。同図において図4
に示した要素と同一要素には同符番を付している。
FIG. 5 is a sectional view (sub-scanning sectional view) of a main part in the sub-scanning direction according to the fourth embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0053】本実施形態において前述の実施形態3と異
なる点は、蛍光灯41の内部で原稿2面側の光束を射出
する管面41aと相対する管面41bの外側(原稿2面
とは逆側)の面に光束を反射させる為の反射手段として
の金属反射膜52を設けたことである。その他の構成及
び光学的作用は前述の実施形態3と略同様であり、これ
により同様な効果を得ている。
The present embodiment differs from the third embodiment described above in that the inside of the fluorescent lamp 41 is the outside of the tube surface 41b facing the tube surface 41a for emitting the light beam on the side of the original 2 surface (opposite to the surface of the original 2). That is, the metal reflection film 52 as a reflection means for reflecting the light flux is provided on the side surface. Other configurations and optical functions are substantially the same as those of the above-described third embodiment, and thus the same effects are obtained.

【0054】即ち、52は反射手段としての金属反射膜
であり、例えばアルミ等より成り、蛍光灯41の管面4
1bの外側の面に設けている。尚、本実施形態では反射
手段として金属反射膜を設けたが、該金属反射膜の代わ
りに誘電体を設けても良い。
That is, reference numeral 52 denotes a metal reflecting film as a reflecting means, which is made of, for example, aluminum or the like, and is formed on the tube surface 4 of the fluorescent lamp 41.
It is provided on the outer surface of 1b. Although the metal reflection film is provided as the reflection means in this embodiment, a dielectric may be provided instead of the metal reflection film.

【0055】本実施形態では上述した構成より成る蛍光
灯41からの光束で原稿2面上の1次元状の読取領域2
aを集中的に照明し、該原稿2上の画像情報を結像レン
ズ3によりラインセンサ(不図示)面上に所定の倍率で
結像させている。そして原稿2とラインセンサとの相対
位置を変化させて、本実施形態では原稿2を矢印A方向
(副走査方向)に移動(走査)させることにより、原稿
2面上の2次元的な画像情報をラインセンサで順次読み
取るようにしている。
In the present embodiment, the one-dimensional reading area 2 on the surface of the original 2 is formed by the light flux from the fluorescent lamp 41 having the above-described structure.
A is intensively illuminated, and the image information on the original 2 is imaged on the surface of the line sensor (not shown) by the imaging lens 3 at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0056】このように本実施形態においては前述の実
施形態3と同様に図5に示す如く蛍光灯41の原稿2面
側の管面(拡散面表面)41aから垂直に発する最も強
度の高い光束成分の光束cを結像レンズ3の物体側の開
口角の範囲内に向けて放射している為、該結像レンズ3
を経た光束の大部分をラインセンサ面上に入射させるこ
とができると共に原稿2面側の発光面41cと相対する
発光面41dからの光量成分も得ることができる。
As described above, in this embodiment, as in the case of the third embodiment, as shown in FIG. 5, the highest intensity light beam emitted vertically from the tube surface (diffusion surface) 41a of the fluorescent lamp 41 on the second side of the original. Since the component light flux c is radiated toward the object side aperture angle range of the imaging lens 3, the imaging lens 3
Most of the light flux that has passed through can be made incident on the surface of the line sensor, and the light amount component from the light emitting surface 41d facing the light emitting surface 41c on the second document side can also be obtained.

【0057】更に本実施形態では発光面41dから発す
る光束のうち原稿2面側とは逆方向に照射される無駄に
なってしまう光束を金属反射膜52で、該原稿2面側へ
反射させることにより全体としての光量を更に増大させ
ることができる。
Further, in this embodiment, of the luminous flux emitted from the light emitting surface 41d, the wasted luminous flux emitted in the opposite direction to the original 2 side is reflected by the metallic reflecting film 52 toward the original 2 side. Thus, the light amount as a whole can be further increased.

【0058】図6は本発明の実施形態5の副走査方向の
要部断面図(副走査断面図)である。同図において図1
に示した要素と同一要素には同符番を付している。
FIG. 6 is a sectional view (sub-scanning sectional view) of a main part in the sub-scanning direction according to the fifth embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0059】本実施形態において前述の実施形態1と異
なる点は、蛍光灯11の内部で原稿2面側の管面1aと
相対する管面1bの外側(原稿2面とは逆側)の面に光
束を反射させる為の反射手段としての金属反射膜62を
設けたことである。その他の構成及び光学的作用は前述
の実施形態1と略同様であり、これにより同様な効果を
得ている。
The present embodiment differs from the first embodiment described above in that the inside of the fluorescent lamp 11 is a surface outside the tube surface 1b opposite to the tube surface 1a on the original 2 surface side (opposite to the original 2 surface). That is, the metal reflection film 62 is provided as a reflection means for reflecting the light flux. Other configurations and optical actions are substantially the same as those in the first embodiment, and the same effect is obtained.

【0060】即ち、62は反射手段としての金属反射膜
であり、アルミ等より成り、蛍光灯1の管面1bの外側
の面に設けている。尚、本実施形態では反射手段として
金属反射膜を設けたが、該金属反射膜の代わりに誘電体
を設けても良い。
That is, reference numeral 62 denotes a metal reflection film as a reflection means, which is made of aluminum or the like and is provided on the outer surface of the tube surface 1b of the fluorescent lamp 1. Although the metal reflection film is provided as the reflection means in this embodiment, a dielectric may be provided instead of the metal reflection film.

【0061】本実施形態では上述した構成より成る蛍光
灯41からの光束で原稿2面上の1次元状の読取領域2
aを集中的に照明し、該原稿2上の画像情報を結像レン
ズ3によりラインセンサ(不図示)面上に所定の倍率で
結像させている。そして原稿2とラインセンサとの相対
位置を変化させて、本実施形態では原稿2を矢印A方向
(副走査方向)に移動(走査)させることにより、原稿
2面上の2次元的な画像情報をラインセンサで順次読み
取るようにしている。
In the present embodiment, the one-dimensional reading area 2 on the surface of the original 2 is formed by the luminous flux from the fluorescent lamp 41 having the above-mentioned configuration.
A is intensively illuminated, and the image information on the original 2 is imaged on the surface of the line sensor (not shown) by the imaging lens 3 at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0062】このように本実施形態においては前述の実
施形態1と同様に図6に示す如く蛍光灯1の原稿2面側
の管面(拡散面表面)1aから垂直に発する最も強度の
高い光束成分の光束cを結像レンズ3の物体側の開口角
の範囲内に向けて放射している為、該結像レンズ3を経
た光束の大部分をラインセンサ4面上に入射させること
ができる。
As described above, in this embodiment, as in the case of the above-described first embodiment, as shown in FIG. 6, the strongest luminous flux emitted vertically from the tube surface (diffusion surface) 1a on the original 2 side of the fluorescent lamp 1. Since the component light flux c is radiated toward the object side aperture angle range of the imaging lens 3, most of the light flux passing through the imaging lens 3 can be incident on the surface of the line sensor 4. .

【0063】更に本実施形態では管面1bから射出する
無駄になってしまう光束を金属反射膜62で、該原稿2
面側へ反射させることにより全体としての光量を更に増
大させることができる。
Further, in this embodiment, the wasted light beam emitted from the tube surface 1b is discarded by the metal reflection film 62 by the metal reflection film 62.
The amount of light as a whole can be further increased by reflecting the light toward the surface side.

【0064】尚、上記の金属反射膜を図3に示した実施
形態2における蛍光灯31の管面31bの外側の面に設
けても良いことは言うまでもない。
Needless to say, the above metal reflection film may be provided on the outer surface of the tube surface 31b of the fluorescent lamp 31 in the second embodiment shown in FIG.

【0065】図7は本発明の実施形態6の副走査方向の
要部断面図(副走査断面図)である。同図において図1
に示した要素と同一要素には同符番を付している。
FIG. 7 is a sectional view (sub-scanning sectional view) of essential parts in the sub-scanning direction according to the sixth embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0066】本実施形態において前述の実施形態1と異
なる点は、光源手段71を光束を拡散する拡散板73と
複数の白熱灯(白熱光源)74aを有する光源部74と
を組み合わせて構成したことである。その他の構成及び
光学的作用は前述の実施形態1と略同様であり、これに
より同様な効果を得ている。
The present embodiment differs from the first embodiment in that the light source means 71 is configured by combining a diffuser plate 73 for diffusing a light flux and a light source section 74 having a plurality of incandescent lamps (incandescent light sources) 74a. Is. Other configurations and optical actions are substantially the same as those in the first embodiment, and the same effect is obtained.

【0067】即ち、同図において71は光源手段であ
り、原稿2面上の主走査方向の1次元状の読取領域の範
囲をカバーするように形成された拡散板73と、複数の
白熱灯74aを主走査方向と副走査方向とにそれぞれ配
列した光源部74とより成っている。拡散板73は原稿
2面と相対する拡散面73aの断面形状が、該原稿2面
上の1次元状の読取領域の主走査方向に対して平面より
成り、且つ該読取領域の副走査方向に対して凹面(凹の
シリンドリカル面)より成っている。白熱灯74aは拡
散板73の外側(原稿2面とは逆側)の面73bに沿っ
て主走査方向に複数列、かつ副走査方向に、例えば3列
並置している。尚、副走査方向の白熱灯の配列数は3列
に限定されることはない。
That is, in the figure, 71 is a light source means, a diffusion plate 73 formed so as to cover the range of a one-dimensional reading area in the main scanning direction on the surface of the original 2, and a plurality of incandescent lamps 74a. Are arranged in the main scanning direction and the sub-scanning direction, respectively. The diffusing plate 73 has a cross-sectional shape of a diffusing surface 73a facing the surface of the original 2 in a plane with respect to the main scanning direction of the one-dimensional reading area on the surface of the original 2 and in the sub-scanning direction of the reading area. On the other hand, it has a concave surface (concave cylindrical surface). The incandescent lamps 74a are arranged in parallel in the main scanning direction along the outer surface 73b of the diffusion plate 73 (on the side opposite to the original 2 side) in a plurality of rows and in the sub scanning direction, for example, in three rows. The number of incandescent lamps arranged in the sub-scanning direction is not limited to three.

【0068】本実施形態では上述した構成より成る光源
手段71からの光束で原稿2面上の1次元状の読取領域
2aを集中的に照明し、該原稿2上の画像情報を結像レ
ンズ3によりラインセンサ(不図示)面上に所定の倍率
で結像させている。そして原稿2とラインセンサとの相
対位置を変化させて、本実施形態では原稿2を矢印A方
向(副走査方向)に移動(走査)させることにより、原
稿2面上の2次元的な画像情報をラインセンサで順次読
み取るようにしている。
In the present embodiment, the one-dimensional reading area 2a on the surface of the original 2 is intensively illuminated by the light flux from the light source means 71 having the above-mentioned configuration, and the image information on the original 2 is formed by the imaging lens 3. The image is formed on the surface of the line sensor (not shown) at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0069】このように本実施形態においては図7に示
す如く拡散板73で拡散された拡散光束のうち、拡散面
表面73aから垂直に発する最も強度の高い光束成分の
光束cを結像レンズの物体側の開口角の範囲内に向けて
放射している為、前述の各実施形態と同様に該結像レン
ズ3を経た光束の大部分をラインセンサ面上に入射させ
ることができる。
As described above, in the present embodiment, among the diffused light fluxes diffused by the diffuser plate 73 as shown in FIG. 7, the light flux c of the strongest light flux component vertically emitted from the surface 73a of the diffusing surface is formed by the imaging lens. Since the light is radiated toward the range of the aperture angle on the object side, most of the light flux that has passed through the imaging lens 3 can be incident on the line sensor surface as in the above-described embodiments.

【0070】図8は本発明の実施形態7の副走査方向の
要部断面図(副走査断面図)である。同図において図1
に示した要素と同一要素には同符番を付している。
FIG. 8 is a sectional view (sub-scanning sectional view) of a main part in the sub-scanning direction according to the seventh embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0071】本実施形態において前述の実施形態1と異
なる点は、光源手段81を複数の発光ダイオード(LE
D)82aを有する光源部82より構成したことであ
る。その他の構成及び光学的作用は前述の実施形態1と
略同様であり、これにより同様な効果を得ている。
The present embodiment differs from the first embodiment described above in that the light source means 81 includes a plurality of light emitting diodes (LE).
D) It is configured by the light source unit 82 having 82a. Other configurations and optical actions are substantially the same as those in the first embodiment, and the same effect is obtained.

【0072】即ち、81は光源手段であり、原稿2面上
の主走査方向の1次元状の読取領域の範囲をカバーする
ように発光ダイオード(LED)82aを主走査方向に
複数列、かつ副走査方向に、例えば3列並置した光源部
(LED光源)82より成っている。本実施形態では光
源部82を構成する複数の発光ダイオード82aの配列
状態が、原稿2面上の1次元状の読取領域の主走査方向
に対して平面的となるように構成し、且つ該読取領域の
副走査方向に対して凹面的となるように構成している。
尚、副走査方向の発光ダイオードの配列数は3列に限定
されることはない。
That is, reference numeral 81 denotes a light source means, which has a plurality of light emitting diodes (LEDs) 82a arranged in the main scanning direction in a plurality of rows so as to cover the range of the one-dimensional reading area in the main scanning direction on the surface of the original 2. The light source unit (LED light source) 82 is arranged, for example, in three rows in the scanning direction. In the present embodiment, the arrangement state of the plurality of light emitting diodes 82a constituting the light source unit 82 is configured to be planar with respect to the main scanning direction of the one-dimensional reading area on the surface of the original 2 and the reading is performed. It is configured to be concave in the sub-scanning direction of the area.
The number of light emitting diodes arranged in the sub-scanning direction is not limited to three.

【0073】本実施形態では上述した構成より成る光源
手段81からの光束で原稿2面上の1次元状の読取領域
2aを集中的に照明し、該原稿2上の画像情報を結像レ
ンズ3によりラインセンサ(不図示)面上に所定の倍率
で結像させている。そして原稿2とラインセンサとの相
対位置を変化させて、本実施形態では原稿2を矢印A方
向(副走査方向)に移動(走査)させることにより、原
稿2面上の2次元的な画像情報をラインセンサで順次読
み取るようにしている。
In the present embodiment, the one-dimensional reading area 2a on the surface of the original 2 is intensively illuminated by the light beam from the light source means 81 having the above-mentioned structure, and the image information on the original 2 is formed by the imaging lens 3. The image is formed on the surface of the line sensor (not shown) at a predetermined magnification. Then, by changing the relative position between the document 2 and the line sensor, and moving (scanning) the document 2 in the direction of arrow A (sub-scanning direction) in this embodiment, two-dimensional image information on the surface of the document 2 is obtained. Are sequentially read by the line sensor.

【0074】このように本実施形態においては図8に示
す如く発光ダイオード(LED)82aから発した拡散
光束のうち、最も強度の高い光源の中心部の光束成分の
光束cを結像レンズ3の物体側開口角の範囲内に向けて
いる為、前述の各実施形態と同様に該結像レンズ3を経
た光束の大部分をラインセンサ4面上に入射させること
ができる。
As described above, in this embodiment, as shown in FIG. 8, among the diffused luminous fluxes emitted from the light emitting diode (LED) 82a, the luminous flux c of the luminous flux component at the center of the light source having the highest intensity is transferred to the imaging lens 3. Since the light is directed within the range of the object-side opening angle, most of the light flux that has passed through the imaging lens 3 can be incident on the surface of the line sensor 4 as in the above-described embodiments.

【0075】尚、各実施形態においては光源手段として
蛍光灯、あるいは拡散板と白色灯を組合わせたもの、あ
るいは発光ダイオード等を用いたが、前述した条件を満
足するように光源手段を構成すれば、上記以外の光源を
用いても本発明は前述の実施形態と同様に適用すること
ができる。
In each of the embodiments, a fluorescent lamp, a combination of a diffuser and a white lamp, or a light emitting diode was used as the light source means, but the light source means may be configured so as to satisfy the above-mentioned conditions. For example, the present invention can be applied in the same manner as the above-mentioned embodiment even if a light source other than the above is used.

【0076】[0076]

【発明の効果】本発明によれば前述の如く原稿を照明す
る光源手段の光束放射面(管面)の形状及び該光源手段
を構成する各要素を適切に設定することにより、該原稿
を経て結像手段の物体側から有効径内へ入射することが
できる光束を増やすことができ、これにより読取手段
(ラインセンサ)への到達光量を増大させることによっ
て読取速度の高速化を図ることができ、又結像レンズの
Fナンバーを暗くすることができ、レンズ枚数を削減す
ることができる画像読取装置を達成することができる。
According to the present invention, as described above, by appropriately setting the shape of the luminous flux emitting surface (tube surface) of the light source means for illuminating the original and the respective elements constituting the light source means, the original is passed through the original. It is possible to increase the luminous flux that can enter the effective diameter from the object side of the image forming means, thereby increasing the amount of light reaching the reading means (line sensor), and thereby increasing the reading speed. Further, it is possible to achieve an image reading apparatus that can reduce the F number of the imaging lens and reduce the number of lenses.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 本発明の実施形態1の副走査断面図FIG. 2 is a sub-scan sectional view of the first embodiment of the present invention.

【図3】 本発明の実施形態2の副走査断面図FIG. 3 is a sub-scan sectional view of a second embodiment of the present invention.

【図4】 本発明の実施形態3の副走査断面図FIG. 4 is a sub-scan sectional view of a third embodiment of the present invention.

【図5】 本発明の実施形態4の副走査断面図FIG. 5 is a sub-scan sectional view of a fourth embodiment of the present invention.

【図6】 本発明の実施形態5の副走査断面図FIG. 6 is a sub-scan sectional view of a fifth embodiment of the present invention.

【図7】 本発明の実施形態6の副走査断面図FIG. 7 is a sub-scan sectional view of a sixth embodiment of the present invention.

【図8】 本発明の実施形態7の副走査断面図FIG. 8 is a sub-scan sectional view of a seventh embodiment of the present invention.

【図9】 従来の画像読取装置の要部概略図FIG. 9 is a schematic view of a main part of a conventional image reading device.

【図10】 拡散点光源からの光束を示した摸式図FIG. 10 is a schematic diagram showing the luminous flux from a diffuse point light source.

【図11】 拡散点光源の配列からの光束を示した摸式
FIG. 11 is a schematic diagram showing a light beam from an array of diffused point light sources.

【図12】 円筒蛍光管からの光束の状態を示した説明
FIG. 12 is an explanatory view showing a state of a light beam from a cylindrical fluorescent tube.

【図13】 円筒蛍光管を用いた従来の画像読取装置の
副走査断面図
FIG. 13 is a sub-scanning sectional view of a conventional image reading device using a cylindrical fluorescent tube.

【図14】 円筒蛍光管を用いた従来の画像読取装置の
主走査断面図
FIG. 14 is a main-scan sectional view of a conventional image reading apparatus using a cylindrical fluorescent tube.

【図15】 円筒蛍光管を用いた従来の画像読取装置の
光束利用効率を示した説明図
FIG. 15 is an explanatory diagram showing luminous flux utilization efficiency of a conventional image reading apparatus using a cylindrical fluorescent tube.

【符号の説明】[Explanation of symbols]

1,71,81 光源手段 2 原稿 3 結像手段 4 読取手段 73 拡散板 74,82 光源部 74a 白熱灯 82a 発光ダイオード 1, 71, 81 Light source means 2 Original 3 Image forming means 4 Reading means 73 Diffusing plate 74, 82 Light source part 74a Incandescent lamp 82a Light emitting diode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 光源手段からの光束で照明された原稿の
画像情報を結像手段により、複数の画素を1次元的に主
走査方向へ配列した読取手段面上に結像させ、該主走査
方向と略直交する副走査方向へ該原稿と該読取手段とを
相対的に移動して読み取る際、 該光源手段は光束を射出する該原稿面側の面の断面形状
が、主走査方向に対して平面より成り、且つ副走査方向
に対して凹面より成ることを特徴とする画像読取装置。
1. The image information of a document illuminated by a light beam from a light source means is imaged by a focusing means onto a reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, and the main scanning is performed. When the original and the reading means are moved relative to each other in the sub-scanning direction substantially orthogonal to the reading direction, the light source means emits a light beam so that the cross-sectional shape of the surface of the original is the main scanning direction. The image reading device is characterized in that it is a flat surface and is concave in the sub-scanning direction.
【請求項2】 光源手段からの光束で照明された原稿の
画像情報を結像手段により、複数の画素を1次元的に主
走査方向へ配列した読取手段面上に結像させ、該主走査
方向と略直交する副走査方向へ該原稿と該読取手段とを
相対的に移動して読み取る際、 該光源手段は蛍光灯を有しており、該蛍光灯は光束を射
出する該原稿面側の管面の断面形状が、主走査方向に対
して平面より成り、且つ副走査方向に対して凹面より成
り、該管面の内側の面に蛍光体を塗布したことを特徴と
する画像読取装置。
2. The image information of a document illuminated by a light beam from a light source means is imaged by a focusing means onto a reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, and the main scanning is performed. When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the direction, the light source unit has a fluorescent lamp, and the fluorescent lamp emits a light beam. An image reading apparatus characterized in that the cross-sectional shape of the tube surface is a plane in the main scanning direction and a concave surface in the sub-scanning direction, and a phosphor is applied to the inner surface of the tube surface. .
【請求項3】 光源手段からの光束で照明された原稿の
画像情報を結像手段により、複数の画素を1次元的に主
走査方向へ配列した読取手段面上に結像させ、該主走査
方向と略直交する副走査方向へ該原稿と該読取手段とを
相対的に移動して読み取る際、 該光源手段は蛍光灯を有しており、該蛍光灯は光束を射
出する該原稿面側の管面の断面形状が、主走査方向に対
して平面より成り、且つ副走査方向に対して凹面より成
り、 該管面の内側の面と、該蛍光灯の内部で該原稿面側の管
面と相対する管面の内側の面とに蛍光体を塗布したこと
を特徴とする画像読取装置。
3. Image information of a document illuminated by a light beam from a light source means is formed by an image forming means on a reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, and the main scanning is performed. When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the direction, the light source unit has a fluorescent lamp, and the fluorescent lamp emits a light beam. The cross-sectional shape of the tube surface is a plane in the main scanning direction and a concave surface in the sub-scanning direction, and the inside surface of the tube surface and the tube on the document surface side inside the fluorescent lamp. An image reading device characterized in that a phosphor is applied to the inner surface of the tube surface facing the surface.
【請求項4】 前記副走査方向の断面において、前記原
稿面上の一点から前記蛍光灯の該原稿面側の管面の有効
径において張る角度が、その一点から前記結像手段の入
射瞳の直径が張る角度と略等しくなるように設定したこ
とを特徴とする請求項2又は3の画像読取装置。
4. In the cross section in the sub-scanning direction, an angle extending from one point on the document surface to the effective diameter of the tube surface of the fluorescent lamp on the document surface side is from that point to the entrance pupil of the image forming unit. The image reading apparatus according to claim 2 or 3, wherein the diameter is set to be substantially equal to the extending angle.
【請求項5】 前記副走査方向の断面において、前記蛍
光灯は、その内部で該原稿面側の管面と相対する管面の
形状が平面より成ることを特徴とする請求項2乃至4の
画像読取装置。
5. The cross section in the sub-scanning direction of the fluorescent lamp, wherein the inside of the fluorescent lamp has a flat tube surface facing the tube surface on the document surface side. Image reading device.
【請求項6】 前記副走査方向の断面において、前記蛍
光灯は、その内部で該原稿面側の管面と相対する管面の
形状が、該原稿面側の管面と同じ極性を持つ凹面より成
ることを特徴とする請求項2乃至4の画像読取装置。
6. In the cross section in the sub-scanning direction, the fluorescent lamp has a concave surface in which the shape of a tube surface facing the tube surface on the document surface side has the same polarity as the tube surface on the document surface side. The image reading apparatus according to claim 2, further comprising:
【請求項7】 前記蛍光灯の内部で前記原稿面側の管面
と相対する管面の外側の面に光束を反射させる反射手段
を設けたことを特徴とする請求項2乃至6の画像読取装
置。
7. The image reading device according to claim 2, further comprising: a reflecting unit provided inside the fluorescent lamp, the reflecting unit reflecting a light beam on a surface outside the tube surface facing the tube surface on the document surface side. apparatus.
【請求項8】 前記蛍光灯の前記原稿面側の管面は凹の
シリンドリカル面より成ることを特徴とする請求項2乃
至7の画像読取装置。
8. The image reading device according to claim 2, wherein a tube surface of the fluorescent lamp on the side of the original surface is a concave cylindrical surface.
【請求項9】 光源手段からの光束で照明された原稿の
画像情報を結像手段により、複数の画素を1次元的に主
走査方向へ配列した読取手段面上に結像させ、該主走査
方向と略直交する副走査方向へ該原稿と該読取手段とを
相対的に移動して読み取る際、 該光源手段は該原稿面上の主走査方向の1次元状の読取
領域の範囲をカバーするように形成された拡散板と、複
数の白熱灯を主走査方向と副走査方向とにそれぞれ配列
した光源部とを有し、 該拡散板は該原稿面と相対する拡散面の断面形状が、主
走査方向に対して平面より成り、且つ副走査方向に対し
て凹面より成り該複数の白熱灯は該拡散板の外側の面に
沿って主走査方向と副走査方向とにそれぞれ配列されて
いることを特徴とする画像読取装置。
9. The image information of a document illuminated by a light beam from a light source means is imaged by a focusing means onto a reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, and the main scanning is performed. When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the reading direction, the light source unit covers the range of the one-dimensional reading region in the main scanning direction on the document surface. And a light source unit in which a plurality of incandescent lamps are arranged in the main scanning direction and the sub-scanning direction, respectively, and the diffusion plate has a cross-sectional shape of the diffusion surface facing the original surface, The plurality of incandescent lamps each having a flat surface in the main scanning direction and a concave surface in the sub scanning direction are arranged in the main scanning direction and the sub scanning direction along the outer surface of the diffusion plate. An image reading device characterized by the above.
【請求項10】 光源手段からの光束で照明された原稿
の画像情報を結像手段により、複数の画素を1次元的に
主走査方向へ配列した読取手段面上に結像させ、該主走
査方向と略直交する副走査方向へ該原稿と該読取手段と
を相対的に移動して読み取る際、 該光源手段は該原稿面上の主走査方向の1次元状の読取
領域の範囲をカバーするように発光ダイオードを主走査
方向と副走査方向とにそれぞれ複数配列した光源部を有
し、 該光源部を構成する複数の発光ダイオードの配列状態
が、主走査方向に対して平面的より成り、且つ副走査方
向に対して凹面的より成ることを特徴とする画像読取装
置。
10. Image information of an original document illuminated by a light beam from a light source means is imaged by a focusing means onto a reading means surface in which a plurality of pixels are one-dimensionally arranged in the main scanning direction, and the main scanning is performed. When the document and the reading unit are moved relative to each other in the sub-scanning direction substantially orthogonal to the reading direction, the light source unit covers the range of the one-dimensional reading region in the main scanning direction on the document surface. Thus, it has a light source section in which a plurality of light emitting diodes are respectively arranged in the main scanning direction and the sub scanning direction, and the arrangement state of the plurality of light emitting diodes forming the light source section is planar in the main scanning direction, Further, the image reading device is concave in the sub-scanning direction.
JP8046645A 1995-03-02 1996-02-07 Image reader Pending JPH09214678A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8046645A JPH09214678A (en) 1996-02-07 1996-02-07 Image reader
US08/609,058 US6118555A (en) 1995-03-02 1996-03-01 Image reading apparatus having a light source including a fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046645A JPH09214678A (en) 1996-02-07 1996-02-07 Image reader

Publications (1)

Publication Number Publication Date
JPH09214678A true JPH09214678A (en) 1997-08-15

Family

ID=12753056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046645A Pending JPH09214678A (en) 1995-03-02 1996-02-07 Image reader

Country Status (1)

Country Link
JP (1) JPH09214678A (en)

Similar Documents

Publication Publication Date Title
US8169672B2 (en) Image scanning device and illuminating device that divide a light beam from a light source into multiple light beams and direct the multiple light beams to a target
JP3862422B2 (en) Image reading device
CN103907337A (en) Lighting unit and image scanner using the same
JP2010277070A (en) Illuminator, and spectral apparatus and image reading apparatus using the same
JPH11185516A (en) Image illuminating device and image reading device using same
JPH0996763A (en) Illuminating optical system and light source device
JP2005065228A (en) Dual mode scanner capable of performing transmissive and reflective scanning with single side lamp
JPH03165661A (en) Lighting device for reading picture
JP3532724B2 (en) Illumination device and image reading system using the same
JPH07193685A (en) Line lighting device and line reader
JPH09214678A (en) Image reader
JP2004109866A (en) Image scanner
US6118555A (en) Image reading apparatus having a light source including a fluorescent lamp
JP2000114603A (en) Light emitting device and image reading device using the same
JP2005086391A (en) Lighting system and image reader using the same
JPH099006A (en) Illumination device for picture input device
JP2000089030A (en) Light guiding body, picture reader using the same
JPH11317854A (en) Image reader and color image reader using the reader
JP4086524B2 (en) Illumination system and image reading apparatus having the same
JPH10190963A (en) Image reader
TWI250780B (en) Light gathering structure of scanning module
JP3050999B2 (en) Color image sensor
JPH11317842A (en) Lighting device and image reader using the device
JPH08240864A (en) Image reading device
JPH08307610A (en) Image reader